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viii Preface

brief discussion of a number of topics including elliptic integrals and
functions, theta functions, and modular functions. These attractive and once
central concerns of analysis have been dropped from the standard cur-
riculum—and much that is beautiful has become relatively inaccessible
except to the expert or the archivist. In presenting this material we have not
striven for generality. This is available in the specialty literature. At times
we have settled for giving only a taste of the material and a few pointers on
where it can be pursued.

We have found this excuse to consult the nineteenth-century masters a
pleasurable and rewarding bonus—as Hermann points out in his introduc-
tion to Klein [79], “We are so used to thinking in terms of the ‘progress’ of
science that it is hard for us to remember that certain matters were better
understood one hundred years ago.”

The second direction takes us into the domain of analytic complexity.
How intrinsically difficult is it to calculate algebraic functions, elementary
functions and constants, and the familiar functions of mathematical physics?
Here part of the attraction is the surprising answers—the familiar methods
are often far from optimal.

Finally, an honest treatment invites exploration of applications and
ancillary material, particularly the rich and beautiful interconnections be-
tween the function theory and the number theory. Included, for example, are
the Rogers-Ramanujan identities; algebraic series for 7; Tesults on sums of
two and four squares; the transcendence of 7 and e; and a discussion of
Madelung’s constant, lattice sums, and elliptic invariants.

Our primary concern throughout has been the interplay of analysis and
mathematical application. We hope we have elucidated a variety of useful
and attractive analytic techniques. This book should be accessible to any
graduate student. Only rarely does it assume more than the content of
undergraduate courses in real and complex analysis. It is, however, at times
terse, at times computational, and some of the exercises are difficult. A fair
amount of the material, particularly on the approximation and computation
of 7w and the elementary functions, is new and only partially available in
research papers.

The accompanying flow-chart gives possible routes through the material.
Chapters 8 and 11 are largely self-contained. Chapter 8 is a treatment of
general mean iterations, while Chapter 11 sketches some of the history of pi,
its calculation and its transcendence. There are numerous exercises (fre-
quently with hints). The exercises often develop substantial additional
examples and bodies of theory, and even the casual reader is encouraged to
look at them.

The contributions of family, friends, students, and colleagues have been
many and varied and have greatly facilitated the production of this book. To
all these people we offer our thanks. A particular debt of gratitude is owed
to Professors R. Askey, B. Berndt, R. Brent, K. Dilcher, W. Gosper, Y.
Kanada, D. Shanks, and J. Zucker. Their thoughtful comments and sugges-

Preface ix

tions helped produce a better book. The cheerful technical assistance of P.
Flemming, of our departmental office, and of the staff at Wiley is also
gratefully acknowledged, as is the assistance of the Canadian Mathematical
Society and the support of the Natural Sciences and Engineering Research
Council of Canada.

JONATHAN M. BORWEIN
PETER B. BORWEIN

Halifax, Nova Scotia
November 1986
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Chapter One

Complete Elliptic Integrals and
the Arithmetic-Geometric
Mean Iteration

Abstract. The focus of this chapter is the arithmetic-geometric mean (AGM)
iteration of Gauss, Lagrange, and Legendre and its relationship to elliptic
integrals. The iteration converges quadratically to a nonelementary transcen-
dental function simply expressible in terms of complete elliptic integrals. This
result, which is fundamental to this monograph, is established in a variety of
ways. Some of the basic properties of elliptic integrals and functions are
discussed.

1.1 THE ARITHMETIC-GEOMETRIC MEAN ITERATION

One of the jewels of classical analysis is the arithmetic-geometric mean
(AGM) iteration of Gauss. It is the following two-term recursion:

_ an + bn

2

(1.1.1) a,.,:

(1.1.2) b,,,'=Vanb,.
It is customary and useful to introduce an auxiliary variable,
(11'3) cn+1:= %(an_bn)‘

If we assume that 0 <b,=<a,, then from the arithmetic-geometric mean
inequality we have



2 The Arithmetic-Geometric Mean Iteration

bn = bn+1 = an+1 = an

and

1 (a,=b,)
1.1.4 O0< —b == T )
( ) a,+1 n+1 = 3 ( '_a"+\/b—n)2

Whence we observe that a, and b, converge to a common limit determined
uniquely by a, and b,. This common limit will be denoted (on letting a 1= a,
and b :=b,) by
(1.1.5) M(a, b) =lima,=1limb,.
We will refer to this limiting process as the AGM and usually reserve the
symbols a,,, b,, and c, for variables bound by the AGM relations. We also
reserve the symbol AG(a, b) for the common limit.
We say that a,— a with pth-order convergence if
24 4 4

n+1

(@, — )’

(1.1.6) = 0(1)

where, as usual, a, = O(B,) means that, for some constant ¢ and for all n,
@, =cB,. If the a, are functions defined for all x in a set K, and if the
implicit constant concealed by the O symbol in (1.1.6) is independent of x,
then we say that the convergence is uniformly pth order. Roughly speaking,
quadratic (second-order) convergence doubles the number-of-digits agree-
ment between successive iterates and the limit, cubic (third-order) con-
vergence triples the agreement, and so on.

It is an easy observation from (1.1.4) that the AGM converges uniformly
quadratically for a,, b, restricted to compact subsets of (0, ). Very precise
estimates for the rate of convergence will be established later.

We also observe that M(a, b) is homogeneous, that is, for A >0
1.1.7) AM(a, b) = M(Aa, Ab)
and thus there is little loss of generality, though often some loss of
symmetry, to setting a = 1.

The function M satisfies

(1.1.8) M(a, b)=M(“ ; b,m)
or
(1.1.9) M(1, b) = 1;’—” M(1, %).

1.1 The Arithmetic-Geometric Mean Iteration 3

The analysis of the limit of the AGM rests on finding a two-variable function
M invariant under the transformation (1.1.8) or, equivalently, on finding a
function f satisfying the functional relation (1.1.9), namely,

1+x f<2\/§)

(1.1.10) ) == T

If we set k,:=x€(0,1) and

(1.1.11)

then since

-k
U (L+VE) (1 + k,)

we have that k,— 1 quadratically. In fact, the function g defined by

1-k

S 1+k,
g()i=all —
n=0

(1.1.12) ko= x

is the unique solution of (1.1.10) analytic in a neighbourhood of 1 that
satisfies g(1) =a. (See Exercise 4.) This form of the AGM, as a single
variable iteration, is usually called the Legendre form.

It is_convenient and standard to define the complement x' of x by
x':=V1- x* Differentiation will be denoted by f.

Comments and Exercises

The early history of transformations of elliptic integrals, of which, as we
shall see in the next section, the AGM is an example, is laid out in an
entertaining article by G. N. Watson [33] entitled “The Marquis and the
Land-Agent: A Tale of the Eighteenth Century.” The marquis is Fagnano
and the land-agent is Landen. Landen’s transformation, published in 1775,
will be discussed later. The names of Euler and Lagrange should also be
associated with the early transformation theory. Lagrange uncovered the
AGM iteration sometime before 1785. Gauss rediscovered it independently
in the 1790s. He apparently first considered the iteration in 1791 at the age
of 14 (Almquist and Berndt [Pr]). It is, however, Gauss and Legendre who
develop the theory fully. As Watson [33] points out, “in the hands of
Legendre, the transformation became a most powerful method for comput-
ing elliptic integrals.” Gauss is unique in having deduced the invariant
function from the functional equation rather than proceeding in the opposite
(and easier) direction.



The Arithmetic-Geometric Mean Iteration
Deduce that, for the AGM,

2_ 2 _ g2
a,=a,.,+%c, ., b,=a, —T,., c,=a,—b;.

n n n

Hence the AGM is well defined for negative n. Show that

a_,=2"a* b_, =2"c* c_,=2"b*,

-n n -n

where a};, b and ¢} are generated from the AGM commencing with
ay:=ay, by :=c,, and c§:= b,. Show that

Observe that this formula avoids the subtractive cancellation problems
inherent in calculating the very small number c, fromc, ., = 3(a, — b,).
Show that

an + \/an—l(zan - an—l)
n+l T 2 .

a

Consider the harmonic-geometric mean iteration

o e 2a,8,
n+1 a" +B"

Bn+1 = 4 aan "

Show, for «,, B, € (0, ), that the above iteration converges quadrati-
cally to H(e,, B,), where

1
H(ay, By) = Wao,l—/ﬂo) '

Consider the arithmetic-harmonic mean iteration

. @, + Bn
e

_ 2a,B,
Bn+1'— an+Bn N

Show, for a;, B, € (0, ), that the above iteration converges quadrati-
cally and that ‘

lim e, =1lim B, = VB, .

1.2 Gauss’s Derivation of the Fundamental Limit Formula 5

4. Show that the AGM is a well-defined quadratically convergent iteration
for starting values a,:=1, b, : = z, where re(z) > 0. Likewise the func-
tion g of (1.1.12) is a single-valued analytic function on re(z)>0. In
both cases the convergence is uniformly quadratic on compact subsets.
[The root must always be chosen to lie in re(z)>0.] Show that
8(z) = M(1, z) for re(z) > 0.

1.2 GAUSS’S DERIVATION OF THE FUNDAMENTAL
LIMIT FORMULA

By May 30th, 1799, Gauss had observed, purely computationally, that

1 2 (1 ar
(121) m and ;J’O \/1__7

agreed to at least eleven decimal places. He commented in his diary that this
result “will surely open up a whole new field of analysis”—a claim vindi-
cated by the subsequent directions of nineteenth-century mathematics. The
inverse of the above (indefinite) integral is the lemniscate sine, a function
Gauss studied in some detail. He had recognized it as a doubly periodic
function (see Section 1.7) by the year 1800 and hence had anticipated one of
the most important developments of Abel and Jacobi: the inversion of
algebraic integrals.

We now outline Gauss’s derivation of the limit of the AGM (Gauss
[1866]). This is not the easiest development but it may be the most
motivated.

Theorem 1.1
1 3 2[7‘!/2 d0
M(1,x) wJo \1-(1-x)sin’6

First proof. Observe that [M(1+x,1—x)]™", defined by (1.1.5), is
analytic and even in some neighbourhood of zero. (See Exercise 4, Section
1.) Thus we may suppose that

1
M(1+x,1-x)

(1.2.2) =l+dx’+dx* +dxS+---.

Upon application of the AGM transformation we have

1 1
MQA+2vEI(1+2),1-2vEI(1+0) M1, V1 - 4x/(1+ )
1+x

TMO+x,1-x) "

(1.2.3)
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Comparing (1.2.2) and (1.2.3) gives

2\/Y>2 <2\/Y>4
2 4 — el —
I+x)A+dx"+dx"+--°) 1+d1<1 d, 1

(1.2.4)

We leave it as an exercise to the reader to follow Gauss’s footsteps by
solving the above equation for d,. In fact,

21177 1
(1.2.5) di:[i(!(i’—li!] e

If we observe, as in (1.2.3), that

1 1
M(1,V1-x%) T M(1+x,1-x)

we see by (1.2.2) that we are finished if we show that

(1.2.6)

(1.2.7)

(21’—1)1]2 x*

EJ"”/Z d0 B © l:
wJo Vl—xzsinzé) i=o i!(i—l)! 42i—1

This final equation requires expanding (1 — x*sin” 8)”"/? and integrating
term by term.

It is perhaps possible to be guided to the limit of the AGM by the above
method. If, however, one has correctly guessed the limit, then proving it
correct is much more straightforward and only involves establishing the
invariance of the limit under the transformation.

Second proof. Let

2 J-‘/r/Z d0
7Jo Va?cos’ 6+ b’ sin’ 6

(1.2.8) T(a, b):=

Then, as the subsiitution ¢:= b tan § shows,

dt
V@ +A)B2+ 7))

(1.2.9) T(a, b) = }T f_ww

Now the substitution u:= (¢ — ab/t) (and some care) yields

a+b

(1.2.10) T(a, b) = T( ,m) )

It follows that T(a,, b,) is independent of n and hence, since (1.2.9)

1.3 Basic Properties of Complete Elliptic Integrals 7

evaluates as an arctan when a=b, we have on interchanging limit and
integration

(1.2.11) T(ao,b0)=T(M(ao,bo),M(ao,bo))=m. O

Comments and Exercises

An excellent account of the development and the importance of elliptic
function theory in the nineteenth century is to be found in Felix Klein’s
classical work, “Development of Mathematics in the 19th Century” (Klein
[79]). Gauss’s works are, of course, available in collected form (Gauss
[1866]). Before establishing the limit formula, Gauss produces partial
expansions of M(1, x) and M(1+ x, 1— x) plus a number of AGM calcul-
ations carried to as many as 20 decimals. It is apparent that both the
observation of the limit and the route to a proof were indicated by
prodigious numerical experimentation.

The second proof may be found in Carlson [71], Newman [82, 85], Todd
[79], or Wimp [84]. Carlson [71] offers some interesting generalizations.
These are discussed in Section 8.5.

1. Fill in the details in the above proofs. In particular prove (1.2.5),
(1.2.7), and (1.2.10).

2. Show that [M(1+ x,1—x)]"' and [M(1, x)]"" both solve the second-
order differential equation

2
(x3—x)%+(3x2—1)%+xy=0.
X

Hint: For the second solution consider equation (1.2.6).

1.3 BASIC PROPERTIES OF COMPLETE ELLIPTIC INTEGRALS

The two basic integrals we will encounter are the complete elliptic integral of
the first kind,

/2 d0
1.3.1 K(k I=f —_——
(43D ©=) Vi

=f‘ dt
° VI -A)1-K7P)

and the complete elliptic integral of the second kind,
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w/2
(1.3.2) E(k):=f V1 - k*sin® 6 do
Ve,
1 -

The complementary integrals E' and K’ are the integrals in the complemen-

tary variable k' = V1 — k%,

(1.3.3) K'(k):= K(V1- k%)= K(k")
(1.3.4) E'(k):=E(V1-k*)=Ek').

As is traditional, we will use the notation f'(k):= f(k’) to indicate any
function in the complementary variable. The variable k is often called the
modulus, and k' is the complementary modulus.

The second integral arises in the rectification of ellipses. The arc-
length A of an ellipse with semiaxes a and b is given by

w/2
b
A =4J’0 Va®cos® 0 + bZsin® § do =4aE’<;) .

The first integral has the following physical interpretation. If p is the
period of a pendulum with amplitude « and length L, then

p o )

where g is the gravitational constant. Note as @ — 0, K(sin(a/2))— m/2,
and we are left with a simple harmonic approximation.

The Gaussian hypergeometric series, discussed by Gauss in 1812 in what
is one of the first rigorous discussions of convergent series, is defined by

. ab a(a+1)b(b +1)
(13.5) Fa,bsc;2):=1+ 1 —z+ 1-2-c(c+1)

a(a +1)(a +2)b(b + 1)(b +2)
T T2 3 ot (e +2)

For the complete elliptic integrals we have the series expansions, for
k| <1,

T (21—1)” 2
(1.3.6) K(k) =EZ[ ]k - F

=0

o

2
Bk _Z{l_i[(Zi—l)!!]z K }‘—ZF<—1 1-1-18)
()_2 = i-. . —2 2797

(1.3.7)

N
N[ =
N =
[y
bl

L8]
SN—_——

1.3 Basic Properties of Complete Elliptic Integrals 9

where (2 —1)!1:=1-3-5---(2i — 1). The derivations are left as Exercise 1.
We have, as in Exercise 2 of Section 1.2, that K and K’ are both solutions
of

2

34
—_ + —_— .
Tk ky =0

(1.3.8) - k) & -1

2 +(3k*

This equation has a regular singular point at zero (the roots of the indicial
equation are both 0) which, as the reader familiar with the elementary
theory of second-order differential equations knows, says that

(1.3.9) K'(k) = alog k K(k) + f(k)
where f is analytic in a neighbourhood of zero. (See, for example, Birkhoff

and Rota [69].)
In fact,

2 1 () ko
(5) ()0 + (52) (5 + )
() (e e e

This logarithmic asymptote at zero will be of considerable interest later in
the discussion of the complexity of log. Also,

(1.3.10)  K'(k)=

(1.3.11) E'k)=1+= 1 [1 g(i) %]kz

12-3 4 2 1
i en (1) - %2 -3
22|08\ ) "1 T3l

1?.3? 5){ <4> 2 2 1 ] s
+<___ “Hh_2 2 1
Z e/ \) T2 T3 s elk T

Once again the above verifications are left as exercises.
The first and second integrals are linked by the equations

dE _E-K
(1.3.12) T

dK _E-k"K
1.3.13 =
(1.3.13) dk  k(k')

(See Exercises 2 and 3.)
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Comments and Exercises

The functions K and E are nonelementary transcendental functions. This is
a result of Liouville’s. In general an elliptic integral is an integral of the form

| Rex, ) ax,

where R is a rational function of x and y and where y* is a quartic
polynomial in x. Except in special cases, such as repeated factors, this is
always a nonelementary function of u. Incomplete elliptic integrals of the
third kind are of the form

f“ dx '
O (1-n*)WV(1 - x)(1 - k%7)

The integral is complete when u =1. (The complete third integral can be
expressed in terms of K and E.) Analogously we may define incomplete
elliptic integrals of the first and second kind. The basic result due to
Legendre is that any elliptic integral may be algebraically reduced to a linear
combination of elliptic integrals of the first, second, and third kind. (See
also Exercise 5 of Section 1.4 and Exercise 6 of Section 1.6.)

The formulae in the section may be found, in tabular form, in Ab-
ramowitz and Stegun [64], Gradshteyn and Ryzhik [80], and the Bateman
project (Erdélyi et al. [53]), so may transformation formulae for the
hypergeometric functions. Of course the indispensible companion volume is
Whittaker and Watson [27].

A number of the seminal nineteenth-century papers, including Gauss’s on
the hypergeometric series and Jacobi’s on theta functions, are available in
translation in Birkhoff [73].

1. Establish the series expansions (1.3.6) and (1.3.7) for K and E by
expanding the radical by the binomial theorem and integrating term by
term. '

2. Establish, by differentiating the integral (1.3.2), that

dE_E-K
dk &
3. Verify, from the series expansions (1.3.6) and (1.3.7), that
dK _E-k"K
dk Kk’

4. From the integral representations show that

1.4 Third Proof of the Fundamental Limit Formula 11
m m
a) K(O) = E E(O) = E E(l) =1.

b) K’(k)=log<%> +0(k*|logk]) Kk loO.

Hint:

de f’” k' sin 6 do
0

w2
-[0 \/1—(1—k2) sin’6 V&* + (k') cos® 6

w2 -
1-k'sin @
+L 1tk sing %

The second integral evaluates to log [(1 + k')/k]. (See Borwein and
Borwein [84a].)

) ‘K’(k) —log (%)‘ <4k’8 +[logkl) ke (0,1].

5. Verify the expansions (1.3.10) and (1.3.11). (See also Exercise 1,
Section 2.3.)
6. Establish the relation, for re(c) >re(b) >0,

. 1
F(a,b;c;z)= cfo T A=) T (1= 12) " de

where C is a constant independent of z. [In fact C = I'(c)/T(b)I'(c — b)
where, as usual, T" is the gamma function. (See Section 1.6.)] Note that
this provides an analytic continuation of F to C —[1, «).
7. Show that F(a, b; c; z) satisfies
dy dy _
z(l—z)d—22+[c—(a+b+1)z] 1z aby=0.

This is the hypergeometric differential equation.

1.4 QUADRATIC TRANSFORMATIONS AND ITERATIONS AND A
THIRD PROOF OF THE FUNDAMENTAL LIMIT FORMULA

The complete elliptic integrals satisfy the following functional relations
which we collect together as
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Theorem 1.2
For k€(0, 1),

@) K(k)= T-Il-_k K(%}%) (upward)

®) K= k(1) (downward)
() E(k)= # E<12+£];> + %2 K(k) (upward)

d) E(k)=(1+ k)E(%) — k'K(K) (downward) .

Proof. Parts (a) and (b) are equivalent and follow from the previous
discussion. We give a direct proof of (b) based on Ivory [1796]. This is also a
third proof of Theorem 1.1. Let /:=(1—k')/(1+ k’). Then we have
VIi=k/(1+k') and 1+ > =2(1+ k'*)/(1 + k')>. Thus

1+ k' 1 (" do
< >K<’<>=§f 7
2 o V(1+ %) +2lcos26

on replacing sin’ 6 by (1 — cos260)/2. Then

<1+k’
2

)K(k) = % fo (1+le™)712(1 + 1e*°) ™12 gg

1 5 =2\ 7\ [ aitmen)
—_ 1 m+n 2i(m~n)6
2 Zol <m><n>foe a6 .

Here we have used the binomial theorem twice. Since only the terms with
m = n are nonzero, we have

1+k'> _TS <‘%>zzn_z <1 1. z>=
( 5 K(k)—zzo n ) =3 Fl5 555 ) = KQ)

on using (1.3.6). This completes (b). If g(k):=2Vk/(1+ k), then g~ ' =
(1—k")/(1+k') and [1+ g'(k)]/2=1/(1+ k). Now (a) follows by sub-
stituting g(k) for k in (b). To derive part (c), we differentiate (a) to get, for
K = dK/dk,

(1.4.1) (1+ k)K(k) + K(k) = K( g(k))g'(k) )

This is coupled with the differential equation (1.3.13) in the forms

1.4 Third Proof of the Fundamental Limit Formula 13
(1.4.2) E(k) = kk'*K(k) + k'*K(k)

and

(1.4.3) E(g(k)) = g(k)[g' ()’K(g(k)) + [g'(K)*K(g(k)) .

We now use (1.4.1) to eliminate K(g(k)) from (1.4.3) and then employ
(1.4.2) and (a) to solve for E(g(k)) in terms of K(k) and E(k). The
algebraical details are left to the reader. Part (d) may be derived analogous-
ly from (b) or by substituting g (k) for k in (o). O

The transformations are termed upward and downward because, for
k€ (0, 1), iterating (a) leads to a sequence of k values increasing to 1 and
iterating (b) forms a sequence of k values decreasing to 0.

It is convenient to introduce homogeneous forms of E and K and to
recast Theorem 1.2 in AGM terms.

Let

(14.4)  Ia,b) :=f0m d6 _ % K(é)

Va® cos® 0 + b*sin’ @ a

(1.4.5) J(a, b):= J:n Va® cos® § + b2 sin? 0do = aE’<§> .
Theorem 1.3

Ifa, =(,+b,)/2,b,, :=Vab,, and 0< b,<a,, then

(@) Ha,.1,b,.,)=1a,,b,)

&) 208,415 byir) = J(a,, b,) = a,b,Ka,, b,).
Proof.  Part (a) has been observed in the second proof of the fundamen-

tal limit theorem (Theorem 1.1).
To see part (b), notice that if k, := c,/a,, then k,=b /a_,

2

b,
2‘I(an+17 bn+1)=2an+1E< 1_ a2+1>=2an+1E(kn+1)
n+1

b2
J(a,, b)) = anE<\/1 - a—;’) =a,Ek,).

Recall that ¢ = a’— b>. The relationship between k,,, and k, is given by

and

_a,—b, 1-k

n

e, +b, 1+k
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Thus, establishing (b) is equivalent to establishing
20n+1E(kn+l) - anE(kn) = an(kn)

which on setting a,,, =(a, + b,)/2 and dividing by a, may be seen to be
equivalent to part (d) of Theorem 1.2. O

These transformations may be iterated to produce quadratically con-
vergent algorithms for K and E. (See also Exercise 1.)

Algorithm 1.1

0

(@) K'(ky)= g [I 2__ g (1+k) (upward iteration)
1

E]
Il
o
B
B
I

where
2Vk,
k... =1¥% and k,€(0,1].

8

(1+k,) (downward iteration)
1

k., := - and k,€[0,1).

The first product is the unique solution of Exercise l1a) analytic in a
neighbourhood of 1 that takes the value #/2 at 1, while the second product
is the unique solution of functional relation (b) of Theorem 1.2 that takes
the value #/2 at 0 and is analytic in a neighbourhood of 0. This observation
verifies that the above products are analytic in neighbourhoods of 0 and 1,
respectively, since they are uniformly convergent products of analytic func-
tions. Also, specifying the value of an analytic solution of either functional
relation at any point in (0, 1) in fact specifies the function at an infinite set of
points with limit point within the domain of analyticity and hence uniquely
defines the function up to a constant multiple of the value at the limit point.
(See Exercise 4.)

The algorithms for E and K in AGM form are particularly attractive.

Algorithm 1.2
Fora,:=1, by:=k'€(0,1], and ¢,:=k,

1.4 Third Proof of the Fundamental Limit Formula 15

o

(@) K(k)= M, &)

(b) E(k)= (1 -> 2"‘1c3,)1<(k).
n=0
Proof. Part (a) is Theorem 1.1. For part (b) we use Theorem 1.3,
2](an+1’ bn+l) - ](an’ bn) = anbnl(an’ bn) = anan(aO’ bO)
and since 4a>,, — 24> - 2a,b, = -2,

2n+1[](an+17 bn+1) - a;21+11(a0’ bo)] - 2"[](an’ bn) - ail(ao, bo)]
=2"""c2I(a,, b,) .

Thus on summing
(1.4.6) J(ay, by) = (ag -2 2"‘1ci)1(a0, b,)
n=0

which specializes to (b). Here we must observe that
a,:= 2n[a’211(an, bn) - ](am bn)]
g F/z (a2~ b%)sin® 6

0

\/a,f cos® § + b2 sin’ 6

w2 < 2
An2 sin” @
—chfo —— =——=—df .
\/ancos 8+ b, sin” 6

do

Thus 0<A, =2"c2Ka,, b,), and A, tends to zero as n— o since ¢’ tends to
zero quadratically. O

Comments and Exercises

The algorithms of the section provide remarkably efficient methods for the
calculation of E and K and related functions. The analysis of these al-
gorithms will be reserved for later chapters. We have restricted our attention
in this section primarily to a real variable k. This is simplifying but entirely
unnecessary. All of the algorithms and functional relations extend naturally
to the complex domain. In fact, all the algorithms and functional equations
of this section hold at least for k € {re(z) >0} —[1,®). The interested
reader may readily establish the exact domains of validity for the various
relations. The analysis of the AGM iteration for complex starting values is
reasonably complicated. (See Cox [85].) The problem is to decide which
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root is appropriate in the computation of b,,, = Va,b,. The right choice is
made to ensure |a,,; — b,,,|<la,,;+b,,,| [withim (b,,,/a,,,)>0in the
case of equality]. The surprise is that no matter how the roots are chosen,
the AGM iteration converges (provided a, # —b,) though unless the right
choice is made all but finitely often, the limit will be zero.

Exercise 5 on the Landen transform provides an algorithm for calculating
incomplete elliptic integrals. We will revisit Landen’s transform in Chapter
2. A wealth of formulae on the calculation of elliptic integrals may be found
in King [24].

1. Show that

0 K- i K ()

v K- ki)

o Bk =a+oe(2E) -

o - (E)e(18)

and observe that K'/K satisfies a multiplication theorem, namely,

K 5’(2\/%)_1£<1—k'>
9 xW=2%\1x) 2% \i7%/

Show that for every integer n there is a unique algebraic x € (0, 1) so
that

f) K? (x)=2".
2. Show thatif k, ., :=(1—k,)/(1+ k) and j, :=Vk,,, then

w 1-Vi-j?
a n = —
Jn+1 1+4/——1_],:

and hence

—Vi—£7?
0 ko= ey M =]
Also

Dl

1.4 Third Proof of the Fundamental Limit Formula 17
. e 4 T T . \2
0 K(jo)=7 Il —=—=5=JT11+j,).
Y 2i0(1+VI-jY 2an

Show that j, converges quartically to zero.
(The quartic AGM) Leta,, b,, and c, satisfy the AGM relations. Set
a,:=a)? and B,:= bl*. Show that

a, + B,
a) an+1 = 2
and
3 3 1/4
a’lB’! + ﬁnan
b) B = <T> :

Show also that

3 arfar (227 82)].

n—12
c) 202 c, 5

Show that the convergence is governed by

(2, = B,)"

16

4 4
d) an+1_Bn+1=

Derive the following quartic algorithms. For a,:=1 and B,:= Vk €
(0,1],

¢ K= 21i1:a,2, ‘
o B Sele-(532)]

Consider a functional relation

Fz)=s(2)F(g(z)) F(0)=a

where s and g are analytic in some complex neighbourhood U of zero.
Suppose that, for some p >1, lim,_ g(")(z)—>0 with pth order con-
vergence uniformly on U. [g®™ denotes g composed with itself »n times. ]
Show that the above relation has a unique nonzero analytic solution on
U if and only if s(0)=1.

(The Landen transform) Consider the incomplete elliptic integral of
the first kind

ke[0,1), &=0.

¢ a9
Fob= |,
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) ‘ d’y 1 [1+k°
Show, as in the second proof of Theorem 1.1, that if we set k,,,:= (1.5.1) preiailye =)
(1=k,)/(1+ k) and tan (¢,,, — ¢,) = k. tan ¢,, then
‘ Also, the functional relations [(Theorem 1.2(z) and Exercise 1a) of Section
a) F(¢n+l7kn+l)=(1+k::)F((#n!kn) kn+lskn ’ ¢n+12¢n v z14i z:come G(k)._ 1+k \/W G< 2@)
and - V2 V1i-k \1+k
F(e,, k —(ﬁ 2 )1' (ﬁ) e k”2 2VEk
b)  Fleb, ko) =\ 11 7777 ) lim {57 ) ~ (1.5.3) G* (k) =V2(1+k) G*( 1+ k)
Show that if k,,,:=2Vk,/(1+k,) and sin (2¢,., ~ ¢,):= k, sin ,, If we set g(k) :=2Vk/(1+ k), these become
then ‘
1
. (1.5.4) Gk = 33057 Gle(k)
C) F(¢n+l’kn+1)= 5 (1+kn)F(¢n’ kn) kn+12kn7 ¢n+ls¢n
and
and 5
® 1.5.5 G*(k) =\~ G*(gk)) .
) .1 (15.5) (K= 55 G"(8)
d) F(¢y, ko) = I1 log tan 11m ¢,
a0 1+ K, 4 =
Theorem 1.4

€) Establish the quadratic convergence. Suppose that f, ¢, and a are all in C*(0, 1) and that g maps [0, 1] into [0, 1].

. . s If, for x€(0,1),
Similar methods for calculating incomplete second and third integrals

may be found in King [24]. (See also Section 2.7.) ' d f( )
6. Prove Euler’s addition theorem. Let g(x):= (1 — x*)(1 — k*x*). Then (a) = a(x)f(x)
f f f_dx and
vg(x vg(x ° Vex) .
. b =\ == tant
where ¢:=[bV/g(a) + a\/g(b)]/V 1 — k*a’b’. This result, which dates ) fx) g(x) f(8(x)) ¢ a constan

from 1753, is, according to Birkhoff [73], the “first notable theorem

about elliptic integrals.” then

© a()= (e a(et) -3 [ £ -3 (£2)]

Proof. Use (b) to change variables in (a). Then, on suppressing x,

1.5 JACOBI’S DIFFERENTIAL EQUATION AND A FOURTH PROOF
OF THE FUNDAMENTAL LIMIT THEOREM

The second-order linear differential equation (1.3.8) satisfied by K and K" is (1.5.6) af =f=(2pg + pg) df( g) +pf(g) + g% d2f( g)
2
2
K — k) 2 +(3k* - 1) ay ky=0. where p :=1/c/g (remember that a is the derivative with respect to x). Also,
dk » from (@) and (b)
Equivalently ( }
: 1.5.7 = = .
G(k):=k'"*k'K(k) and  G*(k):= k%K'K’ (k) ) f=af = apf(e)

' Substituting (1.5.7) into (1.5.6) to eliminate f yields
satisfy
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d’f(g) 2pg + pg df( ap—p
(1.5.8) e e ];g)+( £ P)f(g)
8 &§p g g§p
which on comparison with (a) gives
ap—p
g°p

= a(g)

since 2pg + pg =0. Finally we compute P, P and p in terms of g to get
(0. O

The bracketed quantity on the right of (c) is often called the Schwartz
derivative of g.

Corollary 1.1 (Jacobi’s Differential Equation)

1/2

Suppose G(x):=x
[0, 1] into [0, 1] and

x'K(x). If p and g are algebraic functions that map

G(x) = p(x) G(g(x))

then g satisfies an algebraic differential equation

r(x) = [§(0)]°r(g(x)) — % [ 5;8 - % (%) ]

where
. 1 <1+x2>2
rx)y:=- —|(—= | .
) 4x*\1-x*

Proof. We may assume that G(x) does not satisfy any equation of the
form

G(x) = B(x) G(x)

with B algebraic since by (1.3.13), (1.3.10), and (1.3.11) G/G has a
logarithmic singularity at 1. Thus since G satisfies equation (1.5.1), as in
(1.5.6) we must have

256 + pg =0
or
(5
p=¢§

The result now follows from Theorem 1.4 applied to (1.5.1). O
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This corollary has a converse which provides an algorithmic check on
whether g is an algebraic transform of K. (See Exercise 1.) Theorem 1.4 has
a partial converse.

Theorem 1.5

Suppose that f, g, and « are all in C*(0, 1) and that g maps [0, 1] into [0, 1].
Suppose that

(@) a(x)=(g(x) a(g(x)) - % [@ - % (@)2]

& "2\
and
®) LD ey
X
Then

© V5 fse)
is also a solution of (b).

Proof. This is essentially the computation of (1.5.8). Replacing f by
Ve/g f(g) leaves (b) invariant provided (a) holds. [

We now offer a proof of Theorem 1.1 based on Theorem 1.5.

Fourth proof of the fundamental limit theorem. For

2Vx
1+x

1 (1+x2

R S

)2 and g(x):=

condition (a) of Theorem 1.5 holds. This is a tedious though (eventually)
entirely rational calculation. Thus if G is a solution of

60 _ 460)
dx

then so is

1
280 (80D

However, the above second-order linear differential equation has a regular
singular point at zero and has fundamental solutions of the form
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Vg, (x)
and
Vg (x) log x + VXg,(x)

where g, and g, are analytic and nonzero. Now observe that

G(x)
VX

= x'K(x)

is analytic and nonzero in a neighbourhood of zero, and hence G(x) must be
a constant multiple of the first fundamental solution. Moreover,

1 1
7= Vagey Ole@)

cannot have a logarithmic singularity at zero, and hence (2g(x))”""*G(g(x))
must also be a constant multiple of the first fundamental solution. In
particular for some c,

Gl =c ﬁ G(s()).

If we multiply by V/g(x)/x and take the limit as x— 0, we deduce that ¢ = 1.
We have thus proven that G satisfies equation (1.5.4). Equation (1.5.4)
transforms into

K(x) = 1 K(g()

and we have shown that K, defined as an analytic solution of the differential
equation (1.3.8), satisfies the above functional relation, and hence we have
found an analytic invariant for the Legendre form of the AGM. [See
(1.1.10).] O

Comments and Exercises

A form of Jacobi’s highly nonlinear differential equation may be found in

Cayley [1895], which is an excellent account of nineteenth-century elliptic

function theory with particular emphasis on the transformation theory.
The general question of when a functional relation

f(x)=p(x)f(g(x))

has a closed-form solution in terms of familiar functions is difficult. We shall
consider it again later. Theorems 1.4 and 1.5 do, however, suggest how one
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might proceed to check whether a solution of the above functional relation
satisfies a second-order differential equation with rational coefficients. (See
Exercises 2 and 3.)

1. Suppose that g(x) is an algebraic function, g maps [0, 1] into [0, 1], and
8(0) =0. Suppose that g satisfies the algebraic differential equation of

Corollary 1.1. Show, as the fourth proof of Theorem 1.1, that there
exists a constant ¢ so that

G(x) = \/ﬁ G(g(x)).

2. Suppose that

Fx)= 2—;’% F(g(x)
and that

d’F(x)
dx*

= r(x)F(x)

where F(x)/vX is analytic in a neighbourhood of Zero, r is a rational
function, and g(x):=2vx/(1+ x). Without identifying F explicitly,
show that r has double poles at 0 and 1. (Considerations of this nature
can turn the fourth proof into less of a verification.)
3. Suppose that «, p, and g mapping [0, 1] into [0, 1] are algebraic, that
d’f(x)

d—x3 = a(x)f(x) x€(0,1)

and that
fX)=p(x)f(g(x) x€(0,1).

Suppose also that f does not satisfy a linear differential equation with
algebraic coefficients of order less than 3. Show that

ax+b
cx+d

gx)= and p(x)=e(cx + d)*.

1.6 LEGENDRE’S RELATION

The four quantities K, E, K', and E’ are related by a remarkable relation.
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Theorem 1.6 (Legendre’s Relation)
For 0< k<1,

E(K)K'(k) + E'(k)K(k) — K(k)K'(k) = -271 .

Proof. Let G:=k"*'K and G*:= k”zk’K’, as in Section 1.5. Then,
by (1.5.1),

6 _o
G G*
and hence there is a constant ¢ so that

(1.6.1) GG*-G*G=c.

In other words, the Wronskian of G and G* is constant. On writing G and
G* in terms of K and K’ this becomes

(1.6.2) k(1—k*)(KK'— KK')=c.
We now use equation (1.3.13),

dK _E-(1-k)K
dk k(1- &%)

to eliminate the derivatives in (1.6.2) and deduce that
(1.6.3) EK'+ E'K—-KK'=c.
It remains to evaluate the constant c. This may be done directly from the

series expansion at zero (see Section 1.3, Exercise 5), or by using Exercise 4
of Section 1.3. O

We define the garnma and beta functions by

(1.6.4) [(x):= fo e dr re(x) >0

1

(1.6.5)  B(x, y):= fo F A -y dr re(x), re(y)>0.
The function I satisfies the functional relation

m

(1.6.6) F()ra-x) =

sin mx
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The relationship between I' and B is
I()I'(Y)
Fx+y) -

These standard results will be discussed further in Section 3.6. Our present
objective is to evaluate K(1/V2) and E(1/V2).

(1.6.7) B(x, y) =

Theorem 1.7

1)_T’(d)
K(ﬁ)‘ N7
and
1) _ () +I°()
E(ﬁ)‘ sV '
Proof.

d(5)-, T

1
-v2 I
*VA-)2-1)
The change of variables x*:=1%/(2 — ) gives
1 Yot
K(—) = \/Ef .
V2 o Vi-¢*

The above arclemniscate (giving the arclength of a lemniscate) can be
evaluated in terms of 8. We set u :=¢* and see that

- V2 (1 1) 2 TG

4 T(3)
Finally, by (1.6.6), |

r(%>=ﬁ and r(%)=l\€7;.

The evaluation of E(1/V2) is left as Exercise 3. [
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Since K(1/V2) = K'(1/V2) and E(1/V2)= E'(1/V2), the evaluation of
K(1/V2) and E(1/V2) gives an alternate route to evaluating the constant in
Legendre’s identity that avoids developing the asymptotic expansion of K’
at zero.

Comments and Exercises

We observe that at 1/V2 Legendre’s identity reduces to

KEN R RRRNEN]IE

or

2K(1/V2) [2E(1/\/§) K(1/\/§)]_ 1
T T T o

Now K/7 and E/m can be calculated quadratically by Algorithm 1.2 using
only the operations of addition, multiplication, division, and square-root
extraction and commencing with a rational starting value. This provides an
excellent approach to calculating 7—an approach we will pursue in some
detail in Chapters 2 and 5.

Legendre derives the constant in (1.6.3) by evaluating K((V3 = 1)/V3).
(See Whittaker and Watson [27] and Exercise 6.) Note that (V3—1)/V§
and (V3 +1)/V8 are complementary. It transpires that

K\ V8
Values of k for which K’/K is a rational surd are of considerable interest and

importance. (See Chapter 4.) Such k are called singular values, the simplest
of which is 1/V2, where

x)-

K \vz/~1

1. Show that

) - D

Start by writing

E(%) =f01 Fﬂl_—it; d.

Then set u:=V1—¢* and show that
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B

Show that

Show that
® 2, VT
a) fo e dt= 5 -

Show first that

1 e—x2(12+1)

fx):= (J: e dt)2 and  g(x):= fo e dt

satisfy f'+ g’=0and f + g = w/4.
b) Use a) to show that I'(3)=v7 .
Use Theorem 1.2 to deduce that

K’ pa—
?(\/Q~1)—\/§.

[In fact K(V2—-1)=(V2+ D"’ I(3)I(2)/2"%*7""%] Thus V2—-1is a
second singular value. We return to both singular values and I function
evaluations of K subsequently.

Establish Legendre’s relation directly from (1.3.12) and (1.3.13) applied
to E, E', K, and K'. Use Exercise 4 of Section 1.3 to determine the
constant.

From the general theory of the Weierstrass function developed in the
next section, or more directly, one can show (Whittaker and Watson
[27, p. 516]) that for a, >0,

¢ dx * dt
- V@ =) + ) - Var —gi—g
where e is the real root of the above cubic and
82'= 1 (a° = b*)’ — (ab)’
g 1= — o (a® — b)[(a® — b*)* + 36(ab)’] .
a) If g,=0, then

@ +b*=2V32g|'"° &’ -b"=-3(2g,)"">.
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b) If g, =0 and g, >0, then

i) fw da 2 K( a )
< Var - g Va*+b? Va® + b2

.. * dt 2 b
e \/4t3+g3 Va* + b® Va* + b?

¢) Lete:=g,:=1. Then a’+b*>=2V3, and bi) gives

_ © dt 1 11
2x3 ”4K=f == <_ _).
1 Ve 3B 6’2

Also, bii) gives

_ *dr Voodr *dr
e
SVEr1 b Vst Ve

Now substitution of s :=1/r and 5 := 1+ )2 respectively, leads
to

e (3ol o).
d) Thus when k :=sin(#/12) = (V3 —1)/2V2
K'(k) = V3K (k)

and

K(\/§—1> =314 T($)T(3) _ 31/4F(%)3
N2 T 2%

This evaluates K in terms of I functions and shows that sin(7/12) is
a third singular value.

1.7 ELLIPTIC FUNCTIONS

The study of elliptic functions began in the 1820s when Abel and Jacobi
independently discovered that the inverses of elliptic integrals are doubly
periodic functions. As noted earlier, they had been anticipated by Gauss
who at the turn of the century had studied a particular elliptic function, the
lemniscate sine. This work, however, had not been published. This was one
of the critical discoveries of the era and was vital to the concomitant
development of complex analysis and the later development of modular and
automorphic functions.
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Except for minimal application in Sections 2.6 and 2.7, we have no great
need for this body of material and offer only a brief sketch of this attractive
theory, primarily in the exercises at the end of this section. Details may be
found in Whittaker and Watson [27] and, more recently, in Bowman [53],
Du Val [73], Eagle [58], and Lang [73].

An elliptic function is a meromorphic function with two periods w, and
w,, with im(w,/w,) # 0. That is, for all z, f(z) = f(z + w,) =flz+w,). We
assume that w, and w, are minimal in the sense that they are not multiples
of any smaller period. The function f is completely determined by its
behaviour on any parallelogram that is a translate of the parallelogram with
vertices 0, w,, w,, and w, + w,. Any such parallelogram is called fundamen-
tal. Associated with the periods w, and w, there is the lattice L := {nw, +
mw,|m, n integers}. It transpires that given any lattice L there exist elliptic
functions with the appropriate associated periods. However, there are not
many such functions. As we shall indicate in the exercises, any two such
functions are connected by an algebraic equation. The circular functions
may be thought of as degenerate elliptic functions (one of the periods is
infinite), as may rational functions (both periods infinite).

A function f is said to have an algebraic addition theorem if there exists a
polynomial € in three variables with complex coefficients so that for
x, yeC,

Qf(x), f(y), flx+y)=0.

One of the many remarkable facts, due in part to Weierstrass, is that a

meromorphic function has an algebraic addition theorem if and only if it is

elliptic or degenerate elliptic. (See Exercises 11, 12 and 13 or Hancock [09].)
The Jacobian elliptic function sn is defined by

3 sn(u,k) dt
1.7.1) LU= fo \/(1 -

The value k is thought of as a parameter and is often omitted. It is true,
though not obvious, that sn(x) is a meromorphic function with periods 4K
and 2iK’ and, hence, is elliptic. (See Exercise 2 of Section 2.7.) The twa
other basic Jacobian elliptic functions are cn and dn, defined by

(1 2 cn(u,k) dt
. u =f
) t V(- Ak + K5

and
dn(u,k)
dt
(1.7.3) u =f .
VA=A -k

Note that sin and tanh are limiting cases
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sn(u, 0) =sin u
and
sn(u, 1) =tanh u .

A “half-angle” formula for sn is

sn2<z> _ 1-V1-sn’(w)
2 1+V1-k%sn’(u) .

Again this is not obvious. It is worth observing that a half-angle formula is a
specialization (x = y) of an algebraic addition theorem. These matters are
pursued further in Sections 2.6 and 2.7. In particular, Exercise 6 of Section
2.7 presents an addition formula for sn.

(1.7.4)

Comments and Exercises

The following exercises develop some of the elementary theory of elliptic
functions. The approach is via the Weierstrass p function and is standard.
See, for example, Erdélyi et al. [53], Du Val [73], or Lang [73].

1. Show that the elliptic functions (with respect to a fixed lattice L) form
a field that is closed under differentiation.

2. Show that an entire elliptic function is constant.

3. Let fbe elliptic with respect to L. Assume fis nonconstant. Let P be a
fundamental parallelogram whose boundary B contains no zeros or
poles of f.

a) Show that the sum of the residues of fin P is 0 by using the
periodicity of f to show that [, f=0. Thus any nontrivial elliptic
function has at least two poles in P. The number of poles in P,
counted according to multiplicity, is called the order of f

b) Show that f has the same number of zeros as poles in P counted
according to multiplicity. Hint: Consider 5 fIf and observe that
f/f is elliptic. :

¢) Show that f assumes every complex value exactly order of f times
in P.

4. Show that the Weierstrass function

weL’ w

p(z)f=%+ 2 [ﬁ_iz]

is meromorphic, even, and has double poles at each lattice point
[L':=L-(0,0)].

5. a) Show that

10.
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Y= 1
p2) = 2% o

Show that 7 is an odd elliptic function of order 3.
b) Use a) and the fact that p is even to deduce that p is elliptic.
Observe that p has order 2. .

Show that every even elliptic function f is a rational function of p-
Hint:  Observe that if z is a zero of fin P (a fundamental paralielog-
ram) then so is —z mod L. (By —z mod L we mean the unique point in
P, that is equivalent to —z with respect to L; that is, there exist m and
n so that mw, + nw,—z=—-zmod L and —zmod L € P.) Observe
that there are exactly four points in P where z=
—zmod L (0, w,/2, w,/2, (w, + w,)/2) and that if f has a zero at one
of these four points, it must have even multiplicity. Consider

8(2) =M [p(2) - p(z,)]"

where the product is extended over the zeros of f, choosing only one
representative from each pair (z, —zmod L) and where §, is the
multiplicity of the zero (except in the case z;, = —z,mod L, in which
case g, is half the multiplicity). Now show that f and g have the same
zeros with the same multiplicities. Treat the poles similarly.

Show that any elliptic function f is a rational function of p and .
Hint: Consider

_ 1@+ f(=2) | (L0~ f-2/2)502)
=" 5@

which decomposes f into an even elliptic function and an even elliptic
function divided by p.
Show that there exist constants g, and g; so that

PP =4p°(2) — gp(2) — g, .

Hint:  Consider the order of the pole of p* — 4p° at zero. Observe that
g and g; depend on L. Different lattices lead to uniformizations
(parametrizations) of different cubics.

Show that any two nonconstant elliptic functions fand g (with respect
to the same lattice) satisfy an algebraic equation

Of, 8=0

where () is a polynomial in two variables with complex coefficients.
Suppose that f is meromorphic and singly periodic with period w.



32

11.

12.

13.
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Suppose that f assumes no value infinitely many times in any period
strip. Show that f is a rational function of ¢*"*’*. (One can use this as
a definition of the class of trigonometric or circular functions.)

Prove that the function p satisfies the algebraic addition theorem

plx+y)= % [%] P = p(y)

Hint: Show that, as a function of x,

1 [P(X) —£(y)

4 P(X)‘P(}’)] —rE) - pxty)

has no singularities at the points 0, +y and, hence, is independent of x.
With Exercise 8, this is an addition theorem.

Show that every elliptic function f has an algebraic addition theorem.
Hint: Connect f to p algebraically and use the addition theorem for p.
Show that if f meromorphic and has an algebraic addition theorem €,
then either

a) fis a rational function,

~b) fis a trigonometric function, or

¢) fis an elliptic function.

Hint: Case a) occurs if f has a pole at infinity. So suppose to the
contrary that infinity is an essential singularity. Now for some w,
f(z) = w has infinitely many solutions z,, z,, . ... Choose z* so that
z*,z*+2z,,z* + z,,... are not poles of f. Show that there exist m and
n, both less than a constant depending only on (, so that f(z* + z,) =
f(z* + z,,). Show that in any neighbourhood there exist infinitely many
points and some n and m so that f(z + z,) = f(z + z,,). Thus f has a
period z, — z,,. Case b) occurs if f has only one period, in which case f
can assume any value only finitely many times within any period strip.
In that case Exercise 10 applies. Otherwise we have case c).

Chapter Two

Theta Functions and the
Arithmetic-Geometric Mean
Iteration

Abstract. In this chapter we solve the AGM iteration in theta function terms
and derive a variety of useful properties of theta functions. The central tool is
the Poisson summation formula. These results are then applied to produce
quadratically convergent products for w and e” and quadratically convergent

sums for .
We finish the chapter by discussing the Landen transform and the relation-

ship between theta and elliptic functions.

2.1 A THETA SERIES SOLUTION TO THE AGM

The basic theta functions are defined for |g| <1 by

©

2.1.1) 6(9)i= 2 ¢"  g0)=0,
(2.1.2) 8,(q):= "Zm q" 6,(0)=1.
(2.1.3) 8,(q):= n;m -1"g”  6,(0)=1.

These series are more properly viewed as functions of two complex
variables one of which is presently set to zero. (See Section 2.6.) Theta
functions have various number theoretic connections. Note that 6, is a

33
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generating function for squares, while as 6,(q) = 6,(—¢q), 6, also considers
the parity of the square. Thus

(2.1.4) 6()+6(9)=2 2 ¢"=26(q".
Also
@215 6(@=2 rmg"  6(a)= 2 (-1 r(n)q"

where r,(n) counts the number of ways of writing n=j*>+ k> Here we
dlstmgmsh 31gn and permutatlon [so that, for example, r2(5) 8 since
(£2)" + (21)" = (£1)* + (£2)?] and set r2(0) =1. Now it is elementary
that r,(2n) = r,(n). (See Exercise 2.) It follows that

(2.1.6) 63(q) +63(q) =2 2 r,(2m)q” =263(¢").
Also, (2.1.4) and (2.1.6) allow us to solve for 6,(q)6,(g). We have

6:(9)6,(q) = 7 [6:(q) + 94(‘1)]2 -3 [93(‘1) + 94(‘1)]

=2603(q")— 03(3°) = 03(4%).

Thus
(2.1.71) *3(‘1)—;94@ 05(q°)
(2.1.7ii) " 63(9)05(q) = 03(g°)

which bears an obvious resemblance to the AGM. Similarly,

0 0

03(q) — 63(a°) = 2 r,(m)q" - 20 r,(2n)g™"

n=0 n=
=> r,(2n+1)g**" .
n=0

This last term may be rewritten as

0 -]

z r2(2n + 1)q2n+1 — z qm2+k2

n=0 km=—w

k+m odd

which, on setting k=i —jand m=i+j+1, gives

) B
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S (g 2 g .
ij=—o
Hence
(2.1.8) 63(q°) +63(¢*) = 63(q) .
This combines with (2.1.7i) to produce
(2.1.9) 63(a”) = 63(¢°) = 03(q)

and these last two and (2.1.7ii) yield Jacobi’s identity

(2.1.10) 63(q) =03(q) + 03(q) -

Now set k:=k(q):=03(q)/62(q). Then (2110) shows that k'—

4(q)/t93(q) If we return to (2.1.7) and set a, := 65(¢”") and b, := =03(¢")
we observe that a, and b, satisfy the AGM iteration. Moreover since
6,(0) =1, the limit is 1. Thus

(2.1.11) M(63(q), 05(q)=1.
We recast these last observations in:

Theorem 2.1
Let 0 <k <1 be given. The AGM satisfies

(2.1.12) M(1,k")=05(q) for  k'=0%(q)/6(q)

where g is the unique solution in (0, 1) to k = 62(q) /6%(q). In particular,

(2.1.13) K(k) = g 03(q).

Proof. This follows from the previous discussion and Theorem 1.1. The
uniqueness of g will be obvious from the results of Section 3.1, which will
show that 6, decreases and 6, increases on (0,1). O

The results of Theorem 2.1 remain true more generally in the complex
plane. This is discussed in Exercise 4.

Comments and Exercises

The solution of the AGM in theta function terms can be found in Gauss
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[1866]. The systematic investigation of theta functions in the context of
elliptic function theory originates in Jacobi’s masterpiece Fundamenta Nova
Theoriae [1829].

While we have given a number-theoretically motivated development, it is
possible to give a very elegant formal verification. (See Exercise 1.) This
technique, used frequently by Liouville, is discussed in detail in Bell [27].

1. a) Letf: ZxZ—R. Establish the formal identity

g_mf(m,n)= i fA+k1-k)+ » fA+k1-k-1)

=—c Lk=—-o

(2.1.14)

valid whenever both terms on the right-hand side converge.
m2+n2 m+n _m2+n? m_mZ+n2?
b) Apply (2.1.14) to q , (=1)7"""gq , and (—1)"gq to
derive (2.1.8), (2.1.9), and (2.1.7ii) respectively.
¢) Hence rederive (2.1.7) and (2.1.10).
Prove that r,(n) = r,(2n). Hint: 24 + 2b* = (a+b) + (a—-b)>

3. a) Show that the downward transformation [Theorem 1.2(b)] sends
k(q) to A(q):=k(q"). Precisely,

1-k' _05(9)-03(q) _63(q>) _
(2.1.15) 1+K " 62g) +62q)  83q)

b) Show that the corresponding transformation for K [Theorem
1.2(d)] is

(2.1.16) 63(q) = [M]oi@ :

A

4. Show that (2.1.12) is valid for complex g with |q| <1. Precisely,
63(9)
" 63(9)

for such g. [That 6,(q) does not vanish will be apparent from Section
3.1]

(189 -

2.2 POISSON SUMMATION

A most analytically accessible route to the behaviour of the AGM lies in the
Poisson summation formula, which we now describe. We then give some
examples of its use before returning in the next section to its relationship
with the AGM. The formula we need is:
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Theorem 2.2

Let f be a nonnegative function, increasing on (—, 0] and decreasing on
[0, ). Assume that [, f(x) dx exists as an improper Riemann integral.
Then, for each x in R,

@

2n) 3 MRINAIED) S e [T g ey

n=—cw

k=—o

each series being absolutely convergent.

Proof. A complete proof may be found in Apostol [74, pp. 332-333]. In
essence one considers the function F(x):=X7___ f(n + x), which under the
given hypotheses is of bounded variation on compact intervals, and which is,
by construction, periodic. The left-hand side of (2.2.1) is merely the average
[F(x+) + F(x—)]/2, while the right-hand side is obtained by computing the
Fourier coefficients for F and regrouping. [J

EXAMPLE 2.1. We apply the formula to f given by

e x=0,
The right-hand side becomes
< 1 S ¥ cos(2mkx) + (27k) sin(2kx)
=1 )+ @l
v 2oy +2mik  y = Y+ (2mk)

and the left-hand side becomes

1
D e-y(n+x)+{7 x€Z
oo 0 otherwise
If x:=0, we derive
1 1 1 - 1
S+ == 42
2 -1 y y,Z‘ly + (27k)?
which yields
(2.2.2) coth( )—1+2x§ 1
L. w p X ot x2 + n2
.on replacing y by 27x.
If x:=1, we derive
1 S (-1)
(2.2.3) m cosech (wx) = ~ +2x D, (2 ) 5 .
X n=1X +tn
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By elementary analyticity considerations, (2.2.2) and (2.2.3) remain valid in
the complex plane and produce the classical formulae for cot, cosec, and so
on. (See Exercise 1.)

EXAMPLE 2.2. This time apply the formula with
fx):= P s>0.

Then (2.2.1) becomes

<] @ [--]
E e—s(n+x)2'rr — E eZwikxI e—stz-rr—27rkit dr .
— 0

n=-—o k=—o

Now the integral on the right is

® —smi? _ 2 m
2[0 e cos (2wkt) dt = s F<\/§ k)

where

(2.2.4) F(y):= I: e~ cos (2xy) dx = ? e
(See Exercise 2.) Thus we deduce

(2.2.5) i e ST — gm12 i 2mikx gmmks

n=— k=—o

Again, analyticity considerations show that (2.2.5) holds for re(s) > 0. This
is a general form of the theta transformation formula. For future reference
we make the notational agreement that 6,(s) := 6,(¢” ™) and observe that for
x:=0, (2.2.5) can be written as

(2.2.6) V58,(s) = 6,(s”) .

Note that for large s the sum Vs56(s) converges much more rapidly than
6,(s™'). For example, if s:=100, 6,(0.01) and 10+ 20e™ " coincid
through more than 500 digits. :

Comments and Exercises

The result of (2.2.1) was known to Poisson by 1827. With x:=0 he had
obtained the formula in 1823. Equation (2.2.5) was first obtained by Jacobi
using elliptic function theory in 1828.
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Establish the formulae

a) L:%_FE(_]'&

T (-D)"'2n+1)
b) COS(WZ)—ZO 22— (n+1)

1
¢ wcot(mwz)= p + > 2222n2
n=1 -

d) sin(wz)= 7z ﬁ (1— z_i) .

n=1 n

Establish (2.2.4) by showing that

F(y) +2yF(y)=0

and using F(0) =v7/ 2. (See Exercise 3 of Section 1.6.)

Let I(s, y):= [Z, ™™ 7> dt. Evaluate I(s, y) for real s, y by com-
pleting the square. By analytic continuation I(s, ik) = s~ M2 e "5,
Recall that the Laplace transform is defined by

o

Fo)i= |, e oy ar.

Provided that f(r) = O(e”) as t—», F will be analytic for re(y)> b.
Show that the Laplace transform of (2.2.5) with x := 0 produces (2.2.2).
This entails evaluating integrals of the form

o

F(a, b)1=f0 P Al s T A

This is a special case of a Bessel function transform which can be
evaluated explicitly as F(a, b) = (V#/a) e *** by substituting s° := r and
v:=b/s — as. (Various extensions and related matters are discussed in
Bellman [61].) In principle, therefore, one can derive (2.2.5) as an
inverse Laplace transform of the derivative of the product form of sin
given in Exercise 1d).

Let f be nonnegative, continuous, decreasing, and Riemann integrable
on [0, «). Let

8=y 2 [ 10 cos () e

Show that
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w 1 w
va| 50+ 3 foma)|=VE[} 50+ S sns)]
m=1 n=
whenever «a, 8 >0 satisfy aB =2#. Deduce that

va[% + 2 e‘“z’”z’z] [ + 2 et 2/2]
-1

m n=1

(Exercises 2 and 5 follow Apostol [74].)

2.3 POISSON SUMMATION AND THE AGM
We commence by specializing (2.2.5). Setting x := 0 produces
(2.3.1) V30,(e ") =6,(e” ")
while x := } gives
(2.3.2) V30,(e ") = 0,(e”™")
and dually on setting s = s
(2.3.3) V38,(e ") = 6,(e” ")
where re(s) >0. On dividing (2.3.2) by (2.3.1) we have
(2.3.4) k(e ™)=k'(e™™").
From Theorem 2.1 we see that

M(1,k)=6;%("™") qi=e ™

Thus

’ 2/ —mls
m M(l’ k ) =T 032(e —‘ITS) =7s
M(1, k) 03(e™™)

(2.3.5) =—log g

on using Theorem 2.1 and (2.3.1) again. This produces the following
fundamental theorem.

Theorem 2.3
For all k in (0,1),

‘ 2.3 Poisson Summation and the AGM 41

MK _ _6a) ,_ 69
@ TMLH 81 gy KT e
and so
(b) T K?((g =—loggq.

Proof. We have established (a) and (b) follows from our identification
of M(1, k') and w/(2K(k)). This second equation is often written as qg=

e ™ "% and q is called the nome associated with k. In principle it solves the

inversion problem for g in terms of k. [J

We know that k = 02(q)/03(q)=4vg + O(q) as g tends to zero from
above. Theorem 2.3(a) and this information show that since M(1, k') tends
to 1 as k tends to zero,

(2.3.6) Jim, [2M(1 %) ~log (%)] =0

which reproduces the asymptotic of Exercise 4 of Section 1.3. As we shall
see (Exercise 1), we can derive the exact asymptotic (1.3.10) from these
considerations.

Now consider the AGM iteration commencmg with a,:=1 and b, := k',
Then as we saw in Section 1, b,/a, = k'(¢”") and c, la, = k(g>). Hence

7 M(1, k)

. n 4an> _
(2.3.7) lim 2 log( =2 MK

n

In Exercise 2 one establishes that the differential identity

(2.3.8) 27" dlog( ) by dlog( )

Co

holds. It follows from (2.3.5) and (2.3.7) that

m,i=2'"" = log (%)—)77

and from (2.3.8),

while Ty = —

Since b, tends to M(1, k'), we have established that



42 The Arithmetic-Geometric Mean Iteration
dk 7 kk'? 2
2.39 — = = Z kK2
(2.3.9) 7 2 ML E) — kk’K
and since s = —7'log g,
'2 ,2
(2.3.10) dk _ 1 kk™® _ 2kk

dq 2q M(1, k) q772

Rewriting k, k', and K in (2.3.9) in theta terms produces

= 6;. (w.r.t.s)*

A
(2.3.11) 5 7

5 |N%-

Differentiation of (2.3.1) and (2.3.3) yields

(2.3.12) 5°0,(s) + 0 L(s) =—s""%,(s7Y) (w.r.t.s)

(2.3.13) 5%0,(s) + % 8,(s) = —s"'"%6,(s™"). (w.r.t.s)

On using (2.3.1) and (2.3.2) again we deduce that

0

6 é 1 0
.3. = + -1 3 -1 = — — = = 1 72 -1 .
(23.14) s 5. (s)+s 4 (s™=-3 S G (s)+s~ a G

Now, since s°0;(s) = 03(s™"), this shows that
()

(2.3.15) ;: 6; (w.r.t.s)

o

I

is equivalent to (2.3.11). Finally, adding (2.3.11) and (2.3.15) gives
9, 6 =«

2.3.1 24— 2=

( 6) 5, 6 4 65 (w.r.t.s)

on using (2.1.10).
We can now also express E in terms of theta functions. We have from
(1.3.13),

AR _ px-_7| L szz]
KK=-x [21{ & a
because of (2.3.9). Hence

*Differentiation with respect to s.
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0, ]
-K=-— - It
E-K K[03+40 (w.r.t.s)
and
7 6
(2.3.17) E=K-¢ =, (W.r.t.s)
4
Similarly
7K' 6,
"'—-K'=—2 - L.t
E'-K 2K+ K% 8, (w.r.t.s)
and
T wK' é4
= — —. It
(2.3.18) E 7K + ) (w.r.t.s)

Comments and Exercises

1. a) Observe that k =4v/gf(q) with f analytic for [g| <1 and £(0) = 1.
Standard real reversion arguments show that for 0 < k<1,

k
Vi=yg g(k*)

where g is (real) analytic with g(0) = 1. Show that

(2.3.19) K'(k) = % K(k)[log (%) + h(k)]

, where h(0) =0 and A is analytic.
b) Observe that the right-hand side of (1.3.10) and K’ both solve
(1.3.8). Moreover, both can be expressed in the form of the
right-hand side of (2.3.19). Deduce that (1.3.10) holds.

2. a) Show that 275 %d log (a /c,) is independent of n.
b) From a) deduce that 27"c*d log (b /a,) is independent of n.
¢) Use a) and b) to show that 27" %d log (b /c,) is independent of n.
d) Show that all three coincide with by *d log (ao/ ¢o). This again is due
to Gauss.
3. a) Establish (2.3.18) by using (2.3.16).
b) Observe that (2.3.18) and (2.3.17) immediately give another proof
of Legendre’s relation.

4. a) Show that 6,(e ") =6,(e 7).
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b) Show that 4w =(Z7__. e ™")/(Z5__. n%™"),
¢) Letr,(n) give the number of distinct representations of » as a sum
of k squares. Show that

o= (e =) (§ ).

n=0
Hint: Take the kth power of (2.3.1) and differentiate.

All of results in this section can be derived without Poisson summation as
the following exercises show.

S. Derive (2.3.7) by combining Exercise 1le) of Section 1.4 and Exercise

4b) of Section 1.3. This can also be found in Gauss [1866], but not

apparently in later nineteenth-century authors. (See Borwein and Bor-

wein [84a] and King [24].)

Use k ~4+/q to rederive Theorem 2.3 from Theorem 1.1.

7. Observe that Theorem 2.3(a) and Theorem 2.1 show (2.3.1) and
(2.3.4). Hence deduce (2.3.2) and (2.3.3). Thus we have established the
6 transformation formulae [(2.3.1) to (2.3.3)] directly from the AGM.

8. Suppose that in (2.3.7) the 4 is omitted. Show that the convergence,
which was quadratic, is now linear. Of course the limit is unchanged.

&

2.4 THE DERIVED ITERATION AND SOME CONVERGENCE
RESULTS

It is generally the case with AGM related approximations that it is relatively
easy to establish the convergence rate and much harder to determine to
what the given iteration converges. We now consider various preparatory
convergence results. In the next section these will be used to produce two
surprising algorithms for 7.

Motivated by the fact that V2K(1/V2)K(1/V2)= = (Exercise 2 of
Section 1.6), we commence by computing K. If we consider the AGM
sequence with a,:=1 and b, := k, it is apparent that a, and b, viewed as
functions of k converge uniformly and analytically to M. (1, k). It follows that
the derived iterations 4, and b, converge to M(1, k). Since M@, k)=
w/2K'(k), we see that

K(k")
K*(K')

. T k
(2.4.1) M(l,k)—E T

on noting that (dK'/dk)(k) = —(k/k')(dK/dk)(k'). Equivalently,

M(1, k)

. 7 k'
(2.4.2) Kk = 7% M)

Now the derived iteration is
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. dn + Bn X dnvbn/an + anan/bn
(2‘4'3) an+1 = 2 bn+1 = 2 .

Since b,/a, converges quadratically to 1, it is easy to show directly that 4,
and b, converge quadratically to M(1, k) for 0< k <1. Moreover b, de-
creases and 4, increases, at least eventually (Exercise 1). For our purposes
we will generally consider the Legendre forms x, := a,/b,and y, :=b,/d_.
Then

_VE VT, _yaVE +1VE,
R Yo =T

(2.4.49) Xpi1
where x, =k, y, = VX, and y, is undefined. Moreover,

(2'4‘5) 1an+1$yn+ls\/x_n$xn'

(See Exercise 2.) We also have

(xn B 1)2 1 2
—1= <= -
xn+l 2 ,—x"(l + ,—x’l)Z = 8 (xn 1)

and

_1= (yn_l)(xn_l) + z(xn-f-l_l)
Va1 .+ DVE, + 1)y, +1

=i (- +i(x, -1’ =3(y, 1)

so that for n=1
(2.4.60) x

n+1_lsé('xn—1)2

(24‘611) yn+1_lsg(yn_1)2'

This establishes the quadratic convergence of x,and y, to 1. From (2.4.1),
(2.4.2), and the previous discussion it is now apparent that

e M(,1V2)

and since both M and M are quadratically computable, so is 7. In the next
section we turn this identity into an explicit algorithm.

Comments and Exercises

1. Show that d, and b, defined by (2.4.3) converge quadratically to
M(1, k), by showing that d, increases and b, decreases. Then show
b,—d,=(vx,_{ —1)/2. For this to hold for all n, assume x,=3.
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2. Establish (2.4.4) and (2.4.5).

n —ong "Y1
3. a) Use x,=03(¢")/03(qg”) to show that x, ~1+8e FmRIKDEGD) g

n— . n—1 ’ =1
b) Show that c,<d4a,e > ""/*)#0D:=§ and that c,~8, as

n— o,

4. Show that with a,:=1 and b,:=k,

N Tk g 1+y,
KKy = 4 k ,,11 2x,
In particular with x,:=V2 and y, :=2""
T Lt ar(3)
A ox a2
Y
(3

5. Show that
3
1Y i 2<§> < L>=2\/§ —5/2[‘6(_)'
M<1,——\/§>—7r r 1 and Ml’\/i T 1

2.5 TWO ALGORITHMS FOR =

The systematic use of the derived AGM leads directly to quadratic al-
gorithms for ar.

Algorithm 2.1
Let x,:= V2, my:=2+ V2, and y, :=2""". Define

1 1
) xn+13=§<\/’i2+ W,,) n=0
(i) Yorri= y—"v};il;ﬁ: n=l
x, +1
(iii) = = n=1

Then =, decreases monotonically to 7. Moreover, for n=0,

2.5 Two Algorithms for = 47
(2.5.1) 2 Oner = X)) ST, =~ T =G (Your — Xpy)
(2.5.2) Ty — T L (7, — m)*
10\
and, for n=2,
(2.5.3) - a<107"",

Proof. We first establish the limit. This follows from (2.3.7) (see
Exercise 1) or from (2.4.7) as we now indicate. Let 7, := 2\/§b,2,+1a,,+1/a',l+1

where a,:=1 and b,:=1/V2. Then by (2.4.7) of the previous section,
7, — 7. From (2.4.4) we have

77.n — (bn+1/bn)2(an+1/an)

Tn-1 an+1/an

_1+x,
_1+yn'

Moreover, 7, =2+ V2 and the algorithm converges to  as claimed. Since
Y. =x, =1, it is obvious that 7, decreases. Let us observe that

Ot Gt VO

(254) yn+1 xn+1 zvx—n(l + yn) - 8 (yn - xn)

provided that

-1

I <23,

Yo~ 1
Next

77.n(yn-f-l _xn+1)
2.5.5 - = .
( ) Ty, Th+1 yn+1 +1
Hence
Ty T,
y 1 + 1 (yn+1 - xn+1) = 7Tn - 77.n+1 = ? (yn+1 - xn+1)

and

©

T —-Xx
(y k= Xpag) = n Yn+1 n+l
n n
1

2 1- 'Eli(yn+1 _xn+1) .

7Tn
m, — T ===
2

n
k=
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Here we have used (2.5.4) and a geometric estimate. From the above

T
T M=

n —}__+—1(yn+1—xn+1)'
n+1

Thus, for n >0, upon checking the early cases,

(256) % (y,,+1_x,,+1)577n_‘775 % (yn+1_xn+1)

and with (2.5.4),

2 1 _ 2
M1 — T= i (Va2 = Xpi2) = % (Vpe1 —Xp1) =10 (m,—m)".

Finally (2.5.3) follows from (2.5.2). O

The first nine iterations give 1, 3, 8, 19, 41, 83, 170, 345 and 694 digits of
. The 24th will produce more than 45 million digits at the expense of ogly a
few hundred arithmetic operations. A more exact asymptotic will b? derived
in Chapter 5. (See Exercise 5.) Note also that the number of leading zeros
of y_ ., gives the number of digits of agreement between =, and 7 to within

1. .
The second algorithm, based on an identity of Gauss [1866], was disco-

vered by Brent [76a] and Salamin [76] independently.

Algorithm 2.2
Let a,:=1 and b,:=1/V2. Define

2
7= 2an+1
T k 2
I

where ¢, :=Va’— b2 =c2_,/4a, and a, and b, are computed by the AGM
iteration. Then 1, increases monotonically to 7 and satisfies

2qn+4 —m2nt?
72" e

. — < —_—
(2:3.7) T M1, 1V2)
and

2—(n+1) 5
(2.5.8) T = (7= )

Proof. This algorithm is based on the use of the second integral E
rather than K. With k:=1/V2 Legendre’s relation is (2E — K)K = m/2.
Combine this with Algorithm 1.2 of Section 1.4 to derive

2.5 Two Algorithms for = 49

2
(2.5.9) o= M LINVD) 1/\?2)
1-x;_,25%2

which on truncation shows that =, converges to w. We leave the con-
vergence estimates as Exercises 3 and 4. [

The first eight iterations produce 0, 3, 8, 19, 41, 84, 171 and 344 digits,
which agrees extraordinarily well with the asymptotic.

Both of these algorithms generalize in many ways. (See Chapter 5.) At
the moment we only exhibit two additional identities.

If we use the differential equation for K equation (1.3.13), we may
rewrite Legendre’s identity as

(2.5.10) ’5’ = kk'*(KK' — KK').

[See equation (1.6.2).] With (2.4.2) we now derive

K'(k) M(1,k") 4 2 KK M(1, k)
K(k) M1, k") K(k') M1, k)

2,

(2.5.11) —= k'k

and, as in Algorithm 2.1, we can produce
2

N K'(K) 17 (14, K(k) 17 (1+yr
A=K Ky ,,1:[1<1+xn>+(1_k)K'(k),gl<1+x:>

(2.5.12)

Here x,:= k'™, xi:=k, y,:=vX;, y*:=VxE, and the iterations are
given by (2.4.4). When k:=1/V2, (2.5.12) reduces exactly to Algorithm
2.1. Also whenever K'(k)/K(k)=~/7 for rational r (a singular value of k),
we can in principle find k algebraically, as we will see in Chapter 4. We
already know of four such values of k. (Exercise 7.)

In a similar fashion we may use Algorithm 1.2 to substitute for both E
and E’ in Legendre’s relation. This as observed in Salamin [76] produces

_2M(1, k)M(1, k')
1-%7 2" en+er?)

(2.5.13)

Again, ¢, and c}; are computed from complementary AGM iterations. When
k:=1/V2, this identity reduces to (2.5.9).

From (2.5.2) and (2.5.8) we observe explicitly that the corresponding
algorithms converge quadratically. We are primarily interested in the
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cumulative error given by (2.5.3) and (2.5.7). We will say, informally, that

any such algorithm allows for guadratic or fast computation. In similar
fashion, we talk about mth-order computation if the cumulative error (i.e.,
digits correct) is of order m” after n steps.

Comments and Exercises

Algorithm 2.1 is derived in Borwein and Borwein [84a] by the method of
Exercise 1.

1. a) Differentiate (2.3.7) and apply (2.3.8) to establish that with
ay:=1and b,:= k',
2 . (a3a,)

T = lim - : .
kk'? n—= d*q — a,at

Here a} as usual denotes the AGM iteration commencing with
by:=k, and all derivatives are with respect to k.

b) Let k:=k’:=1/V2 and observe that the previous formula re-
duces to (2.4.7).

2. a) Fillin the details in (2.5.3) to (2.5.6).
b) Show that

Note that while Algorithm 2.1 relies on evaluating K, Algorithm
2.2 in fact relies on evaluating E. Indeed (1.3.12) and Algorithm
1.2(b) combine to show that

E(k)=— % (2:0 2"‘1c,2,>K(k) :

3. a) Use (2.3.7) to show that (c,,/4a,,)”2"_1 increases monotonically
and quadratically to g. This gives a quadratic algorithm for ¢” on
using a,:=1 and b,:=1/V/2.

b) Show explicitly that, with a,:'=1and b,:=k’,

o 21~n
(2.5.14) oK WO IKG) _ 1_? I (a,,+1> _
k n=0 a

n

4. As in Algorithm 2.2, show that

@ -27Y 773+1ci+1<7r = sznciﬂ
a, U T MPAQLIND)

Then deduce that

N

11.

2.5 Two Algorithms for = 51
2

2"-27! m™ n+l1 2
7T721+1< ai+2 )Ci+l =m- 7Tn = Mz(l, l/ﬁ) 2 Cn+l N

Now use Exercise 3a) to show (2.5.7) and (2.5.8).

As in Exercise 4), show that in Algorithm 2.1 T, — m is of order
2" e, Convergence proofs of this type can be found in detail in
Salamin [76] and Borwein and Borwein [84a] with discussion of the
asymptotics.

Prove (2.5.12).

Recall from Section 1.6 (see also Chapter 4) that

) x()-viK(y)
i) K'(V2-1)=V2K(V2-1)

iii) K(?\/_;) = ﬁK(?\é—l)

iv) K'(3-2V2)=V4K(3-2V2).

Observe that for these values of k and k' (2.5.12) reduces to an
algebraic combination of two infinite products. Equally (2.5.13) sim-
plifies.

Establish the general identity of Gauss, Brent, and Salamin given as
(2.5.13).

Use the quartic transformation to produce a quartically convergent
infinite product for 7. (See Exercise 3¢) of Section 1.4)

Show that with x, and y, as in Algorithm 2.1,

(\/§+2)nﬁ x <1+x")=r“<§)\/§

1 " 1+yn

and

sTT -1 1+x,\°  T%)
(V2+2) Elx" (Tyn) =5

There are actually eight natural products implicit in (2.4.7). One can
select either b, or a, (b, or d,) for each of the means. While
Algorithm 2.1 is the cleanest of these, it is not the best approximation.

a) Show that there are four decreasing and four increasing products.
b) Show that the two best approximations are given by 2V2b’ /4, and
2V2a® /b,
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¢) Show that with x, and ¥, as in Algorithm 2.1,

n

2x < Y T VX
27/4 T m > 221/4 _\/§+1 f—  m mtm
El ” 1+ym i ( )ﬂll_=Il T 1+ymxm

with both products converging monotonically to .
d) Similarly, produce a decreasing analogue to Algorithm 2.2.

12.  The identity (2.5.14) can be found in Gauss [1866]. Show similarly the
following identity due to Jacobi. (See King [24].)

K'(k) _ (16k’> S -n (a> . -
™ ~loe( 2 +3212 log 5 ay:=1 byi=k'.
(2.5.15)

2.6 GENERAL THETA FUNCTIONS

Theta functions are more properly considered as a function of two vari-
ables—a parameter g and an analytic variable z. So far we have considered
only special theta functions (z = 0). In this section we sketch some relevant
parts of the general theory. We write

0,(z, q):=6,(z,1):=29"*sin z — 2¢°"*sin3z
+2¢%"*sin5z — - - -

6,(z, ) =0,(z,1):=2q""* cos z + 2¢°"* cos 3z
+ 2q25/4 cosS5z+ - -
(2.6.1)
6(z, 9):=0,(z,1):=1+2qg cos 2z + 2q* cos 4z

+2¢° cos6z + - - -

0,(z, @) :=6,(z, ) :=1-2g cos 2z + 2¢” cos 4z
—2q¢° cos 6z + - - -

where g = e™ and im (¢) > 0.

When z =0, then 6,(0, g) =0 and 6,0, ) = 6,(q) for j=2,3, 4. When
the precise value of ¢ is unimportant, one writes 6.(q) = 6, and 6(z, q)=
6(z). When j is unimportant, one writes 6(2). It is straightforward to

establish the following functional identities (Exercise 1):
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T R T wry . 2
01(z)=—02(z+ §>=—1M03<z+ §+ 7)——1M04<z+ > >

wt T Tt T
6,(z)= M03(z + 7) = M04<z + 5 + 7) = 01(2 + 5)
(2.6.2)

T T rt wt
s@=a(z+ 5)=ma(z+ 7+ F) = mafz+ 5)

. mt . T 7wy K
0,(2) = szGI <z + 7) = zM02<z + 5 + 7) = 03(2 + 2)

where the multiplier M is given by
(2.6.3) M:=g'%" .
From (2.6.2) or directly one has
0,(z)= -6 (z+m)  8,(2)=—qe*6,(z + w1

0(2)=—6,(z+m)  6,(z) = qe*6,(z + mt)
(2.6.4) _
: 6;(z) = 6,(z + m) 6,(2) = qez”’03(z + art)

8,(z) = 6,(z + ) 0,(z) = —qe*0,(z + w1) .

These identities show us that any theta function is entirely determined by its
values on any fundamental parallelogram

P(zo):={z|z=zy+ rym+ r,mt, O=r,r,=<1}.

We assume as we may that the given function has no zeros on the boundary
of P(z,). It is obvious that z =0 is a zero of 6,(z) so that w/2, w/2 + t/2,
and wt/2 are zeros of 6,(z), 6,(z) and 6,(z), respectively. Moreover, (2.6.4)
shows that z,+ mm + nwt (m, n integral) is a zero of a theta function
whenever z,, is. We now show that each theta function has exactly one zero
in each fundamental parallelogram. Thus we will have specified all the zeros
above.
Consider the integral

1 6(z)
N_2m' reo) 0(z) &

which gives the number of zeros of 9 inside P(z,). Explicitly,
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o= [ [0 - g o

[T serm ]y,

Now logarithmic differentiation of (2.6.4) shows that

0(z) 6(z+m) —ai 4 0(z + mt)
0(z)  O(z+m ! 0(z + mt)

(2.6.5)

Thus 27iN =2mi and N =1 as required.

The identities in (2.6.4) show that each 6,/6;, i # j, is doubly periodic. In
combination with our knowledge of the zeros of each 6, we can painlessly
apply Liouville’s principle (bounded entire. functions are constant) to estab-
lish many identities. We illustrate this with the following.

Proposition 2.1
(2.6.6) 02(2)0% = 62(2)63 — 03(2)65 .

Proof. Consider

83(2)65 — 65(2)6;
03(2)

By (2.6.4) f(z) is doubly periodic with periods 7 and m¢. Moreover 83(z)
has a double zero at wt/2 in P(0). Also (2.6.2) shows that 9%(mt/2)0% =
62(mrt/2)0>. Thus fis elliptic with at most one simple pole in P(0), and by
Exercise 3a) of Section 1.7, f can have no poles. Hence f is constant, being
bounded and analytic. Since 8,(7/2) =0 and 6(7/2) = 6,, 6,(w/2) = 6,, the
constant must be 6> and (2.6.6) follows. [

flz):=

Note that on letting z =0 in (2.6.6), we recover (2.1.10): 83 =63 + 65.
It is a simple matter to recast Example 2.2 as the classical theta
transformation formula.

Theorem 2.4

For z an arbitrary complex number and im (¢) >0,

2.6.7 0,(z, £) = (—it -1/2 ez:/(m'z)o 5’_1 .
> et

Here one takes the principal square root. The proof is left as Exercise 3.
It is equally simple to use the Jacobi triple-product of Chapter 3 to
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produce product expressions for 6,(z) (Exercise 4). Various other relation-
ships are indicated in the exercises.

Comments and Exercises

There is a proliferation of notations for theta functions. We follow the most
usual notations (used in Bellman [61]) and note that both Dickson
[71, vol. 3, p. 93] and Whittaker and Watson [27] give tables of alternate
notations. The abuse of functional notation, in particular the distinctions
among 6, 6.(q), §,(¢), and 6,(z), necessitates some caution. Both Bellman
[61] and Whittaker and Watson [27] provide an accessible introduction to a
considerable amount of material on theta functions.

1. Verify the identities of (2.6.2) and (2.6.4). Note that (2.6.2) shows that
we can restrict attention to one theta function (say, 6;) and lose no
information.

2. Show using Liouville’s principle that,

a) 05(2)6; = 0:(2)6; — 61(2)63

b) 63(2)6% = 0(2)63 — 67(2)63

0 6,(z + w)bs(z — w)b3 = 65(W)63(2) + 61()63(2)

d) 6,(z + w)b,(z = w)83 = 03(w)8(2) — 61(w)01(2)

e) 6,(z+w)8,(z — w)6,6, = 6,(2)6,(2)6,(w)8;(w)
+6,(2)6,(2)6,(W)0,(w) .

Results of this kind are discussed in detail by Whittaker and Watson.

Many are given in tabular form in Erdélyi et al. [53].
3. Establish Theorem 2.4.

4. Show that with Q,:=[[ (1-¢""),
n=1
i) 6(2)=90, H 1+ 2q2"‘1 cos (2z) + q4"_2)
n=1

i) 6,(z)=2q"*Q,sin z IT@-24*cos (22) + ¢*) .
n=1

Establish similar identities for 6,(z) and 6,(z). Many variations are listed
in Erdélyi et al. [53]. (This relies on Section 3.1.)
5. Use Exercise 4 to show that

6,(z) = (-1)"q"sin(2nz)
a0 AT 1

i)
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i) log [%] =4 §=:1 (l_j)q'zzq: sin n(nz)

for |im (z)| < § log|q].
6. One of the easy but important properties of theta functions is that they
solve the one-dimensional heat or diffusion equation

3%6(z, t) _4i 96(z, 1)

9z* T Jat

This provides a significant connection between the analytic properties of
theta functions as functions of z and their number theoretic properties
which revolve around the variable q. Various of these matters are
pursued in Bellman [61] and Rademacher [73].

7. Bellman [61] gives an interesting functional equation approach to
Theorem 2.4. Consider entire solutions f to

i) flz+m)=f(z)
i) flz+ 7t) = be **f(2)

where b is an unspecified function of ¢ independent of z. Suppose,
temporarily, that f possesses an absolutely convergent Fourier expan-
sion valid for all z:

f(z):___ E CneZniz.

n=-—e

a) Show that c,,, = b 'g*"c,. Hence deduce that for lq|=1le™| <1,

f(z)=C0[1+ E qn(n—l)b—neZniz]
is an analytic solution to i) and ii) and is unique up to choice of
constant. When ¢ = b"", we recover 6,(2).

b) Show that any entire solution to i) and ii) has an absolutely
convergent Fourier series. Hint: Use contour integration to show
that for any integral k,

w2
f_  f@) e dz) =™ n  max | f(w—ik)|.

—w/2=w=x/2

¢) Use the uniqueness of solutions of i) and ii) to rederive Theorem
2.4. Hint: Show that both sides satisfy i) and ii). Then use Exercise
6 to normalize the equation.

There is also a considerable literature on multidimensional theta func-
tions. (See Bellman [61].) Since they do not impinge on our main consider-
ations, we say no more.
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2.7 THE LANDEN TRANSFORMATION

We finish this chapter by deriving an expression for sn in terms of theta
quotients and by relating this expression to the transformation of incomplete
elliptic integrals. We begin with the classical Landen transformation in theta
form.

Theorem 2.5
For all z and im (¢) >0,

6,(z,060,(z, 1) _ 6,(0,6)6,(0,1)  6,(z,08,(z, 1)
(2'7'1) 04(22, 21) B 6,(0, 2t) - 0, (22,21)

Proof. As a function of z, 6,(2z,2¢) has zeros when 2z = 7wt + mm +
2nmt or when z =mm/2+ (2n + 1)«t/2. This is exactly where 6,(z, t) or
6,(z, ) is zero. Again (2.6.4) shows that f,(z) := 6,(z, £)6,(z, 1) /6,(2z,2¢) is
doubly periodic with periods 7 and 7r¢. Thus Liouville’s theorem shows that
f(z) is a constant with respect to z. The second equality follows on
substituting z + 7¢/2 for z and using (2.6.2). O

To establish the existence and analyticity of sn in theta terms we begin
with

_d_ 6,(2) a2 0,(2)6;(2)
dz 6,(z) % 6%(2)

(2.7.2)

(See Exercise 1.) Now let p := 6,(z)/6,(z) and observe that

d 2
(273) (%) = @3- 022063 - 0703

(This relies on Exercises 2a) and 2b) of the previous sectiozn.) }'he4n
replacing z by uf;> and p by y = p8,/6,, we observe that, since k” = 6,/673,

d 2
(2.7.4) (d—i) =(1-y))(1 - k).
This is solved by

6, 6,(ud;?)
k)= yp= 2 2273 )
(2.7.5) sn(u, k):=y 6, 6,u0.7)
or

6,(um/2K)

Viesn(u, k) = 8,(um/2K)
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Proof. From Theorem 2.5 we deduce

0,(z,)0,(z,t) 6,(2z,21)
6,(z, 6,(z, ) 6,(2z,21)

and then, in agreement with (1.7.1),

fsn(u,k) dy
© Va-yHA-EY)
which solves the inversion problem (at least for real k) for the glven

integral. We wish to have cn’+sn’=1 and k’sn’+dn’=1, and it is
appropriate to define

In.terms of sn, cn, and dn this becomes

k sn(u, k) cn(u, k
sn(l(ti;l(i,cz)(u ) _ Vk, sn(u,, k,)

_ b 02(u03_2) K 92 (u7r/2K)
(2.76) en(u, K):= 6, 6,(u8;”) k8, (um/2K) where u = z62(q) and u, =220%(q%) since k, = 6,(q¢*)/8,(¢°).
Thus &, =(1—k')/(1+ k') and u, =2ub3(q°)/62(q)=(1+ k")u. Col-
-2 . . .
2.7.7) dn(u, k)= 6, 03(u03lz) -V 6 (um/2K) . lecting information, we have
6; 6,(ud;") 0, (um/2K) L
- sn cn

(See Exercise 2.) 279 u,=(1+k"u k,= 5 i snu;, k,))=(1+ k') —4—— In

Finally we wish to recast Theorem 2.5 in elliptic function terms.
since kk; '/ =1+ k'. The change of variables sin 8 = sn(u, k) and sin §, =

Theorem 2.6 (The Descending Landen Transform) sn(u,, k;) now produces (2.7.8). O

Let 0<¢ and 0< k<1 be given. If Comments and Exercises

1-k
1+ k'

A profusion of information on the numerical use and derivation of various
Landen transforms is given in King [24]. More bibliographic information is
available in Watson [33] and in Whittaker and Watson [27].

ky =

and 0= ¢ =< ¢, is given by
1. Prove the differential equation (2.7.2) by showing that

_ 91(2)04(2) — 94(2)01(2)

(1 + k") sin ¢ cos ¢

T i ey

z)=
X i 6(20:(2)
then
is doubly periodic with periods 7 and #¢/2 and that ¢(z) has simple
2 ~ [ de e de poles possibly only at 7/2, 7/2+ wt/2, and translated points. Then
(2.7.8) 1+&) 0 V1—k?sin’ 6 o 1— k2sin2 6 show that ¢(z + 7t/2) = ¢(z), and hence relative to the periods 7 and
! wt/2, ¢ is doubly periodic with a single pole. Thus ¢ is constant.

or 2. a) Establish (2.7.5).

, b) Wlth cn and dn deﬁned as in (2.7.6) and (2.7.7) show that

1+ K)F(p, k) = F(4y, ki) en’ +sn’ =1, dn® + k% sn” =1, and that cn(0) = dn(0)=1.

where c) Show that (d/ du) sn(u, k) = cn(u k) dn(u, k).

d) Show that sn is strictly increasing on (0, k) with sn(0, k) =0 and
sn(K, k)=1. [You may find it convenient to use the product
formulae for 6,(z) and 6,(z).]

e) Show that dn(K)= k',

f) Establish the double periodicity of sn(u, k), cn(u, k), and dn(u, k)
with respect to u and verify the following table:

(Y ae
o, k).—fo V1—k*sin® 6

is the incomplete elliptic integral of the first kind.
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Periods Zeros Poles Residues
sn | 4K,2iK’ 2mK + 2niK’ 2mK+(2n+ 1)K’ (-1)k
cn | 4K,2(K+iK') (2m+1)K+2nK’ 2mK + (2n+ 1K' (-1)""i/k
dn | 2K, 4iK’ Cm+1DK+Qr+ 1K' 2mK+@2rn+1iK’  (-1D)"4

The ascending Landen transform is given by reversing the roles of k and
ki, ¥ and ;. Thus if

_Vk
171+ k
and
Sin(zdfl_df):ksmd’ =
then

20 py, 1= R, k).

These transforms and their analogues for incomplete second and third
integrals clearly lead to quadratic iterations which are studied in detail
in King [24] without reference to theta functions. Note that if ¢ = 7/2,
we recover the quadratic transformation for K.

a) Show that, in the notation of Theorem 2.6,

cos” ¢ — k' sin® ¢

cos =

b) Hence show that

. 1-k" .
sin 2y — ) = Trp S0 Y, =k, siny, .
¢) Thus show that, if k =2Vk,/(1+ k,) and sin (2¢ — ¢,) = k, sin ¢,
then

1+k
F((I/,k)= 2 . F(d’l’kl)'

Compare Exercise 5 of Section 1.4.

a) Show that if u:=2Kx/m, then

4n-2

1 = 1—24"" cos (2x) + ¢*
k - 2 1/4 1/2 [ .
Sn(u, ) q k sin (x) nI;[] 1-— 2q2n—1 cos (2x) + q

b) Find similar expressions for cn and dn.
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Combine Exercise 4a) and Theorem 2.6 to produce a quadratically
converging approximation to sn(u, k) given one for sin x.

Use (2.7.5) and Exercise 2 of Section 2.6 to show “the addition
theorem”

sn(u) cn(v) dn(v) + sn(v) cn(u) dn(u)
1— k% sn’(u) sn’(v)

sn(u +v) =

Obtain similar expressions for cn(u + v) and dn(u + v). (See Whittaker
and Watson [27] and Exercise 11 of Section 1.7.)



Chapter Three

Jacobi’ s Triple Product and Some
Number Theoretic Applications

Abstract. We establish Jacobi’s triple-product identity and apply it quite
variously. We first use it to derive the fundamental product identities for the
theta functions. We then rederive the triple product via Cauchy’s q-binomial
theorem and present Bressoud’s beautiful elementary proof of the celebrated
Rogers—Ramanujan identities. After this we derive Jacobi’s formula for r,(k)
(the representation of k as a sum of four squares) and two partition results
due to Ramanujan. We also establish the Gaussian sum formula and indicate
another proof of the theta transformation formula. Then we briefly discuss the
Mellin transform and use it to give the classical reflection formula for the
Riemann zeta function. Finally, we show how certain reciprocal series can be
evaluated in terms of theta functions. In particular, we give a result due to
Landau on the Fibonacci numbers. We also sum the squares of the reciprocals
of the Fibonacci numbers.

3.1 JACOBI’S TRIPLE-PRODUCT IDENTITY
Our first proof of the triple-product identity is:

Theorem 3.1

For each pair of complex numbers x and g, with x#0 and |¢| <1

>

©

(3.1.1) 11 1+ xqz"_l)(l + x_lqz"_l)(l - qz") = E x"q"z.

Proof. Let F(x, q):=II,_, (1+x¢” " )(1 +x'¢**™"). Now F(-, q) is

62
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analytic except at zero and has a Laurent expansion at zero. Observe that
F(x, )= F(x", q) and F(xq’, q) = (xq)"'F(x, q). Thus if

o

Fix, q)= 2 c (9"

-1

then ¢,(q)=c_,(q) and c,(q)=4¢"""c,_,(q) for n=0. It follows that

¢.(4) = q"co(q) and
(3.1.2) Fx, q)=col9) 2 x"q".

It remains to evaluate ¢,(q). Letting x:=1 in (3.1.2) gives ¢,(q)6,(q) =
II;_, (1+¢™")* and letting x:= —1 gives ¢,(¢)8,(q) = o, (1-4¢" 1
Since V6,(9)6,(q) = 6,(¢"), we deduce that

co(9)6,(g%) = n[ll (1-¢*"7%).

But on replacing ¢ by ¢°,

eo(g)6:(a) =11 1 -7

Hence

o

co(qz)= ¢ 2y2n—1
g ~ALH @,

Since ¢,(0) =1 and ¢, is analytic at zero,

co(q)—l N k=1 [Cjz(qZk_)l) ] - E1 }:[1 1 Zk(zn_l)]
= 1:[1 (1-4¢"")

This establishes (3.1.1). O

It is convenient to make the following notational abbreviations.
Q=11 a-¢" 0,:=1l a+g™
(3.1.3) " "

©

0,:=1l a+¢"™ 0=l 1-¢"™.

n=1
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From these definitions one easily verifies Euler’s identity 0,0,0,=1,
which may also be written

(3.1.4) 1;[1 (1+q") 11 (1=g™ " =1.
Also

(3.1.5) 000: = Q4(q")

(3.1.5i) 0,0; = 0,(¢"?)
(3.1.5iii) 0,0,=0,(q")

(3.1.5iv) 0.0,=0,(q9"%.

We gather the first three specializations of the triple-product identity into:

Corollary 3.1

For |g| <1, one has

(3.1.6) 6,(q) = 0,05 = H (1-g™)1+ gy
(3.1.7) 8,(q) = 0,0} = H(l—qz")(l "y
(3.18)  6(g9)= 2q”“QoQ1—2q”4H (1-g")(1+g™).

Proof. These follow on using x :=1, —1, and g, respectively, in (3.1.1)
(Exercise 2). O

More generally, let k and / be real numbers, and let g := qk and x:= iq’
in (3.1.1). Then

(3.1.9) f[

2kn+k l)(l + q2kn+k+l)(1 _ qan+2k)

2 (+1)n kn? +ln

n=—w

When k:= 3 and /:= 1, this gives

(3.1.10) H (1._q")=n=2ﬂ:cm (_l)nq(3n+1)n/2-

This is Euler’s pentagonal number theorem, which he found empirically and
which affords a combinatorial interpretation [Exercise 3b)], as most of these
identities do.

When k:=1:=1, we have
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© © ©

n n 1 " n 1_ 2n
@1y Ila+gna-¢m=35 2 ¢= =11 _—qqz_n—1 :

n=1 n=1 1

Finally, k := 3 and [ := 3, } give two formulae which play a central role in
the Rogers—Ramanujan identities (Section 3.4):

(3.1.12a) I;Io(l—qs"+1)(1—q5"+4)( — ") = E (—1)rgrramrz

(3.1.12b) H (1- q5"+2)(1 — q5"+3)(1 — q5"+5) = E (_l)nq(5n+1)n/2 -
n=0 n=—w

We finish the section with a slightly less immediate corollary of the triple

product. If g := ¢'"* and x 1= = g'*w, then (3.1.1) becomes

) E wn n(n+1)/2

n=—w

(3.1.13) H(l—q )1+ g w)(1+q"w _1)_<w

The right-hand side is

m-—1

2()(%

2m+1
) mim+1)/2 _ E w—m< m +1> m(m+1)/2
14+ w™ w+1 9 )

If we now let w tend to —1 from above this gives

(3.1.14) ﬁ A=Y = 3 (~1)"@m+1)gm2.

m=0

Thus with (3.1.10),

(3.1.15) [ i

m (3m+1)m/2] — i (_l)m(2m+ l)qM(m+1)/2 )
m=0

Comments and Exercises

The proof of (3.1.2) is due to Gauss [1866]. The AGM identity (2.1.7) was
also in his possession, but Jacobi, by elliptic function techniques, was the
first to publish a proof of the triple-product identity. There are many proofs
in the literature. Given the AGM, none perhaps is as simple as the one
given here.

1. Verify the identities (3.1.4) and (3.1.5).

2. a) Prove Corollary 3.1.
b) Show that

(3.1.16) H (1 + qZh—l)S — H (1 _ q2n—1)8 + 16q H (1 + q2n)8 .
n=1 n=1 n=1
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a) Establish (3.1.9), (3.1.10), and (3.1.11).

b) A pentagonal number is a number of the form n(3n =1)/2. Show
that (3.1.10) implies that every nonpentagonal number can be
partitioned into an even number of distinct parts as often as into an
odd number of distinct parts. Show that for pentagonal numbers
there is a surplus or deficit of 1, depending on whether 7 is odd or
even. This was first observed by Legendre in 1830. (See Dickson
[71, vol. 2].)

Establish (3.1.12) and give an interpretation in terms of partitions.
Ewell [81] observes that Euler’s pentagonal number formula (3.1.10)
allows one to establish Jacobi’s triple product, given (3.1.2). Thus one
can base the identity on a combinatorial proof of (3.1.10) such as is
given in Hardy and Wright [60].

Use (3.1.10) to show that c,(¢°) II7_, (1 - ¢*") =1.
A complex analytic approach to Jacobi’s triple-product is as follows.

a) Show that (3.1.1) is equivalent to

(3.117) 6,(z, @) =TI [1-2¢" " cos2z+ ¢* ] I] (1 - ¢*)
n=1 n=1
where g :=e™
b) From the discussion of Section 2.6 show that both sides of (3.1.17)
are analytic with zeros at z = (n + ) ot + m#w (n, m integral). By
Liouville’s theorem they differ only by a multiplicative constant.
¢) Use Exercise 5 to show that this constant is 1.

a) Justify taking the limit in (3.1.14).
b) Prove that (3.1.15) is equivalent to

© 3 .
(3.1.18) [ z (—1)"q(6"+1)2] = 2 -D™"2m + 1)q3(2m+1)2 )
n=-e m=0

¢) Observe that (3.1.18) has the following number theoretic interpret-
ation due to Catalan (Dickson [71, vol. 2]). The excess in the
number of even values of x + y + z in

(6x =1)"+ (6y £ 1)’ + (62 = 1) =3(2n + 1)}

over the number of odd values of x +y + z is 2n+1)(-1)" In
particular, any number of the form 3(2n + 1)’ must have at least
(2n +1)/6 decompositions as a sum of three squares.

a) Show that 6, and 6, never vanish (lql <1).
b) Show that 6, and 6, increase monotonically on (0,1) and 6, de-
creases monotonically on (0, 1).
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9. Let p(n) denote the number of partitions of a natural number »n into
positive integral parts (the order being irrelevant). Thus p(4) =5 and

p(5)=1.
a) Show that

n2

- - _ S q
"=ll-g) =14 2 s
(31.19) 1+ 2 plmg" =11 (1-q") i, (1- g5

For the second equality see also Proposition 3.4 of Section 3.3.
b) Use

[1+3 pma] 3 -1ygeni=y
n=1 n=-

to write (and implement) a recursive formula for p(n). This is how
MacMahon (1918) computed p(n), 1=n=200; p(200)=
3972999029388. For more information on partition theory the
reader is referred to Hardy and Wright [60] or Andrews [76].

¢) (Euler) Establish that

> pln—a(m) = Ed ,pln—a(m)

where a(m):=m(3m + 1)/2 is the mth pentagonal number.

3.2 SOME FURTHER THETA FUNCTION IDENTITIES
In this section we collect a number of definitions and relations, some of
intrinsic interest and some for future reference. _
Let r € (0, ) and define A*(r) := k(e~™"). As in Chapter 2, we consider
k as a function of g (=e™™"). Then

(3.2.1) 0=4e™™"% = A*(r) = 16e ™7 + O(e *™?)

since A*(r) = 05(e"™")/02(e ™) (See Exercise 1.). Also
K/
(3.2.2) < O1=v7.

From Corollary 3.1 we have

6,(q) NG 1/4 - ( 1+q2n >2
; 29 _ g=» —1 .
(3.2.3i) e g nl:II T3
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- 9 (q) 1— an 1,2
(3.2.3i) 2 VE = H ( —
6(q) +q"!

when ¢ := e TKRIKG)

We next derive another beautiful identity due to Jacobi, in which 6]
denotes the derivative of 6, with respect to z at zero. [See equation (2.6.1).]

Proposition 3.1

For |g| <1,

(B24)  6(6(96:(9) =2 2 (~1)2n+1)g" " =07 (g) .

Proof. Identity (3.1.14) can be rewritten as

0,(9)=29"05=29"03(0,0,0,)
=(2¢9""Q,01)(Q,030(0,03) = 6,6,6,. O

For various applications to lattice sums it is natural to augment our theta
definitions by

(3.2.5) 6,(q) :=2,,=2_m (_l)nq(Zn—1/2)2

and

(3‘2_6) og(q) =2 2 (_1)n(n—1)/2(2n + l)q(n+1/z)z .
n=0

By similar arguments [see (3.1.14)] one can show that

(3.2.7) 65(9) =29"“Q00,/0,(4%) = V26;'*(4*)0}*(¢%)

and

(3.2.8) 0;((])=050§(QZ)=0203((]2)04((14) .

We leave these identities as Exercise 6 and note that (3.2.4) and (3.2. 8)
have number theoretic interpretations like that of (3.1. 15). These three
identities and their remanipulations are among the very few known reduc-
tions of three theta terms to one known theta expression. (See Glasser and
Zucker [80].)

Following Weber [08] and others, it is usual to identify the following
quantities. With ¢ and r as above and 7:= V7,
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(3.2.99) n=n(~v=F) =n(1) = ql/leO
(3.2.9ii) L=A(V=7) =fi(n):= q_1’24Q3 = (4k'2/k)1/12
(3.2.9iii) £, =7 =f,(1)1= 21/2q1/12Q1 — (4k2/k’)1/12
(3291V) f=f('\/—_r) =f(7-) = q_1/24Q2 = (4/kkr)1/12 .

Then
(3.2.10i) fifif=V2
(3.2.10ii) f=+r

and K satisfies
=T 204 T 204 _ T 2.4
(32.11) K=onf =sanfi=snfz-

As will be discussed in Chapter 4, whenever r is rational, f;, f,, and f
satisfy algebraic equations (whose degree is determined by the number of
quadratic forms with determinant —4r). Thus once 7 and one other of f,, f,,
f, k, k' is known, all six are determined.

A significant identity which follows from (3.2.9iv) is

Gany 3 B g =)= 7 10g (K.

Here and hereafter, the prime over a summation indicates that the term
m=n=0 is omitted and summation is over expanding rectangles. One
establishes (3.2.12) by writing

l)k 2 2r+1)k

—%log@z)%gg L

)k+m

cosech (mVvrk) = 2 2 I
k=1m=-= r

[using (2.2.3)], and so

o (=17 4 7r2
(—)2 =— 5 log(Q,) -

2
nm=om’ +rn

since T, _, (—1)"*'/m® = #%/12. This is the desired result. One may obser-
ve that whenever one can evaluate the double sum, one can also evaluate
kk'.

In some future work we will be following Ramanujan rather than Weber.
Ramanujan studied
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G, = (2kk’)_1/12 - 2_1/4f(\/——n)
(3.2.13)

k12 1/12 14
g":=<2k> =2 fl(v_n)'
For some purposes these give slightly cleaner results. For example,

V5+1 V5+1

Gys = ) 810= )

For the moment we denote k(g") by & and K(8) by A. We have

K 3
(3.2.14) kk’(%) =4v/qQ}
so that
kk/ 1/6 K ql/lZQ
3.2.15 (——) \/: =
( ) 88 A gv"P0Qy(q")
We also have
+ 2n+1
(3.2.16) <2K) (1-2k%) =1-24 S Gntl)g”
n=0 1+ q
2K L 3 2n
(3.2.17) ( ) (1-Kk'*)=1+240 >, 1” q_
n=1 - q
and
2K
(3.2.18) ( ) (1- 2k2)<1+ 5k k’z) —1-504 3 1” q”
n=1 17 q

These formulae lie considerably deeper, either in elliptic function theory, or
as direct computations. Indeed each formula entails formulae for powers of
theta functions. We prove only (3.2.16) and leave (3.2.17) as an exercise.

We need an identity whose proof we also leave as an exercise.

Lemma 3.1

For |q| <1,
i 2n +1)g> !

3.2.19 > -3 ¢
( ) = 1+ q = q2n+1

Proposition 3.2
For |g| <1,

2nq* 2n+1)g***!

(3.2.20) 3(q)—1+820 " q 82 (—_—q—l?T
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2n + 1 2n+1 271 + 1 2n+1
(3.2.21) 0%(q)=8 20 —( 2,(.1“ 2 —-——( quﬂ

2nq _g i 2n+1)g*"**

= 1+q2n+1

(3.2.22) 0%(q)=1+8 2

—Ts

Proof. From (2.3.16), on differentiating with respect to g =e~ ™, and

Corollary 3.1 we have

6, 6 d Q,
03(q)=—4 <—4——2)=8 —lo ( )+1
(9)=~49\5 — ) =84 g5 los\ 5,
which yields (3.2.20). The other two follow similarly. O

Theorem 3.2

For |q| <1,
(3.2.23) 6i()=1+8 > {7
n¥0(mod 4) L — 4
n=1
and
2 2n+1)g* !
(3.2.24) 0i(q)—05(qg)=1-24 2_)0 (H%

Proof. Apply Lemma 3.1 to (3.2.20) to establish (3.2.23). To prove
(3.2.24) one uses the lemma with g and —gq. O

Now (3.2.16) is immediate from (3.2.24). Formula (3.2.17) is similarly
derived, if one knows in addition (see Rademacher [73]) that

1 n 3 n
(3.2.25) 0%(—q) = 63(q)=1+16 s g 7
n=1
Finally, (3.2.18) follows from (see Rademacher [73}])

(3.2.26) o”(q)-1+82 82 - 11"; - +(69)

Of course, implicit in (3.2.23) is a formula for the number of represent-
ations of n as a sum of four squares. We discuss this more fully later.
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Comments and Exercises

1. Establish the asymptotic of (3.2.1).

Proposition 3.1 is often established by analytic arguments like those of
Exercise 6 of Section 3.1. Proposition 3.1 may then be used, as it is in
Whittaker and Watson, to establish the triple-product identity. (See Exer-

cise 6.)
2. a)
b)

c)

'd)

Show that

ﬁ [1- e_(2"+1)rr] =9l/8 p-mi2d
n=0
Show that

©

2 o~ @n+ 1 _ (21/4 _ 1)77—3/42—11/411(%) -
n=0

(This was set in Trinity College, Cambridge, in 1881.)
Recall that if k:=(V3—-1)/V8, then kk'=1% and K'(k)=
V3K(k). Deduce that

ﬁ (1 + e—2n1r/\/§) — 2—13/24(\/§+ 1)1/4611/12\/3
n=1

Similarly, if k:=V2(3-V7)/8, then kk'=+% and K'(k)=
V7K(k). Deduce that

ﬁ (1+ e—zrm/ﬁ) =2—5/8(3 + \/:/)1/4 err/12\/7
n=1

3. Establish the identities in (3.2.9), (3.2.10), (3.2.11), (3.2.14), and
(3.2.15).

4. a)
b)
c)

d)

Justify the derivation and convergence of (3.2.12).

Evaluate the left-hand sum when r:=1, 2, 3, 4, 7.

Prove that as r tends to infinity, the sum converges to —7/6. It is
already “close” by the time r =7.

Prove that

@ @

D 4w . <4k’2>
m;—mn;—m n2+rm2 \ﬁlog[fl( r)]_S_\/?lOg —k— .
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5. Show that

g4n = 21/4 nGn

Gn = Gl/n and g;l = g4/n

(8,G.) (G, —g) =1

Prove Lemma 3.1 by expanding both sides.

Prove (3.2.7) and (3.2.8).

Establish Theorem 3.2.

Prove (3.2.16) and (3.2.17). Try to prove (3.2.18). Exercise 9 will
help.

The next two exercises sketch out some facts about Jacobi’s imaginary
quadratic transformations.

7. a)

b)

<)

The transformation k, := k™' is given in theta terms by

K'(k;)=kK' and K(k,) = k(K + iK").

The transformation k,:=k’"' gives K'(k,)=k'K and K(k,)=
k'(K' +iK).

The transformation k,:=ik/k’ gives ki=—k'"', K(k,)=k'K,
and K'(k,) = k'(K' — iK), since re(s) > 0.

The transformation k, = k'/ik gives k; =k, K(k,) = kK’, and
K'(k,) = k(K +iK").

Use s,:=i+s ' to derive from (2.3.14) that

1 63(5) -1 64(51)
—E_S 65(s) i 0,(s;)
and
94(51) _ 64(51) 93(5) 1
o 6,(s;) o 0,(s1) e 0,(s) ¥ 2

Now use Exercise 7a) and (2.3.17) and (2.3.18) to show that when
k, =k, kE(k,) = E(k) — (k')’K(k).

Derive similar formulae for E(k,) for the other three imaginary
transformations.

Evaluate K'/K when k:=V6+ V2.

For r:=1, 2, 3, 4, show that 6,(i'q) = 6,(¢*) + i'6,(q").

éo (Z)GS'_k(q“)Oi‘( 7).

k=j(mod 4)

4
2 i) =4
r=1

Evaluate 0§_k0'2‘ for k:=1, 2, 3, 4.
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10. Show that

2 (—1)" cosech (3n + 1)77 1
n=-c 3n+1

log [8(2 —V3)]

[Let r:=9, 2kk’ = (2—V3)* in (3.2.12). See (4.6.10).]

The formula for sums of two squares is derived from Jacobi’s identity

(3.2.27) 92=1+4> —21

This will be shown in Chapter 9.
11. A comprehensive list of hyperbolic identities can be derived, as was
(3.2.12). We have, for g:=e¢™ ™

2

©

1
3.2.28i -1 =y -
( l) Og QO 2 n(eans _ 1)

1 < coth(wns) —1
252 (mns)
1 n

_ms_1, <2K3kk’>

3
w

(3.2.28ii) log 0, =3 — DT
ne it

i (=1)"[coth (mns) — 1]

n
_ﬂ_i1<ﬁ)
12~ 12 °%\16x’

1 i (—1)" cosech (mns)

(3.2.28iii) ~log 0, = 3 =
o dm()
24 8\ kK
(3.2.28v) log 0, = L 3 cosech (mns)
29 n
=ﬂ_il@ﬁ>
24 12 B\ Tk
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7 — 1
2 _ 2 _ -
(32280)  logQuQi=log 5 i =2 omm )
1 < 1—tanh (7ns)
-3 2
_ms 1 &Q
~ 7 T 2%\2g
. 1 2_ 1
(3.2.28vi) 3 log Q,Q5=75 log 0,
1 1 <2K>
==log|—
2 (2n _ 1)[e7r(2n—1)s + 1] 4 g ar
. 1
(3.2.28vii) — 3 log Q,05=—> log 0,

2

- 1
B 21: (2n —1)[e™@ "D — 1]

- -1 - 1 <2k’K>
. 1 wns _
= Ell, tanh e 1 log e

S

T n(eZ-rms_'_l)

1 « (—1)"[1—tanh (7ns)]
22 "

_ms 1 <1—k')
=3 T\ Tk

= h([#(2n - 1 1
(3.2.28ix) log 0,02=> ¢ 2[:(_’; sl _ _ 7 logk'.
1

Q
—_
LN
SRS
~—
—_

(3.2.28viii) log [

These are taken from Zucker [84]. Many more identities follow by
differentiation or as below.

12. a) Show that

(3.2.29) i Z(n 1)1 [Q’”Tl)”f] = % sin"' k.

Hint: Use (3.2.28ix). Then replace g by q"'? so that k' is replaced
by (1— k)/(1+ k). Then replace g by —q so that k is replaced by
ik/k’ (as in Exercise 7).

b) Show that
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-n" [(2n+1)77'\/ﬁ]
& mt1 sech s

w/8
- [ /24

1sin™'[(3- \/7)/4\/2]

T
I
~ W =

3.3 A COMBINATORIAL APPROACH TO THE TRIPLE
"IDENTITY

The Gaussian or q-binomial coefficients are polynomials defined by

n . _ n (-
(0>q‘_<n>q. 1
and by

ny . (9, T, . .(-¢)
(3:3.1) <m>q" (DD T, (A-¢)

when 0 <m <n. Here (q), is defined by

©

(332) @.= 11 {55

m=1 1

This allows for any complex value of s, but we will consider only integral
values. Thus for n in N, (g), =TI,_, (1-¢°) and (g)_. =0. For m<0 or

n
m > n we either define to be zero, or observe that it is implicit in our

definition of (q),, (for 1ntegral m). The next proposition gathers up some
easy facts.

Proposition 3.3
For |q| <1,

@ (1), =(ana), (),
® im(2),=(7)

© (n) ) I ol i
m/, 18 @ polynomial in g.

Cauchy’s binomial theorem is, for n=1,2,3, . . .
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" m_m{m n .
(3.3.3) 2 g™ “)’2< ) =11 (1 +yg9.
m=0 m/q k=1

This is easily established inductively by showing that both sides of (3.3.3)
agree for n =1 and satisfy

(3.3.4) F.(y,q)=F,_(y,9)+yq"F,_,(y, 9).

One can also argue, combinatorially, that the coefficient of y°q’ on each side
gives the number of partitions of ¢ into s distinct parts not exceeding n.
If we now let y := xq'N and n := 2N, we obtain, after some manipulation,

N 2N N
m_m(m+1)/2 — + m -1 m-1
(3.3.5) m;Nx q (N_m)q 111(1 xg™)(1+x7 g™
a result also due to Cauchy.
This bears a striking resemblance to the triple product in the form of

(3.1.13). Indeed on letting N tend to ® one has ( Nem

0(q):=1I,_, (1 - ¢g™), and we are left with (3.1.13) if we can justify the
exchange of limit and summation (Exercise 3). Thus (3.3.5) deserves to be
considered as a finite form of the triple product.

The following Eulerian result will also be used in the next section. For
notational simplicity the empty product equals 1.

tending to

Proposition 3.4
For k=1, 2,...,

15

k Joi? k
= 4 (1—xq)xq(1—xqf) <1)

Proof. Inductively one establishes that each side satisfies

k

xq
~ xq

Gx,9)=G,_,(x,q9)+ 1 Gi_1(xq, 9) -

Obviously the result is true for k£ = 1. Alternatively one can argue that the
coefficient of x'q° on each side counts partitions of s into ¢ parts not

exceeding k. [

Comments and Exercises

Here and in the next section we follow Bressoud [83].

1. Prove Proposition 3.3 and (3.3.3).
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2. Verify (3.3.5).

3. a) Prove that for |g| <1,
2N ) o
<N_m q_Q (q)'

b) Justify the exchange of limit and summation in (3.3.5) by observing
that the terms possess uniform majorants that are summable.

lim

Nox

4. a) Prove Proposition 3.4.
b) Deduce that

3.3.6 ﬁ = xq” . .
(3:36) ,11 o (l-x)(1-q) (-x)1-q)

and compare with ( 1.19).

Ms

3.4 BRESSOUD’S ‘EASY PROOF’ OF THE
ROGERS-RAMANUJAN IDENTITIES

The Rogers—Ramanujan identities are

2

3.4 g Ny L
(3-4.1) 1+le (1-g)(1-¢°)--(1-g™) Eo (1= (1= g
(342) 1+ E " -1 L 7y

L A-9(1-¢) - (1-q™) w20 (1-¢"D(1—¢

They afford a remarkable combinatorial interpretation (Exercise 1). We
use equations (3.1.124) and (3.1.12b) and the notation of the last section to
rewrite the identities as

© m2

(3.4.3) EO .~ =07 (g m;m (_l)mq(5m2+m)/2
a0y S capgemn,

It is this form that we establish. The key observation is the following.

Lemma 3.2

For n positive and integral and any complex a,
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xmqam2 _
G452 i Z(

2 x q(a 1)m?

q)n -s m (q): m(q)s+m .

Proof. Note that the above sums are all finite. Set k:=n—m and
x:= ¢°™ in Proposition 3.4. Then multiply each side by (q);.. We get

] +2mj

(D n-m
(Dj+2m (D(Dpm-;

(Dtm = Z

Make this substitution for (g)_1,, in the left-hand side of (3.4.5). We have

2

2 xmqam _2 X q m 2 qj2+2mj(q)n—m

m (Do Dnsm 7 Diem 7 (Djrzm( DA D —m—;

B 2 (m+j)2 xmq(a 1)m?

(q)n -m-—j (q) (q)]+2m ‘

We now sum over m and s:=m+j and exhibit the right-hand side of
(34.5). O

The effect of Lemma 3.2 is to reduce the power of q"'2 by 1. Repeated
use of the lemma results in an expression which can be handled by the finite
triple-product. As we will see, the k =2 case of the next result contains the
desired identities.

Theorem 3.3

Given positive integers k and N, we have

2 qs%+s%+-~~+si f_"[ ) )
A+xg™)A+x"q")
S1oeeeoSk (Q)N—sl(q)sl—-‘z T (q)‘k—l—sk(q)z-‘k m=1

m [(2k+1)m2+m]/2< 2N )
(Q)zNE N—m/q

Proof. Commence with applying the lemma to the right-hand side of
(3.4.6). We have

m +1)ym2
(Q)zNExm [(2k+1)mz+M]/2< N ) = (xq”z) q(zk 1ym?%2
N-m/q “a (q)N—m(q)N+m
1/2ym (2k—1)m2/2
=2 s (4 )"q

(q)N s m (Do Diim
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We continue by applying the lemma k — 1 more times and arrive at

> D (xq

515525005 Sk (q)N—sl(q)sl—sz(q)sk_l—sk m (q):k—m(q)sk+m )

(q)sg+sg+---+sg 1/2)mqm2/2

We use the finite triple-product (3.3.5) to write

s GG s ] g )
m (q)sk—m(q)sk+m 1 2 m=1

This completes the proof. [l

The theorem is applied by specifying k and/or x. When x:= -1, we
observe that unless s, =0, the products on the left-hand side are zero. Thus

2 24... 2
S{Hs5+-tsg g

z q
$15525- 55k ~1 (q)N—sl(q)sl—sz o (q)sk—z_sk—l(q)sk—l

(3.4.7)
— -1 _qym [(2k+l)m2+m]/2< 2N )
(D 2 (-1)"g Nem).

If we let N tend to «, we arrive at

q
3.4.8 2
( ) 5152555k~ (q)s1—52 e (q)sk—z_sk—l(q)xk—l

— ﬁ (1 _ qn)—l z (_1)mq[(2k+l)m2+m]/2 )
n=1 m

=

For k:=1, the left-hand side is 1 and the formula recaptures Euler’s
pentagonal number theorem. For k:=2, (3.4.8) coincides with the first
Rogers—Ramanujan identity (3.4.3). The second identity is derived similarly
by specifying x := —gq and k:=2 (Exercise 3). '

Comments and Exercises

The Rogers—Ramanujan identities were discovered by Rogers in 1894 and
rediscovered by Ramanujan in 1913 (a letter to Hardy) and Schur in 1917.
They have continued to receive a great deal of interest. As recently as 1979
Baxter rediscovered them in a physical context.

Hardy and Wright say “no proof is really easy (and it would perhaps be
unreasonable to expect an easy proof).” Bressoud’s proof certainly comes
close to contradicting this. Much of the early history can be found in
Hardy’s footnotes to Ramanujan [62].

h ol e
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1. Show that (3.4.1) says that the number of partitions of n into parts with
minimal difference 2 is the number of partitions into parts congruent to
1 or 4 modulo 5. Equally, (3.4.2) says that the number of partitions of n
into parts with minimal difference 2 and minimal part 2 is the number of
partitions into parts congruent to 2 or 3 modulo 5.

Verify the equivalence of (3.4.1) to (3.4.3) and (3.4.2) to (3.4.4).

3. Derive the second identity (3.4.4) from Theorem 3.3. There is an

interesting continued fraction associated with the identities.

L

ﬁ (1 _x5n+2)(1 _x5n+3) B 2::—00 (_l)nx(5n+l)n/2
(1_x5n+l)(1_x5n+4) 2:=_w (—l)nx(5"+3)"/2

2 3
UNE 2 0 S
1+ 1+ 1+

When x:=e ™" (n rational), this is in principle evaluable in closed
form. Ramanujan gives

(3.4.10) 1+

e ™2 g 272 =[ ,,2,5< 5+\/§_\/§+1>]_1
1+ 1+--- L€ 2 2 :

In a recent paper, Bhargava and Chandrashekar Adiga [84] detail
(3.4.9) and other continued fraction identities. The closed form (3.4.10)
and its extensions are elaborated on in Ramanathan [84].

4. Investigate the analogue of Theorem 3.3 in which 2k replaces 2k + 1.

3.5 SOME NUMBER THEORETIC APPLICATIONS
Our first application is a proof of Jacobi’s formula for r,(n), the number of
representations of n as a sum of four squares [including sign and permut-
ation so r,(2) =24 and r,(1) =8]

Theorem 3.4

For each positive integer n,
(3.5.1) r(m=8 > d.
d|n
d;!O(rLod 4)
In particular every positive integer is the sum of four or fewer squares.

Proof. Expand the right-hand side of formula (3.2.23) for 03(q) to
obtain
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Bg(q)=l+8 Z_ 2 mq"'k=1+82 (Zd)q".
T*—”?k—l n=1 214[”[11

Now compare coefficients with 83(q) written as

+o

o3= 2 q"%+"%+"§+"3=1+}_‘,lm(n)q". O

n;=-—o

The subsidiary conclusion is Lagrange’s famous result. Our second applic-
ation is an analytic proof of Fermat’s theorem that any prime of the form
4k + 1 is the sum of two squares. It is convenient to define

oy(n) = Zl d
and
(3.5.2) w(n) := oy(n) + o,(odd n)

where odd(n) is the odd part of n (that is, the largest odd divisor of n). We

set w(n):=0 for n=<0. The proof of the following lemma is left as
Exercise 3.

Lemma 3.3

The value w(n) is divisible by 4 unless n is an odd square.

Theorem 3.5

An odd prime p is the sum of two integral squares if and only if it is
congruent to 1 modulo 4.

Proof. The ‘only if’ is immediate on consideration of residues mod 4.
Now argue as in Proposition 3.2 and Theorem 3.4 to show that

6, d 2 d d
i) =9 4 8 (0D = o (08 0) + 4 - 105 (0,0

_ i (2n+1)g**! i nq"
n=0

1_q2n+1 _n=1 1_qn

(since Q,Q, = Q). Hence, on expanding these expressions (as in Exercise 12
of Section 3.7)

é4(q) _ S n
e —Z,l w(n)q" .

On multiplying by 6, and comparing terms we have
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2(_1)r+1r2 n= rZ

(3.5.3) w(n)=2 ; ('1)jw(” - fz) = { 0 otherwise

Suppose now that n=p=4m+1 with p prime. Then w(p)=20,(p) =

8m + 4 and we see that

4m+2+ 2 (-1)w(p=j*)=0.

j=1

Thus some w(p —j°) is not divisible by 4 and Lemma 3.3 implies that
p=j’+ K for some integers j and k. O

Our third application is to establish the following reciprocity result for
Gaussian sums. Let

g-1

—air?
S(p, q)i= 2 e 777
r=0

1y

where p and g are nonzero integers.

Theorem 3.6 ‘

For positive integers p and g with pq even,

VI 50
S(p. =2 75 @ p)
(Here the bar represents complex conjugation.)

We will prove the result from the transformation formula for 6, (2.3.1).
This needs the following:
Lemma 3.4

For pg even and g positive,

i\ 1
lim \/EB3<8 + ’—3) ==5(p, q).
e—0"t q q

o —arn2(e +i
Proof. Write 6,(¢ + ip/q):=L___ e "™ ¢*?/D Then

] a i - = (r+s. 25’"'
03<s+2)—)=1+22 e"”’z""’[ze e ]
q s=0

r=1

on taking the periodicity of e "™?% into account. (Here we have used
e ™47/ = 1 which entails pq even.) Thus
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I3 ; z
VEb, (s + f) = e_""z”/"[Z\/E fo g (rHsaem ds] + O(Ve)
r=1

on using the integral test. We now take the limit as ¢ — 0" and calculate that

«© ©

- —(r 20 . _
im vE | e """ ds=lim vE | e ™ ds

e—0% 0 e—0" rlq
. ® 22 1 *
= lim V& e”‘”ds=——f e_’zdt=i.
e—0" Y vmq Jo 2q

Since S(p, g)=E7_, e ™"P'9 this gives the desired result. O

Proof of theorem. 'We now use the theta transform (2.3.1) to write
. . —-1/2 2 .
veg e+ B)ova(er 2) g(c L -, (")
q q p P
Thus the lemma shows that

1 _ —imia 4 . q2 iq
i S(p,q)=e —= lim \/Eo3<e ? 3 + 0(52)>

p =0t
g . (.19 2
=e P lim V503<s —;+O(e’ )).
g'—0%

By Lemma 3.4 applied to —q and p we deduée that

—iw/4

1 1
(3.5.4) qu(p, qQ=e —ﬁS(—q, p). O

Ou.r final application is a partition result of Ramanujan’s which relies on
tl;e t;lple-product identity. (See Exercise 9 of Section 3.1 for the definition
of p.

Theorem 3.7
(@) p(5n+4) is divisible by 5.

() p(7n+5) is divisible by 7.

Proof. With Q(q)=1I,_, (1— g") as before, we write

90%(9) = 90(9)Q%(q) = % g (1- -1)"""2m +1)¢*

\yl.lere k:=1+3n+1)n/2+ m(m +1)/2. This uses the triple-product iden-
tities (3.1.10) and (3.1.14) multiplied together. One now considers when k is
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divisible by 5. Since 2(n +1)° + (2m + 1)’ =8k(mod 5), we must have
2(n +1)* + (2m + 1)* divisible by 5. An inspection of residues shows that
this can only happen if 2(n + 1)* and (2m +1)* are both divisible by 5.
Hence, 2m + 1 is divisible by 5 and so is the coefficient of g°"** in gQ*( q).
From the binomial theorem one deduces that.

(3.5.5) (1-¢9)°=(1-¢°) '(mod 5)

in the sense that all coefficients are congruent. It then follows that 0(g°)/
5m+5 .

Q°(g)=1(mod 5), and hence the coefficient of g in
90(¢°) _ 949*(9)2(4")

0(q) Q°(q)
is divisible by 5. But
-1 _ Q(qs) -1, 5
qQ (q)—q—Q(q) Q0 (q)
_ 49D T (S s
" 0(g) mH<" )

5m+5

so that the coefficient of ¢ in gQ ~'(¢) is divisible by 5. However, by

Exercise 9 of Section 3.1,

907 (9=q+2 p(1-1)q".

Case (b) is similar, but uses the square of (3.1.14) instead of the product
with Euler’s series. (See Exercise 5.) O

Comments and Exercises

The identity (3.5.1) was discovered by Jacobi on April 24th, 1828. He also
subsequently observed similar number theoretic interpretations of the for-
mulae for 95 and 8}, and he gave an arithmetic proof of his theorem. The
identities can also be found in Gauss’s unpublished work. A wealth of this
and similar information can be found in Dickson [71, vol. 2].

An analysis of the components of our proof of (3.5.1) shows that it is
rather simpler than that in Hardy and Wright [60], which proceeds from
r,(n), or in Rademacher [73], which uses elliptic function arguments. We
use only the triple-product identify and the AGM.

1. Show that r,(n) is 8 times the sum of the odd divisors when # is odd,
and r,(n) is 24 times the sum of the odd divisors when » is even.
2. Show that
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o 4 o 4(2n+1
[Z q(2n+1)2] _ 2 (2n + l)q (2n+1)
= = 1_q8(2n+1)

and deduce that the number of representations of n as a sum of 4 odd

squares is 16 Z,,,._, d.
d,d’' odd

The argument of Theorem 3.5 is due to Ewell [83]. We give the general
formula for r,(n) in Chapter 9.

3. Prove Lemma 3.3. Consider odd and even cases and use the multip-
licativity of o,.

Gaussian sums arise naturally in the study of cyclotomic polynomials and
hence occurred to Gauss while studying constructible polygons. Apparently
this led Gauss to the lemniscate and thence to elliptic functions. The
formula (3.5.4) (with p:=2) plays a key role in establishing the class
number formula for binary forms. Landau [58] is sufficiently taken by the
result that he presents three proofs. The result we give is due to Dirichlet.
The case with p := 2 is due to Gauss save for the ““detail”” of determining the
sign of the complex square root. (See Landau for the significance of the
sign.) Our proof follows Bellman [61].

4. Show Gauss’s result. For g =1,

1+ 7
1+:°

qg—1

—2aird
2 e 2mir<lq =_\/§
r=0

This, generalized, leads quickly to a proof of quadratic reciprocity. (See
Apostol [76a].)

There is a host of more recondite modular results on partitions. (See
Andrews [76] or Hardy and Wright [60].) The rule of thumb that additive
number theory is generally harder than multiplicative theory is born out by
the relative paucity of partition information.

5. a) Show that (1-¢)”=(1-g”) (mod p) holds for any prime p.
b) Prove Theorem 3.7(b).

There is a combinatorial proof of the theta transformation formula which
is suggestive of the arguments used in the sections on the Rogers—Ramanu-
jan identities, in that it produces a ‘finite theta transform’ and moves to the
limit. The proof is due to Polya. Again we follow Bellman [61].

—1/2\2m < 2 .
6. a) (Z'P+z7VHym= 3 <m Tk)zk for any z and integral m.
k=—m
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b) Let w:= e*™" 1 a positive integer. Then
\m/1] rm
_ Ik
2 [(wkz)llz + (wkz) 1/2]2m=l 2 <m L lk>z .
—l/2sk=l/2 k=—|m/l]

(Here |x] is the greatest integer less than or equal to x.)

¢) Fix s and ¢ with ¢ real and positive. Let /= |(mt)*"?] and z = €'’
Then
2 {e(s+2‘n'ik)/21+ e—(s+2‘n'ik)/21}2m
—l2=k=l/2 2
(s + 27Tik)2 812(m141%)
= 2 {1 + —_— 4o }
—112=k=l/2 8l

L/}

_ 2m ) k
2m S
2 2 l<m+kl € -

k=—|mil]

d) Now let / go to infinity and use

x\" . . .
i) lim<1+ 7") =e if limx,=x

n—w x—>x

L n?( 2n \ e ¢ T =
e) Deduce from c) and d) the following form of the general theta
transformation:

o ©
) [t ~tk2+sk
2 e(s+21rtk) 14 _ ; 2 e ¢ K .

k=—0c0 k=—

3.6 THE MELLIN TRANSFORM AND THE ZETA FUNCTION

We continue our tour through theta function theory with a discussion of the
Riemann zeta function. This also allows us to catalogue a few useful
properties of the Mellin transform for future use.

The Mellin transform is a specialized Laplace transform defined by

(3.6.1) M(P=M(f) = || fw ™ d.
For integrable functions with suitable behaviour at zero and infinity, MJ is
analytic in a strip a<re(s)<b. For example, the gamma function,

I(s):= [¢ e *x*~! dx, is analytic in re(s) >0. A most useful identity is

(3.6.2) f: fa)x tdx=y™" fo f(x)x* " dx y>0.



88 Some Number Theoretic Applications

'Undejr mild conditions, the Mellin transform is invertible and one can
1dent.1fy two functions whose transforms agree for re(s) > 0. (Certainly this is
true if the functions are transformable and continuous.) This is an approp-
riate _place to state the following functional characterization of the gamma
function, whose proof is left as a guided exercise.

Theorem 3.8

The gamma function is the unique function f: (0, ©)— [0, ) such that

(1) f1)=1
(2) flx+1)=xf(x) for x>0, and
(3) log f(x) is convex.

Many ‘oth.erwise tedious facts are easy consequence of this functional
character‘lzatlon of the gamma function. We list three whose proofs are left
as exercises. These are the functional relation I QA ~s)= 7/sin s

(1.6.6), the beta function formula B(s, t) = I'(s)['(¢#) /T
)= + 6.
the duplication formula 0 ' OO+ (67, and

(3.6.3) T(2s)=n"""2""'()T(s + 1) .

We now deriyf, the functional equation for the Riemann zeta function
£(s) = X, n, r.e(s) > 1. We observe in passing that ¢ has an immediate
analytic continuation to re(s) >0 simply by writing

S 1yn 4 3 a2 S
n= n=1

n=1
so that
1 o
(364) ((S) = 1__21_5 zl (—1)"+1n_5 re(s) >0.
More interestingly, consider g(¢):=[6,(t) — 1]/2. For re(s) > 3 we have
M = ~2s —sfw —t,5—1 _ F(S)
() zln A dt———ws {(2s) .

Thus
r<£>£(s)7r‘”2= T F () d
2 0 g(1) dt
_ wts/Z—l P (1 s/2-1
1 gy di+ | o g < e dr

1 fl -1/2
+ = ansi2-1
2 Jo (t 1)t drt .
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Here we have used the theta transform for 6, (2.3.1) to substitute for g on
[1, ). This leads to

~ 1 1 53 t_v/2+t(1—s)/2
(3.6.5) F(%)((s)'n' 2= —<E + 1_s)+fl — s a

if we evaluate the third integral and replace ¢ by 1/¢ in the second integral.

Since |g(t)|= O(e™™) as t— =, we see that the integral is an entire
function of s. Thus I'(s/2){(s) is analytic except for simple poles at s =0, 1.
Since I'(s) has a simple pole at 0, we see that {(s) is analytic except for a
simple pole at s = 1. In particular (3.6.5) gives an analytic continuation of
{(s) to the entire complex plane. Moreover, as Riemann discovered, the
right-hand side of (3.6.5) is invariant under the change of variable s := 1-s.

Thus we have

sy _ 1—s\ _-s
(3.6.6) 1“(5)77 S21(s) =1“<—2—)7T 1=92r(1=5).
This is the celebrated functional equation for the zeta function.

Comments and Exercises

It is also possible to deduce the Poisson summation formula from the
functional equation for the zeta function. (See Bellman [61])

1. a) Use Holder’s inequality to show that I satisfies theorem 3.8.
b) Conversely, g(x):=log f(x) satisfies g(n + 1) =log (n!) and

xlogn=gn+1+x)—gn+1)<xlog(n+1).

Thus
0=g(x)—1 nin’ <xlo <1+1)
=g -log ey A - B T
and
‘X
(3.6.7) I'(x) = lim 1 = f(x).

n>e x(x + 1)+ (x + n)

This argument is due to Bohr and Mollerup. Interesting extensions
can be found in Askey [80] and in Denninger [84].

2. a) Prove formulae (1.6.6), (1.6.7), and (3.6.3). In the latter case write
the ostensible identity in the form I'(x) = f(x) and verify that f
satisfies Theorem 3.8.

b) Establish that T has an analytic continuation to the entire plane
with simple poles at the negative integers and zero, and with no

ZETOS.
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3. Let

]

f(x):=f0 e (HHI 4712 gy
Verify that f(x) and V7 ¢ have the same Mellin transforms by using
the duplication formula. Hence reprove the result of Exercise 4 of

Section 2.2. Alternatively, establish the duplication formula from that
exercise.

4. a) Use (3.6.4) and the fact that ¢(s) has a pole with residue 1 at 1 to

show that

(_1)n+1
1 n

M

=log2.

Il

n

b) Show that {(—2nr) =0 for positive integral n. The reflection formula
(3.6.6) at least hints of the centrality of the line re(s) =} in the
behaviour of the zeta function. The factorization, due to Euler,

()= Il a-p™™

P prime

re(s)>1

shows the connection between prime distribution and the zeta
function. The Riemann hypothesis is that all the nontrivial zeros of
{(s) lie on re(s)= 3. The asymptotic distribution of the primes is
inextricably tied up with this famous conjecture. (See Rademacher

[73].)

5. Use Theorem 3.8 to establish Gauss’s multiplication formula,

6.

n—1
T(nx) = Q)" 212 ]] r(x + 5) .
k=0 n

(Stirling’s formula) The formula is

's+1) e
_(s/e)’ i 1+ 0o(1) s .

Outline: Substitute x = s(1+ u) in M,(¢*) and write
[s+1)=s5"e* f_ml [(A+we ™ ) du.
Now replace u by £V2/s and obtain
[(s+1)=5"e"*V2s f:o w.(¢) dt

for a (dominated) kernel y,(f) which approaches e uniformly for
bounded t.

3.7 Reciprocals of Fibonacci Sequences 91
3.7 EVALUATION OF SUMS OF RECIPROCALS OF FIBONACCI
SEQUENCES

Since the theta functions provide quadratic analogues for the geometric
series, it is natural to ask about their relationship to sums of the form

(3.7.1) > a’ where a,,,:=Ma,+ Na,_,
n=1

with a, and a, given (M, N #0). The one-term (N =0) recurs}on leads to

the geometric series. The two-term recursion leads to theta series and their
2

relatives. If a # 8 are the roots of x° = Mx + N, then

(a, — Bay)a" —(a, — aa,)B”
a—B

(3.7.2) a,=

(Exercise 1) and

at+tB=M aB=-N.

We will consider only the case in which N = =1 and M is real. We may write
a,.,=(2c)a, + €a,_,, |e| =1, and to assure that a, B are real, we assume
c¢>max {0, —¢}. Then of = +1 and

Bi=c—Vc'+e.

(3.7.3) a:=c+Vci+e

We must consider summing series of the form

w©

1

(7.4 Si= 2 G B

The following proposition provides the key. We define the Lambert series

(3.7.5) L(B):="2=l 1fﬁn

|B|<1.
Proposition 3.5

For 0< B < a with B =1,

B’!

1+8

O 23 T e

SO

w©

@) 2 =3 L= L0k -1

+BZn =n=1 1+B4n

and
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@) 3 g ;0 = 1 k() - )
=2 - 02(BY).

Similarly,

@) 2 T =E 1_3;2n = L(B) - L(B?)

o

W 2 =3 B sy -1sY
LT TP

and

2n+1

(1) 2——— § g = L(B) —2L(B") + L(B").

Proof. (i) The first equality follows on multiplying top and bottom by
B" and the second now follows from (3.2.27), the formula for 83. (ii) Now
observe that a” and B satisfy the hypotheses of (i). Then (iii) follows on
subtraction. We leave (iv), (v), and (vi) as Exercise 2. (]

Proposition 3.5 will allow us to sum £7_, a;' for certain starting values.
Specifically, we can handle ¢ = +1 and A= =B in (3.7.3) and (3.7.4).

case 1 (A=—B) Let a0 =0 and a, := 1. [This normalization comes by

setting A:=(2Vc® +¢)7]

(i) (e=-1) Then aB =1 and ¢>1. Now

8

(3.7.6) 2 a =2V - 1[L(B) - L(B)]
as follows from (3.7.2) and Proposition 3.5 (iv). Similarly, one can
evaluate
2 a3 =2V - 1[L(B%) - L(BY)]
and

S a3ty =2VES(L(B) ~2L(B%) + LB
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(ii) (¢=1) Then aB =—1. Now B <0 and

a;l =2V +1 2

1 nla

= =2V +1[L(B%) - L(BY]

M

n

while

M

(3.7.7)

1

) Tﬁ:l—mz—nﬁ

n

a2n+1 2Ve 2
\/____

[63(18) = 03(B™)] -

cASE 2 (A=B) Leta,:=1 and a, := c. [This normalization comes from
setting A = 3.]

(i) (¢=-1) Then ¢B =1 and ¢>1. Now

2: a;l _ 03(32) -1

(3.7.8) m 026 -1
L
S gt = 03B~ 65(BY) _ 63(BY)
= 2n+1 2 2
S o1 205(B) —63(B)+1
2 (-1)a, = > :

(ii) (¢=1) Then B8 <0 and a|B|=1. It follows that

(3.7.9)

2n

S . 63(BH)-1
21“ 2

and
3 a3ty =2AL(B) - 2(8Y) + L(BY].

In certain cases the theta series involved above are particularly simple to
evaluate. For example, in Case 2(i), we have B =c—Vc¢*>— 1. Thus ¢ =
(B+ B71)/2. If B:=10"", the series 6,(B) and 6,(B°) in (3.7.8) can be
evaluated entirely by writing down sequences of 1’s and 0’s. Thus for
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2¢=10" + 107", the sums in (3.7.8) can be evaluated at the same speed as
one can multiply n-digit numbers. (See Chapter 6.) Moreover, since theta
functions can be fast computed for any algebraic B, the series are always fast
computable. (See Chapter 7 and Exercise 6.) Hence the series of Exercises
3, 4, and 5 are quadratically computable.

Finally, consider (3.7.7) for c:=sinh(ms) -and with s>0. Then
4, =2sinh(7s)a, +a,_,, a,:=0, a,:=1, and

©

(3.7.10)  S(s):= > a;l,, =

n=

cosh (7s)

5T [03(e ™) — 03(e ™).

If we use Theorem 2.1, we have

©

_ cosh(mws) (1 -k’
(3.7.11) 2 ayl, = () ( > )K(k)
n=0 ™
where
k ( —W:)
03(e™™)
on using

()= (55 o

For singular values of k (see Section 4.6), this formula becomes particularly
pretty. [See Exercise 6b).]

Comments and Exercises

1. a) Show that when x°= Mx + N has distinct roots a and B, oa, .=
Ma, + Na,_, is solved by (3.7.2).
b) If @ = B, show that

a,= na;a""' = (n—1)a,a"

2. Establish (iv), (v), and (vi) of Proposition 3.5.
3. a) Use (3.7.7) to show that for the Fibonacci numbers

g o \/‘02<3 \/‘)

4 2
- ? [0§<\/§2— 1) - 0§<3 _2\/5)] '

Here F:=0, F,:=1,and F, ,:=F, + F,_,. This result is due to
Landau [1899] as is

5.

6.
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- 3-V5 7-3V5
o S revi258)-u(225)]
n=1

This is also discussed in Ribenboim [85].

¢) The Lucas numbers are defined by the same recurrence,
L..,:=L +L, _, butwith L,:=2 and L,:=1. (See Hardy and
Wright [60] ) Show that

2 1= [(357) vl /o

=F,,,, satisfies x,, ,:=3x,—x,_;, x,:=1, and

n

=L, satisfies x,,,:=3x,—x,_;, X,:=2,

n

d) Note that x,
x, =2, Slmllarly,
and x, :=3.

a) Verify (3.7.8) and (3.7.9).
b) Show that fora,,,:=4a,—a,_,, a,:=1, a;:=2, one has

n

i a l= 95(2”\/?)_1

n=1 2
and
= 202(7 - 4V3)— 032 —-V3)+1
n_-1_ 3 3
ZO(_]') a, = 2 .
Let a,:=0, a,:=1, and a,,,:=9.9a, + a,_,. Show that

> a; 5) ()]
1 2 &
22 a3 = 505[ (10) 93\ 100/

a) Recall that 62(q) = (2/7)K(k), where g = ¢ "% As shown in
Chapter 7, it is possible to quadratically compute & given g. Since
K is quadratically computable given k, we can fast compute 6;(g)
given q.

b) Show that with S(s) given by (3.7.10), we have

- =22 (0

S(vz) = R (:\/7) (1 ' )K(\/_ 1)
S(\/g)zcosh(:\/?) (2—@)4\@(\/4@—1))‘
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¢) Show that S(s) = cosh (ws) Z7_, sech [(2n + 1)ws], so that

® 20,=7S\ _ p2¢, —2ms
>, sech [(2n + D7s]= G 203(e )
n=0

and

e 93(e™ ™) +1
>, sech (nms) = L(e%
n=0

d) Show that

©

2 msech [(2n +1)7] = %.

Equations (3.2.28) and (3.2.29) can be used to derive closed forms for
a host of other reciprocal sums. (F, and L, are as in Exercise 3)

a) Use (3.2.29) to show that

S V5 [ 48)]

= — arcsin
io @n+1DF,,,., 4 03(B)

where B:= (3 - V5)/2.
b) Use (3.2.28iv) to show that

S el 4505

where B:= (V5-1)/2.

Use (3.2.28i) and transformation formulae to show that

12
1) 2cosech (mrs)—‘é —2—2[<1+3k )KZ—KE}

b § eomatren=bo &[5 -]
n=1 6 6

8

1ii) Z cosech? [2n+1)7s]) = ﬂ_i [<1+2k,2>K2—KE].

d) Similarly, use (3.2.28v) to show that

2EK

i) 2 sech® (nms) = %

T

f)

g)

h)

b)
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z EK+k'K* 1
ii) >, sech? Crms)y= ————— =
n=1 T 2

= EK - k'K?
iii) >, sech?[(2n + 1)7s] = ——5—.
n=0 ko

Show that

1
1) 2 cosech’ (nm) = = — 7

n=1

" 2 (2n+1)77]_i
ii) zosech [ > 5

Combine results of ¢) and d) to show that, with 8:=(3 —V5)/2,

(3.7.12) 2 F.?= 2 [65(B)— 65(B) +1]
and
(3.7.13) é L72=11[635(B)—1]

and deduce similar formulae for £7_, (—1)"F,> and for I7_,
(=1)"L;..
Show that the Lucas numbers satisfy

o0 ©0 2 ®©
> L;2=2<2 L;;) + 2 Ly}
n=1 n=1 n=1

and show that a similar formula holds for all recursions of the form

Api1 = (zc)an + a,_q, a4y = 2c, and a, =1.
Show that
w w X
3D F45> L (2 an+1> _
n=1 n=1
Show that

ZF

_1 n+1
Eéi ( ) an n=1
Hint: Differentiate (3.2.28iii) and compare the result to Exercise
7f), equation (3.7.12).

Show that
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=2

M

(—1)"m cosech (2mms) = 2. sech? [(C2m + 1)7s]
m=0

1

and hence that

\/—z (- 1)n+1 L =§ 2n+1

9. Show that
3 q" _ 691
20 +< F - 8
(-17q" _ 83(g)—1
=1 (" +1)° 8
and
; q" _ 63(9) =~ 0iq) +1
207 +< )P 24 '

10. a) Show (by expanding both sides) that

]

b) Hence show that all the series considered in this section can be

computed with at most O(v7) operations for n digit
Chapter 6.) . (See

A remarkable elementary result is

3 1 kVs
z = k=
n=0 Fopiy + Fy 2F, ,3,5....

This is a specialization of identities established in Backstrom [81]. (Related
results can be found in Carlitz [71].) Thus

A related formula is
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11. Show that
- 1 KE 1
= — 4+ =
(3.7.14) 2:, L 72 2.8

where g := (V5 — 1)/2. Now k is close to 1, so that KE/27* is close to

£ ~ eg(q) _ eg[ewzllog[(\/g—l)/Z]]

272 4w 4log[(V5+1)/2]

where the last equality follows from the theta transform. One sees that
KE/27* + } is close to

1 1
4log [(V5+1)/2] "3

which explains, in some part, Backstrom’s formal manipulation in
Backstrom [81]; and which evaluates (3.7.14) as requested therein.
Almqvist [Pr] treats this sum and some relatives. Note that
g™ osl(V3-1/2] __ 1079 50 that, as in all these Fibonacci series, transfor-
mation considerably speeds convergence.

Lambert series occur naturally in multiplicative number theory, as the
following exercise shows.

12. a) Show that for any real valued function f,

g f(n) 1 g F(n)x"
where
F(n) :=%‘, fd).

This is due to Laguerre. Hence show that

1)2

(n)x

||M8

1 -x"
where 7(n) is the number of divisors of n.
k_n

n'x - n _
ll_x,,—zlcrk(n)x k=1,2,...

=1
e’
M s

n

where ,(n) is the sum of the kth powers of divisors of n.
b) Let
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1 if n is square
F(n):= { e .
0 if n is nonsquare

Show that f(n) = (—1)** where
n=[1 p%  (in prime decomposition) .
i=1

Hint: Use Mébius inversion. Since F is mult1p11cat1ve so is f. Thus
using Liouville’s function e(n) := (—1)%=1%

. x" 6(x) -1
21 M IF=" 3

¢) Show that

3 4035 fap) - 087

where 8:=(3-V5)/2.

Zucker [79] gives general formulae for sums of powers of hyperbolic
functions (in which the coefficients are defined recursively and have been
computed extensively by Ramanujan and Zucker). Using these one can
evaluate Zn 1( D"'F;* and I7_ F;**? in terms of 6 when

k:=1,2,3,.... There are similar Lucas number results, and if K and F are
used, many more sums are expressible. We give two examples:

- +1y —4 1 4 2 4
2 (1)L, = 5o (3+103(8) — 11 ~ [63(8) + 1)
and
> g3 _5V3 :
2 F3la="35 63(B)1-04(B)].
Here, as before, 8:=(3—V5)/2.

13. Letu,:=0,u,:=1,and u,,,‘=au, +tu,_,. Let v,:=2, v,:=a, and
V.1 -=av, tvu

n+l n—1"-

a) FEstablish that

i —a(a +4)z

n
netl Zkluk k1v4k+v2

)n+1

-;-(Va2+4—a).

Hint: The second sum in a) can be made to telescope.
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b) In particular,

i 1)n+1 _

V5-1

a=1 iy Fi
c) Compare
1n+1
i) Z ) =6(m —3)
n=1

and

) 1
ii) Z T e = 63— 4log2).
k=1

d) Show that

©

n=1 Ziy ug

g(\/a +4—a) +2a(d” +4)z

2

k=1Ug+1 — 4

@

=%(Va2+4—a)+2az #

k=1 Uglsp g



Chapter Four

Higher Order Transformations

Abstract. We develop algebraic transformations of prime order for the
elliptic integrals. For small numbers this can be managed purely algebraically.
However, the development of modular equations for arbitrary primes is
most comfortably effected via transcendental methods. This requires some
rudimentary modular function theory. The cubic equation is studied in
particular detail.

4.1 A FIRST APPROACH TO HIGHER ORDER TRANSFORMATIONS

The fundamental relation from Theorem 1.2

4.1. -1 g( 2K
(“-1.1) K= 1% K\

is remarkable for a number of reasons. One notable consequence is the ab
initio unlikely observation that when k is algebraic and

_Vk
1+k
the values of the transcendental function K at / and k are algebraically

connected. Equation (4.1.2) is one form of the quadratic modular equation.
It can be rewritten as

1 (2\/%)

(4.1.2) l:

(4.1.3) P(1+k)*—4k=0.
We will develop a class of algebraic equations (modular equations) that

induce algebraic transformations on K in a similar fashion.
We commence by sketching, a la Cayley [1895], a purely algebraic

102
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approach to the modular equation. It transpires that this approach becomes
unduly complicated for all but a few simple cases and is hard to use as a
rigorous basis for the general theory. Thus in Sections 4.3 and 4.4 we will
derive the general theory using function theoretic techniques.

We are looking for a relation of the form

M(l, k) dy _ dx
VA-y)1 -1 VA-x)(1- kX

where [ and k satisfy a polynomial equation {2 in two variables. Such an
algebraic connection between the two moduli ({/ and k) is called a modular
equation or modular transformation for k. Specific but equivalent modular
equations for algebraically related functions are defined in (4.4.2), (4.4.6),
and (4.5.1). The function M will be an algebraic function of k£ and / and is
called the multiplier. With this in mind, let P and Q be polynomials in x* so
that deg(P = xQ)*(1 = x) = n (n odd) and write

(4.1.4)

1—y=(P—xQ)2 1-x

(4.1.5) 1+y (P+xQ) 1+x

The important condition to impose on P, O, and [:=I[(k) is that (4.1.5)
must be invariant when (x, y) is replaced by (1/kx, 1/ly). (See Exercise 1.)
We now try to solve for P and Q. Set

U:=x(P?+2PQ +x’Q?) V:=P*+2x’PQ +x*Q*
(4.1.6)

A:=P—x0 =P+ x0
and observe that

y=U/V

(4.1.7a) 1-y=(1-x)AYV 1+y=(1+xBV.
Also, from the invariance of (4.1.5),
(4.1.7b) 1-ly=(1-kx)C¥V  1+Ily=(1+kx)D¥V

where C and D are polynomials of the same form as P and Q. Thus we
deduce that

dy _uv-vu dx
Va-y)Ha-ry*)  ABCD \(1-x*)(1- k¥

(4.1.8)

It can now be computed (Exercise 1) that
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1 UV-VvU _ 0(0)
(4.1.9) M0, k) - 4BcD Y2 p0y

is independent of x. Let us return to (4.1.5). For n =4p + 1 we must have

(4.1.10) deg P=2p degQ=2(p—-1).
For n=4p + 3,
(4.1.11) deg P=2p deg Q=2p.

Since P and Q are even functions, we have in either case 3 (n + 1) degrees of
freedom. It remains to use the invariance in (4.1.5) as (x, y)— (1/kx, 1/1y).
This leads immediately to the equation

V(1/ke) _ UG

(4.1.12) U(l/kx) ~ V(x)

since y = U/V. Thus we are reduced to solving

I e
(4.1.13) (P> +2x*PQ + x’Q%)* = \/; K" D2(P? + 2P0 + x*Q?)
where the * operation is defined as follows. If

n

Sit=g,+tax+---+a,x
then

*i=ay(kx)" +a (kx)" +- -t a,, .
Equating coefficients in (4.1.13) leads to a system of 3(n + 1) nonlinear
equations. There are 1(n + 1) degrees of freedom in the coefficients of I
and Q. Since the equation is homogeneous in P and Q, one of the
coefficients may be assumed to be 1. This leaves one additional condition tc
be satisfied by k and / and leads to the desired unique algebraic relation
between k and /. The pitfalls of this approach are now, of course, apparent.
We end up with a large system of nonlinear equations that are virtually
impossible to solve or analyse directly.

We illustrate with the cases 3 and 5.

CUBIC TRANSFORMATION (n=3). We have P=1 and Q= a. Equation
(4.1.13) becomes

[ >
k2x2+2a+a2=\/;k(l+2a+ax“ .
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[
k—\/;a

2a+a2=\/%k(l+2a).

This leads to two equations,
(4.1.14)

This is solved parametrically by

M and 1} = ‘L@L‘E):

2 - =
(4.1.154) K= e+t Qa + 1)

with similar expressions for (k')* and (I 'Y?, namely,

_(Q+a)(d- a)’

3
2 (1-—a)(1+a) .2
(4115b) k' = ——ml—— and / (2a n 1)3
From this one can deduce that
(4.1.16) VK + VKT =1

or, equivalently,

(4.1.17) (K- 1) =128k (1 - k)1 - )2 -k = >+ 2k .

In the associated variables u:=k''* and v:=1'"* this has a simpler form,
namely,
(4.1.18) ut— ot +2u0(1 - uwv?) =0.

(See Section 4.5.) The multiplier M has any of the following forms:

1 v 200 —u

“2a+1 v+2d°  3u

(4.1.19) M

(See Exercise 2 of this section and Exercise 2 of Section 4.6.)

QUINTIC TRANSFORMATION (n =5). We have 2P = 15+ Bx* and Q = a. Equat-
ion (4.1.13) leads to the three equations (A := k7/I)

B*=A
(4.1.20) K (2aB +2B + a’)=AQ2a +2B + a’)
K'Qa+1)=A(B%+2aB).

. . 1/4
This eventually solves, with u = kK'*and v:=1"" as
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(4.1.21) u® —v® + 5utv(u? — v?) + duv(1 — utv*) =0.
The multiplier M has any of the forms

1 v(l-w’) u+d’

(#1.22) M= 2 +1 v—u’  Su(l+uv)’

The transformations are called cubic, quintic, and so on, because of the
underlying order of the transformation (and so of convergence).

Comments and Exercises

The very classical approach of the section to cubic and quintic modular
equations is due to Jacobi [1829]. This algebraic approach was extended to
the septic (n=7) case by Cayley [1874], who also treated the endecadic
(n=11) case partially. The calculations are formidable. We have followed
Cayley closely in this discussion. The associated variables u:= k¢ and
v:=1"* of Jacobi’s considerably simplify the calculations, as we will see in
Section 4.5.

In order to find the relationship between K(!) and K(k) implicit in (4.1.4)
we must show that the underlying transformation (4.1.5) is one to one and
onto on the interval [0, 1]. This can be done directly for n =3 (Exercise 3)
and other small n. However, as with most of the details, it is easier to use
the general transcendental approach of Sections 4.3, 4.4, and 4.5.

1. a) Show that an equation of the form (4.1.5) that is invariant under
the change of variables (x, y)— (1/kx, 1/ly) exists. Hint: Set

X l—xz/af
y.-= M U “1 —kzaizxz .

Replacing (x, y) by (1/kx, 1/ly) gives

1 1 l=Kaix

ly =XMk"H,~a? i 1-x%a?

which holds, provided that

4
l=M2k"<Hai) .
[See also (4.1.13).]
b) Establish (4.1.7b) and exhibit C and D.
¢) Establish (4.1.9). ‘
Hint: Let U and V be as in (4.1.6). Let y:=U/V and let
Y(a, b):=(a* — b*)(a* — I’b*). Then
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Y(V,U)=(V} = UV?-*T?)

and
dy _ UV-UVdx
VY(Ly) VYV, U)

Now observe that any square factor (x — a)’ of Y(V, U) is a linear
factor of VU — UV. Since

vi-U*=(1-x")A’B?

and
V- 12U = (1- k%) C?D?

the féct that (UV — VU)/ABCD is independqnt of X now follosz.
The explicit form of the multiplier M(l, k) is derived by setting
x=0in (UV-VU)/ABCD.
a) Establish the four forms of the cubic modular equations (4.1.15),
4.1.16), (4.1.17), and (4.1.18). o .
b) (Complgte(the calculation of the quintic modular equation (4.1.21).

Show that the n =3 relation between x and y underlying the4cub1c
transformation is one to one and onto on [0, 1}, and hence (4.1.4) can

be integrated over [0, 1]. . .
(in exgplicit cubic algorithm for K) The cubic modular equation

(4.1.18) is of degree 4 and, hence, can be solved explicitly for u in terms

of v.
a) Show, forv€E€(0,1), that u € (0, v) is a solution of (4.1.18), where

v®* D-R
u=—+—5—

2

and

§i= Va1 =Y
R:=Vu°+S

6_g 4y —20°
D=1\ 2v — +———R .

b) Show, for u €(0, 1), that v € (u, 1) is a solution of (4.1.18), where
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d)

Higher Order Transformations

D+R
2

b=y
2
and
S:= 34142(1—118)
R:=Vu’+S$S

5.9
D:=\/2u"—s+u.
R

Show, for v€(0,1), that there is a unique u€ (0,v) so that
(4.1.18) is solved by (u, v). We can define an iteration as follows.
For v, €(0,1), let v, €(0, v,) be such that u:=v,,, and v:=y,
satisfy the modular equation (4.1.18). Show, using a) and b), that

3
Dpay =02~ Vol +Vavi(1-0)) +v,_,

(4.1.23)

where v, € (0, 1) and v, € (0, v,) is computed from v, by Exercise
43).
Show that, for v, € (0, 1),

(4.1.24) K(vg) =

Dy

o 23
H<1+—v‘).
n=1

Vi1

(Use Exercise 3.)
Show that v, tends to zero cubically. (For further details see
Borwein and Borwein [84b].)

Let u€(0,1) and v &€ (u, 1) satisfy the cubic modular equation
(4.1.18). Show that

K'(u") _3 K'(vY)

(4.1.25) A oy
R )
Hint:
pr=m v CHAE 4 51y 2a+1)=3.

Qa+1y 28 +1

b) Let u€(0,1) and v € (u, 1) satisfy the quintic modular equation

(4.1.21). Show that

4.2 An Elementary Transcendental Approach 109
K'(u*) _s K'(vh
K(u*) K@*)

(4.1.26)

Hint: Show that if (u,v):= (k"% [''*) satisfies (4.1.21), then so
does (u, v) = (I'""*, k'"'*). Now Exercise 1 of Section 1.5 shows that
the two sides of the above equation differ by a constant. Use the
logarithmic asymptotic at 0 and the relationship between u and v as
v— 0 to evaluate this constant.

These important identities will be revisited in Section 4.4.

6. a) Verify Schlafli’s form of the modular equation of degree 5,

(2 + (2) =2l 7)

where u:=2""*f(7) and v:=2"""*f(57), f as in (3.2.9).
b) Compute the corresponding equation for f;.

(4.1.27)

4.2 AN ELEMENTARY TRANSCENDENTAL APPROACH TO
HIGHER ORDER TRANSFORMATIONS

In terms of the nome g we have, by Theorem 2.3, the identification

_,_ 89
(4.2.1) k(q):=k eg(q)
N ().
(4.2.2) k'(q):=k 0
(4.2.3) K(k) = g 62(q)
and
(4.2.4) qg= PN OUON

From Exercise le) of Section 1.4 and Exercise 5 of Section 4.1 we see that
the quadratic modular equation (4.1.3) is satisfied by [:= k(g'?) and
k:= k(q), while the cubic equation is solved by I:= k(g'"*) and k:= k(q)
and the quintic equation is solved by /:= k(q'"®) and k := k(q). [To see this
just observe that (4.2.4) uniquely determines g.] In general we will see in
the next sections that the pth-order modular equation for k is a polynomial
in two variables with integer coefficients that is satisfied by k(q”) and k(q).
We observe from (4.2.4) that for these algebraically connected moduli
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» K'(k(q) _ K'(k(¢"))
K(k(q) — K(k(q"))
Before turning to the general theory we wish to give an elementary

derivation of the cubic transformation in theta function terms. From
(4.1.16) the cubic modular equation for k is

(4.2.6) VKl +VEkT=1.

(4.2.5)

From the preceding discussion this is seen to be equivalent to:

Theorem 4.1

(4.2.7) 04(q)04(q3) + 02(‘1)02(q3) = 93(q)93(q3) .

JProof. From the definitions and Exercise 1 of Section 2.1 applied to
n2+3m? n+m n2+3m?
q and (—1) we have

8,(9)0,(q’) = 2 q (h+)2+3(h=? 2 q(h+]+1)2+3(h_])2

]_——oo h ]-—00
and
2 — 2 = : 2 —iy2
0 (q)e (q )_ 2 q(h+]) +3(h—j) 2 q(h+]+1) +3(h—j) ]
h,j=—o h,j=—o
Now

(h+j+1Y+3h—jY=Qh—j+ 1) +3(j+3).
Thus subtraction of the two theta identities produces

6,(9)6.(a°) — 0,(9)0,(g7) =2 2 e’

m,n=—o
m+n even

=6,(9)6,(q°)
(as replacing m by 1 — m shows). O

Comments and Exercises

This is as far as we wish to pursue the transformation theory on an ad hoc
basis. The next section introduces enough of the theory of modular func-
tions to provide a general framework for the development of modular
equations. We have only considered modular equations for p a prime. If we
view the modular equation as the algebraic relation between k(¢") and k(q)
and can find this relation for p a prime, then for composite n a relationship
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can be constructed out of the modular equations corresponding to the prime
factors of n. Rational n are treated similarly.

1. Construct modular equations of order 4, 6, and 8 [that is, construct
algebralc relationships that are satisfied by k( q) and k(q°), k(q ), and
k(q®), respectively].

2. Show, for

a K’
c:=5 & (k(q)
that
0=k(g”)=4e™?  q€(0,1)
and that

k(g?)~4e™ " a3 now.
Many modular identities follow from:

3. (Schroter’s formula) Consider a general theta function written as

o

T(x, q)i= > x"q"

where x # 0, |g| <1 (as in Section 3.1). Let @ and b be positive integers.
a) Show that

(4.2.8) T(x, 4°)T(y, q") =

go yk bk? T(xyq k’ +b)T(yx b 2abk7 qab(a+b))‘
Hint: Write
a m_n am2 nz
T(x, ¢)T(y. ") = 2 2"y"q"" "

Let s be chosen so that n =m + (a + b)s + k (0= k <a + b) and let
u:=m+ bs. Then u and s range over Z as m and n do. Also

X"y" = (ep) (e Ty Yy
and

am® + bn® = (a + b)u” + 2bku + ab(a + b)s* + 2abks + bk’ .

Now rearrange. (See Tannery and Molk [1893].)
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b) A form of the seventh-order modular equation is

V6,(9)8,(q) —V8,(0)8.(a") = Vo(9)6(q") -

(See (4.5.4).)

Use part a) with a:=7 and b:=1 to establish this formula.
Hint: Set x:=y:==1 to find a formula for 03(q)03(q7) +
04(q)04(q7). Now set x:=y := iq7 to similarly write
6,(9)6,(q") + 86,(—9)6,(—q') = 6,(¢)8,(¢'). On making simple
rearrangements this yields

6,6,(¢") + 6,6,(¢") =2T(1, ¢*)T(1, ¢*°)
+2¢"°T(q% ¢*)T(4, ¢°°)
+44*T(q% ¢*)T(q™ ¢°°)

and

8,6,(q°) = 2¢°T(q"%, ¢*)T(1, ¢°°) + 24" T(1, ¢*) T(¢™, ¢°°)
+44*T(q", ¢$)T(q*, ¢°°) .

Since ¢°T(q°%, ¢°) = 6,(¢%) and T(1, q%) = 6,(¢%), we may write
8,6:(q") + 0,0,(¢") — 6,6,(¢") =
2[6,(q%) — 6,(a")1[8:(q™°) — 6,(4°)] = 26,(¢")0:.(a™) -

Thus an application of equation (2.1.7ii) gives

(V6,6,(¢7) — V6,6,(q") = 6,6,(q")

as required.
¢) Establish the cubic modular equation (4.2.7) as above.

4.3 ELLIPTIC MODULAR FUNCTIONS

The theory of elliptic modular functions and more general automorphic
functions is, in part, a natural extension of the theory of elliptic functions.
The basic defining property of elliptic functions is their invariance under a
group of linear transformations. Automorphic functions are functions
meromorphic in the upper half-plane ¥ := {im(t) >0} that are invariant
under a group of linear fractional transformations. We will, of necessity,
explore only the rudiments of this remarkable and difficult theory.

4.3 Eliptic Modular Functions 113

Definition 4.1

(a) The (inhomogeneous) modular group I (I'-group) is the set of all
transformations of the form

_at+b

YT a+d

a, b, c, d integers, ad — bc= 1.

(b) The A-group is the subgroup A of T’ with a, d odd and b, ¢ even.
That both of the above are groups (under composition) is straightforward.
The transformation

at+ b
w=
ct+d

can be represented as either of the two matrices

(¢ o)

and the group product becomes matrix multiplication (See Exercise 1.). The
(homogeneous) modular group SL(2, Z) distinguishes these matrices. Note
that any element of the modular group fixes the real axis and maps # onto

itself.
Definition 4.2
(@) The set F. of t€ %*:= {im(¢) >0} U {ic} U {Q} is defined by
Fp:={|re(t)| < 3 and |¢| > 1} U {re(t) = — 1and || =1}
U{|t{|=1and — ; =re(t)=0} .
(b) The set F, of t € #* is defined by
F,:={|re(t)] <land [2r £ 1| >1} U {re(t) = -1} U {2t + 1] =1} .

These two sets described in a) and b) are fundamental sets for the I'- and
A-groups. The interiors of these two sets (FY and F %) are fundamental
regions in the following sense.
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Theorem 4.2

(@) Every point in % is the image under some element of I' of some point
of Fr.

If AT is not the identity, then A(F%) N Fy=0.

(b) Every point in  is the image under some element of the A-group of
exactly one point of F,.

If a € A is not the identity, then A(F3)N Fg =0.

The proof of this theorem is elementary though not entirely straightfor-
ward. (See Exercise 2.) Any set F (with interior F %) which satisfies (a) or (b)
of the above theorem is also a fundamental set.

Definition 4.3

(@) A T-modular function is a function f which satisfies:
() fis meromorphic in .

(i) fA@)=f(t) for all t€ ** and AET.

(iii) f(¢) tends to a limit [possibly infinite in the sense that 1/f(¢)— 0]
as ¢ tends to the vertices of the fundamental region F. where the
approach is from within the fundamental region F ?. [In the case
of i the convergence is uniform in re(x + iy) as y—>=.] The
vertices of the fundamental region are (0, 1), (—1/2, V3/2) and
icc. Since f is meromorphic in ¥, this condition is automatically
satisfied at (0, 1) and (—1/2, V3/2) and need only be checked at
[,

(b) A A-modular function is a function f which satisfies (i), (i), and (iif)

above with the I'-group replaced by the A-group. For condition (iii)

the vertices of the fundamental region F¢ are (—1,0), (0,0), and ic.

Our notation is not entirely standard. What we have termed I'-modular is
often just called modular or automorphic with respect to the I'-group, while
what we have labelled as A-modular is often referred to as automorphic or
modular with respect to the A-group.

The existence of a A-modular function is the content of the following
theorem.

Theorem 4.3

The function

92(‘])]4 q c= ei‘irt

M0= K0 = 6,(q)

is a A-modular function.
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Proof. From Corollary 3.1 we have

' A(D) = 16 ﬁ(ﬂi)s
(4.3.1) ()= qn=1 1+q2n—1

and it is clear that A is meromorphic in . For the invariance of A under the
A-group it suffices, by Exercise le), to show that

(4.3.2) At+2)=A()
and
(4.3.3) /\<2t:_ 1) =)

The first equation follows since e™ = ¢™*? The second equation is a
consequence of (2.3.1), (2.3.3), and (2.1.10), which combine to yield

(43.4) | /\<— 1) —1- Q).

t
(Note that ¢ = is.) Hence

’\<2t:-1> =’\<2+11/t) =1- ’\<_2_ %) =1_’\<_ %) = A0

Finally we observe that, in a limiting sense,

(4.3.5) Ai©)=0  A0)=1  A(xl)=w.

The first value is immediate from (4.3.1), while the value at zero can be
calculated from (4.3.4). (Observe that as t—0 in F,, 1/t—> in F,.) The
value at 1 is computed from Jacobi’s imaginary transformation

A(D)
A()—1°

(4.3.6) A+1)=

(See Exercise 4.) O

Some additional properties of A are established in Exercises 4, 5, and 10.
From (4.3.4) and (4.3.6) one can prove, as in Exercise 6, the following
theorem.

Theorem 4.4

The function

O B e TG RPN ) M N el 0L{0) B
T NOL-AOF T Kok OF

is T-modular. J is called Klein’s absolute invariant.
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The basic result we need is a version of Liouville’s theorem.

Theorem 4.5

A T-modular function that is bounded on Fp is constant. Similarly, a
A-modular function that is bounded on F, is constant.

Proof. Suppose f is I'-modular and is bounded and nonconstant on Fr.
By Theorem 4.2 this implies that f is analytic on . Consider f(¢) — f(ix).
This function has no poles interior to Fr, and so achieves its maximum
modulus at some finite point on the boundary of F.. By the invariance of
f = f(i=) under T this is a global maximum at an interior point of %, which is
impossible.

For the second part consider the A-modular function

LF®) = FOILf(®) — F=DILAR) — f(i=)] . T

This is sufficient theory for our discussion of modular equations in the
next section.

Comments and Exercises

This is only the very tip of the iceberg. We have restricted our attention to
two particular groups where we can directly establish the existence of
modular functions. In general this restriction is unnecessary. Only slightly
further into the theory are results such as: any modular function takes each
complex value the same number of times in the fundamental region. An
important consequence of this is that A takes every value exactly once in F,
and A has a well-defined inverse that has branch points only at 0, 1, and «
(Exercise 10). J has similar properties on Fr. One can now prove, much as
for elliptic functions, that two nonconstant functions which are modular with
respect to the same group are algebraically connected. Furthermore, if one
of these functions is univalent on the fundamental region, then the other is a
rational function of it.

This wide-ranging and difficult body of theory that is intimately tied in to
many questions in number theory and algebraic geometry may be pursued in
any number of texts, such as Apostol [76b], Chandrasekharan [85], Lang
[73], Lehner [66], Rankin [77], or Schoeneberg [76].

Two of the seminal papers of the subject, both dating from 1882, are due
to Klein and Poincaré (selections of which may be found in Birkhoff [73]).
Poincaré was interested in studying linear differential equations with algeb-
raic coefficients. Klein, who considered this his main field of work, in
keeping with his Erlanger Programme had more algebraic and geometric
interests (Klein and Fricke [1892]).
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a) Verify that I and A are groups.

b) Verify that composition of transformations is equivalent to multip-
lication of the associated matrices.

¢) Show that two transformations represent the same function if and
only if they have the same coefficients (associated matrix up to
sign).

d) Show that I' is generated by

11 0 -1
SF:=(0 1) and TF:=(1 o)‘

e) Show that A is generated by

1 2 10
S*:=(O 1) and TAI=(2 1).

Prove Theorem 4.2.

a b
a) Hint: To prove part (a), fix z€ # and let A = (c d) €T'. Show
that

. im(z)

m AR =1 P
Pick any element of I' that minimizes |cz + d| and let w be the
image of z under this transformation. By considering Tr(w) show
that |w|=1 and by considering S{”(w) show that for some k,
lre[S®(w)]| < 4. For this &, |S“(w)| = 1. Thus every element of
¥ is the image of some element of F.

b) Show that no two elements of F? map to each other under an
element of I'. Examine the image of Fy. under Sy and Tr.

¢) Deduce part (b) of Theorem 4.2 from part (a).

The upper half-plane can be tesselated by images of the fundamental
region under the generating transformations. Sketch pictures of the
tesselations associated with the I'-group and the A-group.

a) Show that A(A) is transformed into one of A, 1 — A, 1/A,1/(1—=A),
A/(A—1), 1—1/x by any AEi. Hint: Examine A(f+1) and
M—1/t) using similar arguments to those of Theorem 4.3. Use
Exercise 1d). :

b) Show that A(m/n) =0, gcd(m, n) =1, if and only if m is odd and n
is even.

Show that with g := e,
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where the b, are integers. Show that 1/A(¢) is finite at every point of
Fr — {i=}.

a) Prove Theorem 4.4 from (4.3.4) and (4.3.6).

b) Let g:=¢*™ Show that

1

jt):=1728J(r) = F

+2 ¢, d"
n=0
where the ¢, are integers. [In fact, gj(z) = Q1%(2564 + Q7**)’]
¢) Show that f>*(r), —f3*(¢), and —f3'(¢) are the roots of

(x —16)° — xj() =0.

[See (3.2.9) for definitions.]

a) Show that if f is I'-modular then for some integer kX and nonzero
constant ¢

f(t) — CeZki'rrt

as t—>1i%o.
Hint: Let f(q):= f(t) where g:=¢e"™ for t in F,.. Show, by
modularity of f, that f is meromorphic in g in a neighbourhood of
zero. Show also that f has a pole at zero. Thus f has a convergent
g-expansion at i with finite principal part.

b) Show that the I'modular functions form a field. Likewise the
A-modular functions.

Establish that f2* £3*, and f** [see (3.2.9) for definitions] are A-
modular.

The Schwartz derivative of any function f is

s =22

Show that if f is modular, then so is S(f)/(f)>. Show that f is not in
general modular.

(On the inverse of A)

a) Show that A maps the set A:={re(z) = —1,0<im z} one to one
onto (—x, 0). Hint: A(t£1) = A(¢)/[A(¢) — 1]. Now consider A on
the imaginary axis.

b) Show that A maps the semicircle B := {|z + 4| = 3, im(z) >0} one
to one onto (1, ©). Hint: A(=1/t) =1— A(¢).

c) Show that A maps the interior of F, one to one onto C-—

11.
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mj
m

[} 24} B»<B c™D

-1 0 1

{(=, 0] U [1,%)}. Hint: The number of zeros of A—cis

1 A'(2)
2mi Jir A —c dz

where v is a contour of the form seen in the accompanying figure.
Use the invariance A(f) = A(¢ +2) to estimate the integral on the
sides of the contour. Use the relation A(—1/¢) =1— A(?) to relate
the integral on BC to the integral on ED. Use the relation
At £ 1) = M#)/[A(r) — 1] to estimate the integral on CD and DC
in terms of BAB and then (by t— —1/¢) in terms of EE. Finally
take limits.

d) Thus with respect to Fy, A has a well-defined analytic inverse with
branch points at 0,1 and .

(Picard’s theorem) Show that a nonconstant entire function assumes
every complex value except possibly one.

Hint: Suppose F does not assume either a or B, then G(z):=
[F(z) — @}/(B — @) never assumes 0 or 1. If w:= A", then w(G(2))
is entire (by analytic continuation). Show that w(G(2)) is constant
since w(G(z)) € {im(z) =0} and hence e“©@ js a bounded entire
function.

It is worth observing that the apparently special case analysis of the

function A leads directly to the celebrated general theorem of Picard.

4.4 THE MODULAR EQUATIONS FOR A AND j

A transformation of order p is a matrix

(4.4.1)

a, b, c, dintegers, ad—bc=p

(e d

or the associated linear fractional transformation. We assume throughout
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that p is an odd prime, though for much of the development this is
unnecessary. We will denote the set of all such transformations by 7,. We
say that M is equivalent to N mod G (M =N mod G) for a group of
transformations G if there is an SE€ G so that M= SN. We need the
following purely algebraic result.

Lemma 4.1

(a) Every M €T, is equivalent mod I to one of the p + 1 transformations
of the set &, where

== ) Ao p)i }
o {AP. (0 ) A=y, ,i=0,1,...,p—1;.

(b) The p +1 elements of & are pairwise inequivalent mod I'.
(¢) Every B of the form B := B,C, where C is in the A-group and B; € %,
is equivalent mod A to some element of %, where

fo(5 2 e 2 im0
B : {Bp- (0 1), B=lg ) i=0t. ey,

(d) The p +1 elements of & are pairwise inequivalent mod A.
The proof is left as Exercise 1.

Theorem 4.6
(@) The p +1 functions

JA) i=0,...,p

are permuted by any element of the I'-group.
(b) The p + 1 functions

AB,(1)) i=0,...,p
are permuted by any element of the A-group.

Proof. For part (a) we must show that {Jo A,°S}_ = {J° A},
for any S €I'. We first observe by the lemma that if S €T, then since
ASET,,

AS=A;modl for some j
Thus by the modularity of J,

JoAeS=1JoA,
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which with part (b) of the lemma finishes the proof. The second part is
identical via parts (¢) and (d) of the lemma. U

The modular equation for A of order p is the polynomial

p
(4.4.2) wx, N:=I1l@x=-1) Ai=21°B;.

i=0
This is obviously of degree p +1 in x and has a root at each A;. Note that
A (t):=A(pt) and A(1)= /\((t-i|-12/z)/p), i<p. Thus as functions of g,
A, (q)=A(g?) and X (@) = Aa'q’’?), where a”=1. We now show that
(independent of t) W, is also a polynomial in A. This relies on two basic
facts. First, any symmetric polynomial in the A, is A-modular and second,
any A-modular function is a rational function of A.

Theorem 4.7

W,(x, A) is a polynomial of degree p + 1 in x and A with integer coefficients.
The coefficients of x”** and A?*" are both 1.

Proof. Consider Wp(x, A):=I_y(y—21,), where A :=16/A; and
y:=16/x. This is a convenient form to work with. Observe that W, and W,
are connected by

14
+1 _ +1 X
(4.4.3) 167"'W, (x, A) = [xp HO /\i]Wp(x, A).
Now by Theorem 4.6 any symmetric polynomial in Aq AT, A, is

left invariant by any element of the A-group. (See Exercise 6 of Section
11.2.) It follows that any such polynomial is A-modular, and by Exercise 4b)
of the last section A, is finite valued in the fundamental set except possibly at
t:=io. In particular if s, is the coefficient of y' in W, (viewed as a
polynomial in y), then s, is A-modular. From Corollary 3.1,

fd 1+ q2n )8
4.4.4 A(g) =16 (————
( ) (9) q "I;[l 1+ g "
and we have integers a, such that

fim 20
A

- 1 - - .
A=—TFT1, T 2 a,a™q"” I<p
Olq n=0

and

_ 1 =
A==+ a.q”
P qP n=0 q
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where « is a primitive pth root of unity. It can now be established that there
are integers c; so that

(4.4.5) s; = > c.q .

i=—(p+1)

It is a consequence of the symmetry that the nonintegral powers of g vanish.
(See Exercise 2.) Next there is a polynomial P of degree at most p + 1 with
integer coefficients so that

s; = P(X) => dq’
i=0

and s, — P(A) has zero principal part. This is easily proved. First remove the
g """ term by considering

. Jp+1
Si 7 CopenA

and then proceed inductively. Observe from (4.4.4) and (4.3.5) that the
only candidate for a pole of s; — P(A) is ¢ =0 but P has been chosen so that
s;— P(A) is finite at ¢=0. Thus we see that s,— P(A) is a bounded
A-modular function and is hence, by Theorem 4.5, constant. Since

- 16
ATX

we have that 5; is a polynomial of degree at most p +1 in X:=16/A with
integer coefflme'nts. Hence W (x, A) is a polynomial of degree p + 1 in 16/x
and 16/A with integer coefficients. We can prove directly (see Exercise 3)
that

P
IT A=A,
i=0

Exercise 7 shows that 16”"! divides every coefficient of Wp(x, A) when
viewed as a polynomial in 1/x and 1/A. Thus with (4.4.3),

+1 +1
xPTOAP

W,(x, A) = TP

Wp(x, A)

is of the required form. [

Analogously we have a modular equation for j:=1728J. (See Exercise
4.)
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Theorem 4.8

The modular equation for j of order p

(4.4.6) F,(x, f):=[10(x—f,-) jii= e A,

is a polynomial with integer coefficients of degree p +1 in x and j. The

coefficients of x**! and j**' are both 1.

The modular equation (4.4.2) is irreducible over C(A) (the rational
functions in A) since any root can be transformed into any other by an
appropriate transformation. (See Exercise 5.) Likewise (4.4.6) is irreducible
over the rational functions in j. The Galois group of F, over Q,(j) is a
group of order p( p°—1)/2, which is nonsolvable for p =5. (See Exercise
6.) Here Q, is @ adjoin the pth roots of unity. For nonprime n, modular
equations can be constructed from the modular equations corresponding to
the prime factors of n. (See Exercise 8.)

Comments and Exercises

Further properties of modular equations are chronicled in Lang [73],
Schoeneberg [76], and particularly in Weber [08]. We have chosen a path of
limited generality focusing on the modular equations for A and j. It should
however be fairly clear that analogous equations hold for other modular
functions.

1. Prove Lemma 4.1.
Hint: For (a) prove that M is equivalent to an upper triangular matrix
modT. Then write out the system of equations required for two
triangular matrices to be equivalent. For part (¢) show that B;C is
equivalent to a triangular matrix mod A. Note that B,C has determin-
ant p, and hence the diagonal entries of this equivalent triangular
matrix are =1, £p.

2. a) Suppose that
flg):= 2 c,g"  c,real.

n=-h

2wilp

Show, for a:=¢ and p prime, that

]

[f(a"¢g”")]"  m integer
n=1
has no fractional powers of ¢ in its expansion. (See Exercise 4 of
Section 6.2.)
b) Prove that (4.4.5) holds by applying Newton’s formulae to express
5, in terms of powers of the roots. (See Exercise 6 of Section 11.2.)
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Show directly from (4.4.4) that
14
[T A =27,
i=0

Prove Theorem 4.8 by modifying the proof of Theorem 4.7. Use
Exercise 6b) of section 4.3. The proof is somewhat easier since we can
consider IIZ_, (x —j,) directly.

Show that the modular equations (4.4.2) and (4.4.6) are irreducible in
x, over C(A) and C(j), respectively, by elaborating on the comments
following Theorem 4.8. This requires a minimal knowledge of Galois
theory. Note that the transformations of Lemma 4.1 act transitively on
the roots.

Show that
a) W(x,1)=(x- 1)#*!
b) W,(x,0)=x"""

Hint: Consider the orbits of 0 and i» under the A-group.
a) Show that

W, (x, A) = W,(A, x)
and
11

Wp(‘x7 )\) = Wp()‘ , x>xp+l)‘17+1

and if ¢, ; is the coefficient of x'A’ in W,, then

Cij = Cpr1-ip+1-j= Cji = Cpr1—jp+1-i -

Thus there is a fourfold symmetry in the coefficients of W,.
Hint: Wp()\(q"),‘ A(g)) =0 and W,(A(q), A(¢")) =0 and by Exer-
cise 5, W,(x, A) is irreducible in x over C(A). Also, W, (x, A) and
W,(A, x) have a common root x = A(g”) and are of the same
degree in x. Hence,

W, (x, ) = RQYW, (A, x)

where R is a rational function of A. Show that this implies that
R=1. For the second symmetry use A(¢/(¢ — 1)) =1/A(2).

b) Consider W (x, A), as in the proof of Theorem 4.7, as a polyno-
mial in 1/x and 1/A. Let ¢, ; be the coefficient of x 'A™’. Show
directly that

16i+i|5i,j l+]2p+1

10.
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and, by part a), that

162P*D-EE  jtj<p.
[2¥)

¢) Show that the coefficient of xA’ in W, (x, A) is divisible by
16|P+1“(i+f)].

In general, for n not necessarily prime, the modular equation (4.4.2)
has degree y(n):=nll,,(1+ 1/p). Let n:= p, - py be a product .of
distinct primes. Prove that there exists a two-variable polynomial

W,(x, y) of degree at most (n) that satisfies
W,(A(q), Mq"))=0.
Hint: Let n=p,p,. Since

W, (AM(g™), M) =0
and

W,,(A(g"7), A(¢™) =0

we deduce that A(g?'7?) is algebraic over Q(A( ¢)) and is of degree
¥( p,p,). Now proceed inductively.

Show that the coefficients of W;(x, A) are

X X X X
A 1
A° —256 384 -132
A? 384 -762 384
Al -132 384 —256
1

Note that by Exercises 6 and 7 is suffices to determine ¢, and ¢, ,.
The ¢, , coefficient is always —16°"". (See Exercise 6 of the next

section.) ' '
(On the Galois group of F,) If AE€T then A induces an automorphism
on the j, that fixes j. Hence A is an element of the splitting field for F,
over Q( ). Any two elements S and T of I induce the same automor-

phism exactly when

[41

ST E( 0 (()x) (mod p)

for some «. Equivalently MS T 'M€ET for all M € T,. One can show
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that T, equivalenced as above, is the Galois group for F, over Q,(j)
and that it is a group of order p(p® —1)/2 which is nonsolvable for
p =5. (See Klein and Fricke [1892], Schoeneberg [76], and Exercise 8
of Section 4.5.)

4.5 THE MODULAR EQUATION IN u—v FORM

The actual calculation of the modular relation for A is most readily carried
out in the associated variables u := k’*:= A'""® and v := ["* := x''%, Analog-
ously to Theorem 4.7, though with a few substantial additional details (see

Exercises 1 and 2), we have the following theorem.

Theorem 4.9

If p is an odd prime, then the modular equation in u—v form is given by

(4.5.1) Q,(v,u):=@—u)v—u) --(v-u,
where
u, = (-GN = (DT u(g”)  qi= e
uei=[Me*q )] = u(@™g'?)  k=0,2,...,p~1

and « is a primitive pth root of unity. This modular equation is a polynomial
in u and v of degree p + 1 (independent of ¢) with integer coefficients.
For p=*1 (mod 8),

Q,@, )= -1)"
Q,v, w)=Q,(u,v)=Q,(-v, ~u).

The coefficients of v”*! and u?*! are 1.
For p = +*3 (mod 8),

Q@ 1)=@w+1)’(v-1)
Q,(v, u)=-Q,(-u,v)=Q,(-v, ~u).

1.
ARETI

The coefficient of u”*' is —1 and the coefficient of v

The most striking property of the modular equation in u# and v is the
“octicity.” Because u,(g”) is of the form a’g'’*f(a*q), where fis analytic in
g, only every eighth coefficient of the modular equation is nonzero. (See
Exercise 3.) We illustrate with some examples which give the nonzero
coefficients and the column sums.
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4
v

3
v

2
v

v

1

-1

u +2
Q, W
u -2
1 +1
1 42 0 -2 -1 =@+1)’@-1)
v® v* vt v WP v 1
u® -1
u’ +4
u -5
Qg u’
u’ +5
u -4
1 +1
1 44 +5 0 -5 -4 -1 =@+1)’@w-1)
v® v’ v® v’ vt v’ v° v 1
0 +1
-8
+28
-56
+70
-56
+28
-8
+1 0
1 -8 +28 -56 +170 -56 +28 -8 +1 =(@-1)°
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(1-a)(1+0)= 1- 7I— S9— 80T— 6Zv— TLS— 6Tv— O 6Tv+ TS+ 6T+ 80T+ SS9+  TI+ 1
0 1 1
v9— s+ n
0 S9+ M
807~ N
0 6Th+ R
0T5— - G
0 6Th+ o
807— 807+ R
6Ty— 0 | 4
s+ 0TS+ o
6T 0 ol
80T+ n’?
§9— 0 al!
- v9+ all
- 0 ot
T Na ¢ ea ma ua h: wa m: o.a :: N_a 2: E:
q-a(1+a)= 1- 01— pp— O0lII— 91— €l—- 0 El+  S9T+  OII+  wp+ 01+ 1
0 T+ I
- (A n
v+ M
88— - N
0 91+ N
' AR N
v — v+ R ]
e+ M
$91— 0 ot
W 88+ N
ty— or
c— 6+ ult
- 0 alt
1 a a a a a [t a mb ob ED :: §D



~l>v23+>vu~| 81— TST— 86L— LO6Z— TSLL— POSST— 952€¢— ¥6IST— 96L91~ O 06L9T+ bGIST+ 9STET+ YOSST+  TSLL+  LO6T+ B6L+ TSI+ 81+ 1
0 0 1 1

IS~ 809+ 1205 n
(A% C ot P8ST+ M

[A%7ay bree— P+ ¢

0 7568~ 6589+

wLys— 08¢~ o

eret 88Y01 + ¥8ST+ o7

9€55T— 087C+ M

7s6e+ were+ o

809+ 8vLOT— pree+ 6

88Y01— 88401 + o’

pree— . 8¥LOT+ 809— u”

0 fa7AtA 766€— a

08— 9SS+ all

¥85C— 88Y01— weve— w

08T+ TLYS+ !

6589~ s6€+ VI

il pree+ weve— ol

857— YT+ a”l

pIL+ 809~ s+ e

m_C —a)= 1+ 8I— €SI+ 9I8— 090+ B8IS8—  PISBI+  HTBIE— 8SLEb+  0ZS8h—  8SLEP+  PI8TE—  P9SBI+  BISE-— 0%0€+ 918 €1+ 81— 1
0 0 T+ 1

95— e+ ve- n
0 - STy+ M

91+ 81vT—

080y — ObiL+

968+ YOPEL— s
080¥— yroTe+ o

7e91+ 9SheE—

ULt 0Eovh + 0

[Ax 4y L6 — we+ &7

050y + - o
95HEE— 91+ o
vh9TT+ 080v— an

YOVET— 968Y+ a”

orIL+ 080V~ n
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SpvT— 9T+ o

sty - 0 |o”

vE- wr+ 95z~ a

o1 1 A €1 14 st 91 Ly 81
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1 19 18 17 16
U24 UZS UZZ v2 UZO v v v v

u? —2048

u! —23552

u® +52992

u' —138368

u'® +334144

u" 712448

u'® 0 1159200

u +2944

u -13248

u' +75072

Dy 12 ~124752

u +149408

u' —213072

& +367264

u® 0 —423729

u —-920

u® +13524

W —53544

ut +82386

w —53544

u? +13524

u -920

0 +1 0

1 —24 +276 —2024 +10626  —42504 +134596  —346104  +735471

The exhibited portion of ,, is sufficient to easily calculate the remainder
of the coefficients because of the symmetries. For p = *1 mod 8 the table is
symmetric through both diagonals. For p = +3 mod 8 the reflections through
the diagonals change the sign of the entries according to ¢, ; = (— 1)‘+1c].,l. and
ci,j=(—1)’cp+1_j,p+1_i, where ¢, ; is the coefficient of v'u’ in Q. (See
Exercise 4.)

The numerical calculation of these modular equations is fairly straight-
forward. From the g expansions for the 6 functions we can compute
Uy, Uy, - - ., U, for a variety of g values (for p:=23 one must use three
values of g). We then use (4.5.1) to calculate the coefficient of v* at these
values. However, we know the form of the coefficient (for p:=23 and
i:=23 one has, for example, that the coefficient of v’ is of the form
au® + bu®’ + cu7), and we can easily calculate u at the same g values we
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used to calculate the coefficient of v'. This leads to a system of linear
equations to solve. We know that the system has an integral solution. We
also know what the column sums are in each case. One can use this
information to reduce the size of the system by 1 or, perhaps more
reasonably, as a check on the solution.

The main limitation is that the size of the entries grows exponentially
with p. The pth modular equation will have entries of size roughly 27, so for
large examples one must work to a high degree of precision. Note that the
size of the linear system only grows as p/8.

Comments and Exercises

A fairly complete account of modular equations up to 1928 is given in
Hannah [28]. This includes equations of degree 103, 107, 127, 167, 191, and
239.

The u — v modular equations up to degree 20 are presented in Cayley
[1874] as we have presented them. We easily computed {,; by the method
outlined in the section. The others were originally calculated by Sohnke
(1836), whose method roughly parallels the one we have described, except,
that he computed an expansion for u(q)/q"’® and computed sufficient
coefficients of u™, to calculate the elementary symmetric functions directly.
Then instead of solving a linear system, he compares coefficients. As Cayley
[1874] points out, “The process is a laborious one (although less so than
perhaps might beforehand have been imagined).”

A particularly simple form of the modular equation for p = 23, due to
Schréter, is

(4_52) (kl)1/4 + (k/l,)1/4 + 22/3(klk,l,)1/12 =1.

For many theoretical purposes modular equations for j are preferable.
However, for calculations the modular equation for u is usually simpler. The
extent of the numerical simplification is quite remarkable. Du Val [73]
exhibits low-order modular equations for the I'-modular function I:=J/
(J — 1). The cubic modular equation for [ tabulates as a 5 X 5 matrix where
all but one of the 25 entries are either 15- or 16-digit integers. Modular
equations for j up to order 11 have been calculated. (See Kaltofen and Yui
[84].) For the 11th-order modular equation the coefficients are enormous.
For example, the coefficient of jtis

27090964785531389931563200281035226311929052227303
x 2°2319520112.53 ,

Various of the A and j modular equations are presented in Greenhill [1892].
In particular, clean forms for p =29, 31, 47, and 71 are given for W,.
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Exercises 1 and 2 outline the proof of Theorem 4.9. Some of the details

are rather complicated. The flavour should come through.

1.

a) Observe using (3.2.3) that

o

H ].-i-qz'l
u =\/§ 1/8 ( - ) Z=e“".
(9) ¢ 1l v q

b) Analyze the action of A-group on u. Show that
uoS® =u and ueT,=u.

Observe that u° S, = Bu where B is an eight root of unity.

¢) Analyze the action that S, induces on the functions A, ..., A, and
on the functions u,, . .., u,. What is the permutation § §8) induces
onuo,...,up?

d) Analyze the permutation that T, induces on the functions
Ags---»> A, and on the functions uy, . . ., u,. Identify /\p(TA) and

AT, ") in particular.

Prove Theorem 4.9.

Hint: Use Theorem 4.7 and Exercise 1. Consider how Wp(vs, u®) splits
over Q(u). (Note that u is invariant with respect to group generated by
S® and T,.)

Prove the “octicity” of the u—v modular equation. That is, for p= =1
mod 8 the nonzero entries of the table associated with €}, lie only on the
main diagonal and every eighth sub and super diagonal, while for
p==3mod8 the nonzero entries are only in every second entry of
every fourth diagonal.

a) Prove the symmetries (or antisymmetries) of the u—v modular
equation with respect to reflection through both diagonals.

b) Evaluate the row sums explicitly from Theorem 4.9.

¢) Observe that with the aid of the “octicity” one can read off the
modular equations of degrees 3, 5, and 7. Verify the modular
equations of degrees 11 and 13. This requires either calculating the
u; at a single value of ¢, or using Exercise 6.

Show that (), can be written as

(4.5.3) (1-u®(1-0%=(01-w)’
Oor as

(4.5.4) (kDY + (k1) =1
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From our analysis we know that
L 2
Q,(v,u)= vPT 4+ kz ck’jukv’ + (=)D
j=1

a) Show that ¢, ;= —(—1)(1’2-1)/82(;7—1)/2
Hint: O(ug, u) =0 and u=V2q""+ O(u®) while u,=Vv2¢"" +
O(u}). Thus
0= (_1)(p2_1)/8up + ¢y U + O(ugu)

and

P
2-1)/8 4. Y

¢ ===V lim — .
u—0 uO

b) Show that if 0<u <v <1 and Q(v, u) =0, then
p
v? =22, and  lim = =2(P D72
¢) Hence if W,(v,, ¥,+,) =0 with 1>y, >4y, , >0, one has
Yo Y

g1 and ,1113307 1=4”‘1.
n+

>
Yn+l -

In 1858, Hermite and Kronecker separately gave solutions of a general

quintic using quintic modular equations. Hermite’s method is out-
lined below.

a) Let

;1= (us — u ) (U — Uy ) Uy — Uy y) i=0,1,...,4

where i + j is chosen mod 5. Then

1 \V¢ 1
(2453> u(l—us)l/z D, i=0,...,4

are the five roots of the quintic

5 2 1+u8

b) The quintic modular equation (4.1.21)

u® — v® 45U’ (U — v?) + duv(1 — u*v*) =0
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62(q) _ K(K)
03(q¢'") KO
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can equivalently be transformed into

(4.6.1) M, (1, k)=
¥ — 2453u4(1 _ us)zx _ 2655/2u3(1 _ us)z(l " ug) -0,
and in the future will denote K({):= L.

The details are formidable.

¢) Any quintic can be algebraically reduced (via solution of a quartic
equation) to the Bring form

Theorem 4.10
If K:=k(q) and [:=k(q""?), then W, (I, k) =0 and
5
roaxma 0 dk v(1-v®) du

2 — = .
(462) pMp - kk,z dl u(l _ u8) dU

and hence a) and c) provide a solution of the quintic in terms of the
roots of the modular equation. This requires solving

In particular, M, is an algebraic function of k and /.
8 p
2 1+u

4 5574 u2(1 - ug)”2 Proof. Since wK'/K = —log q [by Theorem 2.3(b)], we have

and leads to a quartic equation in u* d (E ) N
The amount of calculation required above is prohibitive. How- (4.6.3a) dk \ K 2 kk"’K?
ever, that some combination of the u; solves a quintic is not overly
surprising since the Galois group of the quintic modular equation . .
(4.1.21) is A;. The reduction to Bring form in ¢) is effected via the on using (2.3.10). Similarly,
Tschirnhaus substitution. d ( L’) 1w
8. (On the Galois groups for Wy and W, over Q(X)) (4.6.3b) al\L/ 2 urL*
a) For p=35, S, and T, induce the following permutations of the roots
@i=2) Now as pL'/L = K'/K [again by Theorem 2.3(b)], we can wr.ite the [, k
S.;: (0,1,2,3,4,5)—(1,2,3,4,0,5) form of (4.6.2) on dividing (4.6.3a) by (4.6.3b). We now verify the u-v
AN T form directly. O
T.: (0,1,2,3,4,5—(0,5,3,1,2,4).
b) For p=7 When M, is given by v(1 - v®)/[u(1 — u*)] (du/dv) as a function of u and

v, we write M, (v, u). In this form we see that M; is rational. In fact
M, (v, u) is rational. (See also Exercise 1.)

Let us use (4.6.2) to compute M, and M;. When p:=2, we have
[=2Vk/(1+ k) and k=(1-1")/(1+ "), by equation (2.1.15). Thus

S,: (0,1,2,3,4,5,6,7)—(1,2,3,4,5,6,0,7)
T,: (0,1,2,3,4,5,6,7)—(0,3,1,4,6,7,5,2).
¢) Show, using a), that the Galois group of W; contains A5 and is not
solvable.
d) Show, using b), that the Galois group for W, is not solvable.

In both cases these permutations actually generate the Galois
group. (See Exercise 10 of 4.4, and Exercise 1 of 4.5.)

, WP odk _ U V(4R 2
(464) 2M2— kk,z dl - kk’z 1—k (1+ k)2

and
4.6 THE MULTIPLIER

1 1+
ML= 15~ 2
As we saw in Section 4.4, the pth-order transformation can be considered as
determined by k :=k(q) and I :=k(q''”). We define M,, the multiplier of

which corresponds with Theorem 2.6.
order p, by
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When p :=3, we have VIk + VI'k’ =1, by equation (4.2.6). This pro-
duces, on differentiating implicitly and using (4.6.2),

N -IVTE. V=P 1-VDik
KVE-KNTE V- 1-VEIL

Let *:= k¥l Then I%/k =[(2 + «)/(1+2a)]* and

3M5=—

3 1

4.6.5 3M2= ——— M. = )
( ) 3 (2<x+1)2 ot 3 2a+1

(See Exercise 2 of Section 4.1.) But & = w’/v so that

3
v 20— u

—v+2u3_ 3u

3
3 _(2+a)
rarl Aagr1/ b

For p:=5 or 7, similar, but more elaborate, calculation produces

because

_ utv’ v(1— wv)
(46.6) M= 5u(l + 1’v) v - u’
vl w)[l —uw + (w)?] _ B u-v’
6.7 M= v—u T Tu(l- w)[l - w + w)?]

(See Cayley [1895].) Many other multipliers have been calculated and can
be found in Ramanujan’s collected works, Cayley [1874], Tannery and Molk
[1893], Weber [08] and elswhere. The main technique for larger p is via
manipulation of theta series. Thus one has Ramanujan’s form of the
multiplier for 13:

(4.6.8)

3 1>1/2 <11>1/2 ( I’ )1/2 ( /i 1/3— 1

We list also

469  17M (L) (L) 7+ (&)
o =) () ()

”; i/4 1/4 r\1/4
) T () () ) sy
k M, (k, 1)

1.
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We conclude this section by touching on the matter of singular values, k ,,
which for us are defined to be the solutions in (0, 1) of W,(k’, k) =0. These
are often called singular moduli for the function A. Corresponding values for
J are discussed in Exercise 6.

Then, since K’(k)/K(k) is isotone, Theorem 2.3(b) shows that this is the
unique solution to

KI
?(kp)=\/’ﬁ 0<k,<1.

In the notation of equation (3.2.1), k, = A*(p) and k, = A*(1/p), so that
k,= k(e—’“/i) and [ =k, = k(e"”/ﬁ). Sophisticated number-theoretic
techniques are available for computing k, for large p, without knowledge of
W,. This is discussed briefly in Exercise 5. For small p one can solve directly
for k,. Thus

-1 _ L -
kl_\/ﬁ [, 7 2k, =1
k,=V2-1 L=V2v2-2
k =m_3_—1_) l=\/§(\/§+1) 2k3l3=1
3 4 3 4 2
k,=3-2V2 [,=2"(2V2-2)
k5=\/ﬁ—1;\/§—ﬁ lszm—lzxﬁ—ﬁ Dkl =V -2
p - Y23=VT) L = Y26+VT) piet =L
7 8 7 8 8
k9=(\/§—3““2)(\/§—1) lgz(\/§+3”“2)(\/§—1) 2k, = (2— V3V
(4.6.10)

A more comprehensive list is given in the next chapter. A profusion of
modular equations of degrees 3, 5, and 7 are given in Chapter 19 of
Ramanujan’s Second Notebook.

Comments and Exercises

From the results of Section 1.5 (in particular Theorem 1.5 and Exercise
1) we know that G(k) := k'K’ K(k) satisfies

G(k)=/c % G(I)
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where k and / are solutions of the pth-order modular equation W,. Use
this to show that

K() ]2_ n* dk

2 . — hatid
M, k)‘_[K(k) €k dl

where ¢ is a constant. This provides an easy alternate derivation of

Theorem 4.10 up to the evaluation of the constant c.

a) Verify the computation of M, in (4.6.5).
b) Compute M; in (4.6.6).

Cayley {1874] discusses algebraic methods for computing W, and M, at
length. These seem only to be entirely reasonable for 2, 3, 5, 7, and in part,

11.

3.

The discussion therein also illuminates the rational nature of M, (u, v).

a) Show that pM, (I, k)M, (k',1')=1.
b) Use Theorem 4.10 to show that for all 4 and v,

[pM, (v, u)Mp((—l)(”z_l)/Su, v)’=1.

Hint: Consider the similar symmetry of .

a) Cayley observes that given any polynomial identity F(u,v)=0
which satisfies F(u, v) = F(—u, —v), one can produce a similar
identity G(u®, v®) =0, with G of the same degree. One uses

(4.6.11)  [F(u, v)F(u, —v)F(—u, v)F(—u, —v)]'*=0.

b) Use this technique to develop modular equations and multipliers in
terms of the u™, v*" (n:=1,2,4) for p:=2,3,5,7. (See Cayley
[1874].)

Verify the singular values in (4.6.10). In each odd case one verifies
t, =2k, k, first and uses

k,=(VI+t —VI—r1)/2
L =1+t +VI=t1)/2.

The invariants of (3.2.9) to (3.2.13) lie at the heart of calculating
singular values. Armed with these and either Ramanujan’s insight or
some knowledge of group theory, singular values can be calculated in
profusion. Watson, in a long series of papers commencing with Watson
[32], has recreated what he believes to be Ramanujan’s procedure,
while Weber [08] explains the classical theory and lists many examples.
Zucker [77] indicates an attractive way of calculating many large
singular values such as Ramanujan’s celebrated
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(4.6.12) kyo=(V2Z-1)’(2-V3)(VT - V6)*(8 —3V7)
x (V10 — 3)*(4 — VI5)(VI5 — V14)(6 — V35) .

Zucker’s methods are described in Section 9.2.
In this exercise we sketch the relationship between binary quadratic
forms and singular invariants or values for F, [solutions of F,(j, j)=0].

a) Let
_f{a b)
S'_<c d

where |S| =ad — bc=p >0 and a, b, c, d are integral, and assume
with no loss of generality that ¢ >0, b # 0. We say ¢ with im(¢) >0
satisfies complex multiplication by p if (ut, u)= S(t,1) so that
t=(at+b)/(ct+d). In garticular, t is the solution with im(z) > 0 to
an integral equation Ax”+ Bx + C=0 with —D := B> —4AC <0.
[This corresponds to asking for which u one can solve
p(mz, wi, w,) = R(p(z, w,, w,)) for some rational function R. Here
p(z) = p(z, wy, w,) is the Weierstrass p function of Section 1.7. Or,
in other words, for which u does the lattice L generated by w, and
w, contain the lattice wL? Hence, the multiplication.]
b) Suppose that

t_at+b d t*_a*t+b*
T+ d an T oc*t+ dF
(4.6.13) ad—bc=p, a*d*—b*c*=1.

Then j(t*) = j(t). Also t* solves a quadratic with the same discri-
minant as that for ¢, and t* possesses a multiplication by w if and
only if ¢ does. Now (4.4.6) implies F,(x, j) =0 is solved by j(?),
because §= A, modI" for some i and hence j(t)=j;(¥). Thus
F,(j,j])=0 is solved by j(¢) exactly when ¢ possesses complex
multiplication. Note that F,(j, j) will have lower degree than
Fy(x, ).

c) Since j is one to one on the fundamental region, j(¢) = j(¢+*) if and
only if the associated primitive binary quadratic forms are properly
equivalent. A binary form ax’+ bxy + ¢y’ =0 is primitive if
ged(a, b, ¢) =1. Two forms are properly equivalent if there is an
integral linear transformation of determinant 1 converting the one
into the other. (See Dickson [71, vol. 3].)

d) Thus the study of the degree of F,(j, j) becomes the study of
h(—D): the class number of primitive forms of negative discrimi-
nant —D. More of this is sketched in Hardy [40, chap. 10], and in
Tannery and Molk [1893].
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7. For fixed m and p let v, := k,, be the mth singular value and let v, be
the sequence of solutions of W,(%,, ¥,.,) =0 as defined in Exercise 6 of
Section 4.5. Use Theorem 2.3 and (3.2.3) to show that

4 1/p™

12 -

e™™'? = lim <—) .
n—swo ’Yn

This provides an algorithm of order p for computing e” ™. When
p :=2, this reduces to the algorithm in Exercise 3 of Section 2.5.

By the same process as in Section 4.5 one can produce polynomials in
x:=M, (1, k) and k. Cayley [1874], following Joubert, gives

(4.6.14) x*—6x*+8(1—2k*)x—3=9 pi=3

x® = 10x° + 35x* — 60x> + 55x° + [64(2kk')* —26]x +5=0  p:=5
(4.6.15)

and

(4.6.16)  x*—28x° +112(1 — 2x*)x’° — 210x*
+224(1 — 2k*)x> — [140 + 1344(2kk')*]x*
+[48 + 512(2kk’)*)(1 - 2k*)x + 7=0 pi=7.

He gives a similar expression when p :=11.

8. a) Verify (4.6.14) and observe that 3M,(1/V2, ky) = V3 +2V3.
b) Explicitly solve (4.6.14) to produce M;' as a function of k.
c) Use (4.6.15) to determine k.

4.7 CUBIC MODULAR IDENTITIES

Ramanujan in his notebooks gives the following remarkable identity:

(4.7.1) % —1= [ZEEZ% - 1] .

[See (24.28) and (24.29) of Chapter 18 of his second notebook in Berndt
[Pr] ]

An equivalent form and some variants of this formula are established in
the next theorem.

Theorem 4.11

With

_og) . 0x(4)
03(q) 03(q”)
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one has
- 9 13 3,03\ 1/4 0% ( o

(a) 303(q)__1 =4<k k,> -9 34(Q)_1
NC) . YY 85(q)
- 9 13 3,006\ 1/4 0% a°

®) Jla) 1 (k/kﬂ) —9 44(q)_1
L™ 6,(q) . vy 64.(q)
- 9 13 13,765 1/4 4, 3

© 302(51)_1 =_<k,/k2> =9924(_ql_1
" 6,(q) . y'ly 6,(q)

Proof. We establish only (a). Then (b) and (c) follow (Exercise 2). It is
most convenient to use the quintuple-product extension of Jacobi’s triple
product, which is developed in Section 9.4. Equation (9.4.3) with j := 6 and
k :=1 may be remanipulated to show that

3(q) -~ 6(@)=2 1__[1 (1- g1+ g )(1+g" 7).
Hence, with (3.1.6),

6,(9)[36,(¢°) — 6,(q)1’ =8 Eo (1+q**%)
[1-aa-ay asayasery

and Euler’s identity (3.1.4) reduces this to

o

. 1_q2n 4
(1+q 1y Il <—z:——1) '

0 n=1.1+q

e

81_[ (1+q6n+3)3
n=0 n

Now (3.2.9iv) shows

e

(1 + q2n+1)3 — .\/qu/s(kkl)_l/4

0

n

and

s

(1 4+ q6n+3)3 — ,\/qu/S(’y’y,)—lM

n=0
while (3.1.4), (3.1.7), and (3.1.8) combine to yield
2n

= 1- 1oL
[1(7245) =5 a7 %06k
n=1

These identities result in
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6365 _ ipt (KK
1/ n1/4 = ' .
(KK oy ()

3/4

(4.72)  6(9)36,(4°) —6(I =4

This establishes the first equality for part (a). The second is most easily
seen by using equation (4.1.15), with y:=4k and k:=1, to write Kly =
[(2+a)/2a+ D], ky' =[1-a)/Q2a +1)]°, and using (4.1.19) or
(4.6.5) to write 83(¢°)/85(g)=1/(2a + 1)%. Then both sides of the second
equality become 4(2 + a)(1— a)/Qa +1)% O

These identities have many remarkable consequences some of which we
leave as exercises. Two, however, are worthy of more explicit analysis.

AN ITERATION FOR THE CUBIC MULTIPLIER. In decreasing forgn, as above, we
consider the multiplier M, := K, ,,/K, where K, := K(g”"). Then part a)
of Theorem 4.11 shows that, with m, :=3M,, we have

[(mp — 1) +11°

(4.7.3) m, ., =

mn
where
2kk, 3/491/2
(4.7.4) my= [1 + 2\/§ L—-,)—lm] .
yy")

3n+

Alternatively, part (b) shows that if we set r, = 36%(q 1)/02((]3"), so that

m, = (r, +3)/(r, — 1) (see Exercise 8). We have

[(rz _ 1)1/3 + 1]z

n

(4.7.5) o= -
where

(2k/k12)3/4 1/2
(4.7.6) reg = [1 +2V2 W

This latter is more suitable when we begin with an even singular value.
We have written (4.7.4) and (4.7.5) in a form consistent with Ramanujan’s
invariants G, and g,. [See (3.2.13) and Exercise 5, Section 3.2.] In these
terms, the iterations are initialized by

(477) m, = m(n) = [1 + (\/Eng/Gi)3]l/2
and g:= o™
(4.7.8) roi=r(n):=[1+ (\/igg,,/gf,f]”z ‘

We also write M(n):= m(n)/3.
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CUBIC RECURSIONS FOR G, AND g,. We have

4 3 3
G
o 8L _y 193 %

03(q) Gn

and, using the theta inversion formula in part (a),

4 3
059 _140v3 S

0;(q3) G9n

Thus

G: G’
479 9=(1+2\F2 9")(1+2\/§ )
#79) G G,
Similarly

g g
4.7.10 9={1+2v22|{1-2V2 =+,

9 9

gn g9n

Thus given G, or g,, we have a simple equation to solve for G, or g,,,. For
example, with n:=§ we have G, =G,;3, and with x:= G, we know that
(1+2V2x°)*=9 or G, =2'"" Similarly, g5 = g so that (4.7.10) yields
gl—g;=4vZand g=V2+1L

A more tractable recursion can be attained by observing that

6,(q°) G
32 —1=V2 =2
6:(q) Gi
and
0 G
3(‘19) —1=2 3971
6,(q") Gsin
Thus
G G
4.7.11 3= (\/E %+ 1)(\/§ 2+ 1)
@71 G G
and, rearranging,
V2G,, + G,
(4.7.12) G:,=G 1
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Correspondingly

3=y 8 i +V2g,,
(4.713) g81n 9n Zon — ,\/zgz -

From these two formulae, and other singular values given by Ramanujan,
one can give explicit equations for some very large invariants (Glozs> Gioors
Zsos> for example). We illustrate with gyqqq- Ramanujan gives

,  5+V29
gssz—z_

Zsrn = (——5 +2\@>m(5\@+ 11\/6)”6(\/;?/6 + \F“Lj\/g) .

Then manipulation of (4.7.13) yields

3 —
84698 =

(\@— 5)”2(\@ +5) + V2(11V6 + 5V29) /4 (V9 + 3V6 + V5 + 3V6)
2 (V29 — 5) — VZ(11V6 — 5V29) (V9 + 3V6 - V5 + 3V6) -

(See also Exercise 13.) Analogous results for quintic and septic multipliers
are treated in Section 9.5.

Comments and Exercises

The quintuple-product identity was certainly known in essence to Ramanu-
jan so that our derivation of Theorem 4.11 is in all likelihood similar to that
which he had in mind. The proof we give in Section 9.4 is self-contained and
can be read with ease now. Biagioli [Pr] has given a modular function proof
of (4.7.1).

1. a) Show that (4.7.1) is equivalent to

(8" . _[963(8) .17
e 1= 0:(q) ]

(either by modular considerations or by direct inversion of the
underlying quartic polynomial).
b) Show that the AGM iterations in theta form can be written as

o) . [03a) 1"
o(q) [ei(q“> ]

e
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or as 93(q4) L Og(qz) ~ 1/2
2———03(q) 1—[2 __Oﬁ(q) 1] .

(Note that in this case the replacement of g by —¢ does not give a
formula in 6,.)

a) Show that Theorem 4.11, parts (b) and (c) are equivalent to part

(a).
b) Derive part (¢) directly from (9.4.3).

Use (4.7.9) and (4.7.10) to verify that
i) Gi=(V3+1)/V2
i) g=V3+V2
i) G, =2"%(2'"°-1).
a) Use Exercise 3 and (4.7.12) and (4.7.13) to verify that
(2V3+2)'P+1

(2vV3-2)"" -1
i) gl = 1+(2V6+4)”°

8162 1-(2V6- 4)1/3 .

i) Gy

b) Calculate G,,; and gs,.

Show that, in the notation of Proposition 3.1,
4

a) [116(q)-36(a=46/(a)
=

b) I]Z[e,-(q9>—0,-(q)1=4e:(q°>.

Show that
6,(4°)[6:(q) — 0,(a")F + 6,(a")[6:(9) — 6.(a)T’
= 0,(a")[6:(9) — 65(a")T’ -
Use Schlafli’s equation (Exercise 6 of Section 4.1) to establish that

5+1

h 1=
V5+1

11) g§0= 2
+1

iii) G25=\/§2
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In the notation of (4.7.7) and (4.7.8) show using (4.1.15) that

i) [m(n)—1][r(n) —1]=
and

ii) r(4n)=Vmn)+ r(n) +3=Vr(n)ym(n) .
Also (4.7.9) gives

i n{t) -3 (3)-2m(2)

a) Given that

G6— <3 —\F7><\F7-\/§>3/2
21 .\/— 2
verify that ’

o51- ()"

M‘1<%>=\/§<\/—i/; 1) 2V7-3V3.

b) Use the modular equations of degrees 3 and 7 to verify the value

of G,,.

In each case, given the first invariant verify the following ones.

o o= ()Y o, - () )

e (8) a2

0 a5t (B g, () VS
(225
) o (2 ><V’;3f>“i
- (P )
() a2 (B

11.

12.

13.
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V13-3 V13 -3
8 ge-0B-5( YB3 gt - a5 YE3) and
__a\3/2
r<%§> =\/§<v—1§2 3) V6 +34V2+ 15V13.
e) g3o =(V10-3)(V5-2), g10/3 (V10 -3)(V5+2) and
10
A2} =vivz-nvs+2).
a) Verify that m(3)=V3 and r(3) =V6+ V3.
b) Hence verify that m(2)=3V2+2V3—V6—3 and that r(§) =
3(V3+V2).
¢) Verify that m(1) =V3+ V12 and r(4) = V3+V3+ V9 +6V3,
d) Verify that r(2)=V2+ \/— and m(3)=V6—V2+1. Hence
m(%)=3(3V6+7-4V3-5V2).
e) Verify that m(3)=(3—-V6)(V2+1) and m($)=(6V3+9)—
(4V6 + 6V2).
a) Show that (4.7.9) can be written as
X 2 y 2
-1
(2) +(2) =2vale) - )
y X
where x:= G and y := G,,. Hence compute G, and G
b) Find the parallel expression for g%, gan- [Compare (4.1. 27) ]
One can explicitly solve (4.7.9) and (4.7.10) to obtain the following
formulae.
a) Show that G}, and G, are the two solutions to

b)

X2 = V2G,[GS+ VG + Gy +1]x+ GA[G, +1+V Gy + Gy +1]

=0.
Show that g3, and — g4 are the two solutions to
¥ = Vigylgn+ Ven —gn + Ux—galgn —1+Vey —gr +1]
=0.

Given that G, = (V5 +1)/2, show that

(2 + \/—)1/3<\/—+ 1>[\/4—+_ 5+ 151/4]

225
and

G = @+ V3 (VAT - 15
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d) Given that gz, = (5+ V29)/2, show that

b)

d)

8520 = (%_2—9)1/2(5\@+ 11\/6)”6[\F+j’\/6 + \/5 +j’\/6]

and

g <5+\/_>”25\/—+11\/—)1/6[\/4+3\/6_\/9+j\/6].

a) Entry 23 in Chapter 18 of Ramanujan’s second notebook (Berndt

[Pr]) gives

iy v2 2 exp( n'n x)cos<r212_7ry>

n=—o +y X +y2

=(\Vx*+y* +x)'"? E e ™* cos (n’mry)

n=—oo

+ (\/)czTy2 —x)!"? > e sin (n’my)

2 2
i) V2 E exp( 2n+m§>sin< r;a-ry2>

n=-—w y x“+y

=(V+y 0" 2 T cos (n'my)

o0

-V +y*+x)'? n;w e sin (n’my) .

Use Exercise 5 of Section 2.2 to prove these when x and y are

complex with re(x * iy) >0.
Deduce that if re(s) >0,

o 2 V2+V1+s
> e

™ cos (n’ms’) =

—— (4
n=-o V1i—s§s n=-w

Use ai) to deduce that

8,(e"™)=V5V5-106,(e°")

Use b) with s :=V5/3 to deduce that

(V5+3)8,(e ) = 3+ VI)ae ).

4.7 Cubic Modular Identities 151

e) Use d) to conclude that

M(S)=3{V1+2V3+2V5s

and
s =5(V5+2P(V5+V3)*.
f) i) Use b) with s:=V3/2 to obtain
k,=(V3-V2>(V2-1) and g;=V2(V3+1)’.

ii) Use b) with s:=V15/4 to obtain

N

vl

—(4+\/_)(2+\F) and Gl =4(7+3V5).

”I

iii) Use b) with s :=V7/4 to obtain

kl
k—7=8+3\/7 and G}’=8.
i

g) Use c) to show that

K(k,s) = <\/_52—(-;2> FZ(%) .

a) As in Ewell [86] show that
04(q)3 {n=°° q3n—l q3n—2 }
=1+6 - —
3 21 1+ q3n—l

and so develop a formula for r;(n).
Hint: Use the quintuple-product of Section 9.4 and mimic the
derivation of equation (9.1.14).

b) Evaluate

a 1/[1+F,, ,].



Chapter Five

Modular Equations and
Algebraic Approximations
lo

Abstract. In this chapter we study the algebraic relationships between elliptic
integrals of the first and second kind. This study is applied to produce nth-
order iteratons for i, rapid series for ', and assorted other algebraic
approximations to .

5.1 SINGULAR VALUES OF THE SECOND KIND

In Section 4.6 singular values were introduced. We will call A* the singular
value function (of the first kind) where A*(r) := k(e ™) as in Section 3.2.
We introduce the singular value function (of the second kind) o which we
define for positive r by

(5.1.1) alr)i= % - 4le ki=k(e™™) = A*(r) .

Since A*(r) tends to 0 as r tends to %, we have a(r) converging to 7' as r
increases. Indeed, as we shall see, the convergence is exponential which
allows us to use a(r) to approximate 1/ effectively.

Using Legendre’s identity and the fact that K'(A*(r)) = vTK(A*(r)), we
have

(5.1.2) a(r) = 4;2 - r(% - 1)
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and k= A*(r)

E_’_ ri
K" 4K’

(5.1.3) a(r)=vr

If in (5.1.2) we use the differential equation for K, equation (1.3.13), we
may also write

(5.1.4) ar) = 717 (%)2 - \/7<kk’2 % - k2> k= A%(r).

Now since A*(1/r) = A*'(r), we discover that

VT — a(r) '

r

(5.1.5) a(r )=
In particular a(1) = ;. We may rearrange (5.1.2) and (5.1.3) as follows:

™

(5.1.6) 7 = K[VTE — (VT — a(r)K]

and k= A*(r)
T =1, _a(n) .,

(5.1.7) Z—K[\/?—E——r—K]

which may be viewed as one-sided forms of Legendre’s identity. In the next
sections we will give these identities substance by showing that a(r) is
algebraic for rational r and by computing many values. Another useful
equivalent form is

(5.1.8) E'=~TE - 8(nNK
where k= A%(r)
(5.1.9) 8(r):=vr—2a(r).

Theorem 5.1

The function « is montonically decreasing for r = 1.

Proof. Since A* is decreasing, it suffices to show for k<1/V2 that
f= (E’K—.7r/4)/K2 is an increasing function of k. This we establish by
computing f and using the differential equations for E’ and K. (See
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Exercises 2 and 3 of Section 1.3.) We deduce from Legendre’s identity that

7/ 2EIK — 1)+ KE(K' — E') + (k'YE'(K — E)
k(k')K?

flk) =

KK~ E)E—7/Q2K)) + E(K' = E') ~ E(K ~ E)] + (K')(K — E)E' ~ w/(2K)) |
k(k'YK?

Since, for k <1/V2,
K=E=E'=1=7/2K
we finish by observing that, for k <1/V2,
K'-E'=2=K—-E
and so substitution into the last equality completes the proof. U

We next provide a theta function expression for a. We combine (2.1.13)
and (2.3.17) with (5.1.2) to write
- \V7446,/6,
63

where ¢ 1= ¢~ ™. Expanding this gives

(5.1.10) a(r) = (W.I.t.q)

(5.1.11) O0<a() -7 '=8F—7m"De ™+ O@(re™*™)

<16vre ™" r=1
and

(5.1.12) 0< a(r) — 7w ' =V ().
One should compare (3.2.1).

Comments and Exercises

The function « is implicit in Ramanujan’s work. In the next section we
indicate how. Zucker {79] computes a(n) forn:=1,2,3, 4, 5,7, while a(3)
was known to Legendre. Formula (5.1.10) allows one to numerically
compute « very easily.

1. a) Show that

3(4)

77_ [a(r) V—)‘*Z(r)] 3(q)+4\/_q 0( )

where g :=e™ ™.
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b) Use a) to reprove Exercise 4b) of Section 2.3:

«© —Ilzﬂ'
A= L €
- T2l

n=—ow

2. By Exercise 4 of Section 1.6, A* (2) V2 — 1. Use Theorem 1.2 to show
that a(2) = V2 — 1. Hence a(3) =3
3. Prove (5.1.11) and (5.1.12).

5.2 CALCULATION OF «

We begin with an appropriate generalization of the quadratic transformation
formula for E given in Theorem 1.2.

Propostion 5.1
Let p>0, k:=k(q), and [ := k(g''") be given. Then

(5.2.1) pMj(z,k)[ (k) — k’Z] Mlé;zk) dM;ll “ [—(1) 1'2].

Note: Herein (dM, (I, k)/dl) is the full derivative of M, (I, k) with respect to
L

Proof. We have M, (I, k)K(I) = K(k). We differentiate both sides with
respect to k and use (4.6.2) to write

kk'* dK

dM,
(52.2) pM:(l k) T (k) =M, (1, k) 1 (l)+K(l) T L k).

Next we use the differential equation for K to write

dK . E(k)- k’’K(k) dK . E()—IK()
'JE (k) - kk'2 dl (l) - ll'z

and we substitute these two identities into (5.2.2). We then have

M, (1, k)

pM(1, K)[E(K) — k'K (k)] = M, (I, K)[E(l) — I?K(D)] + K()HUu'? o

On dividing each side by K(k) we have (5.2.1). U

We now derive the key identity for a.
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Theorem 5.2
For p and r >0 let [:= A*(r) and k:= A*(p’r). Then

pkk’?  dM,(1, k) ]

2N -2 _ —2 Z_ 2
a(p’r)= M2, k)a(r) w[Mp (I, k)I” — pk* + M (k) dk

(5.2.3)

Proof. We suppress variables in the multiplier when convenient. From
(5.1.2) and (5.2.1) we have

(5= i £ (0 -1]

2l 7 JE _]_ [z wr dM, zz]}
Mp{4K2(l) W[K(l)l VI P4 —E - pME

This gives

2N _ ag-2 _ 2 L'Zde_ 22]}
(5.2.4) a(pr)=M, {a(r) \/7[1 + M, dl pM k
on using (5.1.2) again. Another application of (4.6.2) produces the desired

formula. O

In particular, if we let r:=1/p above, then /= k’, and with (5.1.5) we
derive that

(5.2.5) a(p) = VPk® - p k'K dl M, (k', k)
or
(5.2.6) a(p) = Vpk® — P ke - d M, (K, k)

where k:= A*(p).
Let us observe that, since A*(p) and M, are algebraic for rational p, this
shows that «( p) is algebraic for rational p.

exampLE 5.1. When p:=2, M,(I,k)=1/(1+ k) and k = A*(2) = V2-1.
Then dM,(k', k)/dk=—3 and a(2) V2(V2-172+(V2-1)’=V2-1.
(Compare Exercise 2 of Section 1.) Similarly @(3)=(V3—1)/2 and also
a(7)=(V7—2)/2. (See Exercise 3.)
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Before continuing to evaluate « it is necessary to connect it to Ramanu-
jan’s multiplier (of the second kind).

527 Lk ._PP(q9)— P(¢'")
(5-2.7) Roll K=" a2(q'™)
where

(528) Pg=1-u3

Proposition 5.2
Let p, k, and ! be as in Theorem 5.2. Then

dM, (1, k)

R,(I, k) =p(1 = 2k*)M, (I, k) — (1 = 2I*) M, \(1, k) + 3pkk’* T

(5.2.9)

Proof. We start with (3.2.15), which gives 7(q) /n(g"’?) in the form

g"P(1-g)1-gYA=g")-- (kK s
ql/lZp(l__q2/p)(1_q4/p)(1_q6/p)“. (lll > p( ’ )

(5.2.10)

We differentiate logarithmically and obtain

dk{i diky 1 d@ry di 3 dM]
kk' “dk W "dl dk M, dk

P(q)——P(q”") 24 2,

Now we use (4.6.2) for di/dk and (2.3.10) for gdk/dgq and obtain

dM
pP(q)— P(q'")= 4L§ {P(l —2Kk")M, — (1-21*)M,* + 3pkk’* ﬁg} :

This gives (5.2.9). O

It is convenient to introduce two additional quantities:

pkk'*  dM,(l, k)
M,(l, k) dk

(5.211) g, (L k):= + ML, k)I* - pk?

and

(5.2.12) o(p):=R, (k' k) . ki=e ™7
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In these terms we have:

Theorem 5.3
(a) Withr, p, k, and [ as above, we have

MR, k) + (1 + M (1, k) — p(1 + k%)
3

g, (I, k)=
(5.2.13)
(5.2.14) a(p’r) = M, (1, k)a(r) — V7e, (L k) .
(b) With k=e ™" =A*(p), we have

(5.2.15i) a(p)=vP A;(p) _ a(6p)

_ vp[L =22 (p)’] + o(p)
S .

(5.2.15ii) 8(p)

Proof. We deduce (5.2.13) and (5.2.14) by comparing (5.2.9) and
(5.2.3). We obtain (5.2.15) on comparing (5.2.9) (with [=k") to
(5.2.6). O

Ramanujan has computed R, forp:=2,3,4,5,7,11, 15; 17, 19, 23, 31,
35. From these, many values of a are obtainable. The following table is
taken from Ramanujan [14] with the entry for R, corrected.

The verification that R, has the given form is tedious but straightforward
for small p. [See Exercise 1c).] For larger p we rely on Ramanujan.

EXAMPLE 5.2. For p:=7, the modular equation in the form (kI)"* +
(k'I')Y* =1 shows that 2k.,k;=§ k;:=A*(7). Then k,=(3-V1)/4V2,
and so o(7) = R,(k}, k;) =3(1+2k;k;)=27/8, a(7)=(V7-2)/2, and
8(7)=2.

 We now make (5.2.14) explicit for p:=2, 3, 4.

Proposition 5.3
If := A*(r) and k := A*(4r), then

1=
@) k=117

and

(5.2.16) (i) a(4r)=(1+ k) ’a(r) —2VTk.
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TABLE 5.1
p R,(, k)
2 I'+k

3 1+ kKT
3(1+ 1)1+ k)
2

5 (3+k1+k'1/)\/1—+%+ki

7 3(1+kl+ k'l
11 2A2(1 + kL + k') + VEL+ VET = VEK'TT')
15 [T+ KDY+ (KT~ + K+ KT

17 [44(1+ K1+ KP1?) + 168(kD + k'L — kk'Ll')
— 102(1 — Kl — K'I')(AkK'I')"'® = 192(4kk'lI")**]'

19  6[(L+kl+ kD) +VE+VET - VEK'T)

23 11(1 + kL + k'1") — 16(4kk' Il ) *[1 + VKL + VET]
—20(4kk'll")!"?
31 3{3(1 + kI + k'I") + 4(VKI + VE'T + VEEK'II')
— Ak I+ (KDY + (KT
35 AVEL + VET - VK]
+ (4kk' Y V1 - VKR - VETY

Proof. Since R,(I,k)=10"+k and MY L k)=2/(1+1")=1+k, we
have

3e,(I, k)= (1+ k) (1+ P) —2(1+ k) + (1 + K)(I' + k)
and

AL+ ) +2(1+ 1) - 41+ 1'%

3e,(, k)=

1+
since I' + k=(1+1'*)/(1+1'). Thus
2(1-1'%)
Lk)y=="—F =
& ="y =

For example,

A @) =(VZ-1? and  a(d)=2(V2-1).
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Proposition 5.4
If /:= A*(r) and k := A*(9r), then

(kk')’™
(”,)1/4 =:s(r)

(i) M;'(Lk)y=11+4
and

V() + és(r) -3]
2

(5.2.17) (i) a(9r)=s*(r)a(r) -

where m(r) :=3/s(r) satisfies

() =11+ 17

(iii) m(9r) = —e

Proof. (i) and (iii) were established in Section 4.7. For (ii) write
3e,(l, k) = ()1 + I2) + s(r) (L + kI + k'1") =31+ k7).

Substitution in terms of «, as in Section 4.6, and some easy algebra yield
s(r)y=2a +1 and

&(1, k) =2a(a +2)=[s(r) —1][s(r) +3]/2

as claimed. [

A convenient variant of (5.2.17) is
(5.2.18) 8(9r) = s*(r)8(r) + 2v7s(r)
where, as before, 8(r) = v7 —2a(r).
EXAMPLE 5.3. If r:=1, then as in Section 4.6, m(r) =s(r)=V3. Then
(5.2.17) gives a(3) =3a(3) — 1. But (5.1.5) shows that &(3) = V3 -3a(3).
Thus a(1)=(V3+1)/6 and a(3)=(V3—1)/2. Now we have m(3)=
2% +1YV3 so that s(3)=(4">—1)V3 and 8(27)=3(2"° - 1). Thus
a(27) =3[(V3+1)/2-2'"7].

Proposition 5.5
If /:= A*(r) and k := A*(16r), then

1-vV1-1
. V_Z
® 1+V1-12
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and
(5.2.19) (i) a(16r) = (1+ y)'a(r) — 4vry(l+y +y?)
where y := Vk.

Proof. This may be derived similarly but is easily deduced from Propo-
sition 5.2 and the quartic iteration of Exercise 3 of Section 1.4. [l

EXAMPLE 5.4. TFor ri=4 we have a(4)=2(V2—1) and A*(4) = (V2 - 1)~
Thus VA*(64) = (1 - 2°*VV2 - 1)/(1+2"VV2+ 1) = (VV2 +1-2"%)/
(VV2Z+1+27%) and a(64) =8[2(VB—-1)— (2'"* = 1)*]/(VV2+1+ 2°8y*
which gives eight digits of 7~ Similarly, VA*(16) = 7 -1/ +1)
and a(16)=4(V8—1)/(2"* +1)"

Combining some of these calculations with (5.1.6) we have established
that

§=K<\/§E—<V§2+1>K> k= Vj\/;
2 - k(vis-(Y52)x) k=

and

-:IT = K<3\/§E - [3<V§2' 1 21’3)]1() k= A*(27)
with a similar identity whenever a(r) and A*(r) are known.

Comments and Exercises

Computation of A*(r) will be discussed further in Section 9.2. In many of the
following numerical exercises the algebra is not entirely straightforward.

1. a) Verify that the quadratic case of (5.2.1) coincides with the formula
given in Theorem 1.2.
b) Verify (5.2.6).
¢) Verify that R,, R;, and R, are as claimed.

2. a) Show that in terms of Ramanujan’s G, and g, of (3.2.13) one can
write

) A*(m)=1G[VG +G,*-VG.-G,°]
i) A*(m)=1i[V1+G,?-V1-G. "]
i) A*(m)=gS[Ven +8x —&n)-
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b) Find similar identities for A*'(n).
¢) Verify the singular values given in (4.6.10).
d) In each following case, given G, or g, verify k. Then verify G, or
8n-
) GL,=2"""(V5+1),
ks =(3-V3)(V3-V3)(2—V3)/(8V2)
i) Gl=V5+2, kys=(V5-2)(3-2-5"")V2
i) gé=Vv2+1, k=(V2+1)(V6-V2-1)
=(2-V3)(V3-V2)
iv) g5 =V3+2, k,=(V3+2)(3V2-V5-2)
=(VIo-3)(vV2-1)’
V) g% =5+2V6, kig=(5+2V6)(7V2—5-2V6).

Use (5.2.6) with p :=3 to compute «(3).
Use (5.2.15) to obtain the following values of & (or 3).

) 8(5)=V2(V5-1)

i) 8(11)=[2x* = (x — 3) - VIIV1- (x — 3)’)/3
Note: G2 =x— 3 where x* —x* = 2.

i) «(15)=(I5-V5-1)/2.

Use (4.6.8) and (5.2.6) to compute 8(13) = (7 + 3VI3)G;; where
G =(V13-3)/2.

Show that R, ([, k)=R,(k’,I"), that R,-1(k, )= —p_IRp(l, k), and
that o(p~ ") =—a(p)/p.

Use (5.2.14) to show that

i) 8(25)=10-5"4(7-3V5)

i) 2A%(49)A*'(49) = (1863 + 704V7) — (810 + 306V7)V2 7*"* |

(71/4 _ 4_'_\/7)12
2

and
«(49) = 1 — \T[V2 773 (33011 + 12477V7) — 21(9567 + 3616V7)] .
Use Proposition 5.3 to calculate
) A*8)=(VZ+1)X(1-VV8-2)
a(8) = (20 + 14V2)(1 - VV8 —2)

i) A*(12)= (V3 - V2 (V2-1)}
a(12) =264 + 154V3 — 188V2 — 108V6 .
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9. Use Proposition 5.4 to show that
) «(18)= (21— 6V6)gisA*(18)
i) 6(9)=3""(V6—V2), as m(1)= V3+ V12
i) 8(81)=9v23"(V3+1)(3+ a)a”!, where
a:=[2+V12)"*+1]°
10. Prove Proposition 5.5.
11. a) Use (5.1.4) to write

(p) = VPK
AG(1, k')

,» AG(1, k)
AG(1, k')’

m ' =vpk'k

where k1= A*(p) and the derivative is with respect to k.
b) Then (as in Section 2.5) show that

1
7r=1im T2 2
i \/pk'k’p; + [a(p) — VPK']4;

where x,:=1/k', g, = X4, y1°= VX0, and p, :=x,/(x,+ 1) while

VX, + 1V,
xn+1'=—_—2_—
__yn\/Y;+1/\/Y:
Ya+1"= yn+1
(1t Y.
Pn+v1°= 14+ x P
._4x
qn+1'_;'

n

c) Show that convergence is quadratic.
d) When p:=1, this is Algorithm 2.1.

The next exercises develop results in J.M. Borwein [85] and Ramanujan
[14]
12. a) Show that with P as in (5.2.8),

pP(e ™P)+ P(eT™VP) = 9? :
Hint: Let q:= ¢~ ™7 in (5.2.10) before differentiating.
Hence show that

P(e™)= %
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b) Show that

(52200 Ple )= T8 A1, A*(p)) + —= .

2vp ™D
Thus P(e”™?) is quadratically computable.
¢) Evaluate P(e” ™).
13. Show that
- 4K, K
22 2=1-3 p[EEe R k- (p- 1)

where K,:= K(k;) and k;:= A*(pz'). In J. M. Borwein [85] these
identities are studied in detail.

14. Show that when p:=2, (5.2.21) is equivalent to Gauss’s identity
(2.5.9).

15. a) Show that
Py =[2BR] 5 E - avien).

This identity, which follows from Exercise 7c) of Section 3.7, is
entry 2 in Chapter 18 of Ramanujan’s second notebook.
b) Prove that

P(q)=1-24 Z=1 o, (n)g™ .

Here o,(n) is the sum of the divisors of n, as in Exercise 12 of
Section 3.7.
5.3 FURTHER FORMULAE FOR «
We commence by establishing a multiplication result for o.

Theorem 5.4

Let p, r>0 be given. Let [:= A*(1/pr), y:= A*(p/r), and k:= A*(pr).
Then

(5.3.1) opr) = M; (3, B[ Ry (L )+ R (3, 4

and

(5.32) o(2) = M, 0| R, )~ VE R (3, )
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Proof. Let s:= pr and q, = q"". Then y=k(q,) and I= k(qi'?). We

have

R k)= PO P(q'")

03(9)03(q"")
[pP(ql) P(qi"’)] 63(¢"") , [rP(q)—P(q“’)] 93(¢"")
2(q)03(q:1") 1 63(a) 92(q)03(g"") 1 05(¢"")
so that with I" := K(y),
(5.3.3) R,(L,k)=R,(,y) % + pR (v, k) % .

For k' = | we have L =+/prK and (5.3.3) becomes
r
oo = 2[R0+ L R0

This is (5.3.1). Then (5.3.2) follows from (5.3.1) and Exercise 6 of Section
5.2. (See Exercise 1.) O

For p =r, (5.3.1) reduces to

2R,(1/V2, k)

(5.3.4) 0'(p2)= m k:= k(e_"") .

Corollary 5.1
Let p >0 and k:= A*(2p). Then

7 ., l+k (1—k )
(5.3.5) 8(2p)—\Fk + 5= R 1570k

Proof. Observe that M;'(y, k)=1+k and R,(y, k)=k+vy’, while
v'=(1—-k)/(1+ k). Then

o(2p) = (1 + )| R, (0, v) + 2 (e 9]

and since R, (I, ) =R, (v’, k),

(5.3.6) o-(2p)—(1+k)R<1+k ) \f(1+k)

Now (5.3.5) follows from (5.2.15). O
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EXAMPLE 5.5. For p:=3, k=(2—V3)(V3-V2) while Ry(y,k)=1+
vk +v'k'. Now

5.3 Further Formulae for 167
Comments and Exercises

From the given formulae and appropriate singular values, many values of «

(1+ k)R (1 -k k) k4 k' + VK can be found in closed form. Some of the cleanest are given below.
N1+k’

1. Establish (5.3.2) of Theorem 5.4.

. . 6 12 .- 2 _ 12
which we rewrite as 2k(1 + V2gg + g¢°). Similarly Vik'? =V6gg'k, and we 2. Use Corollary 5.1 and the given value of g, to compute a(n) or é(n).

can write 8(6) = [V6(V2+1)* +2V2(V2 + 1)]k. Thus

) g=V5+2, a(10) = g3,A*(10)(3V53 - 4)
5(6) = gA*(6)(2V2 +2V3 + V6) i) g5 =(V3+V2)? a(18)=gSA*(18)(21 - 6V6)
and i) g2, =(V2+1), a(22) = g5,A*(22)(33 — 17V2)

— o0 % - — — —
a(6) = geA*(6)(3 - V2) =5V6+6V3—8V2-11. D V) g% =(VIO+5)/2, a(58)=giA*(58)(99V2O — 444) .

(This requires having a tractable form of W, which we have not

Corollary 5.2
orozary given but which may be found in Greenhill [1892].)

Let p>0 and [:= A*(1/3p), v := A*(p/3), and k:= A*(3p). Then

6 -6
. . vy EETEL _ohvE (1) = g AT+ 6VD) + VTdg)]
(53.7)  o@Bp)=M;'(v k)[RP('y’, k) + \/% 1+ yk + 'y’k’)] L
vi) 8301 8% _¢, 5v2,  8(30) = g5 A*(30)[(56 + 38V2)

and 2
’ + \/@g go]

538) ol Z) =My, | R, (v, k)~ VE @+ vk+y'K) 6 . -6
<3> ’ [ \/; ] viiy 84785 _ 181 13v3, 5(46) = g8 A*(46)[(200 + 142VZ)

2
+V4a6g5].

where

3. Establish Corollary 5.2.
4. Use the values of G;,, G,,;, and M(p/3) given in Exercises 8 and 9 of
Section 4.7 to prove that:

i)  o(21)=3G; (11 +6V3+2VT7+V2I)

G3
M_1<£> = MYy, k) =\1+2VZ 22 .
3 G2,

Proof. This follows from Theorem 5.4 and (4.7.9). (See Exercise

3) O
) ii) U(%)=G7_,63(11—6\/§+2\/7—\/ﬁ)

i) o(33) =365y 21‘3;_\@ (11 + 13V3 + SVIT + V33)

iv) a’(%) = G1—16,3\/2\/_3—;\/—1_—1 (11+13V3-5V1l - \/ﬁ)

EXAMPLE 5.6. By piecing together various formulae many more values of «
can be obtained. We illustrate this as follows. Given a(6) and A*(6) from
the previous example, we may use Proposition 5.3 to compute a(3). Then
the functional relation for @, equation (5.1.5), yields a(%) = (5V6 — 6V3 —
8V2 +11)/3=10.5138118 . . . . Similarly, given a(3) and A*(3) from Exam-
ple 5.3, we can use Proposition 5.3 to find that a(3) =66+ 47V2 —38V3 -

27V6=0.5138837. .. . ¢ [2V19+5V3

Indeed numerical computation of the maximum of « [using (5.1.10) and V) o(57)=3Gg ) (5V57 +13V19 + 49V3 + 19)
Newton’s method] shows that it occurs around 0.709 with a value of ; 19 VIS —5V3
approximately 0.514275. [Note that (3 + $)/2 is very close to this point.] In ‘ vi) 0<?> =G5 _T__ (5V57 — 13V19 + 49V3 — 19)

addition, one may observe graphically that « increases up to this value and

then decreases. and
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V3+1
2

3
vii)  0(93)= 6G;36< ) (15V93 + 13V31 + 201V3 + 217)

_ 3
viii) a<§31> = 2G;f,3<—v%> (15V93 — 13V31 + 201V3 — 217).

Hint: In each case express the right-hand-side of ( 5.3.7) or (5.3.8) as a
function of (yy'kk')"’* by using the cubic modular equation (4.1.16).
The values of « given in Exercise 2 are all expressed in the form
a(p)= g;/\*( p)a, for a quadratic number a,. This is also true for
some other even p.

a) Since g;/\*(p)~ 1/(2g§), deduce that

and estimate the accuracy of the approximation.
b) Show that

_ 14+10V2 _ 140+26V29
27 33 _17V2 758 = 99v/29 — 444

which give four and eight digits of , respectively.

a) Weber gives GL+G=(1+ VI7)/2 and g3+ gi=03+
\V17)/2. Hence evaluate o(17) and o(34) as cleanly as possible.

b) Similarly, f(V—19) =:x solves x’=2x+2 and £,(V=38)=:V2x
solves x° = 2x° + (2x + 1)(V2 + 1). Attempt to evaluate «(19) and
a(38).

Use (5.3.4) to evaluate 8(25). (Compare Exercise 7 of Section 5.2.)
Given that G4, = V37 +6, one can show that

and

5(37) = (101 +21V37)G3, .

Again we have not given a tractable form of W,,.

Show that the perimeter of an ellipse with major axis a and eccentricity
k is given by

2a T
P=7 m + [\/7‘ + 8()‘)]K(k)

where k:= A*(r). In particular, if k := tan (7/8),
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(See Exercise 4 of Section 1.6.) If k :=1/V2 =sin (7/4)
7 [T(3) F(%)]
p=a\ = [ + .
\/—2 I3 T@E)

Further such evaluations follow from Table 9.1, which gives K(A*(n))
in ' terms for 1 =n =16.

5.4 RECURSIVE APPROXIMATION T0 =
Theorem 5.3 is easily recast as a pth-order iterative method to compute 7.

A General Iteration 5.1

Let p be a positive integer. Let » >0 and set

ay = a(r) and ko= A*(r).

For n in N compute k,,; by solving Wp(ki, k>,,)=0 and let

m"::M;l(k'l’ kn+l) rn:=Rp(kn? kn+1)

(5.4.1)
g, =[mr,+m>(1+Kk3—p(l+k,)]/3

and
(5.4.2) a,, =ma,—p'VTe,.
Then, for rp** =1,

(5.4.3) o< a, — 77_1 = 8(p"\/_ _ 77.—1) e—p"\/F'rr + 0(p2nr e—p’lz\/?-n-)
< 16p"\/7 e‘P"\/?qr )

Proof. This is a straightforward consequence of Theorem 5.3 and
(5.1.11) because a,:=a(p™"r). O

We may also write this as an identity for 7.

Theorem 5.5

Let p be a positive integer and let r > 0. Let m, and ¢, be asin (5.4.1). Let
a,:=1and a,,,:=m, a,. Then

AG*(1, A*'(r)

(5.4.4) 7= ,
o(r) — VT L P28,
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Proof. Rewrite (5.4.2) as
(5.4.5) al.,a,,, =aa, —Vip" a’, e,
Then summation yields
o)~ @i = VIS, P
and, as a, converges to w ' while a, converges to AG(1, k;) [since
a, = K(k,,)/K(k,)], we obtain (5.4.4). O
EXAMPLE 5.7.

a) When p:=2, the proof of Proposition 5.3 shows that ¢, =2k, ;. I
terms of the AGM: a2, ¢, =4a,,,C,.,/2=c>/2, and (5 4.4) glves a
family of identities extending (2.5.9), or Algonthm 2.2 (the case r =1).

b) When p :=3, we similarly use Proposition 5. 4 to deduce that a>,, &, =
(a, - n+1)(an +3a,,,)/2, where a,,., =m, 'a, can be computed from
the cubic recursion in Proposition 5.4. (See also the cubic iteration
given below.)

We now specialize Iteration 5.1, changing notation as appropriate.

A Quadratic Iteration 5.2
Let r>0. Let ;= a(r) and k,:= A*(r). For n in N let

_ P 1- k!
(5.4.6i) 1T T R
and
(5.4.6if) a, =+ k, Ve, —2""VTk, .

Then, for r2*" =1,
0<a,—7 '=16-2"vFe >V,
A Quartic Iteration 5.3
Let r >0. Let ay:= a(r) and y,:=VA*(r). For n in N let
(5.470) _1-Vi-y!
470 = ——
AR e

and

(54711) an+1 = (1 + yn+1)4an - 4n+1\/7yn+1(1 + yn+1 + y)21+1) °
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Then, for r4** =1,
0<a,—m '=16-4"VF e T

Iteration 5.3 just peforms two steps of Iteration 5.2 as one, with some
computational saving. The error bound given in each case is very accurate.

A Cubic Iteration 5.4
Let r >0. Let a := a(r) and m, :=m(r) =\1+2V2G) /G’. For n in N let

2 1/3 2
-1 +1
(5.4.81) O (G m) Lo mi
and
2+2s,—3
(5.4.8ii) @, =s5la, —3"VF 5_25_

Then for r3*" =1,
0<a,— 7 '=16-3"vFe ™,

One can also provide a cubic iteration using k, instead of s,. This is
somewhat more inelegant and no easier to initialize. [See Exercise 3b).]

Large numbers of initializations for Iterations 5.1, 5.2, and 5.3 are
available in the previous sections. We collect some of the cleanest in Tables
5.2a) and b). The cubic information is given in Table 5.3. Recall that
[m(N) = 1][r(N) - 1] =

All the information necessary to verify these values lies in Section 4.7 and
the previous sections of this chapter.

When p:=7 we can write the iteration cleanly in terms of u, := k.'*.
Indeed

(5.4.9) (1= u,u,00)° = (A= up)(1~ uny,)
while

— 7unun+1(1 B unun+1)[1 - n n+1 + (unun+1) ]

8
u unun+1

re =301+ (uu,, )+ (1 —uu,, )Y

and

mi(l + uﬁ) +m,r,—7(1+ uiﬂ)
g = .
" 3




TABLE 5.2a. Values of G;'* and a(N) for N odd
N 2AX(NIAM(N) = G2 a(N)
1
1 1 3
1 V3-1
3 2 2
V5-V2V5-2
1 V7 -2
7 8 2
—-3¥"2(V3-1
9 2-V3) 3 \/2_ ( )
5 svI3—18 \/ﬁ—ng/ﬁ—zss
1/V5-1\* vVi5-V5-1
15 8 ( 2 ) 2
_9.gl/4 _ 5
’s V3—2)" 5(1-2-5 2(7 3V3)
@7 -1 3(V3+1-2*7)
27 — s
_ . -6 1/2
37 V3T - 6) V37 - (171 25;@)(\/? )
TABLE 5.2b. Values of g;'* and a(N) for N even
N 2A*(N)/IAX*(N) = g1° a(N)
2 1 vV2-1
1 2
4 5 2(V2-1)
6 (VZ-1)° (V3-V2)(2-V3)3-V2)(V2+1)
10 (V3 -2)° (7+2V)(VIO-3)(VZ-1)
18 V3i-Vv2)* 3(V3+V2)' (V6 —1)(7V2-5-2V6)
22 V2-1)° (VZ+1)°(33-17V2)(3V22 - 7-5V2)
58 (\/2_92_5) (\/2_92”) (99VZ3 — 444)(99VZ — 70 — 13V9)

172

TABLE 5.3. Selected cubic invariants

N m(N) H(N) «(N)
118 3(3VE—4V3-5V3+7) . 1019 + 416V6 —6720\/5 - 588V3
1712 6V3+9-4V6-6V2 - 47V5+27V§‘38V5*66
1/6 B-Veyv2+1) (B+VEVZI+1) 8_——\/5‘4\/36‘ 6V3+11
173 V3 3+2V3 @

172 VE-V3+1 VE+Vi+1 %
2/3 V3(VZ-1)(V3+V2) V6+V3 ——5%_6ﬁ3—8ﬁ+u

1 3+2V3 — %

4/3 _ V32 V3 2[54V6 + 77\/53 —94V2 - 132)
2 V6+Vv2-1 V3+V2 VZ-1
- I e F BT
3 1+2'7] _ Vi-1
V3 2
4 - V3+vi+Vorevs 6-4v3
5 Vi+2vi+2vs - V5-Vav5-2

0

18

(6+\/ﬁ+\/27+6\/ﬁ)”2

2

[(2V3+2)"” +1(V3-1)
V323174

V2(V2+ 1) + 1P (V2 - 1)

V3

V(V2+1)(2+V3)

(V3= V2)[1 + (4 +2V6)'"*P

2

5V6+6V3-8V2—11

V7-2
2

(2+V2Pa-Vavz-2)
3-3Y2(V3-1)
2

3[721V2 — 1019 + 588V3 — 416 V6]

173
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We present a few illustrations of the behaviour of the algorithms. We
note that a, in the quartic algorithm is just a,, in the quadratic algorithm.

Digits Correct in Quadratic Algorithms

n=1 2 3 4 5 6 7 8
r=1 0 3 8 19 41 84 171 344
r=2 2 5 13 28 56 120 242 489
r=17 5 12 26 55 112 227 458 919

Digits Correct in Cubic Algorithms

n=1 2 3 4 5
r= 2 10 34 107 327
r=17 8 30 93 288 873

Digits Correct in Septic Algorithms

n=1 2 3
r=1 7 63 464
r=7 22 173 >1000

The updates for a(25r) and «a(49r) are studied again in Section 9.5, where
solvable versions of the quintic and septic iterations are given.

Comments and Exercises
Additional information on these iterations can be found in various of our
papers. In particular, Borwein and Borwein [86] indicates the genesis of the
quadratic iterations and [84b] that of the cubic iterations.
1. Verify the claims in Example 5.7.

2. a) Prove that, in the notation of Theorem 5.5,
E S
?(k)=1_z=op ai+18n k=tkg.

b) Observe that this extends Algorithm 1.2.

3. a) Verify Iterations 5.2, 5.3, and 5.4.
b) Use (4.1.24) to produce another form of the cubic iteration.

5.4 Recursive Approximation to 7 175

a) Determine the initial values for the cubic iteration with r:= N/3

and N:=7, 11, 19, 31.

b) Compute 8(45), 5(63), 8(243), and 5(54).

Derive the following version of the septic (seventh-order) iteration. Let
. . 1/4 .
a, = a(r) and u,:= A*(r) ", and generate u,,, decreasingly from

Let

and

(1 - ursl)(]‘ - u181+1) = (1 - unun+1)8 N

unun+1

8
u un+1 un+1

n

7unun+1

8
un - unun+1
_ b

1>

n

(1—u,.,)(49a, = b,) + (1 —uz)(s, — 1)b
8

n

A, =5,a,+7T"Vi(T1—s,—1t).

Then for r7*" =1,

0<a,—7 '=16-7"vFe "V

Derive the following version of the quintic (fifth-order) iteration (given
in Huglges [84]). Let a,:= ;z(rz) and uy = A*(r)"’", and generate u,,,
from un+1 - un - 5(unun+1) (un - ui+l) - 4unun+1[1 - (unun+1)4] = 0

Let

x,=2uu’

n nn+1
. 5
Yn '_zunun+1
R 2
a,-=u, + 5un+1 + 2xn

b :=5ur21+ ui+1 _2yn

=4
C, = b"
_ (1 - u181+1)[5(ui+1 + xn) + Cn(yn N ui-i—l)]

4a,

L (= ud +x, +5¢,(y, = ud)]
4b, )
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Then
. n+1 8 8
@, =5c,a,+5" " VHd,tu,. — c,u,)
satisfies
0<a,— ml=16-5"vFe V"
for r5*"=1.

7. Show that, in Iteration 5.1, convergence is indeed pth order.

Observe that for a variety of other values of p we have the information to
make Iteration 5.1 entirely explicit. For example, p :=17 is satisfactory since
we have R,,, and M, is given in (4.6.9). Moreover (4.6.9) also gives a
form of the modular equation of order 17. Using G+ G, =40+ 10V17
and

oary= ST [ 11\/_)\/W G+ VD]

" we have an algorithm for ‘7 which gives more than V17 -17" digits at step n..

8. Let p=1, let /:=A*(p) and k:=A*(49p). Set z,:=(G,Gy,) '/
V2.

a) Show that
2z,(1—-z,)

Vi- G —VI-4z,

Vi-4z,-V1-G,*

Ml k)=

14z,(1-z,)
b) Ramanujan [14] gives
o VATV
49 2
and
ezl [ -]

Verify that
14z,(1-z,)

) M; (\}_ A* (49)) i

where z, = G ;' /V2, and
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14z,(1 - z3)

i) M;'(A*(3), ,\*(147))=\/1_:@__\/5/2

where

[V7+V3 - 2(28)“"’]
%= 483

¢) Compute that
R,(I, k)=6(1~-2z,)".

9. Verify, from Table 5.2, that
) a(22)=(V2Z+1)’(33—17V2)(3V11 - 7V2)(10 — 3V11)

and

i) @(58) = (VZ - 1)%(13V38 — 99)(99V29 — 444)<\/_+5)

10. Ramanujan gives the following form of the modular equation of degree
1:

(5.4.10) (;—‘)4+ <§>4+7=2\/§{(xy)3 +(xy) )

where x = G,y and y := G,,. This is Entry 19(ix) in Chapter 19 of the
Second Notebook (Berndt [Pr]) One should compare Exercise 6 of
Section 4.1 and Exercise 12 of Section 4.7.

a) Verify G,, Gy, and G,,;.
b) Show that

(5.4.11) (5)4+ (%)4—7=2\/§{(xy)3+(xy)_3}

where x := g49N and y = gn-
¢) Verify that g3, + g7/ =V2+1 and that

g98+g9_81= HV2+V14+4V14) .

5.5 GENERALIZED ELLIPTIC INTEGRALS AND RATIONAL
AND ALGEBRAIC SERIES FOR 1/m and 1/K

We begin with some results on hypergeometric functions [see (1.3.5)].
Changing notation slightly we write
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_3 @u0), ¥
(5.5.1) LF,(a, b; ¢; x):= zo ERE
for appropriate values of the variables. Here we use the rising factorial or
Pochammer symbol (a),:=T(a+ n)/T'(a)=a(a+ 1)(fz +2)---(a+n-—-1).
Similarly the generalized hypergeometric function ;F, is defined by

_ v @,0),(), x
(5.5.2) F,(a, b, c; d, e,x)-—z,o DO,
again where appropriate. (See Slater [66].) We define the generalized
complete elliptic integrals of the first and second kind by

1 1
(5.5.3) K, (k):= %T .2F1<E s =4l k2>
and

1 1
(5.5.4) Es(k):zg'zF1<—§—S,—+s;1;k2>

for |s| < { and 0= k = 1. We still denote the complement k' :=V1— k* and
write K'(k) := K (k") and E/(k):= E (k). Now K := K, and E := E, are the
classical elliptic integrals, and each K| and E_ admits many integral continua-
tions. (See Erdélyi et al. {53, Section 2.12].) Moreover one has

kk'* .
172 K

This may be verified directly or by using Erdélyi et al. [53, Section 2.8].
[Here K, = (d/dk)K,.] Similarly, using Erdélyi et al. [53, vol. 1(13), p. 85]
we have

(5.5.5) E,= kK, +

, . ,_ T COS (ms)
(5.5.6) EK.+ KE,— KK = > 142

When s = 0, this is Legendre’s relation (Section 1.6). The following relation-
ships will be helpful.
Proposition 5.6

For 0= h=<1/V2 we have
2 = (1_5 1.5 . ,2>
((1) ;Ks(h)_zFl 4 294+2>1:(2hh)

(b) [% K:(h)]z = 3Fz(% -, 1 +5, 1; 1,1; (2hh’)2>.
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Proof. (a) is a special case of Kummer’s identity given in Rainville
{60, p. 67] or in Erdélyi et al. [53, Section 2.11]. It may be verified by
showing that both sides satisfy the appropriate hypergeometric differential
equation (given in Exercise 7 of Section 1.3), are analytic, and agree at
zero. (b) is a special case of Clausen’s product for hypergeometric functions
given in Slater [66, p. 75] and Exercise 13. O

In the sequel we will again use Ramanujan’s invariants of (3.2.13)
(5.5.7) G:=(kk')V"?  gi=(Qk/k?)TV?
and
2'"eG = (kK%2k")™"2

We also need Klein’s absolute invariant J, which was introduced in
Theorem 4.4. This is

e (4G24_1)3 _ (4gZ4+1)3
) 24 24 .
271G 27g

(5.5.8)

Ramanujan [14] talks about “corresponding theories” for K, s:= 3,3, ¢,
to that for K. For s:= %, 1 this is explained by the next result.

Proposition 5.7
(@ K (h)=(1+k")""K(k)
if 2hh' =[(g" +g) Y2l ' and 0=h =12, 0<k=V2-1.
(b) Kys(h)=[1—(kk')’]'"*K(k)
if2hh' =7 "?and 0=sh=1/V2, 0=k=1/2.

Proof. These may be discovered by piecing together the quadratic and
cubic transformations given in Erdélyi et al. [53, Section 2.11]. They may be
verified by establishing that both sides satisfy the same differential equation
(derived from the appropriate hypergeometric differential equation), and
both functions involved have the same finite value at zero. [

There is a corresponding relation for K. Since it is a little less concise,
we consider it at the end of the section. Combining these last two proposi-

tions leads to a variety of alternate hypergeometric expressions for X and
K>

Theorem 5.6

2K (1 1

@ O Kw=r(] 51 eu) 0

A
=
A

Sl-
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.. 2K ,_ 11 2k\?
@ —(kK)y=k 12F1<Z,Z;1;—< )) 0=k=V2-1

;,—2
2K 1 11 K2 \? .
(#it) 7(k)=kf— 2F1<Z’71;1;_<2k'>> 0=k’=2V2-2
. % _ 2y—1/2 (1 § '<g12+g—12>_2>
®) ) —R)=1+K) "R 5. 5L (55—
0=k=Vv2-1
2K = e - iy (L 2 -(€22970) )
(v) . (k) =(k k*)"V4F, s b :
1/4 —
0=k=2 —V2 V2

-1 1
© @) =)y 1) 0sk= 5.

Proof.

(@) We let s:=0 above to deduce (i). Then (ii) follows on replacing g by
—gq in the theta function representations of K and (2kk’)>. This is
Jacobi’s imaginary transformation of Exercise 7d) in Section 3.2. We
derive (iii) from (ii) by replacing k by k :=(1—k')/(1+ k") and
using the quadratic transformation K(k,)=[(1+ k')/2]K(k) of
Theorem 1.2.

(b) (iv) comes from letting s:= ; above. Then (v) again follows from
Jacobi’s imaginary transformation.

(¢) (vi) comes from letting s := } above. O

Similarly,

Theorem 5.7

For k restricted as in Theorem 5.6

@ @ [% (k)]2 = 3Fz<%’ % %; 1,1 (2kk’)2>

o (K] —em(l L L -(2))
(ll) |:7T (k) =k 3F2 2277 291717 k,z

~~
.
IH
—
—
~~
bl
~—
| —
S
I
bl
]
—
w
oy
TN
N =
BN =
N[ =
—
—
|
TN
[\
?r|":,
S—
[
S—
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(v) 2—K (k):2 = (k' — k*)"\,F, (%’ % %; L1 —<%>_2>
© @ 2_K (k):z == (kk’)zl‘”zan(é’ % %; 1,1; ]—1) .

Proof. We combine Theorem 5.6 and Proposition 5.6. O

Thus we have provided series for K and K” in terms of each of the six
invariants. One can produce other such formulae by further use of transfor-
mation identities. For example, Bailey’s formula in Erdélyi et al.
[53, (2), Section 4.5] with a:= 5 and b:=1 gives

2K ]2 o112 (1 51 —27(2kk")? )
= (k)| =[1-4Qkk’ Fl=,>, 21,1, ———~——
_ 151 27g%
— ,4+ 2\—1/2 (_ 2 1 . g )
(5.5.9) (k'* +16k*)" "% F, 5 2,1,1,——-—(g24+4)3 )

Note also that we may use (5.5.5) with s:=0 and Theorem 5.6 to
produce similar series for £. We are now ready to build our series. Recall
(5.1.4), which we write as

1 ,2 4KK 4K*?
—= V Nk k/? = [a(N) — VNK%] = k= A*(N)
(5.5.10)
or
1 2 4K 4K
z= V Nk k}} — +[a) - VNK3] — k=A@
(5.5.11)

Thus given a(N) and A*(N), we can combine (5.5.10) with Theorem 5.7 to
produce series for 1/4r. In like fashion we derive series for 1/K or for the
Gaussian AGM, M(1, k') = mw/2K. In each case we have [(2K/m)(k)]’ =
m(k)F(¢(k)) for algebraic m and ¢, while F(¢$) has a hypergeometric-type
power series expansion %°_, a,¢". Then 4KK/m> = 1mF + im¢ F(¢). Sub-
stitution in (5.5.10) leads to

=> a |~ kk'*m + [a(N) = VN m + ——m < kk'*|¢" .
e T
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Thus for rational N, the bracketed term is of the form a + nb with a and b
algebraic. We now specialize this for our invariants.

SERIES IN G: For N>1,

(5.5.13) 2: [

NI'—‘

= 0,006

where
a, (N):=[a(N)— VNKi] + nVN(k;? - k%) .

SERIES IN g,: For N=2,

(5.5.14) = z o[ 2] s, vy
where
o , =2 1+ k2
b,(N):=a(N)k}, "+ n\/—]\7<1 — kav) .
SERIES IN g,y =2"""gyGy: For N= 1,
(5.5.15) == 2 [( : ] AN)(gn)”

where

VN _ -
— kfv]k;v Y+ nVN(kL+ kLY.

eu(N) =] a() -

+ P dkyk)?
SERIES IN X, = <w> =ﬁ. For N>2,
N
= (1. (3,
(5.5.16) = —4——2))"3(—4)d(N) el
n=0
where
a(N)x;,l VN —12] <gN g;}lz)
a )= | X VN el .
) 1+ky 4 VN 2
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GIZ _ G—IZ -1 4k kr

SERIES IN y, = <—A'2—N) =1_:4(Z—NNk,(,_)—2' For N =4,

- (%)n(%)n(%)n 2n+1

= —_ LA AL A REAL N
(5.5.17) g (-1 ) e, (N)yy
where
o a(N)YN VN 2 12] <G11vz + G;Ju)
««,’"(N).—[k,2 kN+ 3 k5Gy |+ nVN 3 .

SERES IN J'. For N>1,

— % %)n(%)n —1/2\2n+1
(5.5.18) 2_30 —)3 LU

where
f.(N): —3\/_ [VNV1- Gy* +2(a(N) — VNEL)(4GY —1)]

+nVN ﬁ [(8GY +1D)V1-G].

There are many rearrangements of these formulae. In similar fashion we
may deduce that for all N,

(55.19)  M(1,k})= 2K(k ) ’TZ (N)[(%) ]an
where

m, (N):=[a(N)— VNk%] + n2VNk;}
and for N>1,
(5.5.20) M(1, k== Z (-1)"n (N)[(%) ]2<:—:)2
where

n,(N):=a(N)k;, ™"+ n2V Nk} ™.

These use the hypergeometric definition of K and (5.5.11). Also using
(5.5.11) and Theorem 5.6(ai) and (aii) leads to, for N>1,
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(5.5.21) M@, k})= wi on(N)[(l) ] (G

where
0,(N):=[a(N)— VNKL] + n2V Nk}’ — k2)
and for N=2,

)n

£l

(

652 M ky=7 S oo, D] (g

where

P.(N)=a(NYKk, ™"+ n2VN[1 + k3 )k, "

Similar formulae exist in the other invariants.

From our formulae for 7' and the values of a(N) and A*(N) =k,
previously derived we have explicitly computed all but two of the 14 series
which Ramanujan gives without justification in [14, Section 14]. Ramanujan
gives series of the form (5.5.13) for N:=3, 7, 15, of the form (5.5.16) for
N:=6, 10, 18, 22, 58, and of the form (5.5.17) for N:=5, 9, 13, 25, 37. He
gives series of the form (5.5.18) for N:=3 and 7 and two in terms of K, 4
which we derive below. In each case manipulation of the formulae produces
the desired result. Indeed «(37) and «(58) were obtained by calculating
e,(37) and d,(58) to high precision. In fact, with N := 58, using (5.5.16) and
Exercise 2 of Section 5.3 produces

3 2n+1
(5523) ==2V2 E Q—(—)M (1103 + 26390n)(i2>
n=0 (n!)’ 9
which adds eight digits a term! Since k2 behaves like 16e'"m, it is very

easy to estimate the convergence rate in each series. For N at all large, the
rate while linear is most impressive. In the exercises we give various other
examples. Bailey [35, p. 96] gives (5.5.14) with N :=2 [equivalently (5.5.15)
with N := 3] and ascribes this to Ramanujan. The series is

&
(5.5.24) Z=2 (-1 [( ), ] (4n+1).
T n=0
Correspondingly, (5.5.22) with N :=2 yields

[()](8 n+1),

while for N :=1, the series in (5.5.20) diverges.

(5.5.25) M(1,1/k}) = ’2—7 E
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We now return to K| 4. From Goursat’s exhaustive list of transformations
(Goursat [1881]) we obtain:

Proposition 5.8

For k<1/V2 and h the smaller of the two real solutions of

(9 — 8h%)’
64h°h"?

(4G* -1y’

(5.5.26) e

= J(k) =
one has
(5.5.27) (2K> (k) =+ 11__(5:,2)2(212’6>ZM).

Proof. Formula (126) in Goursat {1881] and Propositions 5.6 and 5.7
combine to produce (5.5.26) and (5.5.27). O

There is a corresponding formula for the larger solution. This implicit
formula for [ in terms of k can be solved explicitly as follows (Exercise 19).

For h=(V3+1)/2V?2,

- VE+ 1%\
(5.5.28i) H>:=(2hh')? = (x—z—x>
where
- 2
(5.5.28ii) xi= (2A9 3) +5 V3+2(0° -1)A- A

and
(5.5.28iii) A=V1+ TP+ 27,

In each case (s:=1%, #, §) the transformation from k to A can be
described very simply analytically. Consider the generalized singular value
function A% defined by

K{(AS(N)

Koy VN V>0

(5.5.29)

Then it transpires that in all three cases,

K(AN)  K'(AH(CN))
(5:530) VE FRwN) ~ KGN

C,:=4cos’ (ms) .
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(This can be verified from formulae in Goursat [1881].) In other words, the
Nth singular value of K is sent to the Nth, (N/2)th and (N/3)th singular
values of X, ,;, K,,,, and K, 4, respectively. Thus

12 + —12\ -1
(5.5.31i) (M) =21 (N)AT(N)
and
(5.5.31ii) IV =207 5 (V)AL (N),

while various singular values for K, are given in Exercise 19b). If we now
define «, by

__m cos(ms) (g_) s
(5.5.32) aS(N)—4Ks2 T3 ViR 1) k=)

s

we may use (5.5.5) and (5.5.6) to write

653 2= [0+, 00) | L2 L D]y
T n=0 (n?)

where

(5.5.341) a,(N):=[a,(N) - \/NAI‘Z(N)] cis';:;)

(5.5.34ii) b,(N):=VNV1= G.*(N) Tirrs)

while

G 2(N) :=2AX(N)AY(N) .

The details are left as Exercise 20. Now, with some perseverance, we can
derive series including Ramanujan’s missing formulae, which come with
si=gand N:=4 and 5 in (5.5.33) [See Exercise 20b).]

Finally, we observe that the result of Exercise 22 in combination with the
discussion of T values in Section 9.2 shows that the formulae for K, K.,
and K|, are in essence the only such formulae.

Comments and Exercises

In Section 13 of Ramanujan [14] one finds an explanation of series of the
form (5.5.13) without many details. Then in Section 14, with essentially no
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explanation, he gives his other 14 series. Hardy quoting Mordell (in
Ramanujan [62]) observes that “it is unfortunate that Ramanu!an has not
developed in detail the corresponding theories.” The explanatlo.n as pro-
vided by this section is a bit disappointing, since for all these theories, all we
have are well-concealed versions of the original theory for K. Nonetheless
we can explain all of the beautiful and mysterious series.

Prove the generalized Legendre identity of (5.5.6).
Prove Proposition 5.7.

Verify formulae (5.5.13) to (5.5.23).

Show that

bl 2o

% =§0 (~1)" &‘)((;')% (1123+21460n)(@> :

5. Show that

(%)"]3[(3 —V3)+12n]2 - V3)* .

n!

37 2 )[(;?] [(7 —2VB) + 28n] (V3 — V2)*"*? .

IS

I
e
T
()

7. Show that in (5.5.18)
L) =@28n+3)V3/9  J;'=(3)
while
£, (&) =(63n+5V6/3 J;'=(%&)
and
£ =(Q33n+8)9V3/4 J7'=(%).

8. Show that

o )= AT

9. Show that

w5 ) = § Z e[ SE e
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Jar

and

)

sl

M<1, ‘Z/%?’) 2 (84n+5)[(

10. Show that

2V2M(2Y4 2714 2( )" (12n+1)[

11. a) Show, using (5.5.13) with n:=7, that
- 42n+5
2 < ) 212n+4 .

This series of Ramanujan’s has the property that, as J. Holloway
has observed, it can be used to compute the millionth (binary)
digit of 1/7 without computing the first half million digits. Note
that the terms are exact binary fractions whose numerators grow
roughly like 2°" while the denominators are 4-2'*"

b) Observe that formula (5.5.23) can be recast as

1 2V2 < S (4n)!

1 )
™ 580 2, Ty [1103+26390n]< ) -

12. Use Exercise 6 of Section 1.3 to show that when re(c — a — b) >0,

i )I'(c—a-b)
I'(c—a)['(c—b)

LFi(a,b;¢c;1)=

[This is easy for re(c) >re(b)>0.]
13. Clausen’s product formula is

LFi(a,b;a+b+3;2)=,F,(a,a+b,2b;a+b+1,2a+2b;2).

Prove this by showing that both sides satisfy the same generalized
hypergeometric equation and are analytic at zero, with value 1 there.
14. Verify that

2 fl K(kydk _[™* f de df
o Vi-k* V1 - (sin® a sin® 9)

0 2= Va0 5 o (7)o
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Use Exercise 12 and Theorem 5.6(ai) to compute K(1/V2). Similarly
use Theorem 5.6(biv) to compute K(V2 —1). (Compare Section 1.6.)

a) Verify that
. . . 1+¢t 1—-¢t 3
i) sin (&x) = (¢sin x),F, Ty g8 ;sin” x
ii) arcsinx=x-,F,(3,%;%;x%)
iif) log (x + V1+x*)=x-,F(},3;3;-x").

b) Use Clausen’s product to deduce that

sin® (¢sin~! x) = ——;— i t)(2( )') (2x)™

¢) Similarly deduce Euler’s formula (Bromwich [26])

1 i (2x)*"
2, 2 ( 2n> .
n
n
[This is also the limiting case of b). See also Exercise 16 of Section
11.3.]
d) Find simijlar formulae for sinh[tlog(x+V1+x*)] and for

log (x + V1+ x?).
e) Establish that

s 2
arcsin x =

2log? <1+2\/_> =§1 <1;:>1
n
n

and that

f) Prove that

sin (7t) E ®,(-1),

Tt n=0 (n')
a) Prove that

]

1/2
fo log? (y + v1+y2)% =% >
n=1




1%
b)

18. Let

b)

19. a)

b)

20. a)

b)
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Show that the previous integral is £(3)/10. (See Exercises 12d)
and 12e) of Section 11.3.)

G,(x):=,F(a, Ca +1)/2; 2a +1; x).

From Clausen’s product, establish that

G,s=Gi o, BER.

Show that G_,,,(x)=(1+ V1 —x)/2. Thus

1+VI=x\™
.= (1)
2
(Note that G_,,, must be evaluated as a limit.)

Establish the solution of (5.5.28). Hint: x:=h'*/h” satisfies a
simpler cubic than A°
Now verify that the following solutions obtain:

i) G¥=2 gives H2*=1
i) g=(VZ+1) gives H2'=2

. 2(2 +V3)?
i) Gy*=Q2+V3) gives H3' = ~ 33
: 12 3 . 2 27
iv) g5 =V2(V3+1)’ gives H2 = >

5+1\*
v) Gii= 8<v— ) gives HX= 125

2 4

4V3+ 2

vi) gnn=(V3+V2) gives H2= (%) .

Hint: For iii) and vi) use the increasing form of (5.5.28), which
gives H,, in terms of G,. This entails changing the central sign in
(5.5.28ii).

Establish the general formula for = ' given by (5.5.33) and
(5.3.34).
Verify the following values of a,,(N) + nb;,(N):

i) N:=2 gives (6n+1)/3V3
i) N:=4 gives (60n+8)/27
iii) N:=5 gives (66n+8)/15V3.

Compute the values of a,,,(N) and b, ,((N) for N:=3 and N:=6.
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21. By comparing (5.5.33) with (5.5.16) or (5.5.18), verify the assertions
of (5.5.31) for various N.

22. a) Use Exercise 12 to establish that

K<_1_>_F(}¢+s/2)r(}¢—s/2)
B N

s cos (7s) .

V2
b) As in Exercise 15, compute K(A*(3)).

5.6 OTHER APPROXIMATIONS

We begin with equation (5.2.20), which we rewrite as

son  va[1-n 3 gy |- 2+ 2P RO

where k:= A*(p). Then this shows that

(5.6.2) %=@_E(_P) [&;k)]z

5 + O(k*Vp) .

Thus on approximating 2K/s by an algebraic quantity we produce various
approximations for 7. The simplest [which also follows from (5.2.15i)] is

(5.6.3) % =Vp— izpl + O(K*\/p) .

We do better, however, by using Theorem 5.7(a) to write

[—ZK;k) ] =1+ 3 (k') + O
so that
(564) % = \/ﬁ_ @ [2 + (kk’)z] + 0(k4\/ﬁ) )

Ramanujan [14] uses different estimates of 2K/a. Motivated perhaps by
symmetry considerations, he uses (3.2.16) to expand [2K(k)/w]* as
(1-2Kk*)"" + O(k*) and then (3.2.17) and (3.2.18) to obtain

[2K(k) ]2 _ 1— (kk')*
™ (1-2k")[1+ 1(kk')?]

+O(kY.
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Then his approximations to 7 are

m(p)i= >
P U — a(p)/12(1 - 2K7)]

(5.6.5)

with error O(vpe” ™7?), and

3
VP — [o(p)(4G* = D]/[(1 - 2k*)(8G* + 1)]

(5.6.6) m(p):=

with error O(v/ e >™7). (See Exercise 1.) Moreover, (5.6.5) and (5.6.6)
produce very simple approximations. Thus '

3(3+V9) 63(17 + 15V'5)
6.7 25) == d 25) = —————2
(-67) m(25) 5 and ™) = 5T+ 15v5)
The latter gives 11 digits of . Similarly,
84 145V37 + 1134
)= ——— d 37) =147 .
s 6”é§ )= avaoin @4 mBD 22399V/37 — 41916

(The values of « and o are not quadratic surds.) For even p it is better to
use

3
VP —[o(p)(dg™ + DI/[(1+ K°)(8g™ — 1))

(5.6.9) m(p) =

which is again an O(v/pe >"v?) approximation. Thus we derive

63V22(11 + 10V?2)

6.1 =
(5.6.10) m(22) = T+ 1045v2

An even more classical approximation to 7 is obtained through taking
logarithms of G,, or another invariant. Thus in the notation of the previous
section we may write that # is approximately equal to

|

(5.6.11i) 7 o8 (8GY)
. 2
(5.6.11ii) 7 los (8gn)
or
2 16
(5.6.12i —1 (—)
\ i) VN og Vu
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. 2 < 16)
(5.6.12ii) VN log o
or
1
.6. —= log (1728J) .
(5.6.13) v g (17287y)

We leave it to the reader to estimate the error in each expression. (See
Exercise 4.) For example, when N := 58, (5.6.11ii) produces

(5

which gives 10 digits of 7. Not surprisingly, Ramanujan [14] gives a host of
examples of this kind. When the invariant is large these give very good
algebraic approximations for e”. Following Shanks [82] one can take this
analysis considerably further. In (3.2.9) we gave g-product formulae for
various invariants. Thus (3.1.4) and (3.2.9if) yield

G619 xim AV = (15) =a T+ )

and there is a similar expression for (kk'/ 4)*>. We may expand this product as
a power series and compute as many terms as we wish of its reversion. This
will produce a series of the form

(5.6.15) g =x—24x" +852x> —35744x* + - - -

We may also take logarithms in (5.6.14). Then we can write

© © _1 k+1 _
log x+ VN7 =242, log(1+q") =242, %q"(l—q") '
n=1 k=1
(5.6.16)

which may be expanded as a power series in g. When we substitute (5.6.15)
into (5.6.16) we will recursively compute

(5.6.17) log (|x]) + VNm =: i (-1 Enﬂx"

n=1

for a fixed sequence {a,}. Indeed a, :=1, a, =47, a, = 2488, a, := 138799,
as:=7976456, and ag:=467232200. In fact one can show (Newman and
Shanks [84]) that 24a, is the coefficient of ¢" in II;_, (1+ gy,
Moreover, 24a, < 64". A now standard trick of replacing g by —g shows that
(5.6.17) still holds for x := —(kk'/ 4)% In Shanks [82] several large invariants
are computed (including gss, and G,;3,) to which (5.6.17) may be applied.
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Each series adds roughly 7V N log, e digits a term. Hence when we use g 45
given in (4.7.14), we gain more than 90 digits a term! But of course we have
to compute the logarithm as well. Thus in our context the formula should be
viewed as a rapid series for log (|x|) + VN7, not as a computation of r.

Comments and Exercises

Approximations (5.6.5) and (5.6.6) were the reason why Ramanujan com-
puted R,. He did not give (5.6.9). Many very large invariants, including
Glarss G19947, and G,,,ss are derived in Shanks [82].

1. a) Establish that (5.6.5) and (5.6.6) have the claimed errors without
using the rather deep formulae (3.2.16) to (3.2.18).
b) Show, using (3.2.16) to (3.2.18), that

m(p) — m~8me ™P(mVp — 3)
and
m,(p) — m~24me *™VP(10m/p — 31) .
2. a) Use (5.6.5) and (5.6.6.) to deduce that

+ 103V13 + 125
g’@ and 7T2(13) = T .

b) Verify (5.6.7) and (5.6.8).
¢) Verify that (5.6.9) has the claimed error.
d) Show that

m(13) =

180 + 52V3
45V93 +39V31 — 201V3 —217 °

3. a) For even p, the estimate

m(93) =

3
VP — o(p)2(1+ k%)

7(p) =

will often be cleaner than m,(p). It also gives O(vpe ™P) error
in estimation of .

b) Obtain
66V?2 6V22
58)= — V<L d = _ovee
o= Gvmos ™M D=3

¢) Compute 7,(58) and m,(22).

b)

b)
)
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Estimate the error in each of (5.6.11), (5.6.12), and (5.6.13).
[Compare (2.5.15).]
Use (5.6.12) to estimate 7 by

4
—\/—S_glog(396) and ————10g(84\/_ ).

Show that

ﬂ

* = 64q + 15364 + 19200 + - - -
and

64g> =q ' — 24 + 276 —20484° + - - -

with similar expressions for G**
Thus

64(g% + g +24=e™N 44372V 4 ...
and

64(GY + Gy —24=e™N + 4372V 4+ ...

When g, or G, is a quadratic surd, this gives an expression for the

integer part of e™ N (and the proximate (’s or 9’s). Thus the
integer part of e™V s 2,508,951. That of e™ ¥ is 199,148,647, and
that of eV s 24,591,257,751.

Show as discovered by Beukers that, with {a,} as in (5.6.17),
T 1 S (kK

: _ _ "2 nr

i) [2K(k)] = V1= (2kK') [”242 “n( 4 ) ]

ii) [TTI()] (1+k)[1+242( 1)a< :2)2]

Combine ai) and Theorem 5.7(ai) to produce a recursion for {a,}.
Show that a, is an integer.

A variety of other approximations to 7 and to p, the perimeter of an
ellipse, can be found in Chapter 18 of Ramanujan’s second notebook
and in Ramanujan [14]. For example, given an ellipse of major axis a,
minor axis b, and eccentricity k := (b/a)’, he gives

i) p=2ma,Fi(},—5; LK) =m(a+b),F (-}, — 1150

where t:=[(a — b)/(a + b)]>. Then, as t—>0,
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iii)

b)
©)
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p ~mw[3(a+ b)—V(@Ba+ b)(3b + a)]

and
p~m(a+ b)[1+31(10 + V4=31)"""?]

where the error in ii) is about 2% and the error in iii) is about
3-27"F, This is pleasantly developed in Almgqvist and Berndt [Pr1]
and in Berndt [Pr]. Truncating the approximation in iii) leads to

p~m(a+b)l+ %t]2

with an error about 27’ This is due to Nyvoll [78].

a) Prove i).
b) Justify the error estimates in ii), iii), and iv).

One may avoid the Landen transform in a) by following Ivory
[1796]. We write

T k2 1/2
p =4aE(k) =2aj [1 -5 (1—cos 20)] de

0

=(a+ b) J'O (1+t1/262i0)1/2(1+ t1/26—2i9)1/2 d0

(_ %)m(_ %)n t(m+n)/2
m!n!

=(a +b) i (-1)"*"

m,n=0

| e ap.
0
Combine (5.1.2) and (5.2.14) to derive that
p =4aE(k)~2ma[M, (k, f) — M,(k, f)e,(k, f)] as k—0
where W, (k% %) =0.

Show that the error is roughly of order ak™.
Deduce that to order ak®,

5 <a2+b2)
p 4 a+b

and to order aks,

) (Lb_)z .
P2\ a+Vb '
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d) Use the cubic identities to establish that
p~ ma[3m™(r) + m(r) — 2]
when k = A*(r). Thus, with order ak®,

k:=V2-1 gives 2ma(5V6—-6V3—-T7V2+09)

and 2kk':=V5-2 gives wa[32+V3){/(2V5-2V3-1)
+V(@2V5+2V3+1)-2].

9. In the notation of the AGM iteration let k:=cy/a, and let x> :=

cn+1/an+1'

a) Establish that

_ KK

= 1+V1—x!
> %log(——x")+log<2)
n=1

1
b) Let x:=(x;/2)" so that x =[1(1-Vk’)/(1+Vk')]* and

K'(k) 1 26 , 368 4
W—K(k) = 4logx 2x > X 3 X +

¢) Thus with k:= A*(r) one has another estimate for =7 with x of
order e *™”. When r:=1, x = £[(2""* - 1)¥(2"* + 1)]*, and the
given terms yield 19 digits of 7.

From our point of view possibly the most remarkable result in Chapter 18
of Ramanujan’s second notebook is the following continued fraction identity
given in entry 12. Let n> 0 be fixed. Define

e B (20) (3p) (4)’
n+ n+ n+ n+ n+

A (e, B)i=

for @, B >0. Then

+

a A(B, a
B ap) - 2xle B) £ A.(6.0)

(5.6.18) A,,(“ >

2

whenever 8 > a >0 and

AG(B, VB —a?)=1
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[or, equivalently, whenever K(a/B) = (w/2)B]. Even more surprisingly, a
slight adjustment of the proof given in Berndt [Pr] shows that (5.6.18) holds
for all a, B>0.

10.

(The moments of K and E) Let

and

b)

d)
€)

f)

1
K,:= fo k'K (k) dk

1
E, := fo K"E(k) dk .

Use the differential equations for K and E to establish that

% _nK, +E,
)
and
E - K,+1
)
Show that
w2 L w/2
6 1 f 2n+1
= = d
Ko fo sin0d0 202n+1 o 8 6 do

(2:)(2“1)2 |

Use contour integration of 8/sin 8 (on the infinite rectangle above
[0, w/2]) to deduce that

oy (D
Ko —220 (2n + 1)

which is twice Catalan’s constant, 8(2) or G.

Establish that K, =1, E, = %, and E, = 3 + B(2).

Observe that all the odd moments are rational while each even
moment is of the form a + bB(2) with a and b rational. Thus all
moments lie in Q(B(2)).

Analogously define K, and E;. Determine recursions for these
conjugate moments. Show that K,= 7"/4 and E;= w*/8. Com-
pute K| and E}.

5.6 Other Approximations

g) Use the quadratic transformations to show that

1
Kk) ., 1 .
ol+kdk_§K°_?'

h) Show that

fm O 4p-1 ud
. S =3 BQ) - g log(2+V3).
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Chapter Six

The Complexity of
Algebraic Functions

Abstract. The aim of this chapter is to analyze the complexity of algebra?c
functions in general; and of multiplication, division, and root extraction in
particular. There are two primary tools, Newton’s method and the fast

Fourier transform.

6.1 COMPLEXITY CONCERNS

It is obviously inappropriate to consider the multiplication of two many-
thousand-digit numbers to be of equal difficulty to the multiplication of two
single-digit numbers. A reasonable measure of complexity that takes this
into account is the bit complexity. The bir complexity of an algorithm is the
number of single-digit operations required to terminate the algoriFhm.
Single-digit operations include addition, multiplication, logical comparison,
and storage and retrieval of single-digit numbers. We are exclusively inter-
ested in how the complexity increases with the size of the problem. qu
example, addition of two n-digit integers by the usual algorithm has l_)lt
complexity O,(n)—the subscript B on the order symbol is for empha51§.
This is a serial notion of complexity in the sense that on a serial machine it is
an appropriate asymptotic measure of the time required for the calculation.
We use the slightly nonstandard notation

a, ={b,)
if
a,=0(,) and b,=0(a,).
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If a, =Q(b,), we say that {a,} and {b,} are equivalent. Since accessing an
n-digit number requires {}(n) bit operations, it is apparent that “usual”
addition of two n-digit integers is in fact {}(rn). These trivial lower bounds
are a consequence of uniqueness considerations—if we change any digit of
one of the numbers being added, we change the answer. Thus any algorithm
for addition must at least “inspect” every digit. So, up to a constant, usual
additon is asymptotically optimal. As we shall see later, one of the interest-
ing consequences of this body of theory is that “usual” multiplication is far
from asymptotically optimal.

A detailed approach to complexity requires a model of computation and
is perhaps most readily made rigorous in an analysis of Turing machines.
(See, for example, Aho, Hopcroft, and Ullman [74].) This much detail is
unnecessary for our purposes.

We will usually content ourselves with merely counting single-digit addi-
tions and multiplications. In all the algorithms we present the comparisons
[note that the comparison of two n-digit numbers is ,(n)] and the storage
concerns will be bounded by the arithmetic operations—provided the al-
gorithms are sensibly implemented. This is almost always transparent and
will rarely even elicit comment.

Operational complexity counts the number of operations (addition, multi-
plication, division, and extraction of kth roots performed to a precision
bounded by the precision of the output). When all the operations in an
algorithm are performed to roughly the same precision, this is a useful
measure. The reasons for the particular choice of operations will be made
apparent in Section 6.4. Thus the algorithms of Chapter 5 compute » digits
of 7 with operational complexity O, (log n); once again the subscript on the
order symbol is for emphasis.

Comments and Exercises

One of the primary tools for the analysis of algorithms is the use of recursive
functions. The idea is to divide a problem into smaller subproblems that can
be solved by essentially the same technique and then recurse, a strategy
often called ‘“‘divide and conquer.” The reader unfamiliar with this approach
might like to examine the exercises. One of the lessons of complexity theory
is that many of the usual algorithms of mathematics are far from optimal.
Multiplication, taking Fourier transforms, and matrix multiplication are
but three examples. (See Exercise 3 and the next section.) A second lesson
is that good lower bounds are very difficult to obtain. For the analytic
algorithms we are considering, the only lower bounds we can establish are
the trivial ones. Thus unless the algorithm is of the same order, as is the case
for addition, we cannot achieve exact results.

We shall not discuss combinatorial complexity except to mention that an
introduction to this well-developed and important field may be found in
Aho, Hopcroft, and Ullman [74].
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1. Prove the following. Let a, b >0 and ¢ > 1. Suppose that f is monotone
on (0, ).

a) If f(n)<af(n/c)+ bn and f(1) = d, then
f(n)=0(n) ifa<c
f(n) = O(nlog n) ifa=c
f(n) = O(n'%*) ifa>c.

b) If f(n) < af(n/a) + bn(log n)°""' and f(1) = d, then

f(n) = O(n(log n)°) .

Hint: Analyze a) with equality. Then establish the general principle
that the equality solution is the maximal solution.

2. Show that the usual algorithms for multiplying and adding two n X n
matrices have complexity Qop(n3) and Qop(nz), respectively. (We are
counting the number of multiplications and additions of the entries of
the matrices.)

3. (Fast matrix multiplication (Strassen 1969))

a) Show that

|:A11 AIZ][BII B12]=[C11 CIZ]
A21 A22 B21 B22

can be computed from

M, =(A,— Ap)(By + By)
M,=(A; +Ay)(By + By)
M;=(A — A,)(By + By,)
M,=(A, +A,)By
M;= A, (B, — By,)
Mg = Ay,(B, — Byy)
M;=(A,; +Ay)B;,

and
Ch=M +M,—-M,+M,
C,=M,+ M,
Ci=M+M,
Cpo=M,—M,+M,— M,.

b) Observe that the above method reduces the multiplication of
2n X 2n matrices to 7 multiplications and 18 additions of n X n
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matrices. Thus if W(n) is the operational complexity of multiplying
two n X n matrices, then by iterating the procedure in a)

W(2n) <7W(n) + an®.

The final term comes from using usual matrix addition for the 18
additions. The constant a can be chosen independent of # and can
be used to include the “overhead” of actually breaking the problem
up. Use the above inequality to show that

W(n) = Oop(n1°g27) .

Note that log,7 =2.81, so the above method is asymptotically faster

than the usual method. [Extensions of this method can reduce the

bound for multiplication down at least to O(n*°~), much as in

Knuth [81]. The best lower bound known is the trivial one, cn’]
Suppose A is a nonsingular 2 X 2n triangular matrix. Write

(B 0 )
A= < C D
where B, C, and D are n X n matrices.
a) Show that B™' and D" exist, and that
- B! 0
ATl = < ~lpp-1 —1) .
-D °CB D

b) Show that a) iterates to produce an algorithm for inverting 2™ x 2™
triangular matrices. Let I(n) be the operational complexity of this
algorithm. Show with W(n) as in Exercise 3 that

1(2n) <2W(n) + 2I(n) + cn?
and hence that
I(n) = O(W(n)) = O(n'°%") .

(One can show that in general matrix inversion and matrix multipli-
cation are asymptotically equivalent. See Aho, Hopcroft, and Ul-
Iman [74].)

Show that the bit complexity of calculating n! by multiplying 1 X 2 X 3 x
-+ using usual multiplication is Q((n log n)*).

Hint: Analyze the complexity of multiplying an n-digit number by an
m-digit number. Use Stirling’s formula to estimate the number of digits
in k!. Exercise 10 of Section 6.4 explores this further.
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6.2 THE FAST FOURIER TRANSFORM (FFT)

Let w be a primitive (n + 1)th root of unity either in C or in a finite field F, ,
thatis, w""' =1 and w* # 1 for k<n + 1. In the complex case we may take
wi= ez’”/("“) Consider the following two problems.

INTERPOLATION PROBLEM. Given n+ 1 numbers «a, ..., a,, find the coef-
ficients of the unique polynomial p,(z) :=a,+ a;z+---+ a,z" of degree n
that satisfies

p.(W)=q O=si<n+1.

EVALUATION PROBLEM. Given the coefficients of a polynomial p, of degree
n, calculate the n + 1 values

p, (W) O=i<n+1.

These are the two directions of the finite or discrete Fourier transform.
The classical approaches to either part of the Fourier transform problem
have operational complexity at least ¢n”. This is the operational complexity,
for example, of evaluating p, at n+ 1 points using Horner’s rule [writing
P.(x)=((a,x+a,_)x+a,_,)x+---)]. We wish to prove that, in fact,
both directions can be solved with complexity O, (nlogn). Actually, we
only treat the case n+ 1:=¢2", which is sufﬁc1ent for our purposes and
somewhat simpler.

Theorem 6.1 (Fast Fourier Transform)

If n+1=c2" with ¢ an integral constant, then both the interpolation and
the evaluation problem have operational complexity O, (r log n).

Proof. We assume ¢ =1, that is, n + 1=2", the case for general c is
entirely analogous. We treat evaluation first. Suppose

px)i=ay+---+ax".
Let
g(x*):i=ay+ ax* +axt+---+ a, x"7*
and

xr(x®):=x(a, + ax* + - +ax""").

Then with y := x?,
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(6.2.1) p(x)=xr(y)+ q(y)

where r and g are both polynomials of degree 2™ ' — 1. The observation
that makes the proof work is that for w an (n + 1)th root of unity,

(wi)Z — (w(n+1)/2+i)2 )

Hence, evaluating p(x) at the n + 1 roots of unity in (6.2.1) reduces to
evaluating r and g each at the (n + 1)/2 points (w?)", (W*)% ..., (W?)"*D"2
and amalgamating the results. Observe that w” is a primitive (2" Hth root
of unity and we can iterate this process. Let F(2™) be the number of
additions and multlpllcatlons requlred to evaluate a polynomial of degree
2™ —1 at the 2™ points w*, k=1,...,2™ where wis a primitive (2™ )th root
of unity. As above,

(6.2.2) F(2™)=2FQ2" Y +2-2"  F1)=0.

The final term comes from the smgle addition and multiplication required to
calculate each p(w’) from r(w”*) and g(w*). The recursion (6.2.2) solves as

(6.2.3) F™y=2""-m
and the bound for the evaluation problem follows.

The interpolation problem is equivalent to evaluation. This can be seen
as follows. Let w be a primitive (n + 1)th root of unity and let

1 1 1 1
w w* . w"
(6.2.4) we= 1 w w .. W
1 "V’l Wzn wnz
Then
1 1 1 1
) 1 owtow? W
(6.2.5) W= 1 1w owt L e
i w " w_z" - “.,""2

and w™' is also a primitive (n + 1)th root of unity. (See Exercise 4.) The
interpolation problem can be written as: Find (a,, . . ., a,) so that

W(ay,...,a,)=(ay,...,,)-
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However, this can be solved by

W ey, ..., a,)=(ag,.--,a,)
which is exactly the evaluation problem. 0O

While restricting the FFT to powers of 2 poses no problem for us over C,
it is a nuisance over finite fields. The problem is that F,, has primitive kth
roots if and only if k divides m — 1. Hence, our approach is restricted in the
finite case to considering primes of the form m = c2* + 1, which are not
particularly abundant. There are many ways around this difficulty. This is
discussed in Winograd [80].

Comments and Exercises

The FFT is an enormously useful and widely used algorithm. Depending on
exact form and implementation, it can outperform traditional methods for
values of n well below 100. For a history of the FFT consult Cooley, Lewis,
and Welch [67]. While antecedents for FFT methods are plentiful, Cooley
and Tukey [65] are primarily responsible for introducing the FFT in its
modern form as a complexity-reduced method. More extended disucssion of
the FFT and related matters may be found in Aho, Hopcroft, and Ullman
[74] and Winograd [80]. As a theoretical tool the FFT and related methods
are central. They form the basis for the next section’s discussion of fast
multiplication. In the exercises we show how these ideas can be used to
construct asymptotically fast polynomial multiplication, division, and inter-
polation algorithms. It is even possible to accelerate integer factoring
algorithms by FFT methods. In Chapter 10 an application to the estimation
of certain transcendental functions is provided. Our proof of Theorem 6.1
and some of the exercises follow Borodin and Munro [75].

1. a) (Fast polynomial multiplication) Consider the following algorithm
for multiplying polynomials. Given the coefficients of p and g (both
of degree =n — 1), compute the coefﬁc1ents of pq as follows:

Step 1: Evaluate p and g at 2n points w', , w™" where wis a
primitive (2n)th root of unity.*
Step 2: Form the 2n products

pwHg(w')  i=1,....,2n.
Step 3: Solve the interpolation problem for pg to find the

coefficients.
Show, using an FFT, that the above algorithm has operational

complexity

O, (nlogn).

* Strictly speaking, we should be using (2™)th roots of unity where we have established an
FFT. This can be arranged by padding with leading zero terms, if necessary, without changing
the order of complexity.
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[The usual convolution product algorithm has operational complexi-
ty Q(n*).]
b) Given

p@:=116-x)

show that the coefficients of p can be calculated in Oop(n(log n)?).
Hint: Treat the problem recursively and recombine the pieces using
a fast polynomial multiplication.

(Fast polynomial division) Given p of degree n and q of degree m < n,
both with integer coefficients, it is possible to find u and r with
deg r < deg ¢ so that

p(x) = u(x)q(x) + r(x)

in O,,(nlog n).
Outline: Simplify by observing that it suffices to calculate u since r may
then be computed by Exercise 1. Set x :=1/x. Then

p(1/x) _ (1>+ r(1/x)

q(1/x) ~ \x/ " g(1/x)

and so

R .+

where h = 1. To calculate & (and hence u) it suffices to calculate the first
n—m (=degu) Taylor coefficients of 1/g. This can be done by
Newton’s method as follows. Suppose that deg s, =j— 1 and that

q( y TS0 = O(x').

Establish that
q( ) — [25,(x) = s{ (x)g(x)] = -( ) [1-5,(x)g()]* = O(Y).

[Note that we may assume g(0) # 0.] Now the computation of s, , := 25, —
s7q can be performed usmg an FFT-based polynomial multlphcatlon and
need only be performed using the first 2j — 1 coefficients of ¢ and s,. By
starting with an appropriate first estimate of s, [say, sy(x):=1/ q(O)] and
proceeding inductively as above (doubling the number of coefficients
utilized at each stage), show that the required number of terms of the
expansion can be calculated in O, (n log n). (See Section 6.4.)
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(Fast polynomial evaluation) Given p of degree n and n+1 distinct
points x,, . . . , X,, show that p(x,), ..., p(x,) can all be evaluated in
0,,(n(log n)?).

Hint: Let q,(x) =17/27" (x — x;) and let r, be the remainder on dividing
p by gq,. Note that r (x;)=p(x;) for i<n/2. Similarly use
q,(x):=1I.,, (x — x;). Thus two divisions reduces the problem to two
problems of half the size. Use Exercise 2 and evaluate the recursion.
[The other direction of this problem, namely, constructing Lagrange
interpolating polynomials, is also O, (n(log n)?). See, for example,
Borodin and Munro [75]. In fact, both directions are Q (n log n).]
Show that if w is a primitive (# + 1)th root of unity, then

iwij={n+l j=0mod (n+1)

io 0 otherwise .

Show that (6.2.4) and (6.2.5) are inverse to each other.

(Reversion of power series) Let f(x):=ZL;_, a,x* be a formal power
series, with known coefficients.

a) Show, as in the proof of Exercise 2, that the first n coefficients of
the formal series expansion of 1/f(x) can be computed in
0,,(nlogn).

b) Discuss the complexity of computing the coefficients of the formal
inverse of f by Newton’s method.

(On calculating x*) The S-and-X binary method for calculating x” is
the following rule. Suppose n has binary representation 6,6,6, - -,
with 8, =1. Given symbols § and X, define

S = { SX if 8,=1
PTLS if 8=0
and construct the sequence
S8, Sk

Now let S be the operation of squaring and let X be the operation of

multiplying by x. Let the sequence of operations S,S,--- S, operate

from left to right beginning with x. For example, for n =27,
8,6,6,8;,6, =11011

and

5,5,5,8, = (SX)(S)(SX)(S5X) .
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. 27 -
The sequence of calculations for x°’ is then
2 3
B T e A e A i

a) Prove that the above method computes x” and observe that it only
requires storing x, »n, and one partial product.

b) Show that the number of multiplications is less than 2|log, n].

c) Show that the above method is optimal for the computation of x°
(considering only multiplications).

d) Show that the S-and-X method is not optimal for computing x°.

An extended discussion of this interesting and old problem is presented
in Knuth [81].

6.3 FAST MULTIPLICATION

We wish to present a strategy for multiplying very large numbers that is
considerably faster than the usual O4(n*) method. The idea is to exploit the
FFT. Let « and B be two n-digit integers and write

(6.3.1) a(x):=a"x"_1+an_1x"_2+... +a,
and
(6'32) B(x)::b"x"_l-{- bn—lx"_2+”'+b1 .

Then if @, and b, are the decimal digits of o and B, respectively, we have

(6.3.3) a = a(10) and B = B(10).
We can now calculate « - 8 by using the FFT, as in Exercise 1 of the last
section, to compute the coefficients of

(6.3.4) ¥(x) = a(x)B(x).

Finally we evaluate y(10).

Let T(n) denote the bit complexity of multiplying two n-digit integers (or
equivalently, floating point numbers) by the above method.

The analysis of the complexity of the algorithm that follows assumes that
we are working with complex roots of unity (and that we are working with a
problem of size 2™, as can always be arranged by padding with leading
zeros). This introduces rounding error problems into an intrinsically integer .
algorithm; however, this is the setting which we have established an
abundance of values for which the FFT works. Since in practice (and in
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theory) there are plenty of FFT analogues in a finite setting, one may, if one
prefers, consider the entire algorithm performed mod (O(n)). .
Step 1:. Evaluate a(x) and B(x) to precision O(log n)_at the 2 points
w' wip. .., w?" with w a primitive (2n)th root of unity. Using the FFT, this
"has operational complexity
0,,(nlogn)

and bit complexity

(6.3.5) O,(n(log n)T(log n)) .

[It suffices to use w to precision O(log n) and thus every multiplica}tion in
Theorem 6.1 is of complexity Oy(T(log n)). Observe that the coefficients of
« and B are single-digit numbers and that the coefficients of y are hence

O(log n)-digit numbers. See Exercise 3]
Step 2: Form the 2n products

y(w') = a(w)B(w)
computed to O(log n) digit precision. This is of bit complexity
(6.3.6) Oz (nT(log n)) .

Step 3: Interpolate the coefficients of y to precision O(log n) using the
FFT. This has operational complexity

0,,(nlogn)
and bit complexity, as before,
(6.3.7) : O(n(log n)T(log n)) .
Step 4: Evaluate y(10). This has bit complexity
(6.3.8) Og(n) .
This step essentially requires only addition. The coefficients of y are closely

related to the digits of & except that they may be too large and a “carry”

must be performed.
The total complexity thus satisfies
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(6.3.9) T(n) = Oz(n(log n) T(log n))
or
(6.3.10) T(n) = O z(n(log n)*(log(log n))*- - +)

with the product terminating when the iterated log is less than 1.
This is not optimal. (See Exercise 2.) The same analysis as above using a
base n representation of a and S reduces the time for multiplication to

Og(n(log n)(loglogn)- ).

This is still not quite the asymptotically fastest known algorithm. The best
bound is due to Schénhage and Strassen {71] and is

Op(n(log n)(log log n)) .

We shall call any multiplication that performs with this speed a Schénhage—
Strassen multiplication. It should be emphasized that in all the reduced
complexity multiplications we present, the order estimates include the
overhead additions (and storage concerns).

Comments and Exercises

The observation that multiplication is not intrinsically O ,(n*) was made by
Karatsuba in 1962. He proposed an O,4(n'°®?*) algorithm. (See Exercise 1)
Subsequent refinements and improvements are due to Toom, Cook,
Schonhage, Strassen, and others, culminating in the Schdnhage—Strassen
multiplication of 1971. This algorithm is of the same flavour as the one
presented above using size 2" representations and performing FFT opera-
tions mod(2*¥” + 1). A presentation may be found in Aho, Hopcroft, and
Ullman [74]. Knuth [81] has an extended discussion of multiplication
strategies which includes a discussion of the precision concerns of perform-
ing a fast multiplication over C. Cook and Aanderaa [69] conjecture that
multiplication is not Oy(n). Here one must be careful about the model of
computation allowed. Under some more powerful than usual models O 4(n)
multiplication is possible (see Knuth [81]), while under other more restric-
tive than usual models it can be shown to be not possible.

Once again it is possible to implement a fast multiplication that will
outperform traditional methods for 7 in the several hundred-digit range. For
the many million-digit calculations of 7 discussed in Chapter 11, use of a fast
multiplication is imperative. For a discussion of the multiplication used in
this setting see Tamura and Kanada [Pr] and Bailey [Pr].
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1. (An Og4(n'%?*) multiplication) Observe that

(a + b10™)(c + d10™) = ac + [(a — b)(d — ¢) + ac + bd]10" + bd10™".

Use this to reduce multiplication of 2n-digit numbers to three multipli-
cations of n-digit numbers and some additions. Show that this can be
used to produce a multiplication of

OB (n log23) .

[This method can be refined to produce an O,(n'*®) algorithm; details
are in Knuth [81].]
2. Construct a multiplication of complexity

Oz(n(log n)(loglog n)- --) .

Hint: Instead of using base 10 representations, use base n represen-
tations so that the polynomials (6.3.1) and (6.3.2) are polynomials of
degree n with coefficients of length logn. Now proceed as in the
algorithm of this section.

3. Discuss the bit complexity of the FFT. Show that if the input is given to
precision O(m) and the output is required to precision O(m), the bit
complexity is

Op((n log n) M(m))

where M(m) is the complexity of whatever multiplication is employed.

6.4 NEWION’S METHOD AND THE COMPLEXITY OF
ALGEBRAIC FUNCTIONS

We wish to show the equivalence, from a complexity point of view, of
multiplication, division, and root extraction. The primary tool is Newton’s
method.

Theorem 6.2

Suppose that fis analytic in a complex neighbourhood of z. Suppose f(z) =0
and f(z) #0. Then the iteration

(6.4.1) X, =X _ )

n+1 n f(x,,)
converges uniformly quadratically to z for initial values x, in some neigh-
bourhood of z.
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The reader unfamiliar with the proof is directed to Exercise 1. Newton’s
method is useful for calculating inverse functions. Observe that g ~'(y) is a
zero of f(x) = g(x) — y. This is the content of the corollary. The uniform
nature of the convergence is discussed in the exercises.

Corollary 6.1

Suppose that f is analytic and one to one in a neighbourhood of z,. Then
there is a neighbourhood of f(z,) where f™* can be computed uniformly
quadratically by Newton’s method.

The quadratic nature of the convergence is only half the story. The other
half is the “self-correcting” nature of Newton’s method. Suppose that
f(z) =0 and that we are computing z by Newton’s method. If the nth iterate
x, is perturbed by an amount O(|x, — z|), then provided we stay in the
domain of uniform quadratic convergence, computing x,,, from the pertur-
bed value of x, will preserve quadratic convergence. In other words, if
x, — z agree through M digits, then the calculation of x,,; need only be
performed to precision 2M.

Let M(n) denote the bit complexity of multiplication of two n-digit
numbers by some method. We make the following regularity assumptions:

2M(n) = MQ2n) =4M(n) and M(n) is nondecreasing .
(6.4.2)

Since two multiplications of length n can be viewed as subproducts of a
single multiplication of length 2, while four multiplications of length n
comprise one of length 27, the first part of the assumption is reasonable.
Since multiplications of length n can be padded with leading zeros to
multiplications of length n + k, the second part is also reasonable. Of course
it is easy to imagine a perversely designed multiplication for which (6.4.2)
does not hold.

Let D(n) and R(n), respectively, denote the bit complexity of division
and extraction of square roots, where the input and output are to precision
n. We say that two operations are equivalent if the complexity of one is
bounded by the complexity of the other and conversely. For example, we
say multiplication and division are equivalent if, given a multiplication with
bit complexity M(n), we can construct a division with bit complexity
D(n) = O(M(n)); and conversely, given a division we can so construct a
multiplication. The following remarkable theorem, the first part of which is
due to Cook, may be found in Brent [76c¢].

Theorem 6.3

Multiplication, division, and root extraction are all equivalent.
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Proof.

(a) We first construct a division. Applying Newton’s method to the
function f(x) :=1/x — y leads to the iteration

(6.4.3) Xpo1 i =2%, — X2y

which employs only multiplication and addition. Note that

' 1 1\
(6.4.4) Xe+1 ™ ; = _}’<xk - ;)

and the quadratic nature of the convergence is manifest. We assume
|y|=1 and that y lies in a neighbourhood V bounded away from zero
(which if we are working in floating point, is no restriction). We may
also assume that, by using a usual O,(n*) division performed to a
fixed low precision, we have already computed Xy :=x4(y), so that
|xo—1/y] <1/10. Assume n is a power of 2. Then log, n itera-
tions of (6.4.3) will by (6.4.4) produce an error bounded by

(-2

and hence provide n digits of 1/y. Furthermore, by the self-correcting
nature of Newton’s method, the kth step of (6.4.3) requires two
multiplications and two additions of precision only 2*. Thus the total
complexity of the iteration is given by

=107"

logyn
(6.4.5) > [2M(2%) + 22X = 8M(n)
k=1
since 2M(2*) < M(2**'). We have shown that 1/ y can be calculated
with complexity Oz(M(n)). Hence since a/b=a-(1/b),
D(n) = O5(M(n)) .

(b) The equivalence of division and multiplication is now obvious since

a

ab=m.

(¢) Square roots can be extracted by Newton’s method applied to x* — y,
which yields the classical iteration

1
(6.4.6) Xpa1'= 5 <xk + —y—> .
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This satisfies

1
(6.4.7) X —VY= 2%, (xe — W)z
k

and the quadratic convergence is again apparent. We can proceed
exactly as in (a) to show that

R(n) = 05(D(m)) = O5(M(n)) .
(d) The proof that
M(n) = Op(R(n))

is Exercise 7. O

It is apparent that any time a function may be quadratically computed by
Newton’s method from an iteration involving only addition, multiplication,
and division, that function will be of complexity O,(M(n)). This applies to
any algebraic function over Q(x), that is, any function f satisfying an
equation

(6.4.8) (x, f(x)) =0

where @ is a polynomial in two variables with rational coefficients. More
precisely:

Theorem 6.4

If f is algebraic over Q(x), then the complexity of calculating n digits of f(x)
is Oz(M(n)).

The preceding results, of course, assume that we are avoiding the branch
points of the function in question.

Comments and Exercises

Newton’s method has a host of refinements and variants. See, for example,
Householder [70] and Exercise 3. The iteration for square roots can in some
form be traced back to the Babylonians, who used one or two steps of the
method.

It should be observed that not only is D(n) = O,(M(n)), but the constant
concealed by the order sign is fairly small. [From (6.4.5) we see that a
constant 8 works. Indeed, for all known multiplications, the additions term
is negligible and a constant of 4 is appropriate.] This is also the case for root



216

The Complexity of Algebraic Functions

extraction. See Brent [76¢], where a number of constants for these and
various other equivalences, as in Exercise 7, are established.

Further discussion of the calculation of algebraic functions may be found

in Kung and Traub [78]. Related matters may also be pursued in Lipson

[81].

1.

a) Prove Theorem 6.1 by observing that
fx,) = f(2) + (x, = 2)f(z) + O(x, — 2)" .

Substitute this into (6.4.1) to get

Xy —2=(x,— z)[%)ﬂz—)] +0(x, — 2)°.

Use explicit estimates to prove uniformity.

b) Show that for real f and real x,,, the tangent to f at x,, intersects the
x axis at x,, ;.

¢) Suppose that f is convex and strictly increasing on [a, b] and that
f(x) =0 for some x in (a, b). Show that if b= x,>x, then {x,}
decreases to x and convergence is guaranteed.

Construct the Newton iteration for y'”” by inverting x?. Write x,,, —
y'? in terms of (x, — y'"?)? thus exhibiting explicitly the quadratic
convergence. For which real starting values does the method converge?

a) Consider the iteration

_ whH®
Ve = Vet (04 1) oo |,

where the notation indicates that the derivatives are evaluated at
y.. For sufficiently well-behaved (for example, analytic) f, this
method will find a zero of f with (n + 2)th-order convergence
provided various derivatives are nonvanishing. Prove these asser-
tions. For n:=0 this is just Newton’s method, for n:=1 it is
Halley’s method. (See Householder {70].)

b) Let

X =X 1+ (A —yx )+ (1- yxk)z) .

1 ) 1\’
xk+1_; =Y xk_;

and that for x, sufficiently close to 1/y, x, converges cubically to
1/y.

Show that
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c) Let

Xpar = §%,(15— 10xiy +3y2xi .

Show that
Y —1=%& (9y%x; — 33yx2 + 64)(yx2 — 1)°

and that for x, sufficiently close to 1/7/y, x, converges cubically to
1/y.

d) Show that b) and c) require fewer multiplications than (6.4.3) or
(6.4.6) for computation of reciprocals and square roots. These
are, in practice, very good high precision algorithms.

Let x,:=1 and let
Xpar "= 2%, — xix

bek ;[Pe iteration (6.4.3) for computing 1/x. Show that X1 is the
(2. — 1)th Taylor polynomial of f(x):=1/x expanded around the
point 1. Thus for division we may think of Newton’s method as a
means of accelerating the computation of the Taylor series.

Let x,:=1 and let

1 x
Ye+1-= 5 xk+x—k

be thfa iteration. (6.4.6) for computing v%. Show that X, .+ 1s a rational
fl].:llCthIl r(x) with numerator of degree 2* and denominator of degree
2" —1 that satisfies

2k+1

VE—r(x)| = O(x—1)>"".

[This implies that r(x) is the (2, 2* — 1) Padé approximant to V¥ at 1

See Section 10.1.] .
2

Invert 1/x" — y to calculate \/y without using any divisions.

(Other equivalences; Brent [76c])

a) Show that squaring is equivalent to multiplication b ideri
s b)2 Y, p y considering
b) Complfete the proof of Theorem 6.3 by showing that square root
extraction is equivalent to multiplication.
Hint:
2

(1+28x)"* =1+ 6x — % x*+ O0((6x)*) .

Use & :=10"" for appropriate m to reduce the computation of x”
to root extraction and Og(n) operations.
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Show that inversion is equivalent to multiplication.
Show that pth-root extraction is equivalent to multiplication.

Suppose that C,(n) is the bit complexity of calculating n digits of f.
Assume that Cf(n) is increasing and that C.(2n)=2C(n). Sup-
pose that f satisfies the conditions of Corollary 6.1. Show that f has
at worst the same bit complexity as f, and that

Cs-1(n) = O5(C(n) + M(n)) .

Write down Newton’s method for computing exp from log and log
from exp. These particularly simple iterations combine with a) to
show that the problems of calculating exp and log are effectively
equivalent, from a bit complexity viewpoint.

(Fast base conversion; Schénage) Let k and j be fixed integers. Show
that an n-“digit” base k number can be converted into base j with bit
complexity

Oz(log n M(n)) .

Hint: Break the number to be converted in half (base k), convert each
half, and recombine. (See Knuth [81] for a lengthy discussion of this
problem.)

a)

b)

Show that n! can be calculated with bit complexity
Oz(logn M(nlogn)) .

Hint: First calculate 1 X 2, 3 X4, . ... Then calculate 1 X2 X 3 X 4,

SX6XT7XSE, ... etc.

Compare this to calculating n! as in Exercise 3 of Section 6.1.

Show that no multiplication can reduce this method below o).

[The best known bound for n! is Oz((loglog n)M(n log n)); see
P. B. Borwein [85].]

Chapter Seven

Algorithms for the
Elementary Functions

Abstract. We analyze algorithms for the transcendental elementary functions
based on the transformation theory for elliptic integrals and in particular on
the AGM.

7.1 = AND LOG

All the elementary transcendental functions can be calculated with bit
complexity Oz(log n M(n)). This is a consequence of the fact that log has
operational complexity O, (logn), and hence has bit complexity
Oz(log n M(n)). The approach to log rests most easily on the logarithmic
asymptotic of K at 1. Before proceeding with this analysis it is convenient to
record the complexity of the algorithms for 7, based either on iterating the
modular equation, W,, or more specially on the AGM.

Theorem 7.1

The initial n digits of 7 can be calculated with operational complexity
O,,(log n)
and with bit complexity
Oz(log n M(n)) .

Proof. Both Algorithms 2.1 and 2.2 as well as most of those of Chapter
5 perform with the above complexity. [l

219
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In all of the above algorithms some of the calculation may be done to
reduced precision. For example, in Algorithm 2.1 the computation of x, and
¥,, which both tend to 1 quadratically, can be performed at successively
lower precision. The saving, however, is only in the constant term, reducing
it by a factor of less than 2.

We record the following estimates:

Theorem 7.2

(7.1.1) K'(k) —log (%) = O(|K* logk|)  re(k)>0
(7.1.2) |E'(k) — 1| = O(|k* log k|) re(k) >0
(7.1.3) K'(k) —log (%) =10|k” log k| ke (0,107%)
(7.1.4) |E'(k) — 1] = 10| k” log k| kE(0,107%).

Proof. The relationships for K are in Exercise 4 of Section 1.3. (See
also Exercise 1 of Section 2.3.) For (7.1.2) observe that by (1.3.2), for
0<k<l1

"V1i-(1-k)E-V1-+£dr
CREEE
<f1 kK dt
V- - K- )

The constant in (7.1.4) requires a little additional sérutiny. |

= kK’K'(k) .

The following approach to calculating log is essentially due to Salamin (in
Beeler et al. [72]).

Algorithm 7.1
For x€(3,1) and n=3,

_ n n
(7.1.5) |lng—K'(10 )+ K'(10 x)ISW
where
' —ny _ T
K'(10°") 2AG(1,107)
and
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T

K0 = 3360, 1070

are computed from the AGM iteration.
This algorithm has operational complexity O,,(log n) and bit complexity

Ox(M(n)log n).

Proof. The estimate (7.1.5) is immediate from Theorem 7.2. The
computation of the two elliptic integrals requires precomputing 7, which has
complexity O, (logn). The final detail is that AG(l,10™"x) and
AG(1,107") can be calculated to precision 2n using O(log r) iterations of
the AGM iteration. (See Exercise 1.) O

A related algorithm that avoids precomputing 7 can be established from
Algorithm 1.2 (which provides a direct calculation of K'/E").

Algorithm 7.2
Let R'(k) := K'(k)/E’'(k). For x€(1,1) and n =3,

’ —-n 7 -n n
(7.1.6) log x — R'(10™") + R’(10 0| = oD
where
(7.1.7) R'(k) = -

1-%7 20

and ¢, is associated with the AGM process commencing with a,:=1 and
b, := k. [See equation (1.1.3).]

This algorithm has operational complexity O,,(log n) and bit complexity
Oz(M(n)log n). '

The proof is straightforward and is left as an exercise. Both of the above
algorithms are based on an underlying quadratic method for calculating K’
and E’. Algorithms based on pth-order methods can be constructed as in
Chapter 5. A quartic version, for example, can be derived from Exercise 3
of Section 1.4. Instead of calculating R’ from the AGM, we use

1

(7.1.8) Ri(k) =1~ 52, 4 [al = [(@2 + B2)/2]]

where

_a,+B, aiB,+ Boa,\"*
Fns1 "= T and @H:(“_T_‘)



222 Algorithms for the Elementary Functions

and
a,:=1 and By,:=k"?.

In this, as in other quartic versions of quadratic algorithms, there is a
substantial computational saving (as much as 35%).

Comments and Exercises

The algorithms of this section for log all suffer from the drawback that they
are not truly iterative. Increasing the precision requires choosing new
starting values. This is more of an aesthetic than a computational problem;
even with iterative methods one only computes to a fixed precision, and
increasing the accuracy usually entails starting at least one of the calculations
all over again. While two different AGM or related processes must be
calculated for the initial value of log, subsequent values require computing
only a single AGM since one of the terms can be reused. These methods are
quite stable, requiring only O(log log n)-guard digits. They will outcompete
traditional methods—depending enormously on implementation—in the sev-
eral-hundred-digit range.

The algorithms of this section are the asymptotically fastest known
algorithms for log (see Section 10.2) and are faster than any known
algorithms based on other methods, although Oj((log n)*M(n)) can be
achieved by techniques of Chapter 10. These types of algorithms were first
examined by Salamin (Beeler et al. [72]) and independently by Brent
[76a, b, and c]. Newman [82] gives a self-contained account, as do Borwein
and Borwein [84a]. The second algorithm is in Borwein and Borwein [84d].

Finally, while we have only presented the algorithms for real k, they
extend naturally into the complex plane; only the error estimates become
slightly more complicated. (See Exercise 1.) Matrix versions due to Stickel
[85] are discussed in Exercise 6.

1. Show that Algorithm 7.1 can be used to calculate log uniformly for
{z€C||z—1]| <]} with operational complexity O,,(logn) and bit
complexity O(log n M(n)).

2. Examine the convergence of the AGM for a,:=1 and by:=10""
Specifically, estimate the number of iterations required to produce an
answer within 107" of the limit. For Algorithms 7.1 and 7.2, find a
reasonable bound on the number of iterations of the AGM required to
produce a 1000-digit precision algorithm for log x, x €(3, 1).

3. (An asymptotic algorithm for w) Show that, for n =3,

! L=
log (1+107") — [AG(l 107y~ AG(L, 10" +10 ")
< n102-—2n ,

and hence
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' 2 [ 10" 10" ” 10
- _ — — — < .
7 LAG(,107)  AG(, 10 "+10 ) |="

This provides an O, (log n) algorithm for . (See Newman [82] o1
Borwein and Borwein [84a].)

Given the pth-order modular equation Q, (as in Section 4.5), show how
to construct asymptotic algorithms for log analogous to Algorithms 7.1
and 7.2, but with an underlying pth-order iteration.

Show how the series expansion for K’ and E’ of Section 1.3 can be
combined with Algorithms 7.1 and 7.2 to provide O, (log n) algorithms
for l})g that provide n digits of log using starting values 10™"*x and
107"

(The matrix AGM) Let P, denote the N X N self-adjoint positive
definite matrices and let / denote the N X N identity matrix. Let
Ayi=AEP,, By:=1,

(7.1.95) A, =3(A,+B)

(7.1.9i0) B, ., '=VA,B,.

a) Show that if A€ P,, then there ex1sts a unique C € P, so that
C? = A. Hint: The iteration C,,,:=C, + (4 — C?), C, —O con-
verges to C.

b) Suppose that X, € #, commutes with A € P, Show that, for X
sufficiently close to \/_ Newton’s method X, ,, 1= 3(X, + AX, )

converges to VA€ P, quadratically.

c) Show that the matrix AGM (7.1.9) converges to a matrix
AG(A, I)€ P, and show that A, — B, converges quadratically to
zZero.

d) Show that

%’AG(A,B)‘1=[°° [T + A2+ B V2 d

Hint: Imitate the second proof of Theorem 1.1 and use the fact that
A, and B, commute.
e) Let

kay=| —% __
CJo VI—A%sine

and let K'(A) = K(VI— A%). Suppose that 4 € P, and also that

0<a=||All,=b. Show for large n that (7.1.5) holds namely,
there exists ¢ so that

cn

(7.1.10)  |flog A — K’(107"I) + K'(10™"4)||.. = T
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f) Show that this provides an O, (logn) algorithm for 2thf.: maFrix
logarithm of A € #, and, by inversion, an O, ((log n)") iteration
for the matrix exponential.

For further details, and extensions beyond the positive definite case see
Stickel [85], where computational experience is also indicated.

7.2 THETA FUNCTION ALGORITHMS FOR LOG

We start with the fundamental identity of Chapter 2

K@) e (1)
(7.2.1) T 0 g p
and the series expansion
K(k)_;(“ nz):; )
(71.2.2) =524 5 03(9) -

We recall that

7.2.3) o) [Z: q("+1/2)2:|2
Lo - - o n2 .
( 93(q) 2. q

The algorithm for log (1/4g) is now:

Algorithm 7.3

Fix g €(a, b) with 0<a<b <1.
Step 1: Calculate K(k)/m from (7.2.2).
Step 2: Calculate k from (7.2.3). . .
Step 3: Calculate K(k') using the AGM commencing with 1 and k.

Step 4: Calculate log (1/q) = w[K(k")/K(k)].

This algorithm has operational complexity O,,(v7) and bit complexity
Ogx(vn M(n)).

The algorithm’s complexity is determined by the serif_:s.expansions em-
ployed in steps 1 and 2. These “‘sparse” series yield n-digit accuracy after
/7 nonzero terms. While the asymptotic complexity is far from optimal, the
algorithm has the advantage of not requiring very small starting Value§ for
the AGM iteration (Step 3). Also, only a single AGM iteration is requ_lred.
Sasaki and Kanada [82], who proposed and analyzed the above algopthm,
show that it out performs the methods of Section 7.1 for numbers in the
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3000-digit range. Note that 7 must be precomputed. As Sasaki and Kanada
observe, the algorithm may be accelerated by using

2o (7)
(7.2.4) m log <q log e
for various m. This speeds up the series calculation at the expense of the
AGM. For n-digit precision, using m = n effectively reduces this algorithm
to Algorithm 7.1. (See Exercise 1.)

For certain choices of g we get reduction in complexity. If g is any small
integer, then the series expansions are particularly easy to evaluate. (See
Exercise 2.) This leads to a very fast algorithm for 7/log 10 (using base 10
arithmetic) as follows. From (7.2.1), (7.2.2), and (7.2.3) we have

ks

AG(03(q), 65(9))

(7.2.5) log (;) =7 Kf (k) =03(q)M(1, k) =

or

0 g -scl(E e (S e))

log (1/q)

Now for g :=1/10° both of the above series are just sequences of 0’s and 1’s
and the starting values for the mean iteration can be calculated very quickly
[O5(M(n))]. The remainder of the work involves calculating a single AGM.
Similarly 7/log p is amenable to very fast computation in base p.

Properly interpreted, (7.2.6) remains valid for matrices and provides a
theta-based computation of the matrix logarithm of a positive definite
matrix. (See Exercise 3.)

Comments and Exercises

Further discussion of material in this section may be found in Sasaki and
Kanada [82] and in Borwein and Borwein [84d]. Sasaki and Kanada
compare Algorithm 7.3 to algorithms for log based on Taylor series for
log (1 + x) and log [(1 + x)/(1 — x)] and conclude that for more than (rough-
ly) 100 decimal digits the Taylor series methods are slower.

1. Show that (7.2.4) for various m can be combined with Algorithm 7.3 to
provide algorithms for log of any complexity between 0,,(v7) and
O,,(log n).

2. Discuss the bit complexity of calculating 6,(g), 6,(q), and 6,(q), where
q is the reciprocal of a fixed integer. Show, for p integral, that (7.2.6)
can be used to calculate 7/log p with bit complexity O,(log n M(n)).
(See Exercise 9 of Section 6.4.)
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3. Consider the matrix AGM of Exercise 6 of the previous section.
Establish a matrix version of (7.2.1) to (7.2.6). Then construct an
algorithm for the matrix log based on (7.2.6).

7.3 THE COMPLEXITY OF ELEMENTARY AND ELLIPTIC
FUNCTIONS

The algorithms of Section 7.1 can be inverted by Newton’s method to
provide algorithms for exp with bit complexity O,(log n M(n)) and opera-
tional complexity O, ((log n)z)._ From a bit complexity point of view, this is
the best known bound. Since we can invert log in {|z —1|=3}, we can
produce an algorithm for exp in a complex neighbourhood of zero and
hence have Oy(log n M(n)) algorithms for all the trigonometric functions.
Exercises 1 and 2 give some variations. In fact, for any elementary function
we have the following:

Theorem 7.3

Any elementary function f over Q(x) can be calculated uniformly (in
bounded regions where f is single valued and analytic) with bit complexity

Og(log n M(n))
and with operational complexity
O,,((log n)*)
where s is a constant depending only on f.

Proof. For our purposes the elementary functions are the rational
functions, log and exp, and any function that can be formed from these
functions by a finite number of compositions, multiplications, additions, and
solutions of algebraic equations. (See Davenport [81] or Ritt [48].) The
point of the proof is that such an fis constructed from Q(x) by taking a finite
number of exponentials, logarithms, and solutions of algebraic equations in
these quantities. The number of algebraic equations to be solved determines
the constant s. As in Chapter 6, solution of the algebraic equation in
question can be effected in a time proportional to the complexity of
evaluating the equation. [

A number of comments are in order. First, we can formulate the above
theorem for f algebraic over R(x) if we assume that the requisite real
numbers are given. Second, while multiple solutions of an algebraic equa-
tion pose no theoretical problem, in practice, determining the ‘‘correct root”

7.3 Elementary and Elliptic Functions 227

can be a major nuisance. For a multiple-valued function the theorem must
be interpreted as guaranteeing some value of the function. This is inevitable.
It is not even clear what it should mean to compute an infinite-valued
function.

That the operational complexity behaves like (log n)’ instead of (log n)
reflects in part that operational complexity is an inappropriate measure
when Newton’s method is involved. While the preceding algorithms for log
require most of the operations to be done to full precision, this is no longer
the case for this approach to other transcendental elementary functions.

Since we can calculate elliptic integrals with bit complexity
Oj(log n M(n)) (Exercise 5 of Section 1.4 and Exercise 2 of this section), we
can calculate the Jacobian elliptic functions with similar dispatch.

It is not clear which other nonelementary transcendental functions have
bit complexity Oz(log n M(n)). Does, for example, the gamma function?
Nor is it clear whether the bit complexity Oz (log n M(n)) is best possible for
the nonalgebraic elementary functions. The best known lower bound for log
and exp is the virtually trivial bound of Ogz(M(n)). (See Exercise 3.)

Comments and Exercises

The algorithms for exp (see also Exercises 1 and 2) require inversion and are
much less satisfactory than the algorithms for log. A direct O ((log n)’M(n))
algorithm is presented in Chapter 10. There are a number of issues that
remain unresolved in this discussion. The most obvious is a discussion of
lower bounds. Observe that, by Theorem 6.4, showing that exp does not
have complexity O,z(M(n)) would show that exp is a transcendental func-
tion. Likewise, showing that 7 does not have bit complexity O,(M(n))
would imply the transcendence of 7. The gap between the known operation-
al complexities for log [O,,(log n)] and exp [O,,((log n)?)] is probably spe-
cious, but this also is not known. We will show in Section 8.8 that direct
algorithms for exp and log of the type that we derived for K in Chapter 1
cannot exist. There are no quadratically convergent fixed iterations for these
functions.

1. From (2.3.7) and Exercise 3 of Section 2.5,

(2] ool 3 1m (2]
im\Z2) =ew| 7 lml g

where a, and ¢, are generated from the AGM commencing with a,:=1
and b,:= k', while a} is generated from the AGM commencing with
ag:=1 and bj:=k. Show that this leads to an Oj(log n M(n)) al-
gorithm for €%, which begins by solving for a,/a* = 7x/2.

2. (A more direct approach to tan) As in Exercise 5 of Section 1.4 and
Theorem 2.6 of Section 2.6, we have the Landen transform for
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kE0,1), ¢=0.

i do
FOR = ioheanme

If
_1-k, a t —¢,)=k!tan ¢

kn+1 : 14 kr’l an an (¢n+1 n n n
then, as before,
(7.3.1) F(bns15 knir) = (1+ k) F(d,, k)
and

oo 2 ) ¢"

(7-3-2) F(¢0’ ko) = [,.1:10 <1+—k,’.)] ’!1_1;1;10 ? )

a) Show that
F(by, k)=, + O(K*) as  k—0.

b) Show that

F(¢,, k) =log tan (7—7+%)+0(1—k) as k—1.

4
c) Show that if w,:=tan ¢,, then
Q+kDHw,

d) Thus

¢n = F(¢n> kn) + O(ki)

= [’i::f (1 +2k’;’)] log tan (727 + %) +O(k; + (1= k)

or
E=NAEX AN (77 tan™" w0>
-1 _ m — _
tan W,,—_EO< > )_logtan 2 T

+ O(k2 + (1= ky))

rn—1 1\ ]
-1 (1+2km) log 8 + O(k2 + (1 - ky))

-m=0
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where 8 :=\wi+1+ wo- Show, by inverting c), that tan™" can be
calculated from log with complexity O, (log n M(n)). Show that, by
inverting the above, tan can be calculated from log with complexity
Og(log n M(n)).

This approach, which avoids using complex arithmetic to access
the trigonometric functions, is essentially due to Brent [76a].

Let L(n) denote the bit complexity for evaluating n digits of log. Show
that

D(n) = O5(L(n))

and hence, log and exp are at least as complex as multiplication.
Hint: Consider computing the derivative of log.



Chapter Eight

General Means and Iterations

Abstract. In Section 8.1 we define abstract means and discuss their behavior.
In Section 8.2 we discuss equivalent means. In the next three sections we
consider general mean iterations and examine their convergence properties.
Later sections concern Taylor expansions of means, multidimensional means,
and related questions. The final section considers algebraic mean iterations
and the possibility of extracting elementary limits from such iterations.

8.1 ABSTRACT MEANS

There is a large literature on means but little agreement as to what
exactly constitutes a mean. For our purposes we have

Definition 8.1

(@) A mean is a continuous real-valued function M of two strictly positive
real variables a and b such that

(8.1.1) anb=M(,b)y=avb

for all a>0 and b>0. We denote aA b:=min(a,b) and
a v b:=max (a, b). (Continuity is not always essential. On occasion
we will refer to possibly discontinuous functions satisfying the above

definition as discontinuous means.)
(b) A mean is strict if, in addition, it is diagonal:

(8.1.2) M(a,b)=a or M(a,b)=>b
if and only if a = b.
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(¢) A mean is homogeneous if
(8.1.3) M(Aa, Ab) = AM(a, b)

for a, b, A>0.
(d) A mean is symmetric if

(8.1.4) M(a, b) = M(b, a)

for a, b>0.
(¢) A mean is (strictly) isotone if, for a, b >0,

(8.1.5) M(a,") and M(, b) are (strictly) increasing .

We will find it convenient to consider the trace t,, of a mean M given by
ty(x) = M(x,1). We gather up some useful properties of means whose
proofs are left as Exercise 1.

Proposition 8.1

(a) Every diagonal continuous (strictly), isotone mapping is a (strict) mean.

(b) Suppose that M is symmetric and homogeneous. Then M is isotone if
and only if its trace ¢, is isotone.

(¢) The isotone, (symmetric), (strict), (homogeneous) means form a con-

vex set.

(d) The symmetric, (homogeneous) means form a uniformly closed convex
set. .

(¢) Let M and N be (strict) means. Then any continuous mapping P such
that

M(a, b)=P(a,b)=N(a,b)  a,b>0

is a (strict) mean.

Corresponding to each mean M we associate another mean M, defined
by

(8.1.6) M, (a, b):=[M(a", b")]'”  p#0.

Then M =(M_,)_, and M_, is strict, symmetric, homogeneous, or
isotone whenever M is, and £, (x) = t,/(1/x). This is a special way of
building an equivalent mean as we now discuss.

For any strictly monotone (increasing or decreasing) function f: R™ —R”"
we define the mean

My(a, b):= {7 (M(f(a), f(b))) -
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When f(x):=x? (we write f:=.7) we denote M, by M, [consistently with
(8.1.6)]. It is easy to check that M, is a strict, symmetric, Or isotone mean
whenever M is. (See Exercise 2.) To give our discussion some flesh, we
introduce four of the most useful classes of means. In this chapter we
reserve the letters M and N for general means.

The Holder Means
For p €R™ let

a? + b?
2

Then H, is just the arithmetic mean A, and thus H, is a strict, homoge-
neous, symmetric, isotone mean. Moreover lim,_, H,(a, b)= \/_ is the
geometric mean G and may reasonably be denoted by H,. (See Exercise
14.) Since H_, = H, =< H,, Proposition 8.1(¢) shows H,, to be a strict mean.
For all p one can unambiguously define H,, for a, b =0. Then the trace of H,
satisfies

. _l/p,oo 20
(8.1.8) ty (R )={[[(2) 2)) e

(8.1.7) H,(a, b):=( )Up a,b>0.

Note also that (H,)_, = H_, and that H,= A .
Another useful way of building means is based on the next proposition.

Proposition 8.2
Let M be an isotone, homogeneous mean. Then, for p ER,
M(a?, b")  My(a, b)
M@, b?™")  M%i(a,b)

(8.1.9) ,M(a, b):=

defines another homogeneous mean, ,M, which is strict or symmetric
whenever M is strictly isotone or symmetric.

Proof. This is left as Exercise 4a). O

The Lehmer Means
For p €R we let

(8.1.10) L,(a,b):= g

Since L, = ,(H,), each L, is a symmetric, homogeneous, strict mean. Since
t (x) (x" +1)/(x" 7+ 1) L, is isotone only for 0=p =1. Moreover,
L =H,L ,=Hy,, Ly=H_,, and (by Exercise 5 of Section 8.6) these are
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the only means common to the Lehmer and Holder classes. Again there is
no difficulty extending L, to a, b=0 and

. 1 p>1 © p>0
B111) 1, (0)= { p=1 and  f,={2  p=0
0 p<l1 1 p<0

where, here and below, we write f(«) for lim,_,.. f(x). To see this, use

bp
B112) (L) (0 b)= D0 (L)@ b)= Loy (e, b).

Indeed, generally

(8.1.13) M) =M.

(1-p)
The Gini Means
Let r and s be given. Consider f=+? where g :=s —r. Then

a5+b5

1/(s—r)
Tyl o

(8.1.14)  f7'Ly-n(f(@), f(b)) = [

defines the Gini mean G_,(a, b). (See Gini [38].) Moreover (8.1.14) shows
that G, , is indeed a strict, homogeneous mean.
Proposition 8.3

Let f be a continuous strictly monotone function of a nonnegative variable.
Then

L],

(8.1.15) M (a, b):= f_l[ b a

extends to a symmetric, (generally nonhomogeneous), strict, continuous
mean.

Proof. The integral mean value theorem gives the conclusion, bar the
continuity. This follows from the continuity of the definite integral. [J

We immediately apply this to Stolarsky’s power means (Stolarsky
[75, 80]).
Stolarsky’s Means

Let p €R and denote M ,,-1 by S,. Then S, is a homogeneous, symmetric,
strict mean given by
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a? — b* 1/(p=1)
@]
( 61) S,(a, b) 2(@=b) p#0,1

with

b—a

logb—loga (% %)

(8.1.16if)  Sy(a, b)=1lim S,(a, b) =
p—0

and
(8.1.16iii) S,(a, b) = lim S,(a,b)y=e"'(ab™")"" " =: $(a, b) .

The mean & is the logarithmic mean and $ is the identric mean. These
means have

~U(p-1)

p>0,p#1
tsp(o) =1{e’ p=1 and tg () =00,
0 p=0 ”
Also
g (%) 1 (p—=DxP—pxP'+1

50 (-D @ -DE-1)

so that §,(a, b) is increasing in (a, b) for all p in R. This, in part, follows
from the inequality (1 — p)x? + px?"' =1 for 0 =p=1.

 All of the means in these classes are piecewise monotone in the sense that
ty(x) has only finitely many sign changes. Thus there is no difficulty in
defining M(0, b) = bM(0,1) = b lim,, t,,(x) in all these homogeneous
cases, and we can freely consider M defined on R*?:= {(x, y)|x=0, y=0}
and at . We will do so from now on. Note also that when M is continuous,
144([0, ]) = [0, =] is equivalent to ¢,,(0) =0 and ¢,,(e0) = w.

An elementary but very useful proposition is next. The proof is left for
Exercise 11.

Proposition 8.4 (Composition)
If M is defined by
M(a, b) := My(M,(a, b), My(a, b))

where M,, i =0, 1,2, are means, then M is a mean. If two of M,, M, M, are
strict, so is M. If all three are homogeneous, symmetric, or isotone, then so
is M.
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For example, M v N and M A N are strict means whenever M and N are.
So is any mean between them, in the sense of Proposition 8.1 (e).

There are many highly pathological means, as Exercise 12 shows. This is
particularly so in the absence of continuity. For future reference we will say
that a homogeneous mean is ultimately monotone if M(x,1) and M(1, x) are
monotone in some neighbourhood of zero and «. We write M <N if
M(a, b) = N(a, b) for all a, b>0.

Comments and Exercises

There is a great literature on particular means and very little on means in
general. Much classical information can be found in Hardy, Littlewood, and
Polya [59] and in the other references scattered throughout the chapter.

1. Prove Proposition 8.1.

2. Establish that for any mean M and any strictly monotone f: R™ —R™,
Mi(a,b):=f “'M(f(a), f(b)) defines a mean which is strict, symmet-
ric, or isotone whenever M is. Moreover, if fis +*, p €R™, then M;is
homogeneous whenever M is.

3. a) Show that H (a, b) is a continuous increasing function of p with
lim,_,. H,=Vv and lim,,_. H,=A.
b) Establish the assertions about the Holder means.
c) If M is homogeneous and symmetric, then M, = G, whenever M,
exists as a limit.

4. a) Prove Proposition 8.2.
b) Establish the assertions about the Lehmer means.

5. (Isotonicity of M,) Let ®(a):=aloga for a>0, and let M be a
differentiable mean.

a) Show that M (a, b) is isotone in p >0 if and only if
dM(a, b)

8.1.17) ®(a) 280 4 gy IM@D) L gpia by).
da ab
b) Suppose that M is also homogeneous. Then

dM(a, b) dM(a, b)
P T

= M(a, b).

c¢) Use a), b), and the convexity of ® to show that H, is increasing for
pin R.

d) If M is homogeneous and symmetric and if M, is increasing for
p >0, then M, is increasing for p in R, whenever M, exists.
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Suppose M, is isotone in p. Then

iy M=M, p=1
i) ,M=M, p=1
iii) M=M, p=0.

a) Suppose M is symmetric and homogeneous with ¢,,(0) >0 or with
t(0) <o, then

p&@w M,(a,b)=anbd and gl_r)rgo M,(a,b)=av b.

b) In particular, this holds for H,.
¢) If, in addition, M, is isotone in p, then

pEII_lw M(a,b)y=anb and ;2130 JM(a,b)y=avb.

d) In particular, this holds for L.

a) Show that ,M is isotone in p if g(p):=log M(a?, b?) is always
convex, smce then g( p + 1) — g(p) increases with p. (See Becken-
bach [50].)

b) Use Cauchy’s inequality to show that this holds for

a” + b*
Ala, b)=L,(a, b)= i gl

a) Establish the assertions about Stolarsky’s means.
b) Show that

va+Vb\*
\/‘/_“b(_a_z—> < %(a, b)= H, ,(a, b).
c) Show that

x—1 = 1+x
log x e 2

and deduce that

» o—k ok
b

#(a, b)= H

a) Show that Z,(a, b) is isotone in p by applying Exercise 5a) and
observing that (8.1.17) becomes $(a, b) = £(a, b). [This in turn
follows by calculus from (r—1)*=tlog”¢t, t>1.]
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b) Show that #,(a, b) is isotone in p This can be done by showing
that (8.1.17) becomes

®(a)log (a) = @(b)log (b) . _[P(a) —2(b)]*
S

which again reduces to (t —1)*=tlog” ¢.
c) The generalized mean E, _ is defined by

s(ar _ br) :I 1/(r—s)
ra —b’)

and extended appropriately on the boundary (as in Leach and
Scholander [78]). Show that each E,  =(S,), for some p and q..

Let A(r):=log|(a” — 1)/r| so that A(r) =log £,(a, 1). By b) A(7)
is convex. Thus for s > r,

(8.1.18) E, (a,b):= [

log E, (@, 1) = 2220 2 105 5.0,1)

and E_, increases in r and s because E,_, = .4,.
d) The mean -
atb+Vab 2 1

He(a, b):=E;,, ,,(a, b) = 3 —§A+§G
is very classical and is called Heronian mean.
e) Show that if —1=p=3}or p=2, then

(8.1.19) S,(a,b) = H,,.1)5(a, b)

with the inequality reversed when p < —1 or 1 < p <2. Moreover
(8.1.19) fails if (p+1)/3 is replaced by any smaller number
(larger in the reversed case). (See Stolarsky [80] for details.)

f) Show that £ and 4, tend to v as p tends to infinity.

g) Use the condition of Exercise 8a) to show that ,& is isotone in p.

h) ShowthatE, ,_, = ¥=% forp=landso E, =¥, forr>s>
0.

1) * Show that

1) (Er,s)—l = E—r,—:
i) E, ,=E,,
i) E;)'= EVE].
Prove Proposition 8.4 on the composition of means.

Let g be a nonnegative function satisfying

i) q(1)=1
i) 1ax<gx)<xvl x#=1.
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a) Then

M(x, y)¢=xq(§> qu(;-‘)

and

X

M(x, y)1=xq(y> qu<i;c)

are (possibly discontinuous), homogeneous, symmetric, strict
means.
b) Suppose in addition that

i) g0 -xq(1).
Then

M(1, x) = q(x) = t5(x) .

Hence if we take an arbitrary (even analytic) function satisfying iii)
with 1< g(x) <x for x> 1, there is a strict, homogeneous mean

with £,, =g¢.
1 _:3’( x>1, x rational
c) Let g(x):=
1; * otherwise

Then M is a densely discontinuous mean which is not ultimately
monotone. Moreover M lies between two continuous means.

n i/n n
Let P (a, b):= (2 ckakb"_k> ¢, =0, X ¢ =1.
k=0 k=0

Then P, is a homogeneous strict mean which is symmetric if and only if
Ce =™ Cumier

If M is a continuously differentiable mean then M, :=lim,_,, M, exists
and is given by

M,(a, b)=a’h'"?

where g :=(dM/da)(1,1).
Hinr: Use L’Hopital,s rule.
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8.2 EQUIVALENCE OF MEANS

Let ®: R — R™ be continuous. We say that a mean M dominates a mean N
if

M(®(a), P(b)) = B(N(a, b)) a,b>0

and we write M >, N or M > N. If M and N dominate each other, we call
M and N equivalent. Since domination is transitive, this is an equivalence
relation which we write ~. Unfortunately most of our results demand that
we consider more restrictive notions of equivalence, so we require that ® be
one to one from now on. Hence ® is monotone.

Theorem 8.1
Suppose that M and N are two means with M >, N.

(a) Suppose that N is homogeneous. For each >0, consider
g,(x) ;= ®(t® '(x)). Then g, is isotone and

(8.2.1) M(a, b) = g, M(8,(a), 8.(b))

for each a, b in rng (P).
(b) Suppose that M :=A. Then
P=a’+8 a>0,p#0

and N=H,, p#0.
(c) Suppose that M := G. Then either

D=7 p#0
or
®=ae® a>0, p#0
and N=H,, peR.
(d) It follows that the only homogeneous means equivalent to A are the

Holder p means (H,, p # 0) and the only homogeneous mean equival-
entto G is G.

Proof

(a) By homogeneity of N we have, for >0,

O M(D(ta), D(tb)) = td ' M(D(a), D(b))



240

(b)

(©)
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and (8.2.1) follows. Moreover g, is isotone as a composition of two
co-monotone functions.
Now (8.2.1), with M := A, becomes

(8.2.2) 2g,(9—;—b) =g(a)+g(b) a,beEmg(®).
This is solved [Exercise 1a)] by
(8.2.3) g(x)=a()x+b(t)  xEmg(P)
for some a(t) and b(¢) in R. Thus
®(tx) = a(t)P(x) + b(¢) x,t>0.

Now Exercise 1b) shows that this is solved by

at’ + 8
(8.2.4) b= {a log + B

. . o .
Since @ is positive, we must have ®=a1” + 8, « >0, and N is as

claimed.
In this case we have

Vg,(@)g,(b) = g.(Vab)

Let &, :=log (g,°exp). Then

hf(a ; b) _ h(a) ; h(b)

p#0.

(8.2.5) a, b €mg (P).

As above h,(x) = a(t)x + b(t) and

(8.2.6) ®(tx) = B(£)D(x)*"

for B(t) positive. This is solved by

p
atL
(8.2.7) <1>={ .,  P#0

ae

[as in Exercise 1c)]. If ® is of the first type, N = G; while if ® is of the
second type, N=H_, p #0.

|
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Proposition 8.5

Suppose M is a homogeneous, strict mean with M > » N for some isotone #,
and suppose ¢,(0) =0. Then ¢,,(0) = 0.

Proof. Since h(N(a, 1)) = M(h(a), h(1)), we have h(0) = h(N(0,1)) =
M(h(0), h(1)). This is only possible if h(0) =0, h(0) = h(1), or h(0) =,
Since & is strictly increasing, only A(0)=0 can occur. Thus h(0)=0=
M(0, h(1)). Since M is homogeneous, t,,(0) =0 as claimed. O

As an example we see that H,>, AG, p>0 (AG is the Gaussian AGM)
is impossible for 4 isotone, as is L, >, AG with p = 1. These considerations
suggest that we can say more if 4 is required to be onto. We will write
M= N if M>, N for some one-to-one mapping /# of R* onto R* [so that &
must be (strictly) isotone with A(0) =0, A() = = or (strictly) antitone with
h(0) = =, h() = 0]. This is an equivalence relation stronger than ~, and we
call it strong equivalence. We will only consider strong equivalence of

homogeneous means. If we let g, := h(th™"), &, is surjective and we observe
that (8.2.1) becomes

8.(M(a, b)) = M(g,(a), g,(b))  a,b>0.

Since M is homogeneous, we may replace 8: by h,:= g,/g,(1). Then k(1) =
1 and
(8.2.8) h,(M(a, b)) = M(h,(a), h,(b)) a,b>0.

In the next lemma we give several conditions for (8.2.8) to have only the
trivial solutions (normalized). Under these conditions we have g, = c(#)e and
(8.2.9) h(tx) = c(t)h(x) tx>0.

Then Exercise 1b) shows & = ai?, a >0, p #0, and it follows that the only
homogeneous means strongly equivalent to M are M,, p #0. Thus we have

determined the strong equivalence class of M in the cases covered by the
next result.

Lemma 8.1

Suppose M is a homogeneous strict mean.

(d) Thus all H,, p#0, are equivalent and G dominates them all. O (a) The following two conditions imply that (8.2.8) only has the trivial

solution when 4,(1) =1.

A more general program may be undertaken, based on Theorem 8.1(a).
Unfortunately, without extra hypotheses, solutions of (8.2.1) are very hard
to characterize. The following simple result is accessible.

(f) M is ultimately monotone and
(il h(a)=a for some a#1, 3>0.
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(b) (i) (ai) holds if M is isotone (or piecewise monotone), while
(ii) (aii) holds if M is differentiable and (1) ¢,, has a unique positive
zero, @+ 1 and h is differentiable; or (2) £,(R*) G R™.

Proof.

(a) Given that a and 1 are distinct positive fixed points of h,, it follows
from (8.2.8) and continuity that {c¢ > 0|k,(c) = c} is a closed interval
C. We show that s :=sup C is . If not we argue as follows.
For any c<s in C, M(c,s)<s. Hence M(c,s + &) <s for some
£ >0. But M(s, s + £) >s. Thus M(c, s + ¢) = s for some ¢ <s, ¢ in C,
£>0. Then for n=1,2,3,...,

s=h(s)= M(h[(c), h}(s + &) = M(c, k(s + g)) .

(Here k" :=h""' o h denotes iterated composition.)

Let b, :=c 'h"(s + ¢). Then, as b, # b, (because s + e £C), b, is
a strictly monotone sequence, since h, is strictly isotone. If {b,} were
bounded above, the limit point would be a member of C larger than s.
Thus b, increases without bound and also #,,(b,) = s/c. This violates
monotonicity of M at infinity. The proof that inf C=0 is left as

Exercise 2b).
(b) We consider (ii). If » and M are differentiable, we have from (8.2.8)

Eyg(h DR (6) = (£ (0)E () -

Since h, is strictly increasing, we have ty(h(a@)=0and h(a)=a. If
on the other hand ¢,, is not surjective, we argue as follows. Suppose
M(0,1)>0. Then

h(M(0, 1)) = M(h,(0), h,(1)) = M(0,1)

as h,(0)=0, and M(0,1) <1 is a second fixed point of h,. Finally if
M(o, 1) <, we argue with M_;. [

Condition (ai) holds for H,, L,, and S,. Condition (2) of (bii) holds for
H,, p#0; for L,, p=0orp=1 and for §,, p>0; while condition (1)
holds for L,, p=1. (See Exercise 3.) It is reasonable, at least for computa-
tional purposes, to require that equivalence be defined by differentiable
maps. If this is done, the results are more complete.

Comments and Exercises

Theorem 8.1 can be found in Wimp [84] in slightly different form. This is
partly explained by the fact that exp[(log x + log y)/2] = G(x, y). For
Hardy, Littlewood, and Polya [59] or Wimp [84] this means that A>,  G.
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In a more forjn;ll development this is problematical since means are only
defined on (R™) and log is not always positive. Thus we rule out the second
case in (8.2.4).

1. a) Show, usipg continuity of g,, that (8.2.2) is solved as in (8.2.3).
(Proofs without continuity assumptions can be found in Wimp [84]
an;i elsewhere. More general results depend on the measurability of
&

b) Let ¢(x):=P(x) — ®(1). Then ¢ satisfies

Y(1x) = a()¢(x) + (1)

for some c(¢) in R. Then (¢) = c(¢) and thus [a(x) — 1]/¥(x) =
[(tx) — (8) — Y (x)] /(1) ¥(x) is independent of x if ¢(x) # 0. Thus
W(x) = W) B(y) + () + (). T c=0, then ¥(x) = Clogs,
while if ¢##0, A(x):=cy(x)+1 solves A(xy)= A(x)A(y) whose
solution is ¢”. Thus (8.2.4) holds.

¢) Show that (8.2.6) has solutions only of form (8.2.7). Hint: Consider
A(x) :=log [®(x)] —log [®(1)]. Then A(xt) = a(:)A(x) + A(¢). Now
proceed much as in b).

2. a) By considering M_; show that if M >, N, M strict and homoge-
neous, h isotone with ¢,,() <o, then t,(®) <oo.
b) Complete the proof of Lemma 8.1(a).
¢) Complete the proof of Lemma 8.1(b).

3. a) Verify the final claims of this section.
b) Calculate the strong equivalence classes within G, ; and E, ..

4. a) If M is a symmetric, homogeneous, strict mean, then either ¢,,(0) =
0 or t,,() = co.
b) Similarly, suppose then that M >, N for some homogeneous N with
h monotone. Show that 0 or = lies in rng(h).

8.3 COMPOUND MEANS

We now formalize the notion of a mean iteration. The Gaussian AGM and
Arctnmedes’ method provide the central examples. Let M and N be any two
continuous means. Let a>0 and b >0 be given and consider the iteration

a,'=a by:=»b
(831) Ay 41 -= M(an! bn)
bn+1 = N(an, bn) .

Under mi}d hypotheses, Theorem 8.2 shows that the iterates converge to
a common limit, which we call the compound of M and N and denote by
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M & N(a, b). We will also denote the entire iterative process by [M, N]. We
say that M is comparable to N if one of the following holds:

(a) M(a, b)y= N(a, b) for a,b>0
(b) M(a, b)= N(a, b) for a,b>0

or

(¢) M(a, b)=< N(a,b) for O0<a<bd

£

and
N(a, b)= M(a, b) for 0<b<a.

When M and N are symmetric, ¢) cannot occur, and we say M and N are
comparable. In the nonsymmetric case c) can occur, and then M is compar-
able to N but not conversely. In the next result comparability is only needed
to establish monotonicity of the iterates. (See Exercise 1 and Theorem 8.8
of Section 8.7.)

Theorem 8.2
Let M and N be means with M comparable to N.

(a) Suppose that M or N is strict. Then [M, N] converges and M @ N is a
mean which is strict if both M and N are.

(b) M ® N is a homogeneous, symmetric, or isotone if each of M and N is.

(c) M® N is continuous, and the convergence is monotone and uniform
on compact subsets of {(a, b)|a, b >0}.

Proof v
(@) Suppose that a > b and that M = N. Then a, = M(a, b) = N(a, b) =b,.
Inductively suppose that a, =b,. Then

(8'32) anZM(an’bn)zan+12bn+l=N(an7 bn)zbn

and {a,} decreases while {b,} increases. Since each bounds the other,
both sequences converge, say, to x and y, respectively. By continuity
we have x = M(x, y) and y = N(x, y). Since M or N is strict, x = y. If
a = b, we may have to exchange the roles of ¢, and b,. Thus M @ N
exists and satisfies

(8.3.3) MAN<M®N=MVN.

This finishes (a).
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(b) The sequences {a,} and {b,} are in fact built by repeated composition
of means. Thus a, = M, (a, b) and b, = N, (a, b) for means M, and N,.
These means are symmetric, homogeneous, or isotone when M and N
are, and so is the limit mean M ® N.

(c) Leta,b>0ande>0be given. Pick n so that |a, — b,| < /2. Now M,
and N, are continuous. So we may find § >0 with |M, (a, b)—
M,(a’,b')|<e/2 and |N,(a, b)— N, (a’, b")|<e/2 if |a' —a|< & and
|b’ = b| <8, (a’, b’ >0). Again assume a > b and M = N. Then

M@N(@, b') =M, (@', b')=M,(a,b)+ 5 =N,(a,b)+e
=M®N(a,b)+ ¢
and
M®N(@',b')=N,(a’,b')= N, (a, b) - % =M (a,b)— ¢
=2M®N(@a,b)~c¢.
Thus M @ N is continuous. Finally, Dini’s theorem shows that M,
and N, must actually converge uniformly on compact subsets, since

convergence is monotone. [

The key observation about M @ N is the following ‘invariance principle’

which we have already used repeatedly in Chapters 1 and 2 to show that
AG(1, k)= m/2K.

Theorem 8.3 (Invariance Principle)

Suppose that M @ N exists. Then M ® N is the unique, (continuous) mean
® satisfying

(8.3.4) ®(M(a, b), N(a, b)) = ®(a, b)
for all ¢, b>0.
Proof. TIteration of (8.3.4) shows that
lim ®(a,, b,) = d(a, b) .
Thus
®(a, b) =D(M @ N(a, b), M ® N(a, b))

and since ®(c,c)=c, P=M@N. O
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Observe that we need not verify that ® is a mean, but only that
®(x, x) = x for x>0 and that ® is a continuous solution of (8.3.4).

EXAMPLE 8.1

(@) Let M:=H, and N:=H_;. Then H ®H_,=G. Observe that
G(a, b) :=V ab satisfies
a+b 2ab

= =Vab.
Y ab ®(a, b) a

G(H,(a, b), H_,(a, b)) =

Since VXX = x, we must have H @ H_; = G.
(b) Let M(a, b):=9ab”(a+2b)* and N(a, b):=(a +2b)/3. Then

M1/3(a’ b)N2/3(a, b) — a1/3b2/3 q)(a, b) c= a1/3b2/3

and again the invariance principle shows that M & N(a, b) = a'*p*",
(c) Let H, @ H,=AG:= A® G. Then for a=b,

am am

b o
AR G(a, b)=aAG<1, ;>= Z_k_’(l)Ta) ®(a, b):= m

as Theorem 1.1 (second proof) shows by the invariance principle.

We now distinguish two better structured classes of mean iterations.

Definition 8.2
Let M and N be symmetric means.

(a) Suppose M and N are comparable. Then we write
MR, N:=MRN and [M, N],:=[M, N].

We call these Gaussian mean iterations and call &), the Gaussian

product.
(b) Consider the iteration: a,:=a >0, b;:=b>0, and

an+1 -= M(arﬂ bn)
bn+1 = N(an+17 bn) .

We denote the iteration by [M, N], and the limit by M ®, N. We call
these Archimedean mean iterations and call &, the Archimedean

product.

The existence of M @, N is guaranteed by Theorem 8.2. For M®,N
existence comes from the next result.
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Proposition 8.6

Let M and N be symmetric means. Suppose that M is strict. Then M ®, N
exists and

M®,N=M® N*

where N*(a, b) := N(M(a, b), b). So by Theorem 8.3 M ®, N is the unique
continuous mapping ¥ satisfying

$(M(a, b), N*(a, b)) = y(a, b)

with ¢(x, x) = x for x> 0.

In consequence M ¥, N is a continuous mean which is strict, homoge-
neous, or isotone whenever both M and N are.

Proof. This follows from Theorem 8.3 since M is comparable to N*
(See Exercise 4.) O

The theorem makes no use of symmetry of M and N. However, this is
critical to our further analysis of convergence rates. Finally, suppose that we
are given a function M which satisfies (8.1.1) and (8.1.2) or (8.1.3), but only
for 0<a <b. We may extend M to a symmetric mean M via

(8.3.5) M(a,b):=M(a A b,avb).

Similarly we can extend a function defined only on 0< b <a by using
M(a v b,a A b). The new mean is homogeneous or strict when M is. Thus
in some of our future iterations we will consider means only defined on the
45° sectors (Exercise 3 among others). Moreover, if we have two comparable
means on 0 < b < g, the extensions are comparable so that our convergence
results apply. Note also that in the definition of comparability we excluded
the possibility that M = N for 0 <b < a while N= M for 0<a <b. In this
case the iterates oscillate, and combining two steps results in a comparable
iteration. We call such iterates partially comparable.

Comments and Exercises

Our treatment is a synthesis and extension of that in Schoenberg [77, 82},
Lehmer [71], and Foster and Phillips [84b] among others. The term
compound is due to Lehmer [71]. In general it is very hard to determine
M @ N, but easy to verify a limit once one has found it. Schoenberg [77]
gives a geometric proof of the limit of the AGM due to Jacobi.

1. a) LetM and N be strict means. Then [M, N] converges and M ® N is
a strict (continuous) mean.
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4. Prove Proposition 8.6 from Theorem 8.3. Note that in this setting
M=N*for0<a<band M=N*for 0<b<a.

Hint: {a,v b,} and {a, A b,} are monotone sequences, and so
a, v b, decreases to x and a, A b, increases to y. One may suppose
x=(M v N)(x, y). Thus x =y by Proposition 8.4 and M ® N ex-
ists. Since M AN=M®N =M v N, the limit is a strict mean.

b) M & N is symmetric or homogeneous when M and N are.

5. a) Show that given strict symmetric means M and N,

M®,N(b, N(a, b)) = N®,M(a,b).
2. a) Let M be a strict mean. Then
b) Show that in the special case in which M =N the limit

Mv=v@M=v. M®,M =& is characterized by

b) Show that ®(a, b) = ®(b, M(a, b)) .
(M®N)f= Mf®Nf

where as before M((a, b):= f'M(f(a), f(b)).
c) In particular a) and b) show that

¢) Show [using b) or otherwise] that

a+2b
3

i) G®,G(a,b)=a'"p*"

i) A®,A(a, b)=
MROA=ARXM=~A.

d) K M and N are symmetric, then Py opP\1P

) g iy H,®, H, (a, b)=<”—3~) p#0.
M@N=NXM. )
6. For any function Q let Q(a, b):= Q(b, a). Prove that for any means M
[More generally, N® M(a, b) = M &) N(b, a).] Thus and N,

M®,N=N®,M. M®N=NQM

3. (Carlson’s log) Define means M(a,b):=Va-(a+b)/2 and and

N(a, b):=+/[(a+ b)/2]- b= M(b, a). Show that

| a®- b’
M® N(a, b) = W fora#b.

Hence [using Exercise 2b)],

M®,N(b, N(b, )= N ®, M(a, b) .

8.4 CONVERGENCE RATES AND SOME EXAMPLES

In this section we show that Gaussian iterations typically converge quadrati-
cally and Archimedean iterations sublinearly. We also give some more
examples of Gaussian and Archimedean iterations for which we can calculate
the limit.

M, ,®N,=%.
Explicitly, if

a4, + Va,b, .= bt Vab,

Qpyy'= =7 and b=

EXAMPLE 8.2 (ARCHIMEDES’ METHOD)

(a) Leta, denote the area of a regular m - 2"-gon inscribed in a unit circle.

then the limit is Let b, denote the area of the circumscribed regular m-2"-gon. It is

b—a easily Veri.ﬁed thata,,, =Va,b,and b, =2a,,.b,/(a,,, +b,) while
logb—loga a, = smsin (2m/m) and b, = m tan (7/m). Thus we geometrically ver-

ify that a, and b, tend to 7. This gives G®, H_,(a,, b,) = m or, on

Note that this is neither a Gaussian nor an Archimedean iteration. using homogeneity and replacing 27/m by 6,
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(8.4.1) G®aH_1<sin 9,2tan<—g>> =>0.

There is no need for m to be integral and (8.4.1) holds for all
0<o<m.

(b) Consider now the same process but using circumscribed and inscribed
perimeters a, and b,. Now we have a,,,=2a,b,/(a,+b,) and
b,.,=Va,, b, while a, =2m tan (7/m) and b, = 2m sin (7/m). Then
a, and b, tend to 27 and

(8.4.2) H_,®,G(tan 6,sin6) =6 .
This is pursued further in Exercises 1 and 2. O

A complete analysis of the iteration of Schwab, Borchardt, Pfaff, and
Gauss is in Miel [83]. The central observation is:

Theorem 8.4 (Schwab—Borchardt)

S O=a<b
arccos(a/b) ¢
(8.4.3) A®,G(a,b)=1 a a=b
\/2_ ;2
__a—b O0<b<a
arccosh(a/b)

Proof. Schwab established the first case by geometric arguments which
Schoenberg [82] reproduces. Given the formulae, it is simpler to use the
invariance principle. Since a’,, — b%,, =(a> — b2)/4, this reduces to show-

ing that

a a
2arccos< "+1>=arccos<b—”> a,<b,
bn+l n

(8.4.4)

2 arccosh <a"+1 ) = arccosh (%) a,>b,.
bn+1 n

Since a,.,/b, ., =V(a,/b, +1)/2, this is just the half-angle formula for cos
or cosh. O

We now turn to study rates of convergence for Gaussian and Archimi-
dean means.

Theorem 8.5

Let M and N both be continuously differentiable symmetric means and
suppose that at least one is strict.
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(a) Consider the Archimedean iteration [M, N],. Then, if a, # b,

a -b 1
4.5 : n+l n+1
(8 ) ,l.melo ——a" bn = —4 .

(b) Consider the Gaussian iteration [M, N], for comparable M and N.
(i) Then,ifa,#b,,

a,.,—b
4 . n+1 n+1 =0.
(8.4.6) Jim =0 =0

(ii) Suppose, in addition, that M and N are twice continuously
differentiable. Then, if a,# b,

a7 lim G =l M09 =~ N,y (s.9)
n—w Ia" - bnl )

where s:= M ¥, N(a, b).
Proof. Since M(c, ¢) = c for all ¢, we must have M ,(c, c) + M ,(c, ¢) =
1 for all ¢. (Here M ; denotes the partial derivative with respect to the ith

variable.) Since M and N are symmetric, it follows that M (c,c)=
Nc,c)=3%,i=1,2.

(@) Lets:=(M®,N)(a, b). The mean value theorem gives
(8.4.8) a,,,—s=3(a,—s)+3(b,—s)+o0(a,—s)+o(b,—s)
and since b,,, = N(a,,,, b,),

(8.4.9) b,y =5 =3(a,; =)+ 3(b, =)+ 0(a,,, — )+ o(b, —5)
=i(a, =)+ (b, —s)+ola,—s)+ob,—5).
Thus
@piy = byi = i(a, = b,)+0(a, =)+ o(b, —s)
and (a) follows.

(b) (i) Similarly, (8.4.8) still holds, and also

byi—s=3(a,—s)+3(b,—s)+o(a,—s5)+o(b,—s).
(8.4.10)
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Thus

a +1 bn+1 = O(an - s) + O(bn - S) = O(an - bn)

n

(since s lies between a, and b,). This gives (b).
(i) Given one more derivative, we have

—s=1(a,—s)+ (b, — )+ 1M, (s, 5)(a,~ b,)"
+ o(a, — bn)2

an+l

and a similar formula for 4. Subtraction gives (ii). Here we have
used VM(s, s)(a, — s, b, —s)’ = M,,(s, s)(a, — b,)>. [Exercise
7d).] O

Considerably more can be said if M and N are two or three times
continuously differentiable. (See Foster and Phillips [845].) In addition the
convergence in each case is uniform. For our purposes Theorem 8.5 suffices.
In particular, Archimedean iterations characteristically converge linearly
and Gaussian iterations super linearly (quadratically if twice differentiable).
In light of Jacobi-type methods in the theory of equations, this may seem
counterintuitive. Exercise 3¢) shows that (8.4.6) may fail if M and N are not
differentiable. The theorem justifies our separating Gaussian and Archime-
dean iterations. While symmetry is central to our convergence arguments, it
is not always essential, all that is really needed in Theorem 8.5 is that the
two means have the same gradients on the diagonal. (See Exercise 11.)
Also, (8.4.7) shows that better than quadratic convergence is possible only if
M,, = N,,. (See Exercise 7.) Additional information is given in Exercise 11.

Finally, let us say that two iterations are equivalent ([(M, N]~,[M', N'])
if M~, M' and N ~,N'. Strong equivalence is similarly defined. Clearly
equivalence of iterations implies equivalence of the limits, but not converse-
ly. Indeed, if the mapping % is continuously differentiable, the rates of
convergence must be the same. (See Exercise 8.)

Comments and Exercises

Some of the Archimedean considerations are discussed again in Chapter 11.
If we take m:=6 in Example 8.2(b), we have a recursive version of
Archimedes’ original method. (See also Edwards [79] and Phillips [81].)

1. a) Show that (8.4.1) and (8.4.2) are consistent with the general
formula of Exercise 5a) of Section 8.3.
b) Show directly that in both (a) and (b) of Example 8.2 we have
a,.,—b,.,~ i(a,—b,). This illustrates why computation of any
large number of digits of 7r by this method is impractical. ’
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¢) Show that in both cases (a, +2b,)/3 =:d_ satisfies

d,.,—limd, 1
d —lmd, 16

as n—x,

2. a) Show that changes of variables cause no problems for Gaussian or
Archimedean iterations, that is,

D (M,N);=M®,N,
i) M®, N); = M, &, N;.

b) Show that (8.4.2) implies that

1-x°

arccos x

A®,G(x,1)= O0=x<1.

Hint: Let x:=cos ¢ in (8.4.2) and use aii).
c) Rederive Theorem 8.4 from b).

The next exercise shows a class of means which is closed under the
Gaussian product. Contrast this with the Gaussian product of Holder
means.

3. Let Qa,b):=tavb)+(1—t)(anb)for0=r=<I1.

a) Show that Q, is a homogeneous, symmetric, isotone mean which is
strict for 0 <¢<1.

b) Show that for t=3s,

Qt ®g Q: = Qs/[:+(1—t)] .

This may easily be done by the invariance principle. Alternatively,
suppose a > b >0 and observe that the limit must be linear.

c) Show that |a, — b, |=(t—s)"|a— b].

d) Show that O,®), Q, = 0,®, 0,

4. Let M and N be symmetric, homogeneous means.

a) Show that M@, N =G if and only if N=M_,.

b) Show that M @, N = A if and only if N=2A4 — M. Note that M is
a mean if and only if 24 — M is.

¢) Characterize M @, N = H,,.

d) Show that if M(a, b):=V\/(a — b)* + ab, then

M®,G=H,.
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a) Show that f; to f,, are symmetric, homogeneous means which are
not differentiable on the diagonal. Thus Theorem 8.5(a) does not
apply.

b) Show thatf, ®, fy = A, and that [f;, f;], converges sublinearly for
a < b but quartically for a > b.

c) Show that f;®, f; 1,1)=3, and that we have one-step termina-

tion—which cannot happen for strictly comparable means.
These means were originally defined by the Greeks in terms of
proportions. For j:=1 to 10, respectively, x:= f,(a, b) solves

N
SR SN LR S
058 © 52T
U N
R A

d) Verify that x = f(a, b) in each case.
e) Verify that these are the only such means.

8.5 CARLSON’S INTEGRALS AND MORE EXAMPLES

This section is largely given to a description of a unified approach to Gauss’s
and Borchardt’s algorithms due to Carlson [71]. It shows both the pos-
sibilities and the limitations of looking for iterative methods based on a
more general hypergeometric transformation.

Let us consider the integral

2 2 1 J-w a’'—1 2\—8 2y—8'

; " = + t+ dt
R(a36>6 ax7y) B(a,a’) 0 t (t x) ( y)
(8.5.1)

where a + a’ =8 + 8'; re(a), re(a’)>0, and B is the beta function. (The
prime is not complementation in this context.) Then obviously
(8.5.2) R(a;8,8";x% y*)=R(a; 8", 8; y’, x%)

and R is homogeneous of degree —a in x* and yz. (See Exercise 1.) We are
interested in

8.5 Carlson’s Integrals and More Examples

C,:’=F,®F, 1,2,3,4

257
(8.5.3) i, j=

where the means F,, i=1,2,3,4, are given by

+b
F(a, b):="2 . Fy(a, b):=Vab
n n
Fy(a, b):= “2ba F,(a, b):= “zbb.

Thus C,, = AG, C,, produces Carlson’s log (Exercise 3 of Section 8.3), and
C.,=A®,G leads to Borchardt’s algorithm (Theorem 8.4).

Theorem 8.6 (Carlson)
Leti, j=1,2,3,4 with { # .
(a) [Fi7

() Cya,b)=

F;] converges.

[R(a, 5, 5,, aZ, bZ)]—l/Za

where (a; 8, 6') is given by the (7, j)th entry Table 8.1.

(¢) Convergence is linear except for C,, = C,,, which is AG, the limit of
the Gaussian AGM.
TABLE 8.1
i j=1 j=2 j=4 j=3
1 * (51_7%’%) (27271) (%9%7%)
2 (%y%:%) * (17 2a1) (17%7%)
3 (3L,3) (LLY) (1;1,1) *
4 (53,3 (3,3 * (1;1,1)

Since F, and F, are symmetric while F,(b, a) = F,(a, b), up to exchange
of & and 6 the table is symmetric around the main diagonal because of
(8.5.2). Boxes marked with * correspond to trivial iterations.

Proof.

(a) Since F,=<F,=<F, =<F, for 0<b<a, each pair of means is partially
comparable. By Proposition 8.4 on composition, each mean is strict.

Thus Theorem 8.2 establishes (a).

Let us denote F, (a b) by f. Make,

t:=s(s+f3)/(s + f?). Then

(b) in (8.5.1), the substitution
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dt _s"+25f1+fif5 _ (s+f)s+f2)

ds (s+f3* (s+fi)
and
T 0 ) AN G 1)
s+ f? s+
Thus
(8.5.4)

1 ® - _ -
R(a;8,8"; ", szwL ST DT )T

X (s + ) (s + £ 7 d

If we fix i and j, we can determine values of the parameters for which
fe» k#1, j, vanishes in (8.5.4). For example, with i:=3 and j :=4, we
set @ :=¢a’':=1 and have

(8.5.5) R(1;8,8";a b*)=R(1,26 —1,28" —1; f2, f2)

where 6 + 8’ =2. There is a unique value 8:=1 so that 8.5.5)
becomes invariant for f; and f,. By Exercise 1b), [R(1;1,1; a )]_1/2
is an invariant for [F;, F,] to which Theorem 8.3 applies. Simllarly, for
it=1and j:=2, we set § :=38":=3, which gives a + @’ =1 and

R(as %, %;0% b)) = R(a;1— o, a; f1, f3) .

The only p0551ble mvariant has a:=a’=1, and by Exercise 1b),
[R(2 : 3, 1:a% b*)] ' is an invariant for [F,, F,]. The rest of the table
is similarly verlﬁed [See Exercise 1c).]

The convergence assertions are straightforward. [See Exercise
1d).] O

EXAMPLE 8.3. As observed before, C,,, C;,, and C,, have been previously
identified. In Exercise 2 we indicate how to recover the previous forms of
the limit. In particular Theorem 8.6 gives integral representations for these
means. Now consider i:=1 and j:=3 (or similarly, j:=1 and i:=4).
Suppose that a > b. Let

(8.5.6) 1-s

o, t+ b’
"o+ dt
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Then s* = (a* — b*) /(¢ + a°) and

41— 54)—1/2 ds = —(a2 _ b2)1/4(t 4 az)—3/4(t+ bz)—1/2 dr .
Since a =, 6:=3, and 8" := 1, we have @’ =1, B(a, a') =4, and
131 , 2>_1J‘co 2\-3/4 2\=1/2
R<4,4,2,a,b =12 0(H~a) (t+ b9 dt
(1-b2a2)l/4
= (a2 _ bz)—1/4 fo (1- 54)—1/2 ds .
Recall that the arclemniscate sine is
arcslx:=f0 (1-sH""*ds x*=1

and gives the arc length of the lemniscate (r* = cos26) from the origin to
the point with radial position x. (See also Theorem 1.7.) Thus

2 2
a —b
8.5.7 C b)= =
( ) (4, b) [aresl(1 — b%7a*)"*)? 0<b<a.
Similarly,
Vo
(8.5.8) Cp(a, b) = 2 0<a<b

[arcslh(b%/a® — 1)"*]?
where the hyperbolic arclemniscate is defined by
arcslh x 1= fo (1+sH7 " ds

[See Exercise 2d) ] Observe that V2C,'*(1,0) = K(1/V2), by Theorem
1.7.

EXAMPLE 8.4 (ARCHIMEDEAN MEANS) Let us consider H,&®,H, for p,q=
=1, 0. Then the previous exercise and Exercise 5 of Section 8.3 show that it
suffices to consider H, ®, H,, H,®, H,, and H, ®_,H_,. Exercise 5¢) of
Section 8.3 gives H, ®a H(a,b)=(a+2b)/3 while H, &, H,is Borchardt’s
algorithm. It remains to study H, ®, H_;. With a := B := 1 this is a special
case of the mean iteration a,:=a >0 and b,:= b >0,

an+1bn

Gtz aa, t(1=a)b,  buei= gy
n+1 n
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where 0< @ <1 and 0 < 8 < 1. In the notation of Exercise 3 of Section 8.4
this computes G:=Q,®,(Q,)_, for a>b. If we let k,:=b,/a,, we
derive

Ko —1= @B)k; ~ )= (ap) (2 -1)

and

%=1+(aﬁ)"(%~1>.

n

Thus

an+1
—a+(1-a)k
2= o+ (1- 0k,

n

and the limit is

—a(ep)'(1- a/b)]
—(aB) (1~ alb)

If we let 1 —a/b=:x and af3 =: g, we have

oft 715)- 1 [0 - Bt !

Gla, b)—aH [

(8.5.9)

which is the ratio of thetalike products occurring in the g-binomial theorem.
(See Exercise 7 in Section 9.4.) Wimp [84] continues a discussion of similar
calculations, all of which give linear convergence.

If we let af:=14% and a:=3, we have a product expansion for
H,®,H_,. Foster and Phillips [84a] show how this function can be closely
approximated by elementary functions and can be given an elegant asym-
ptotic expansion.

Comments and Exercises

Many other related algorithms can be found in Wimp [84]. This includes an
extensive discussion of quadratically computable trigonometric integrals (in
Chapter 14).

1. a) Show that R(a;8,8";x%y")=y F(a;8,8+8';1—x7y*),
where F is the Gaussian hypergeometric series. (See Exercise 6 in
Section 1.3.)
b) Show that R(a;8,8"; :x* ¥*) is homogeneous of degree —a in x°
and y> Also R(a; 8, 6 1,1)=1and R(a; 8,8";-,") is contmuous
c) Verify the entries in Table 8.1.

8.5 Carlson’s Integrals and More Examples 261

d) Show that [F,, F], i <j, is linearly convergent for all cases except
i:=1, j:=2. Observe that [F;, F,], which is not Archimedean, has
a convergence rate of 27" and [F,, F;], which is partially compar-
able, has oscillatory iterates.

a) Observe that C,,(a, b) = (7/2)/1(a, b) with

ae
I(a, b):=
Va? cos’ 6 + b sin>
as before.
2 b
b) Show that Cy(a,b):= W (a+#b).

Hint: Use partial fractions.
¢) Show that CM(a b) is glven by (8 4.3).

Hint: Let (¢t + a°)/(t + b*) =:cos” 6 or cosh? 6.
d) Show that C;(a, b) is given by (8.5.8) for a < b.
e) Use the invariance principle to verify that

Cou(b, a) = Cyy(a, b) = VaC,,(a, b)
and that
Co3(b, @)= Cpy(a, b) =VbCy5(a, b) .
f) This completes the analysis of all of Carlson’s means in explicit
form. Attempt to verify part e) directly from Theorem 8.6.

Use the invariance of C,; to show that

i) arcsl x =V2arcslh y
where (1+ y*)(1+V1-x*)=2, and
i) arcslx =2arcsl z

where x =:2zV1—-zY%(1+ z*) and 2* <VZ - 1.

This is Jacobi’s duplication formula for arcsl (Watson [33]).
Show that with M(a, b) = G(a, H,,(a, b)) =: N(b, a),

a® — b* ]l/p

M® N(a, b) = %,(a, b) = [m

(Cerison [75]) Let a, b>0 and set

2
Fa, b):= = fo log (asin’ 6 + b cos® 9) d6 .
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a) Show that

F[(“;b)z, ab] —2F(a, b).

b) Using a) (or directly) show that

va+Vb

F(a, b)=2log ( > ) =log H,,,(a, b) .

6. (Carlson [78]) Let a, b, c, A real be given. Assume a+ A, b+ A,
¢+ A=0, and at most one of these is zero. Consider

T(A):=T(a, b, c; A) :=J’A°° [(@a+ )b+ )+ ] 2 dr.

Let

kr=Aa+V(A+a)(A+D)+V(A+b)Y(A+o)+V(A+a)r+c).

a) Show that T(A) =2T(k).
b) Show that T(A,)=lim, . 2"""k;'"?, where iteratively A:=k,,
k, ,'=k,and A=1k,.

n+l°

¢) Show that for a, b,c,d >0,
fo [(t+ a®) (¢ + b*) (e + )+ d)]V* dt = T(A, B, C;0)

where A = (ab + cd)’, B:=(ac + bd)’, and C := (ad + bc)”
7. (Tricomi [65]) Let 0=k=1 be given. Set

R (a, b):=Vikd+k'’b* k':=Vi-k’

and

a+ R,(a, b)

—_—— <b.
b+ R,(ab) b 0<a<b

M(a, b) =

a) Show that M is a strict mean on 0 <<a<b.
b) Show that

M®,G(a, b):=b li_oI cn(2”"v,)

where cn(v,) 1= ay/b, and 0 <v, <2K.
Hint: Use the half-angle formula for cn
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cnz<l u) _ o+ k™ + Kren®(u)
2 1+ VE'? + kPcn®(u)
and deduce that cn(v,) := a,/b, satisfies v, , = v,/2 and b,../b,=

Va,. /b, =a,../b,. = cn(v,/2""). ’

¢) Recover Borchardt’s algorithm by considering & := 0.

(8.5.10)

8. Compute a formula for the MacLaurin series for G(1 - x, 1) in (8.5.9).

8.6 SERIES EXPANSIONS OF CERTAIN MEANS

For homogeneous means it is particularly easy to compute Taylor series. It
suffices to expand the trace around 1. In the exercises we list various series
taken from Gould and Mays [84], extending results in Lehmer [71].

1 — —_ — —
Hp(l,l—x)=1—§x+p L2yl (p=D(p=3)2p+5) .

8 16 384
+ e
(8.6.1)
Similarly,
f— — 2_ f—
L 1-x=1-2+221 2, P15 (P =D(@=3) .
27 4 8 28
(8.6.2)

From these it follows that the only means which are both Holder and
Lehmer means are H_,, A, and G. (See Exercise 5.) Similarly, but slightly
more elaborate, analysis shows that the following theorem holds.

Theorem 8.7 (Lehmer)
(@) H,®,H,=H, p#gq
ifand onlyif p+ g=s5=0.
(b) L,®;L,=L  p*q
if and only if p + ¢ =25 =0, 1, 2.
(©) L, ®,L,=H, p#q
ifandonlyif p+g—1=5=-1,0,1.

(@) H,&®,L,=L, p+#q
if and only if p=—q and s = 1.
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Proof. Sufficiency is easy in each case. Necessity is more elaborate and
in some cases somewhat tedious. (See Exercise 6.) In essence it follows from
the invariance principle and the computation of the first few terms of the
Taylor series of the limit. [

Thus only A, G, and H can arise in such compounding. Lehmer continues
by studying in detail the Taylor series of A®, L,, various properties of
which had been previously examined by Stieltjes in a letter to Hermite
(Hermite and Stieltjes [05, letter 323]). (See Exercise 7.)

Comments and Exercises

Theorem 8.7, while very pretty, is of limited ambit, since it cannot diagnose
whether the compounded mean is equivalent to a mean in the class.

1. Show that the Holder means satisfy

H,(1,1-x)= 2 A(p, n)x"
n=0

where

e (e ()

i n

for n=1.
2. (Euler) If g(x):=X._,a,x" and g”(x)=:L,_, b,x", then

> [k(p+1)=nlab, =0 n=0.
k=0
3. Show that the Stolarsky means satisfy

SP+1(17 1 - X) = 21 D(p7 n)x"

where

L S n+k+1 V4 kp+k—n
DCp, n):= g (n—k) n—k+1 PPk

15
np

4. a) Show that the Gini means satisfy

G, (1,1-0=6,,(1,1-0G, (1,1-x)
where
. s+bs 1/(s—r)
6, ab=(50)
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b) Show that

©

G:,r(l’l—x): 2 G(Sa ra n)x"

n=0

where

6(s, r,m) = (~1)" 2 (M0

D2 v (5)().

265

¢) Thus G, can be computed by convolution. A similar result exists

for E

ShowthatH =L,ifand onlyifp=0andg=-1;p=1and ¢g=1; or

p=1and g=0.
Prove Theorem 8.7.
(Lehmer) Let

R(x):= A®, L,(1,1+4x).
a) Show that

2"
Rx)=1+25 —*
(x) ,,ZOPPP P

n

where the P, are defined recursively by Py(x):=1
P, (x):=[P,(x)] +2x""

Hint: If
a .= Pn .
" P1P2"'Pn—1 ao._l
P +2x"
b :=% =
T PP, P byi=1+4x
¢ = 2x% L
"= PP, P, Coi=2x
then
a +b
an+1 2
_a + b2
n+1 = a"+b
b’l _an
cn+1: +12 +1

and
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Now observe that
R(x)=ao+ 2 (4, — @)
i=0

and use the invariance principle.
b) Show independently that

R(x)=1+ > g.x"
n=1

where g, :=2 and g,,, m =2, satisfies the recursion

lm/2)

gm0 2 27 72 g,

m—2k

Observe that the g; are integers.
Hint: Show that the series for R satisfies

R(x)=(1+2x)R((1 X ))

¢) Use b) to compute g,, for m =20. (g,, =23335660.)

8.7 MULTIDIMENSIONAL MEANS AND ITERATIONS

Most of the results of this chapter have direct analogues for functions of
more than two variables. Often these follow by similar arguments. We
concentrate on mean iterations. Let 4 := (a,, . . . , ay) be any strictly posi-
tive vector.

An N-dimensional mean is any continuous function M such that

<
RS

il
—-

(8.7.1) /N\ = M(@@)=

3

for all a; > 0. The mean is strict if
N N N B N
(8.7.2) Na<Va>/\a<May<V a,.
i=1 i=1 i=1 i=1

Also M is symmeric if M(a)=M(b) for any permutation b of a.
Homogeneity and isotonicity are defined analogously. The Lehmer and
Holder means are defined by

(8.7.3) L(3)= =55
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and 1 1ip
m,@=(5 2 )

(8.7.4)
respectively.

Given N N-dimensional means M, , M", we consider the iteration
[M', ..., M"] defined by a,:=a>0 and
(8.7.5) al ., :=M@,) 1=i=<N.

We write this vectorlally as a,,,:= M(a,) and denote the common limit
when it exists by @l 1 M'. Again, when each M, is symmetric, we consider

this to be a Gaussian iteration with limit ® M Similarly, if
i= 1

(8.7.6) = Mapay, a0 e A, a))
we have an, Archimedean iteration (there are other possible generalizations)
with limit ® M’. Under mild hypotheses the convergence results of Section
8.4 remain valld

Theorem 8.8
Let M', M? ..., M" be strict N-dimensional means.

(@) Then ®Y., M’ exists and is a strict, continuous mean.
(b) Suppose that the means are symmetric and continuously differentiable.
Leta,:=\/", a and b,:= A, d.. Then,ifa,#b,,

8.7.7) lim

and convergence is superlinear in the Gaussian iteration.

(¢) If, in fact, the means are twice continuously differentiable, converg-
ence in the Gaussian iteration is quadratic (uniformly on compact
subsets).

(d) Convergence is linear in the Archimedean iteration for continuously
differentiable symmetric means.

Proof.

(@) Much as before, a,=a,,,=b,,,=b,, and we may suppose a, con-
verges to a and b, converges to b. Let ¢ be any cluster point of {a,},
which is bounded. Then b= A X, ¢, =< \/ X, ¢,<a, and

a= \f/ Mi@©) b= /_N\ M©).
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Since all the means are strict, we must have ¢; = a and ¢; = b for each i.
Thus a = b, and the iteration converges, say, to «. As before, the limit
is a continuous strict mean.

(b) By symmetry we have Mfk(ce) =1/N for any i, k and any multiple of
the unit vector e. Thus

a—%g[(aﬁ—a)+o(a:—a)].

n+1
Hence

|@)sy — @] = 0(a, — @) + o(a], — @) = o(a, = b,)

and (8.7.7) follows.
(¢) Thisis argued as in the two-variable case and relies on the fact that the

Hessian V’M'(a, e, ,a) sums to zero and has all dlagonal entries
equal to —(N — 1)y’, where each off-diagonal entry equals y’. Thus for
each i and J,

=25 E S @k - b+ of(a, ~ b,))

h<k
(and unless all y’ coincide, convergence will be at best quadratic). Now
OS an+1 - bn+1 = Blan - bn|2 + 0(|an - bn|2)
where B is an easily computable constant depending on the means,

initial values, and dimension. This shows (c).
(d) We leave (d) as Exercise 2b). O

EXAMPLE 8.5 (scuLomiLcH) Consider

a,+b,+tc
an+1:= - 3" - ::Ml(arubn?cn)
ab +b,.c,+ta,c,
b= e O = Ma,.b,.c,)
1 =(anbncn 13 =:M3(an7bn7cn)‘

This is a quadratically convergent Gaussran iteration, as follows from
Theorem 8.8(c). (Since M' = M’ = M’ M? is a strict mean.) Let S(a, b, ¢)
denote the limit. While we cannot 1dent1fy S, we can, following Landau,
observe that if ac = b> then a,c, = b? and thus

(8.7.8) S(a,vac, c)=He®, G(a, c) =:S(a, c)
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where He(a, ¢):=(a+Vvac+c)/3=E,,,,,(a,c) is the Heronian mean.
While this does not appear to have a closed form, it has an attractive
product expansion,

Z 1+Vx, +x,
[] —Yor—=n

(8.7.9) S(1, x) = 3
n=0
where x,:=x and
3vx,

Tt T TRV X,

While it is difficult to evaluate two-dimensional compound means, it
appears even harder to evaluate higher dimensional ones.

There is a satisfactory analogue of Proposition 8.3. Let f be continuous
and strictly monotone as before. Let ag, a,, . . ., a, be distinct positive real
numbers. Let F,, be any Nth antiderivative for f. We define

(8.7.10) Mfo(am Ay, ...,a,)i= f—r[N! Z F(N)(ak)a ):I ‘

k=0 iw; (@) — g

Then M for is a strict, symmetric N-dimensional mean. (See Exercise 5.)

We should emphasize that the invariance principle continues to hold:
®:=@®!., M’ is the unique continuous diagonal mapping satisfying

(8.7.11) =M\ M ..., M").

Comments and Exercises

A wealth of information on N-dimensional means can be found in Hardy,
Littlewood, and Polya [59]. The Lehmer means are studied in Beckenbach
[50]. The Schlémilch mean and Landau’s contribution are discussed in
Schoenberg [77]. Various N-dimensional quadratic iterations are exhibited in
Wimp [84] and Arazy et al. [Pr].

1. a) Show that H, and L, are strict, homogeneous, symmetric means.
b) Show that (I, a,)""" =lim,_, H (a) =: H().
¢) Show that H, is convex for p=1 and that L, is convex for
l=p=2.

2. a) Show that ®]_, M'is a continuous strict mean when each M’ is.

b) Show that convergence is linear in the Archimedean iteration.
c) Estimate the rate in the three-variable case.
d) Show that
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é (a)_[N(N+1)zka]l/p p#0

and

N ]2/N(N+l)

&, #y@ =1l a

k=1

Hint: Use the invariance principle when p :=1.

3. Show that S(1, x) satisfies (8.7.9). Compare this to the product expan-
sion for £(1, x).

4. a) Let
+b+
Ml(a,b,c)i=u
3
2 . abtbctac
M%(a, b, c):= 2+ bte
and
3abc 3
3 - — =
M@, b, Q)= b be ~ Tla+ b+ 1lc
Show that

b)

3 ; 1/3
&, M'(a, b, <) = (abo)
i=1

and that convergence is quadratic.

Let S, be the kth elementary symmetric mean function of N vari-
ables. That is, S, := f,/(}) with fk as in Exercise 6 of Section 11.2.
Thus, S;:=1, S, Hl,etc Let M*:=§ «/S,_, for 1=k =n. Show

that M“= M“"! and that @8 M'=H,.
i=1
In a) replace M* by H,. Thus
+b,+
an+l = a" 3" C" bn+l = (anbncn 13
. 3
“n+1"7 /g +1/b, +1/c,

Show that the limit mean M satisfies
M(a,vac, c)=He®,He_,(a,c) =vac = (abc)'”? .

This is not the general limit.
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d) More generally, whenever M is homogeneous and symmetric,

b)

d)

P=MRGR M_, satisfies ®(a,Vac,c)=~+vac. Similar results
hold in N dimensions.

Show that M Sur of (8.7.10) is uniquely defined and is a strict mean.
Hint: Let

];ek (x - )
IL, (@ — aj) ‘

Py(x):= z N)( k)

Then PN is the Lagrange interpolating polynomial for Fiyy at
ag, ay, ..., ay. (See Exercise 1 of Section 10.1.) Thus P’ and f
must agree at some point strictly between A Y, a, and \/, 1 4a;.
Now show that M s extends continuously to all strictly positive
variables. The hardér part is to show it is strict.

Show that the three-dimensional Stolarsky means are appropriately
defined (and are homogeneous) if

2 < a® N b?
p(p—1) \(a=b)a-c) (b—a)(b-o)

for p#0, 1, 2. Also

S,(a, b, c):= [

o (a=b)b -9~ a)
So(a, b, ¢) = [Z(b —c¢)loga+2(c—a) log b +2(a—b) lOgC]

while

(a—b)(b—c)a—c)

S
(@, b,0): ‘z(b_(;)a loga+2(c—a)blogb+2(a—b)ClOgC

and, using f(x) :=log, that the identric mean may be given as

. L a’ loga blegb
50.5,0)3= 530, b, )= enp| Lol s LBl
P _Cloge 3
(c—a)c—b) 2

Show that the N-dimensional logarithmic mean is given by

log a -1/(N-1)
°(£N(a17 [12, .. g ]

o[- 3 e o

Investigate the isotonicity of S,(a, b, c) as a function of p.
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6. There are various multidimensional generalizations of the AGM due to
Borchardt [1888] and others. In four variables one may take

a,*tb,+tc,td,

a

n+1" 4
- v a'lbn + \ C'ld"
b= — 5 ——
. Va,,+Vb,d,
T S—
. Vandn + b’lcﬂ
dppri=— 5 -

a) Observe that, while the means are not all symmetric, the derivatives
on the diagonal (a=b = c=d) all coincide, and hence establish
quadratic convergence.

b) Show that when a,:= b, and ¢, := d,, the iteration reduces to the
AGM. This iteration shares many of AGM’s attributes (Arazy et al.
[Pr]).

7. (An extended convergence result)

a) Observe that Theorem 8.8 continues to hold if the condition that
the means are strict is relaxed to

_ N N N N
M@)=\ ¢, and M(©)= A c¢, implies A ¢,;=V c;.
o i=1 i=1 i=1
Here
N - N
M:=AM and M:=\/ M.
i=1 i=1

This clearly holds if N —1 of the means are strict.
b) More interestingly, use a) to establish the following result. Let A be
an entry-positive N by N matrix. Set A;:= A and

1 —
An+l:=N(* An)2

for n=0. Here *v/~ represents entrywise square root. Then A,
converges to a constant matrix with entry e(A).

0 1fA:=(‘Z i) then e(A) = AG(a, b).

d) IfA:=((;) ‘;)then e(A) = #(a, b).

e) Similarly consider A, and B, entry positive and
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A, +B, 1l =
An+1 = —_2.— Bn+l -= —N AnBﬂ *

Show that this iteration converges to a constant matrix. (See Cohen
and Nussbaum [Pr].)

8.8 ALGEBRAIC ITERATIONS AND FUNCTIONAL RELATIONS

Among the more familiar and fundamental properties of the exponential
function is that it satisfies the algebraic functional relation

(8.8.1) f@=[f(z/n)]".

Are there any other algebraic functional relations of the form

(8.8.2) f(2) = B(f(u(2), 2))

where B and w are algebraic? More precisely, w is an algebraic function if
there exists a polynomial P in two variables with coefficients in some base
field F (for most of this discussion F:=@Q or F:=C) such that

(8.8.3) P(up(z),z)=0

and Q) is an algebraic functional relation for fif € is a polynomial in three
variables over F and there exists an algebraic function p so that

(8.8.4) QU(f(2), f(r(2)),2)=0.

The function w is termed an algebraic transformation (for f). We assume
throughout that z is a complex variable and unless otherwise indicated that f
is defined on a region U which contains an open set V so that u(V)C U.
[This ensures that (8.8.4) can be continued to any open connected compo-
nent of the domain of f that contains U.] The collection of all such
transformations satisfying (8.8.4) for some Q we denote by TG(f: F), the
algebraic transformation group of f over F. If

(8.8.5) L(x):=M®N(1, x)
where M and N are homogeneous means, then
(8.8.6) L(x) = M) L((x))

where M(x):= M(1, x) and u(x) := N(1, x)/M(1, x). Thus if both M and N
are algebraic, then L satisfies an algebraic functional relation with algebraic
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transform . It transpires that the transformation groups of the most
elementary transcendental functions are very simple, too simple in fact, to
support quadratically converging mean iterations. (See Exercise 1.) This, in
part, explains why the algorithms of Chapter 7 for exp and log require the
intermediate use of nonelementary transcendental functions.

We wish now to compute the algebraic transformation groups of some
familiar functions. However, we need first to establish the transcendence
[over C(z)] of the functions exp, log, and exp(exp). This is considerably
easier than the arguments for the transcendence of numbers such as e. The
arguments are roughly the same for all the above functions. For exp it
proceeds as follows. Suppose exp satisfies an equation of the form

(8.8.7) z_: a;exp(iz)=0

where the a, are rational functions, k is assumed minimal, and a,=1. We
differentiate (8.8.7) to get
k

(8.8.8) > (4, +ia,) exp (iz) =0.

i=1
If k=2 and we divide (8.8.8) by exp (z), we obtain a lower order expression
than (8.8.7) and violate the minimality of k. To dispose of the & =1 case we
must show that exp is not a rational function. Since exp is entire, if it were
rational it would in fact have to be polynomial, and if it were polynomial it
would have to have a finite Taylor expansion.

Theorem 8.9

(@) TG(exp: @)= {az: a rational}
(b) TG(log: @) = {z”: b rational}
(¢) TG(exp (exp): @) ={z}.

Proof. We will prove, by elementary methods, that

(a') TG(exp: Q) = {az + b: a rational, exp (b) and b algebraic}

(b') TG(log: @)= {az": log(a) and a algebraic, b rational}

(c') TG(exp (exp): Q) = {z + b: exp (b) and b algebraic}.

To see that (a), (b), (¢) and (a’), (b'), (¢’) are the same is equivalent to

Lindemann’s theorem which guarantees that exp (a) is transcendental for
any algebraic a #0. (See Exercise 7 of Section 11.2.)

We first prove part (a’). Suppose that u is an algebraic transformation for

exp. Then there exists an expression of the form

(8.8.9) 2 a; exp (m;z) exp (n;u(2))=0
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where the g, are nonzero algebraic functions in z and the m; and n; are
integers. Equivalently,

k
(8.8.10) > a,exp (mz + n,u(2)) =0
i=0

where we assume k is minmal, that is, we assume (8.8.10) contains a
minimum number of distinct nonzero exp (m,z + n,u(z)) terms. If we divide
(8.8.10) by its last term and differentiate, we get '

lil {[mi -m, +(n,— nk);i]<£—;> + (%)}exp [((m,—m)z+(n,— n,)u]

(8.8.11)

This expression has one less term than (8.8.10) and contradicts the
minimality of (8.8.10) unless (8.8.11) contains no nonzero terms. This
implies that each term of (8.8.10) must be constant. Thus there exist m and
n integral and a nonzero algebraic function a(z) so that

(8.8.12) a(z) exp (mz + nu(z)) = constant .

Since exp is transcendental, mz + nu(z) must be constant. Call this constant
b; since u is algebraic over Q, b must be algebraic. Specializing (8.8.12) at
z =0 shows that exp (b) must also be algebraic. Part (a') is completed by
observing that u(z) = (m/n)z + b is an algebraic transform of exp.

The proof of part (b’) is similar. If u is an algebraic transform for log,
then there exists an expression of the form

x

(8.8.13) >, a;[log (2)]™+ [log (u(z))]" =0

i=0

where the a; are algebraic functions and the m,; and n, are nonnegative
integers. Let (8.8.13) be minimal in the sense that it has the smallest
maximal degree and contains the fewest distinct terms of maximal degree.
(The degree of a term is m;, + n,.) Suppose the term corresonding to i =0 is
such a maximal term. If we now divide (8.8.13) by 4, and differentiate, we
are left with an expression containing fewer maximal terms, which con-
tradicts minimality unless all the transcendental terms vanish under differen-
tiation. In particular (8.8.13) must actually be of the form

(8.8.14) blog(z)+clog(u(z))=d

where b, ¢, and d are algebraic numbers. Thus
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(8.8.15) p(z)=exp(d/c)z™"c

and we see that u is algebraic exactly when exp (d/¢) is algebraic and —b/c
is rational. (Otherwise, by Exercise 2, z7%/° is transcendental.) This finishes
®").

The proof of (¢’) is again similar to (a’). There are, however, a few
additional wrinkles. Suppose now that w(z) is an algebraic transform for
exp (exp (z)). Consider minimal length sums of the form

(8.8.16) 2 a, exp [m, exp (z) — n, exp (u(2))] =0

where the q, are algebraic functions of z, exp (z), and exp (u(z)). Dividing
and differentiating (8.8.16) leads, as in (a'), to a contradiciton unless
(8.8.17) m; exp (z) — n; exp (u(2)) = constant

and the result follows. One of the wrinkles is that we must establish the
transcendence of exp (exp (z)) over the algebraic functions in z, exp (z), and

exp (u(z)). This is necessary for our minimality argument and can be done
analogously to proving that exp is transcendental. (See Exercise 2.) O

The transformations we are considering are algebraic over Q. This is a
natural choice for computationally related questions. The analogous results
for algebraic transformations over C are similar but easier because the
number theoretic details vanish. We have the following:

Theorem 8.10

(@) TG(exp:C)={az+b:acQand beC).
(b) TG(log:C)={az’:bEQandaec C}.
(¢) TGf(exp (exp): C) = {z + b: exp (b) €Q}.

If f(z) = g(a(z)), where a(z) is an algebraic function, then
(8.8.18) TG(g: F)=a°TG(f: F)oa™".

EXAMPLE 8.6 Let u be an algebraic function and suppose u™ is the
identity. [For example, u(z) := rz, where r is an nth root of unity.] Then
(8.8.19) fr=exp(u®)+exp (@) +- - +exp (™)

is invariant under w, where ™ 1= u(p" ). Note that TG(f) is not in

general conjugate to TG(exp) since TG(exp) contains no finite elements of
order greater than 2.

Y
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For ¢* and log , (2), where ¢ is an algebraic number distinct from 0 and 1
we have

(8.8.20) TG(g*:Q) = {az + b: a and b rational}
and
(8.8.21) TG(log,: Q) = {az”: a and b rational} .

To derive these results we first observe that (a’) and (b') of Theorem 8.¢
hold for the above functions (with exp replaced by ¢° and log replaced by
log,). The only difficult part is to show that ¢* and a are simultaneously
algebraic exactly when a is rational. This is the celebrated Gelfond-
Schneider theorem. (See Section 11.2.)

In Exercises 1 and 5 we show that functions like B(e?’®,z) anc
B(log ¥(2), z), where B(:, -) and y(-) are algebraic, cannot support function-
al equations that possess quadratic fixed points in their domain of analytici-
ty. In particular such functions cannot be the limit of quadratically con-
vergent homogeneous mean iterations. This shows why the elementary
functions are always associated with linearly convergent iterations.

Comments and Exercises

The results of the section underscore the difficulties of analyzing in closed
form the limits of mean iterations. The familiar elementary transcendental
functions can only be limits of fairly trivial iterations. The arguments are
extended in the exercises to cover sin, tan, arccos, and so on. Exercise 6
treats the special case of compounding rational means and shows that the
limit of such a mean iteration is either the kth root of a rational function or
is transcendental.

1. a) Suppose that
L(x)=M® N(1, x)

as in (8.8.5), where M(1,x) and N(1, x) are algebraic functions
analytic in a neighbourhood of 1. Show that if L can be quadratical-
ly computed by iterating (8.8.6), then u has a fixed point at 1 of the
form p(x):=1+ O(1—x)*as x—> 1.

b) Call an algebraic transformation w quadratically attractive at c if
p(c) = c+ O(c — z)* as z— c. Suppose that A is algebraically conju-
gate to p. That is,

A=aopoa ™’
where a is algebraic. Show that A is also quadratically attractive
at c.
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c¢) Show that none of exp, log, or exp (exp) nor any function algebrai-
cally conjugate to the above functions is the limit of a quadratically
converging algebraic homogeneous mean iteration.

a) Prove that z% (« irrational), log, and sin are transcendental func-
tions over C(z).

b) Show that exp (exp) is transcendental over C(z, exp (2), exp (u(2)))
when u is algebraic.

Prove (8.8.20) and (8.8.21) assuming the Gelfond-Schneider theorem.

(On the algebraic transformations of sin, cos, and exponential sums)
Let a(z) be an algebraic function over F:=C(z,e"), the field of

rational functions in z and e”. Suppose that a(z) is not algebraic over
C(z). Show that

TG(a:F)C{az+b:a,beC})

and calculate TG(cos:C) and TG(sin:C). Outline:

a) Show that if 4 € TG(a:C), then there exists a nontrivial relation
d
j§=jo by(z) exp [k;u(z) + hz] =0

with b, €C(z) and k;, b, EZ.
b) Consider minimal (in d) expressions of the above type and argue,

as in the proof of the transcendence of exp, that for some I
exp [k;u(z) + h,z] € C(2).

a) Suppose that a(z) is algebraic over C(z, e*) where g(z2) is algeb-
raic over C(z), and suppose that a(z) is not algebraic over C(z).
Extend the arguments of Exercises 4 and 1 to show that TG(a, C)
contains no elements that are quadratic at any point where g is
analytic. In particular, such a function cannot be the limit of a
quadratically converging algebraic homogeneous mean iteration.

b) Suppose that «(z) is algebraic over C(z, log (g(z))) where g(z) is
algebraic over C(z) and suppose that a(z) is not algebraic over
C(z). Show that TG(a :C) contains no elements that are quadratic
at any point where g is analytic and nonzero.

(On the iteration of rational means)

a) Let M and N be homogeneous rational means. (A rational mean is a
mean that is a rational function.) Show that M &® N(1, x) is con-
vergent in some neighbourhood of 1. Show that either

1) M® N(1, x) is transcendental
or

2) [M®N(1,x)]'is a rational function for some integer i.

b)
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Outline: Suppose f(x, y)= M @ N(x, y) and suppose that f(1, x) is
algebraic. Then one has a finite sum

2 s, 0]'=0, s5,ECE
and
(8.8.22) > e Y, M =0
where r,(x, y) = x"'s,(y/x). Thus, or{ substituting,
(8.8.23) 2 r(M, N)[f(M, N)]'=0
while by invariance,
(8.8.24) > r(x, M, N =0.

Consider a minimal expression of type (8.8.22) and deduce from
(8.8.23) and (8.8.24) that, for some i,

(M, N) _ r(x, y)
rO(M’N) ro(x> y) ‘

Observe that

NrGe ) =r(%,2)

and deduce by passing to the limit that

(L, 1) ro(x, y) v
flx, y)= [ro(l, 1) rx, Y)}
Let
N(x, y):= <1 - %)’”’ % Y
and
M, )= G

As in Exercise 9 of Section 8.4,

N® M(a, b) = (a* )"/
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and the convergence is quadratic. In particular case 2) of a) can

occur.
¢) Show that A®, L,(1, x) is transcendental. Thus case 1) of a) can
also occur. (See Exercise 7 of Section 8.6.)

7. Calculate

TG(sin™':C) and TG(cos™*:C).
Hint:

sin”!z=—ilog(iz+V1-2%).

T

Chapter Nine

Some Additional Applications

Abstract. In Section 9.1 we derive the classical formula for r,(n) and its
theta function equivalent. In Sections 9.2 and 9.3 we consider the summation
of various multidimensional series. Results include an alternating series test in
several dimensions, evaluation of various lattice sums, and related invariants.
Section 9.4 gives Watson’s quintuple-product identity, and Ramanujan’s 'V,
product. Section 9.5 considers quintic and septic multipliers and solvable
iterations.

9.1 SUMS OF TWO SQUARES

We need the following simple lemma on Lambert series whose proof
(Exercise 1) proceeds by expanding both sides of each equation.

Lemma 9.1

If |g|<1and u,:=q"/(1-q"), then

(9.1.1) > u,(1+u,)= > nu,
m=1 n=1
and
(9.12) 3 )™ (1 F ) = 2 (20 = Dty -
m=1 n=1

Our development hinges on yet another remarkable identity due tc
Ramanujan [62]. (See also Hardy and Wright [60].)

281
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Proposition 9.1

Let 0 be real with 0< 6 < 7. Let

(9.1.3)

(9.14) T,:=T(q,0):= [% cot <Q>]2 + ,,2:1 u,(1+ u,)cos(nd)

(9.1.5)

Then

Proof.

where

and

Now

while

Thus

T:=T(q,0):= 1 cot<2> + 2 u, sin (n)

2

L
T,:=Ty(q,0)= 3 zglnunﬂp—cos(nﬂﬂ.

T,+T,=T".

> u,,u, sin (mo) sin (n) .

mn=1

% cot (g) sin (nf) = % 2; cos (k6) + % cos (n@)

2sin (m@) sin (nf) = cos [(m — n)8] — cos [(m + n)6] .

9.1 Sums of Two Squares

for constants a,(gq) which we proceed to evaluate. Now

L

a, =

N =
3

||M8
NIP—‘

1

where the {u? term comes from m = n in S,. Thus

2 nu,
n=1

D=

Ei (14 u,) =

NI'—‘

(9.1.6)

by (9.11). For k=1, S, contributes to a,,

and S, donates
1 1
z 2 umun + 5 2 umun -

for m, n=1. Thus

1 o =
G = 5 Uk + 21 Ups; T 21 Ulleri T 5 <~ Uil -
Luckily,
;= u (It u, +u,_ )
and
Upo; T UM = u (e, — uyyy) -
Hence
1 o k-1
(9.1.7) ak=uk[§+2 (u, —up,y) 2 (+u,+u,._,)
i=1

1
=uk<1+uk—§ k)
This shows that

o

1

ﬁ=Pm@W+éwﬂwmmW)zzumﬂmWﬂ

4

(9.1.8)

which is the desired result. O
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For 6 := 7/2 this result becomes
© 2n+1 2 ©
[1 +4 2 (=1 1 . 2"“:' =1+16 2 (_1)"1‘2"(1 + uy,)
n=0 - q n=1

+82 (2 + 1)(uyyyy + 41y, ,)
n=0

=1+8, 2n+Nu,,,,
n=0
+8 2 (47’[ +2)u4n+2
n=0
on applying (9.1.2). Thus
o q2n+1 2 © n- qn
[1+4z(—1)"_—T+1:| =1+8 2 = .
n=0 1_q n=1 1— q
n5#0(mod 4)

Now (3.2.23) can be used to show that the right-hand side is 65(q). Thus

* 2n+1
(9.1.9) 05=1+4 2_:0 (=1)" #
© q4n+1 q4n+3
=1+4"§=:0[1_q4n+1 - 1_q4n+3:|

and this last expression is nonnegative for real q. (Hardy and Wright [60] use
Proposition 9.1 to deduce the formula for 93 from that for 63). ‘

For r=1or 3 let d (k) denote the number of divisors of k congruent to r
modulo 4. Then

L =33 g = > d (k)q*
k=1

and a comparison of the coefficients in (9.1.9) shows that
(9.1.10) ro(k) =4[d (k) — d,(k)] .

In other words, the number of representations of a positive integer k as a
sum of two squares, counting order and sign, is 4 times the surplus of
divisors of k congruent to 1 modulo 4 over those congruent to 3 modulo 4.

This recovers Jacobi’s classical result, a result also known to Gauss. (See
Dickson [71].) Since
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w©

" _ 3 (=1)"g>"

= 1+q2m = 1___q2m+1
we also have
20)=1+4 R
(9.1.11) 92(9) mEzl v

This is the formula exploited in Section 3.7. Also (9.1.9) shows that

(9112) 0?((]):14—4 2_ (_1)("'1)/2qnm
o
and
(9113) Oi(q)=1+4 E 1(_1)("—1)/2+mqnm
W odd

=1+4 2 (_1)n+m—1qm(2n—l) .

n,m=1

An alternative recent derivation of (9.1.9), due to Hirschhorn2 [85], reliejs
only on the triple-product identity. Begin with (3.1.13) and let a” := w. This
gives

(a—a™") 11 (1-a’g")(1-a"’q")(1-¢")

=<] e«

E 4n+1_2n?+n 4n—1_2n?-n
a q - z: a q .

=—

n=— n=—ow

Now apply the triple product in form (3.1.1) to each of these sums. This
leads to

(9.1.14) (@a—at) Iil1 (1-d*¢g"HA-a g1 - q")
=gq ﬁ (1+a4q4n—1)(1+a—4q4n—3)(1_q4n)
__a—l ]i[ (1+a4q4"_3)(1+a_4q4"_1)(1—q4").

Next differentiate each side with respect to a, at 1. (Use logarithmic
differentiation on each product separately.) This, after rearrangement,
produces
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et _1 n _2n-—1 Hw_ 1__ ny\3
1+42 ( )an—l p— 4:__11( q43—3 any C
-1 1+gq L. (A+g" )A+qg" )1-q7)

The right-hand side of (9.1.15) is

I_,(1-¢" O, (1-4")
M, 1+g")(1-¢") 1, (1+q")

4(‘1)

where the last equality follows from (3.1.4) and (3.1.7). Thus

1

_ (_ )n 2n—
03(q) = 1"'4?41 Mg

which is equivalent to (9.1.9).

In the course of his study of Ramanujan’s mock theta functions, Andrews
[86] discovered the following remarkable cubic counterpart of (9.1.11),
which we write as

4n+2

S 1+ )
(9116) 3(4) 8 2 2 <_T%>q(2n+1)2 (]+1/2)2

n=0j=0

It is an easy consequence of (9.1.16) that every number is a sum of three
triangular numbers (a fact originally observed by Fermat and proved by
Gauss). This also implies that a number is a sum of three odd squares
exactly when the number is congruent to 3 modulo 8 (Exercise 7]) as
observed by Euler.

Comments and Exercises

A comprehensive account of the development of formulae for sums of 2n
squares, from elliptic considerations and Lambert series, can be found in
Rademacher [73]. Many wonderful related identities are to be found in
Ramanujan [62]. Odd sums are much harder to evaluate. They involve
generating functions of class numbers as shown in Mordell [16] and Watson
[35].

1. Prove Lemma 9.1.
2. Verify (9.1.6) and (9.1.7). Show that these are equivalent to (9.1.8).

3. a) Prove formula (9.1.11) for 83(g).
b) Establish (9.1.12) and (9.1.13).

4. a) Let 0tend to 7 in (9.1.8) and evaluate the limit.
b) Evaluate (9.1.8) when 0 := #/4, w/3, 27r/3. In particular show that
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3n+1 3n+2

[1+6Z< P : 3n+z>]2=1+122

1-g 5im1—q"

n

n @ 3n
EPIPY O MRS R S
=1 (1=g") a1 (L= g™y

Two identities due to Lorenz (Dickson [71, vol. 3, p. 29]) are

D 6(@)6(g)=1+2 2 x(n) 7

n odd

where xg(n)is 1if n=8k +1,8k+3 and —1ifn=8k+5,8k+7,

—Q">n °°<1—q4"> an
+4 — .
g q Zl 1- ¢ q

Let d,;,,(k) be the number of divisors of k of the form ai + b.

i) 6,(q)6(qg°)=1+2 a (11

a) Show that the number R,(k) of integer solutions of n° + 2m” = k is
given by

Ry (k) =2[dg;,, (k) + dg;3(k) — dg;5(k) — dg; (K] -

b) Similarly, the number R,(k) of integer solutions of n* + 3m* = k is
given by

Ry(k) =2[d;;11(k) = dayy ()] + 4[d 5, 4(K) — d 516 (K)] -

Note that a) follows from Exercise 12 of Section 3.7.
c) Observe that ii) can be used to show that

4n n —-n
+q
0 0 4 E, < ) =4 —49 749 _ .
(q) (q) an q 1+q2n+q—2n

n=1
n odd n odd
Hence

S P _ 6(B)6(B)
"=01+L4n+2 4\/§

where B:=(V5—-1)/2 and F, and L, are the Fibonacci and Lucas
numbers, as in Section 3.7.

. . Use Ramanujan’s modular identity of order 3 (Section 5.2) to deduce

that

6n+2 6n+4

1 4
1r6 3 (L - L) LS g,
—-q 1- 2.5

q
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Hence deduce that

S 1 _ViTL,6i(B)oi(B) -1
n=0 L12n+6 _3 6\/3

where B:=(3—V35)/2. Note that § £}_, 02(q)87(q’) can be written
more compactly as 62(q)02(q°) + 62(¢*)02(¢°®). Find a closed form for

the Lambert series above when g := e V3,

7. Use formula (9.1.16) to establish that every positive integer is the sum
of three triangular numbers and that every number of the form 8k + 3 is
the sum of three odd squares.

9.2 (CHEMICAL) LATTICE SUMS

Sums of the form

(9.2.1) by(2s):= i (™

i jk=—o (iz + ].2 + kz)s

arise naturally in chemistry. (Here the prime indicates that we avoid
summing i = j = k = 0.) Indeed, b,(1) can be considered as the potential or
Coulomb sum at the origin of a cubic lattice with alternating unit charges at
all nonzero lattice points. This may be considered as an idealization of a
rocksalt crystal. The quantity b,(1) is called Madelung’s constant for NaCl.
Different crystals give rise to different lattice sums. We will also consider its
two-dimensional (laminar) analogue

_ o5 (=D
(9.2.2) by(25):= wzﬂ iy

and its four-dimensional form
* (_ 1)i+j+k+l

b,(25)= >

T (i2 -|-]'2 FPEOT

There are some nontrivial considerations about the sense in which these
sums converge. (See Exercises 1 and 2.) We assume all sums denote limits of
rectangular summations. These will converge for re(s) > 0. The general form
of these rectangular sums is

N
lim s, 2

n—o

ilM;

"E(ml,mz, e, my)

m;

i=

—
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which, for real-valued a4, can be shown to converge by an alternating series
test. (See Exercise 2.) The convergence in b,(1) is O(n™"'?) so that 10”
terms are needed for O(n) digits. Obviously direct computation is virtually
impossible.

Fortunately, some beautiful analytic reductions are possible. In this
section we illustrate this for b, and b,. The idea is to observe that, for
re(s) > 0. :

(9.2.3) I(s)by(2s) =M (6) —1) gi=¢*

where M, is the Mellin transform of Section 3.6. Thus

rb,29 =26 -0 =m[( X c1rg7) -1].

= —00

Now (9.1.13) shows that

b,(25) =T"'(s)4 S (1) "M [ )

nm—

nm=1

=4 i (-1)" " m2n-1)]"°

Thus

(9.2.4) b,(2s) = 42 (2( PI) Z - 1) = —4B(s)a(s)

and we have factored b,(2s) into a product of Dirichlet L functions (the
alternating ¢ function « and B := L_,) defined by

)n+1

a(s): 2 =(1-2"7)4()

3 1)
PO = 2 G 1y

In particular, b,(2) = —mlog2. Equation (9.2.4) is originally due to
Lorenz. Now any reasonable method of computing «(3) and B(3}) will
compute b,(1). Such is possible by various integral or summation tech-
niques. Correspondingly, from Theorem 3.2,

b,(25) =T '(s)8M, [ il 1’"(( q;) i;l ;i—n_z%;';]
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and expansion gives
by(2s)=T" (s)[8 Z (C1)mM, () -8 S amm (q4"'k)] :
m,k=1
Now we compute these transforms and have

b(29)=8 2 [(_13;1«)_‘1]’"*8(1 ) %( Py

on adding and subtracting m(mk)~’ in each summation. Thus

©

b2 =16 3, ks 3 e 48147~ 40

But £7_, (2n+ 1) = (1—27"){(s) and so
(9.2.5) b,(25)=—8(1-2""")(1=2""")(s){(s — 1) = —8a(s)a(s — 1).

In particular,
4
b,(2)y=—4log2= po b,(2).

Use of the functional equation for ¢, equation (3.6.6), allows one to
establish other formulae. In general any identity for any even-dimensional
power of theta functions will convert into a factorization for a matching
lattice sum. (See Exercise 4.) In Exercises 6 through 10 we show how
two-dimensional lattice sums may be used to evaluate elliptic invariants.

Comments and Exercises

An excellent and extensive recent survey of lattice sums can be found in
Glasser and Zucker [80]. This also discusses their chemical origin at some
length. Madelung’s constant is analyzed from a mathematical perspective in
Borwein, Borwein, and Taylor [85]. There is ambiguity in the literature as
to whether the constants are positive or negative. We have chosen the sign
as convenient.

1. (Analyticity of lattice sums)

a) Considered as a limit of rectangular sums, show that b,(s) and
b,(s) exist and are analytic for re(s) > 0.
Hint: Use the Mellin transform.

b) Show that

2(”)

re(s) > 1 .

by(25) = E (-1 3
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Hint: g,(2s):=X._, (—1)'r,(n)n"" converges and is analytic for
re(s) > 1. For re(s) > 1, g,(2s) and b,(2s) coincide.

¢) The analogous sum g;(2s):=ZX._, (=1)'rs(n)n~" diverges for
si=1.

(Alternating series test) A mapping a: N¥ —R is (N-)monotone if, for
my,my, ..., my=0,

N

> 2 (—D)*a(m, +s,,my+s,,...,my+sy)=0.

i=15;=0,1
Thus 1-monotonicity is just a(m)=a(m + 1), and 2-monotonicity is
am,n)+a(m+1,n+1)=a(m,n+1)+ a(m+1, n), while 3-mono-
tonicity demands that the alternating sum over any unit cube be
positive if the bottom corner is. We say that a is fully monotone if a
and all its restrictions are monotone. Consider

N o
> ZO(—I)Z’"'E(ml, T
i=1 my=

a) Prove the following alternating series test given in D. Borwein and
J. Borwein [86]. If 4 is fully monotone and lim_,,, a(m) =0, then
the rectangular sums converge alternatingly. Hint: (In two dimen-
sions) show that s, :=TI} ,_, (—1)"7a(i, j) satisfies

1) $2, = S2n02

) Sp,41 = S201

iii) S, — Spn 10
Draw a picture. (The case of b, and b, is spelt out in Borwein,
Borwein, and Taylor [85]. An analogous bounded convergence
test due to Hardy can be found in Bromwich [26].)

b) Suppose that g is N times continuously differentiable on (RMHM.

Show that & is totally monotone if the partial derivatives satisfy

_ -
a;=0,a,;,=0,a,

N—
111213 (_ ) iy 'NZO
for all partial derivatives with iy <i, <i;<---<iy.
¢) Verify that T} (—1)"7**@* +j? + k)7 and 7 (-1)7(Q2i+j)7*
converge for p >0.

Prove that T'(s)b,(s) = M (8} — 1).
a) Show that

i’( e ST CYONSOLS

and
Z’ 1) =27"b,(2s) re(s)>1.

p (n +m )
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b) Show that

bg(25) = —164(s)a(s — 3) re (s)>1
is equivalent to the formula (3.2.25)
n 3 n
(9.2.6) 05(q)=1+16 > Vg’ 1) 7
n=1

c) Use 6,6,6, =6, , equation (3.2.4), to show that

©

(9.2.7) 2 1"

= [m*+n’+(p+ )T

=2""18(2s — 1).
The hexagonal sum is

q(n, m)

ha(2) =2 2 [(n + mi2)2 + 3(m/ 2

re(s) >0

where  g(n, m):= % {sin[(n + 1)8]sin [(m + 1)8] — sin (n8) sin [(m —
1)0]} and 6:=2#/3. This corresponds to calculating the Coulomb

potential on a regular hexagonal lattice. (See Borwein, Borwein, and
Taylor [85].)

a) For re(s) > 1, show using the cubic modular equation that

SRR TP O M Ai—)]

(n* +3m?) (n® +3m?

hy(25) = < .

b) A formula of Cauchy (Dickson [71, vol. 3, p. 20]) gives

ol 1+
e(q)e(q)—1+22( 1)'q [ ;]
Use this and a) to deduce that

hy(25) =3(1=3'7)4() L_5(s)
where :
L_i(s):=1-27"+47"=57"+77" -8 +---.
¢) This provides an analytic continuation of A,(2s). Thus

3(V3-1)(VZ+Da(3)L_y(3) = hy(1)

is Madelung’s constant for the hexagonal lattice. Show that

h,(2)=V3mlog3.

6.
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(Evaluating invariants) The factorization of two-dimensional zeta
sums into sums of products of L series can be carried a great deal
further. This is described in Glasser and Zucker [80] and in Zucker and
Robertson [76a,b]. By combining number theoretic and transform
techniques, one can explicitly factor all sums whose discriminants are
disjoint (have one form per genus) and a few others This leads to
formulae such as

(9.2.8) > (m*+ Pn?) =21 '2|L+“L;4P,“
ulP

and

(9.2.9) > (M +2Pn?) =23 L., Legp, -

ulP

In these two formulae P is an odd square-free number [congruent to
1 modulo 4 in (9.2.8)] with ¢ distinct factors. The right hand sums over
all divisors of P and one has

L., (s):= 2 (d|mn”

which are primitive L series modulo d. (These can only exist for d = P,
4P, or 8P, and the sign configuration is in fact uniquely specified.) Here
(k|n) is the Kronecker (generalized Legendre) symbol. L. , is taken for
uw==1 (mod4). For example, with P:=29, (9.2.8) becomes

2, (m* +29n") = L L_;;6+ L_,Ly .

Dickson [29] gives an extensive list of disjoint discriminants. In
particular, there are 18 numbers less than 10,000 to which (9.2.8)
applies and 15 numbers less than 10,000 to which (9.2.9) applies.
Indeed, (9.2.8) holds for type one P:=5, 13, 21, 33, 37, 57, 85, 93,
105, 133, 165, 177, 253, 273, 345, 357, 385, 1365 and (9.2.9) holds for
type two P:=1, 3,5, 11, 15, 21, 29, 35, 39, 51, 65, 95, 105, 165, 231.
There are only finitely many disjoint discriminants. We shall call such
P solvable.

Implicit in (9.2.8) and (9.2.9) are corresponding theta series iden-
tities, and formulae for representations as weighted sums of squares.

a) Show that if g is replaced by —¢ in (9.2.8) and (9.2.9), we
produce formulae for
1) 2' (_1)m+n(m2+ PnZ):
i) > (=1)"(m*+2Pn*) ™.
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b) Show that the effect of replacing g by —g in (9.2.8), (9.2.9), or

d)

similar formulae is to replace L., by —[1—(2|d)2'*]L.,, unless
the L function was multiplied by some factor involving 2%, or d is
even, in which cases it is unchanged.

Recall that (3.2.12) and Exercise 4d) of Section 3.2 gave

> (=) (mE + ) = - f—}; log f(~=7)
and
> (-1)"(m* +m®) = - % log fi(~V=7).

Use these formulae with a) and b) to establish that for the
appropriate P,

iy 27! VW_F log f*(V=P)=L_,,(1)log?2
+ ;P [1- QIwIL., (D) L,yp, (1)
i) 27 \/_P log f{(V—-2P) = L_gp(1)log2
+ EI [1—@IwIL., (1) Logp, (D).

The classical Dirichlet class number formulae (Landau [58]) allow
us to write L_,(1) algebraically. One has, for d > 0 restricted so
that L_, is primitive,

i) L, (1)=2 ()logs(d)

27 h(-4d)
Vd w(d) *

i) L_,(1)=

Here h(d) is the number of (broadly) equlvalent primitive classes
of reduced forms with discriminant d = b” —4ac or ideals in
Q(VD) where d is D or 4D, depending on whether D =1 (mod 4)
or D =2,3 (mod 4); £(d) is the fundamental unit in Q(V D), which
may be computed from the fundamental solution of the approp-
riate Pell’s equation (see LeVeque [77] and Hua [82]); and w(d) is
a factor which counts the number of automorphs of the form, and

" is 2 except that w(3) =6 and w(4) =4. From formula (4.12) in

Zucker and Robertson [76a] we have Dirichlet’s formulae, for
d>4,

f)
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-1 d—1
h(-d)=— > n(—d|n) .
n=1

Also for d>0
h(d) log &(d) = — % E (d| n) log (sin (’%’)) .

Moreover, for disjoint forms, one can observe that the class
number A(—d) must coincide with the number of genera g. The
number of genera is as follows. If d is odd, then g = 2™"! where d
has m distinct prime factors. If 4 is even and d/4 has m distinct
prime factors (including 2), then g =2™ when d/4=0, 1, 5 (mod 8)
and g =2""" otherwise.

An excellent brief survey of history and of recent advances
regarding the class number can be found in Goldfeld [85]. Now
observe that, for the appropriate P, both 1 f* and 1 f? will be
products of powers of fundamental units from some of the divisors
of 4P or 8P. [For our solvable P, h(—4P) =2' when P=1 (mod 4)
and h(—8P) =2"] In particular, verify that for P:=35, 13, or 37,
since t =1 in each case

Gh=1fi(V=P) = e(P)".
Since A(P) =1 in each case, we see that

V5+1 Vi3 +3
2 2

Gi= Gt = G, =V3T+6.

Similarly, we may now verify the values of G‘;, P:=21,33,57,93,
given in Exercise 9 and 10 of Section 4.7.
Establish that for P:=5 or 29,

g§P= e(P),
and for P:=3 or 11,

g = &(2).

(Compare Table 5.2.)

For all the type one numbers P listed above, we can now
explicitly give G,. Similarly for the type two numbers we can give
g,p- This accounts for most of the square-free and nonprime
invariants given by Weber or Ramanujan.

Show that

e (S5 (52),
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(Evaluating singular values) We can proceed further to evaluate
k:=A*2P) for P of type two. We know that k/4=
fi(V=2P)f*(V=8P). Hence
\/—P og( > 2 (~1)"(m* +2Pn®)™"
~ 43 (~1)"(m® + 8Pn?)™"
We already know [Exercise 6¢)] the first sum on the right. From some
elementary, but skillful, theta transformations we may deduce that
22 (1) +8PrY) ™ = 3 {217 14 27°2| )] L L,
wlP
+ L+4l.LL+8P/lJ.} .
On setting s :=1 and substituting above, we derive
2-t
(9.2.10) \/_P log k=2 Z  Legu(DL g (1),
a beautiful simplification.
a) Use (9.2.10) to compute A*(2P) for P:=3, 5, 11, 29.
b) Use (9.2.10) to compute A*(210) given in (4 6 12)
c) Observe, as Zucker did, that there are computable in this form
two larger singular values: those for 2P := 330 and 462. Verify that
A*(330) = (2 - V3)(VZ - 1)’ (V33— 4V2)’ (V10 — 3)?
x (3V5 = 2V11)*(4 — VI5)(V55 — 3V6)(10 — 3V1I)
(9.2.11)
and that
A*(462) = (V3 - V2) (2 - V3)(2V2 - VT)X(8 ~ 3V7)?
0212 X (3V11 - 7V2)* (V22 — V21)(10 — 3V1I)(76 — 5V231)..
(Evaluation of K in terms of T') Selberg and Chowla [67] showed for

all rational numbers r that K(A*(r)) is expressible in closed form using
a finite number of T values. This relied on Kronecker’s remarkable
‘Grenz-Formel,” which has

: ! 2 2\~s T w
H‘}{Z (m” +rn”) _(}_—1)\/—?}=W[2y—log(4r)—4logn]

(9.2.13)
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as a special case. Here n:=n(v/=7) is the eta function of (3.2.9) and
(3.2.11), and v is Euler’s constant. Using (9.2.13), Zucker [77] applies
the factorization results described above to explicitly compute K
corresponding to solvable sums in terms of s, surds, and I values. This
leads to the following table of evaluations (Table 9.1). Elsewhere
Zucker has actually given K(A*(210)) [which involves I'(n/840) for
(n, 840) = 1]. The general formula valid for either r:= P (P of type
one) or r:=2P (P of type two) is given by

Kzgn2f4
and
4logm(v=T) = 7= 4,) 2 (- 4rln)F( )
. —log (87r) — h( 4) 2 L (DL, (1)
(9.2.14) w

There is a corresponding formula when in Zucker’s terms S(1,1,
(1+ r)/4) is solvable.

a) Verify the contents of Table 9.1, for r=1,2,...,6.
b) Show that I'(m/24) is 0, (log n) computable for 1ntegral m.
Hint: Express such I values in terms of K at singular values. It
would be interesting to know if this is possible more generally.
¢) Compute E((3—V7)/4V2). (Compare Exercise 9 of Section 5.2.)
d) Show in general that E(A*(r)) is computable in terms of I' values
and algebraic quantities for rational r.

(Conjugate divisors and evaluations of k) Consider P as above and
suppose P:=d,d, and Q:=d,/d, for divisors d, and d,. Using
Kronecker’s genus character sum formulae one can show that G, and
G, = G,-1 must have the same general form for P of type one.
Similarly, g,, and g,, = ng 1 are paired, as are A*(2P) and A*(2Q).
This is best illustrated with examples.

a) Show that
g§9o=(\/§+2)(m+3) gis/sz(\/g—2)(\/ﬁ+3) .

The first value may be computed as above. The second is easily
verified from Schiafli’s form of the quintic modular equation.



TABLE 9.1. Evaluation of K at the First Sixteen Singular Values

7

K
1 [r(H?
4771/2
2 (V2+ 1) T(3)I(3)
213/477_1/2
3 3V [(§))?
27/377_
4 V2 + )T
27/277_1/2
5 (\/—+2)1/4[1‘( 3 )I'( 2;(3;‘7(720)1‘( 20):'1/2
6 [(\/5—1)(\/3+\/7)(2+\/3)1‘(2—4)1‘(2—54)1‘(%)1‘(%—5)}”2
384
7 L(HTG)T(3)
(71/4)477
o [2\/§+ (1 +5\/§)1/2]1/2 (\/5+ 1)1/zr(%)r(%)
4\/§ 8771/2
9 31/4(2+.\/§)1/2 1 2
127172 [F(Z)]
10 [(2+3\/_+\/_)F(40)F(40)r(40)r( 5)T(B)C(E)IT(B)0(3 )]”2
25607°
1 2+ (17 +3V33)' + (17 = 3VEE) ) I‘(ﬁ)l‘(%)lll‘ff‘—l)l‘(f—l)l‘(%)
(11V*)144 72
" (VZ+1)(V3+ \/5)1(2 —V3)'23V41r(3))?
13 (18 + 5V13)*** 2o
><[F(é)F(%)F(%)F( 2)T(B)TGEE)TN(B)T(E)T(B)N(E)N(E)r(2 )]”2
66567°
14 [(10+ 6\/5)1/2+(2+2\/§)1/2+(3+\/_)1/2]1/2
><[F(%)F(S%)F(%)I‘( L GE)TGOT(R)IT(B)T(E)T(B)M(£)]?
167V7
15 [(\/5+1)F(%)F(%)I‘(%)I‘(%) vz
240 ]
16 v (21/4+1)2[1—‘(%)]2
29/277_1/2

298
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b) Correspondingly

ot = (1) (R57) (752) (557)
ot = (V) (550 () (Y52
ota= (V5 (571 (5 (%)
ot = (V) (550 () (557

One may verify G5, and G,,,s from the corresponding cubic and
quintic equations, and so on.

Use the techniques of Section 5.3 to compute o(105).

Observe that

) A¥6)=(2-V3)(V3-V2)
(3 =a"(3)=(2-V3)(V3+V2)
i) A*(10) = (\/‘ 3)(V2-1)°
A(3)=A(3)=(VIO-3)(V2+1)’
iii) A*(58) = (13V38 —99)(V2 - 1)°
A (F)=21*(3)=(13V38-99)(V2+1)°.
Indeed, for all P of type two, A*(2Q) and A*(2P) will be ‘“‘conju-
gate”, as we illustrate for A*(210). Let

ul:=(\/§—1)2 u22=(\/7—\/6)2 u31=(\/if)—3)2
u,i=(@-V15)?  u;:=2-V3 =VI5- V14
U, =6-V35 ug =8-3V7.

Then A*(210) I8 _, u_, and each A*(2Q) is a corresponding

product 15, _, us"'(Q) where each ¢, is £1. In compact form one

has sm(Q) =1-2b"(Q), where b7(Q) is the mth binary digit of

b(2Q) defined by
b(%)=142 b($)=45

b(#)="71

b() = 106

b(%)=201
b(#)=163  b(%)=228
b(210)=0.

These correspond to all the reduced forms with discriminant 840.
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f) Numerically, find the ‘“conjugate” values for P:=165 and
P:=231. [This involves computing 2% products and comparing
them with the theta expansion of k(2Q).]

With these conjugate values and the formulae of Section 5.3 one may
observe that a(2P) is now available in closed form for all P of type two (and
for conjugate divisors Q). Again we illustrate with an exercise.

10. a) Generate a recursive version of formula (5.3.3) and specialize this
expression to produce a formula for «(2d,d,) in terms of R, , R,
M,,, M, and the appropriate singular values.
b) Apply thls formula with d, :=35 and d, :=3 to compute «(210).
Observe that this uses only values of )\* given in Exer01se 9¢).
¢) Compute a(42). Note: g5, = (2V2+ VT)[(VT +V3) /2]’ is incor-
rectly given in Weber [08].

11. Let {a,} and {b,} be given sequences.
a) Show that

Z(s) > an’= > bn"*
n=1 n=1

if and only if

»
> a
ne

p 1=
b) Show that
a(s) > an’=2 b’
n=1

if and only if

> a
n=1
¢) Show that, with the notation of Exercise 12 of Section 3.7,
) 2 o (mn” = Ls ~ K)Ls)
n=1

and

£2s)

ii) "2:1 e(n)yn™" = o)
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Also

IR —s_4(s—1)
i) > d(mn =22

) n=1 ¢( ) {(s)
where ¢ is Euler’s totient function, which counts the numbers less
than n and relatively prime to n. Thus ¢(1):=1, ¢(5)=4, and
$(6) =2.

9.3 ODD-DIMENSIONAL SUMS AND BENSON’S FORMULA

While even-dimensional sums usually factor, only a few odd-dimensional
ones factor. The reader can, however, produce identities like (9.2.7) from
Jacobi’s identity (3.1.15) or from (3.2.8). (See Exercise 1.) There are
nonetheless many theta-based techniques of which we establish one based
on the theta transform.

Theorem 9.1 (Benson (1956))

( 1)i+j+k+1 S 2| 7 2 2\1/2
——5 7 E —(m” + .
—by(1)= E ( y S )1/2 =127 m,n=1seCh [2 ( n’) ]

odd

(9.3.1)

Proof. By symmetry,
( 1) ( 1)j T

by(1)=3 E

and

o

F(%)ba.(l) =3 "S_w (—1)"n2M3,2[' > (—1)f*kq"2+f2+k2]

where g :=e"". Thus

I‘(%)b3(1) = 3M3,2[2 (-1)"n*q" 04(z)] .

The theta transform (2.3.2) leads to

S-S o))
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and since I'(3) =v7/2,

-b (1)_12\/— 2 {( 1)n+1 2 2 fm[e—nzt—(w2/4t)(j2+k2)]t—1/2 dt}.

Jok=—o»
odd

The internal integral I(n, j, k) was evaluated in Exercise 4 of Section 2.2.
We have

1/2
(Z) e = s, o)

n
and

_b3(1) =481 2 2 n+1 _”"W .

j,k=0n
Finally, for a >0,

~ - 4e” " a
4 1) e - = 2<_)
Z‘l( )" ne (1+e79)? sech™| 5

and Benson’s formula follows. O

The convergence acceleration is astounding Summing for 0=<j, k=<3
produces b;(1):= —1.74756459 . . ., which is correct to eight places. Even
the first approxunatlon by —1277 sech’(7w/V2), gives —1.73 .

For s # 1 this manipulation leads to an 1ntegral involving Bessel functions
of the second kind, and the closed form is lost. There is, however, an
extension to N dimensions (among others). One can show that

2N2

(9.3.2) —bN(N—z)—F(T/Z) N”Z 2 sech< \/g)

i=2 k;=1 i=
odd

Thus

o

(9.3.3)  -b,(1)=167% D, sech2<g\/i2+j2+k2)=4log2

i,j,k=1
odd

and

(9.3.4) —b,(0) =27 2?, sechz[g (2n + 1)] =1

which coincides with Exercise 7eii) of Section 3.7. (See Exercise 2. ) For the
final evaluation it helps to know that for primitive L series
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L—k(O) = g L_,(1)

as follows from the functional equations for L_,:
L_,(s)= C(s) cos <s77r)L_k(1 —5)

L) = @ sin(F)Lou1-9)

where C(s):=2°7"""k "'’ I'(1 — s).

Comments and Exercises

Our derivation of Benson’s formula can be found in Glasser and Zucker
[80]. In that paper, and references therein, one finds much further discus-
sion of odd-dimensional sums. They also illuminate the relationship between
the multidimensional zeta functions of Epstein and lattice sums.

1. a) Show that

o 2
22(—1)”’[(2;;1—%) +2n2+2p2] =20 (25— 1)

where L_g(s):=1+37"—-57"-7"+--.
b) Show that

2(25) :=2(_1)m+n+P[<m + %)2 + <n + %)2 + <p + %)2]_:
=12%8(2s - 1)

and g(1) = VI128(0) = V3.

¢) Derive similar identities from Exercise 5 of Section 4.7.

2. Establish the generalization of Benson’s formula (9.3.2) and its special
cases (9.3.3) and (9.3.4). Exercise 4b) of Section 9.2 shows that

bg(6) = —84(3).
The remaining exercises examine the n-dimensional Hurwitz zeta func-

tion. Let d >0 and define

(9.3.5) o Lisd)i= X2 _()j|a|n+d)

{ila;#0} n;=0

where s, :=sign (a,) and a:=(a,, a,, ..., ay). Thus
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3 @© (_1)n+m
LoD= 2 Gy
and
_ S D"
Loiaslss D= ,,EFO (n+2m+3p+1) "~

3. a) Show that

- U xd Y (—log x) ' dx
Lis. =176 |, 5 (O(E_)”a.-)
a;#* i

Hint: Take a Mellin transform. Then make a logarithmic variable

change and sum the resultant series.
b) Let Ly(s,d)=:Ax(s,d) and L_;(s,d)=: A _y(s, d), where ¢ is
the vector (1,1,...,1) in R" Show that for d >1

(936) Ay d)= 57 (@~ DAy d=D)

- A-:(N-—l)(s -1,d-1)].

Hint: Use integration by parts.

¢) Combine integration by partial fractions and the recursion (9.3.6)
to show that every sum of the form (9.3.5) factors into a linear
combination of one-dimensional Hurwitz zeta functions (with coef-
ficients depending on s).

4. Let A(s):= A_n(s, N) and Py(s):= Ay(s, N).
a) Show that

Ay(s)=Apn_i(s) — 7\’%1_ An_i(s—1)
and
Py(s) = N—l__I Py_ (s —1) = Py_y(s).

b) Deduce that, for appropriate s,

i) i £—_1—)"1——’1=oz(5)—a(s—1)

(m+n)

m,n=1

i S Ll - a@i=27)

m,n=1 (m + n)-‘ 2
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©

i) Y = (s 1) - £(s).

mn=1 (m + n)s

‘ ® (_1)m+n+1 _ B
W2 Gy e

©

: 1
V2% Gy~

¢) Show that

N
(N=DIPy(s)= 2 ai(s—1+n)
n=1
where a’\ are Stirling numbers of the first kind. Thus

P(s)=3{(s=3) = {6 -2)+ §L(s —1) = L(s)

and
Py(s)=5{(s =)~ 5L =3)+ 5L -2) — BL -1+ {(9).
There is a similar formula for A ,(s).
a) Show that
=, (=1)nmrkt

S

= (In|+|m| +|&[y

=2a(s) +da(s —2).

b) Show that

©

(_1)n+m 1-27° 1
pmeo Cnt+m+1) = ( ) >a(5) + 5 B(s) .

¢) Show that

® -1 n+m
2, ﬁ = 31@+3™)a) - als = 1) - L5, 1]

117

Show that

@ (_1)‘n+m+p+l

>

© 1 .
nmp=1 (n+2m+4py + 2 =87(s) .

n=0 (8” + 7)3

Hint: (1+x)(1+x*)--- 1+ x" " H=1-x")/(1-x).
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9.4 THE QUINTUPLE-PRODUCT IDENTITY

Jacobi’s triple-product identity has an elegant fivefold analogue due to
Watson [29] and Gordon [61]. This is

(9.4.1) 1:[1 (1-¢"(1-2¢")(1 - Z_lq"'l)(l _ quzn—1)(1 _ z—zqzn—1)

- E (z3m_z—3m—1)qm(3m+1)/2

m=—oe

valid for all complex z and g with |g| <1 and z # 0. The proof is left as an
exercise. (See Exercise 1.)
If we divide both sides by 1— 2" and let z tend to 1, we derive

H (l_qn)3(1_q2n—1)2= z (6m+1)qm(3m+1)/2‘
n=1 m=—w

Now this yields

m——w (6m + l)qm(3m+1)/2
(9.4.2) 03(q) =

3 1)/2
m—_w( l)m m(3m+1)

on using Euler’s pentagonal formula (3.1.10) and (3.1.7). This can be
used to establish a recurrence formula for r,(n), as in Ewell [82]. (See
Exercise 4.)

Comments and Exercises

The identity, implicit in Ramanujan’s work, was discovered by Watson [29]
and rediscovered by Gordon [61]. Further extensions are discussed by
Gordon. Other proofs abound in the literature.

1. Prove (9.4.1). As with the triple-product identity, it is easy to establish
the formula (9.4.1) up to a constant relying on g alone. To evaluate the
constant observe that when z:= —1, (9.4.1) reduces to Euler’s penta-
gonal identity.

2. Show that (9.4.1) is equivalent to

1:[1 (1 _ qZ")(l _ q2n-—lz)(1 _ qzn—1z—1)(1 _ q4n—422)(1 _ q4n—4z—2)

z 3n2 —2n 3n + z—3n) _ (z3n—2 + z—(3n—2))] i

b)

d)

b)
0

d)
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Let g:= ¢’ and z:= ¢ " in (9.4.1) and deduce that

©

(943) H (1 - q") = z qj(3m2+In)/2[q—3mk _ q(3m+1)k]

nEN(j,k) m=—w

where N(j, k) consists of all integers congruent to 0, =k, j, j * k,
j =2k (mod 2f) (repeated as appropriate).

Deduce that Euler’s identity follows for j:=4 and k:=1. Forj:=3
and k:=1 one gets

11(1—q")(1—q6"‘5)<1 g ") =g(q) —348(q°)

where g(gq):=Z._, g2 With f(q):=17_, (1—g")"" this be-
comes a formula due to Ramanujan

iCRICR)
FA(f(g°)

Use g(q) =f(q)/f*(¢°) to obtain a functional equation for f(q)
(the partition function).
Use (9.4.3) with j:=6 and k:=1 to obtain

2(g)()f(a"?)
Aa)f(aHf*(4°)

Hence obtain a functional equation for 6,. Thus note that
36,(q”) = 6,(q) never has a solution. (Compare Section 4.7.)

Establish equation (9.4.2) and

=g(q) —3498(q°) -

= 303(‘]9) —6;,(q) -

(6m+1)?

2, 24 Lo-—w(6m+1)q
04(q ) E,n:_m (_]‘)mq(6m+1)2

Use (9.4.2) to derive a recursion for r,(n).
Prove that

[[(1-gMA=g""V(1-g") = T Gm+1)g™ .
(9.4.4)

Hint: Use Exercise 2.

Show that

6.(q) _ I . (3n+1)q(3n+2),,
03(4) E:=_m (—1)"(3n + l)q(3"+2)"

VE =
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so that

Z::-«; (3n + 1)q(3n+1)2/3
Z:=_w (_1)n(3n + 1)q(3n+1)2/3 .

g—

Observe that this is slightly faster to compute than the original theta
series ratio.
e) Show that

174 Tne—w 30+ 1)q(3n+2)n

VE = 6,(q) =2g

6:(q) £ (6n+1)g@Tn
so that
I (6n+2)g "
57 (6n+1)gtrni2’
5. a) Show that
i (—1)
(ke [240% + 2457 + (6k + 1))

=§,[ 1 B 1

— 1-2s _
m=0 (6m + 1)2:—1 (6m + 5)25—1:| - (1 + 2 )L_3(25 ].) .

b) Replage q by —¢q in a) to express L_,,(2s — 1) as a lattice sum.
c) Combine (9.4.4) and (3.2.7) to prove that

(_1)i+j+k
[6G+ ) +6(j+ 1) +9(k+ 3T

L2s-1)=3

Observe that at s =  this equals }.
Gordon [61] also gives various congruences, like those given in Chapter 3
for the partition function. For example,

4D 5 .
Aa)f(q) ‘ZOC""

has ¢, ,, divisible by 3.

6. There is yet another remarkable identity due to Ramanujan, which
includes both the triple-product and the g-binomial theorems. This is
the ; ¥, sum, whose derivation and uses are accessibly described in
Askey [80]. In standard notation one writes
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S (a59), n_ (ax; 9).(9/ax; 9)(g5 9)(b/a; @)
94.5 —— 2 x" =
O45) 2 Gt Y T G @) (blax; ).(b; 9)-(4/3 9)-
where (a; m:=l—[ 1— ag®) and (a; :=—(a—iq)—°°—,
(a; q) k:o( q°) (a3 9), " 9).

This converges at least for |g| <1 and |b/q| <|x|<1.

a) Verify that the triple product is contained in (9.4.5).
Hint: Begin by setting a:= ¢!, x:=cx and b:=0. Now let c:=0.
b) For b:= q (9.4.5) becomes the g-binominal theorem.:

s (@ Dy n_ (0% 9).
=0 (45 9), (*; @)

valid for |x| <1 and |g| < 1. Verify that Cauchy’s binomial theorem
is a special case. Hint: Begin by setting a:= qg

¢) Use the g-binomial theorem to express the limit mean of Example
8.4 as a Taylor series.

9.5. QUINTIC AND SEPTIC MULTIPLIERS AND ITERATIONS

In this section we discuss additional modular and multiplier identities and
give a number of applications. Notations are as in Sections 4.6 and 4.7.
References to entries are all to Chapter 19 in Ramanujan’s Second
Notebook (Berndt [Pr]).

Proposition 9.2

()

(9.5.1) 5M,=1+2G,s,/G,
(9.5.2) 1/M;=1+2G,/Gs,
(9.5.3) SMy+ 1/Mg=2{2+ Kkl +k'I'} .

(b) Let 1/(2¢t+1):= Ms. Then

(9.5.4) 1-20% = M¥(1— 11— V(1 + £)M;
(9.5.5) 1-2=(1+t— VA +)M;.
Proof.

(a) These are given in Entry 13. Berndt [P1] provides proofs which may
also be deduced from (4.1.20).
(b) These may similarly be found in Entry 14. O
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We will write, as in Section 4.7,
M,(n):=M,(k,, k,2,) .

Ramanujan also gives the following beautiful counterpart to Theorem 4.11
(Entry 12(iii)).

Theorem 9.2

6;( qzs)
6,(q)

1/5

=1+r; )

(9.5.6) 5 +r)

where fori=1 or 2
(9.5.7) roi=ix(y = Vy?'—4x%)
and

63(4°)
63(q)

This provides a solvable update for M despite the nonsolvable nature of W;
(See Exercise 8 of Section 4.5). Indeed with m, := SM,(r5*") we have

(9.5.8) x:=5 -1, yi=(x—1*+7.

(9.5.9) m,., =1+ r}ls + r;/S)z/mn

with x:=m,_ —1, y and r, as above.
If we combine (9.5.9) with the following formula for &5 we obtain a
remarkably simple solvable Sth-order iteration for .

Proposition 9.3
If r>0 and s(r) := M;'(r) then

(9.5.10) a(257) = s*(r)a(r) — \/7{ s(—’;_—s +Vs(r)(s*(r) = 2s(r) + 5)} :

Proof.

We begin with &, as given by (5.2.13), and the explicit formula for R;.
We use Proposition 9.2(a) to rewrite s(r)R, and 9.2(b) for the terms
involving I?> and k* This leads reasonably directly to

g5 = .Lr;—_é + \/s(r)(sz(r) —2s(r) +5).

Now (5.2.14) becomes (9.5.10). (Exercise 2.) O
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The identical manipulations to those in Example 5.3 immediately yield

a(5) = 3{V5-V2(V5-1)}.

We next list several similar identities for M,.

Proposition 9.4

(a) l ! ik 'll/ 2/3
2 o —- — e — —

(9.5.11) WM =2+ 5 = 15 8<kk,)
2k K kK (ﬂ)”

(9.5.12) UM= T+ 5 — 77— 8\

(b) Let t:=(kl)""* Then

(9.5.13) TM, —1/M,=6—16t+ 121> — 8¢* .

Proof. These are to be found in Entry 19. O

From (9.5.13) and (4.6.7) we may establish that for r>0 and
. -1
s(r):=M;"(r)

(9.5.14)  a(49r) = s (Na(r) - \/7{ 32(2 —7 +s(r)(4t® — 4t + 3)} ,

where t* = kl. (See Exercise 3.)

Ramanujan does not give a septic analogue to Theorem 9.2. He does,
however, give quintic and septic updates for the eta-multiplier. Let 1 be
given by (3.2.9) and (3.2.11). Let

5. N :=ﬂ
(9:3.15) T

so that N, corresponds to M,. This is the eta-multiplier of order p. Now
(3.2.15) can be written as

ll/ 1/3
rag3 _ yrar3 —
(9.5.16) kk'M2=I'NS  or M, = NP<W) :

where Wp(lz, k*)=0.

Theorem 9.3
(a)

M,(1-M,)
(9.5.17) NS=—2—_ 22

T A4eM,-1)
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_ M, (1-M3)
541 N = 38 73
(9:5.18) IM;—1
M (1 - M,)*
5. Ni=—2 — 5.
(9.5.19) =y
(b)

(9.5.20)  (49M2—1)N3 — (8M,)N2 + (8M2)N, + M, (M2 —1) =0.

Proof.

(a) In each case one combines (9.5.16) with appropriate multiplier equa-
tions. For p:=5 use (9.5.1) and (9.5.2). For p :=3 use the identities
preceding equation (4.7.9). (The details are left as Exercise 6a).)

(b) We use (9.5.11) and (9.5.12) to write

I'M7*(1+8N2)=kl'+ Ik’ — kk'

and

kk'M2(49 + 8 /N2y = kI’ + Ik’ — Il .
We now subtract one from the other and divide by /I'. O

We finish the section by listing Ramanujan’s updates for N and N,. Entry
12(i) can be recast as

(9.5.21) 5N,(g°) = ('’ + v'"° = 1)%(5N,(q))
where u and v are the solutions to

pr=-1, p+v=11+(5Ns(q))’.
Entry 18(ii) becomes
(9.5.22) IN,(q)i=(u'"+ v+ 0" = 1)Y(IN,(g))
where u, v and w are the roots of

X’ —ax*—bx+1=0

and a and b are given by

a:=57+ 14[TN,(g)I’ + [TN,(9)]*
b := 289 + 126[7N,(¢)]* + 19[7N,(q)]* + [TN,()]° .
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Theorem 9.2 glves 6,(¢”’) solvably in terms of 03(q ) and 6;(q). Likewise
(9.5.22) gives 6,(¢™*) solvably in terms of 03(q ) and 6,(g). Thus 6,(g) =
6,(—q) is similarly solvable and since k = 62/62 and j is solvable in k we see
that for fany of 6,, k, g, G or J, f(g”) is solvable over Q(f(q), f(q''")); for
p:=5 and for p:=7. In view of the nonsolvability of the quintic or septic
modular equations for A (and hence & and j), this is at first surprising. What
is happening is that the Galois group for F,, p=5 and prime, is a
nonsolvable group of order (p — )p(p +1)/2. However j(q"'?) is a root of
F, and, since F, is irreducible, it is of order p + 1. Thus the splitting field for
F over Q (](q) gy has order dividing p(p —1)/2. For p:=3, 5, 7,
and 11, ( p—1)/2 is prime and the corresponding group is obv1ously
solvable. For p :=7, for example, we expect seventh roots of cube roots to
comprise the solution ((p —1)/2=3). This is consistent with equations
(9.5.22) and (9.5.20).

Comments and Exercises

Knowing that a solution exists and exhibiting it, particularly in simple form,
can be very different matters. The components of the quintic and septic
algorithms for 7 are far less complicated than one might initially expect.
Both can be packaged very elegantly. (See Exercises 2 and 7, and Borwein
and Borwein [Pr].)

1. a) Combine (9.5.1) and (9.5.2) to obtain Schlafli’s form of the quintic
modular equation.
b) Compute that

i) M;'(1/5)=V3
i) M;'(1)=5V5-2)

iy M35 = SV —2\6)

iv) MJ'(2/5)=V5(V5+2)(V2-1)*.

¢) Find closed forms for M;'(n) for n:=1,5, 9, and 25.
d) Use Gy =[(V5+ 1)/2][(9+v 5)/2]"* and the conjugate nature
of G,,,s to compute SM,(¥ ). Use Theorem 5.4 to compute o(85).

2. a) Verify the formula (9.5.10) for a(25r).
b) Obtain closed forms for a(n) n=25, 125, 625, 225, and 1225
(Ramanujan [14] givesG,,,s).
¢) Observe that Exercise 1b) (9.5.9) and (9.5.10) combine to give
several explicit iterations for «. For example, we may begin with
ri=1, a(1)=1%, s(1) =5(V5-2).

d) Use Theorem 9.2 to compute Gq,s, in terms of G, and G,,,.
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b)

a) Show that (9.5.14) holds and that

6= LT 2N 27 2O sV + VT,

b) Compute the corresponding updates for 8(25r) and 8(49r). In
particular

8(49) = M;' (V{1 +2VKl + 2VET} .

c) Verify a(7).
d) Establish that R, and R, are as given in Table 5.1.

Ramanujan also gives (Entry 19)
B (kk,)7}1/12
-1 1 4{ w
7 (k/l/)1/4 _ (kl)1/4

B (111)7}1/12
1 4{ Kk’

M, = .
7 (kl)1/4 _ (k;l;)1/4
a) Thus show
7M2 = ( G49n>7 GZ B 2\/§G49n
7 G,/ 2V2G,-Gl,

Compute M,(3) and M,(%).

Ramanujan in his letters (Hardy [40] p. 353) gives the following
beautiful hybrid identity. Let

Q = (GnGZZSn

3/2
. 1/2
ng stn > ’ P:= (Gn G9n G25n G225n) .

Then

\/7<P+%>=Q+é.

8*H(V5+1) 8 4H(V5+1)
— —_ 7

a) Verify that G, = >

and G}, =
a) Establish the eta-multiplier formulae of Theorem 9.3a) and b).

b) Show that N,(k!, k,) = %p :
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c) Show that

49M7 = L(P(y) +V P’(y) + 196y°)
1/M? = L(P(x) + V P*(x) + 196x°)

where x := (kk'/ll')*"% y:= (Il'/kk')""* and
P(x):=1+8x—8x*—x*.
d) Prove that if x:=V/M,, and y:=V N,
(1-13x%)y° + (4x)y* — (4x%)y + x(1 - x*) =0.

Hint: Use (4.6.8).

Combine (9.5.20) and (9.5.22) to produce a solvable update for
m, :=7TM.(r7*"); and so a solvable 7th-order iteration for .

Ramanujan’s letters also contain the modular equations of degree 5 for
K,,, and K, . (See Section 5.5.) For K, 4 one has

(lk)2/3 + (lrk/)2/3 + 3(llrkk/)1/3 =1
and for K;,, one has
lk +I'k' + 8(ll/kk/)1/3{(lk)1/3 + (llkr)1/3} =1.

a) Verify that, in the notation of (5.5.34),

- 2
G1/162(5) = 535

b) Similarly
_ 1
G1/142(5) 9

Hint: The appropriate pth-order modular transformation for K|
sends 1=: A*(n) to k:= A*(p’n).



Chapter Ten

Other Approaches to the
Elementary Functions

Abstract. We examine some of the standard polynomial and rational approx-
imations to elementary functions, particularly to exp and log. We discuss
methods for reducing the complexity of calculating these functions based on
accelerating the evaluation of the approximants. While these methods are
usually less than optimal, they are of more general application than those of
Chapters 6 and 7.

10.1 CLASSICAL APPROXIMATIONS

We commence with an analysis of the standard approximations to exp on a
disk D, :={|z| = &}. The notations we will require are as follows. Let P,
denote the algebraic polynomials of degree at most n with real coefficients.
Let || f|| , denote the supremum norm of a continuous function f on the set
A, that is,

(10.1.1) 1 flla:= sup | f(x)] -

For a continuous f on an infinite compact set A CC, let

(10.1.2) E.(f, 4):= min lf=plla
and let
(10.1.3) R,(f, A)=R,(f)= min ||f=-plql,.

These quantities are, respectively, the error in best uniform polynomial and
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best uniform rational approximations. The existence of the best approxim-
ants is fairly straightforward and is left as Exercise 2.

The most commonly used polynomial approximations to exp are undoub-
tedly the partial sums of the Taylor series. This is reasonable since in any
neighbourhood of zero the partial sums are asymptotically optimal. (Sec
also Exercise 3.)

Theorem 10.1

n i
z
et —

(a)

— <_1__(1+_2_)
o il (n+1)! n+1/°

(b) If pe P, then

z 1 2
I = P, = gy (1= 727

Proof. Part (a) follows from the estimate

o 1 1
S PRE N U T B SO |
n+l v

(n+1)! n+2 nt3 tmEmEea

For part (b) we observe that if
lle* = p(2)llp, < min le* —s,(2)|
where s, is the nth partial sum to exp at zero, then by Rouché’s theorem
p(z)—s,(z) and € —5,(2)
have the same number of zeros (counting multiplicity) in D,. As e* -

s,(z) has a zero of order n+ 1 at zero, we deduce the contradiction tha
p=s,. To finish the proof we need only observe that

.z 1 ( 2 )
- > - .

min [e =5, (2)| A TS A

We now turn to the Padé approximants to exp. These are rationa

approximations that are a natural extension of the Taylor approximants. We
define

e+ 2)"e " dt

(10.1.4) D)= Ty e

and observe that r,, , is a rational function of z with numerator of degree »n
and denominator of degree n. In closed form,
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(10.1.5) 1, .(z Zj <+> _/vzo <> f)
)
Theorem 10.2

(a) “ez_rn,n(z)“DlS (2_3% :

(b) If p,q€ P, then

:_p@)| ()@
q(2)llo,  82n)!2n+1)! -
Proof. Let
n

n (—2)° o
(10.1.6) q,(2):=2n)! X L =IO (t—z2)"te "dt.

e <2n)v!

v

Then

(10.1.7) g, (2)[e —r, . (2)]= I (t—2)'te" "' d IOW '(t+ z)e " dt

f (t— 2)'re " d

— 2n+lf (u_l)n n (1 u)z du .

Now from (10.1.6), for |z| <1,

@2n)!  @n-1)!  (2n-2) ]
n! (n—1)! 2Am-2)

(10.1.8) |q"(z)|2n![
=(2n)l(2-Ve).
Since

nin!

(10.1.9) fo AI-wu"du=Bn+1,n+1)= CTE]
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we have from (10.1.7) and (10.1.8),

n'n!
2- \/_ Cn)!Rrn+ 1)

(10.1.10) lle* = r, .(2)p,=

Part (b) requires showing that for |z| =1,

In!
(10.1.11) lel* = 7, .(2)| > m

which follows from the estimates (Exercise 5)

1 nin!
. nn (1 u)z il
(10.1.12) U (u—1"u 4 —(2n+1)!
and
(10.1.13) lq,(z)|=(2n)!ve.

The rest of the argument is analogous to part (b) of Theorem 10.1. If
there were a rational function p/q satisfying (b) with the inequality strictly
reversed, then by (10.1.11) and Rouché’s theorem,

plg—r,, and e -r,,
would both have the same number of zeros, and from (10.1.7) we would
deduce that p/q —r,, has at least 2n + 1 zeros and hence is identically
zero. O

The fact that r, , is the Padé approximant is a consequence of (10.1.7),
which shows that

e —r, . (2)= o) as z—0.

In general the (m, n) Padé approximant to an f (analytic at zero) is the
unique rational function r = p/q, where p € P,, and g € P,, which satisfies

fz) = p(2)/9(2) = O(z")

where A (in nondegenerate cases A= m + n + 1) is as large as possible. For
n =0 this defines the nth Taylor polynomial.

The following is a partial list of the standard series and continued fraction
expansions for exp and log.
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E‘N

(10.1.14) 2:

2z
2—z+22° 87 [1/(Z" + 2mwn)))]

(10.1.15) =1+

(10.1.16) R e el sl il i Full S

n—o

(10.1.17) lim (1 + —Z—) =
n

n+1 n

log(1+z)‘2 s 1)

(10.1.18) lz|=1, z#-1
z—1 1(2—1)3 1(2—1)5 ]
— — —_ —_— +...
log (2) 2[<z+1)+3 Z+1) T5\z+1
(10.1.19) re(z) >0,
z+1) (1 1 1 )
=2l-+-——+_—=+
log(z 1 2 z 37 57°
(10.1.20) lz|=1, z#=x1
z 2z z 4z 4z 9z 9z
log(1+2) =170 5% 3+ 2+ 5+ 6+ 7+
(10.1.21) z & (—, —1]
3
lim Z—— =log z .
(10.1.22) lim —;

Comments and Exercises

Padé approximants derive their name from H. Padé, a student of Hermite,
who was one of the first to systematically study such approximations at the
end of the last century. The theory of Padé approximation may be pursued
in Baker and Graves-Morris [81]. The convergence theory for Padé approx-
imants is far more complicated than the analogous well-known theory for
Taylor series. (See Exercise 9.) Except in special cases, such as exp or
functions given by Stieltjes transforms [[ da(f)/(x + t)], analysis of region
or rates of convergence is only partially understood. Theorem 10.2 can be
sharpened to show that
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. nln!
R.(€. D)~ (2n)!(2n + 1)!

using Padé approximants centered at z:=1/(2n + 1). This is due to Tre-
fethen [84]. (See Exercise 10.) The discussion of the approximations of exp
follows Newman [79], as do Exercises 7 and 8. These exercises illustrate the
different rates of convergence on disks and intervals. Exercise 8 is the n = m
case of a conjecture of Meinardus, namely, that

nlm!

R, m(e’[=1,1]) = [2"+m(n + m+ Dl(n + m)! ][1 +o(1)]

as n+ m— . This conjecture has been resolved recently by Braess [84].
(See also Nemeth [77].)

For further discussion of the material of this section the reader is referred
to Cheney [66] or Newman [79]. The various expansions may be found in
Abramowitz and Stegun [64].

In Section 11.3 we will use the Padé approximant to exp to derive a
precise irrationality measure for e.

1. (Lagrange interpolation formula) Given n+ 1 points in the plane,
(z;,w,),i=0,...,n, so that z,# z; for i # j, show that there exists a
unique p € P_ so that

p(z,)=w, i=0,...,n.

Show that
p(z)= 2 wi(2)
i=0
where
I(z):= ] 2= 2%
k=0 Z; — Zy
k=i

2. (Existence of best approximants) Prove that E, and R, are well
defined, that is, show that the min is achieved in (10.1.2) and (10.1.3).
Hint: A uniformly bounded sequence of polynomials, all of degree n
has a uniformly convergent subsequence whose limit is a polynomial of
degree at most n.

3. a) Suppose that fis entire and that s, is the nth partial sum of f at
zero. Show that

lim sup E,(}, D)

=1.
e 1= 5,00,
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Hint: Show that if f(z) =: L7, a,z', then for infinitely many m,

=]
2 al.zi
i=m

la,|(1- &)= =la,l(1+e) |z]=1.
Now use the arguments of Theorem 10.1.

b) Suppose fis analytic in a neighbourhood of zero. For fixed n show
that

i ElfiDs) _

=1.
b0 [If = s,

Part a) illustrates that the Taylor approximants behave globally
like best polynomial approximants to entire functions on disks.
The story is different on different shaped regions. Part b) shows
that locally the Taylor approximants are always optimal.

Prove that (10.1.4) has the representation (10.1.5).
Establish the estimates (10.1.12) and (10.1.13).

Establish the expansions (10.1.14) to (10.1.22).

(Polynomial approximation to exp on [—1,1]) Let s, be the nth
partial sum of exp at zero.

a) Show that if p(z) is a polynomial of degree n, then p(z)p(1/z) is a
polynomial of degree » in the variable z + 1/z.
z/2 Z/2

b) If/zx /is the real part of z, where |z| =1, then " =e*'?e*"* =
ei /Zel *. On |z| =1 approximate ¢”’* by s,(z/2) and approximate
e " by s,(1/2z) and estimate the errors.

c) Use part a) to construct polynomial approximations to exp that

satisfy
1/2
B e “+o(l)
E — < —_ 7
& LD = ey
Note ‘the approximation is
: n Zl n Z—i )
e ~ —_— _— = +
2w 2y TTEY.
d) Modify part c) to show that
1+ 0(1)

E"(e", [_1, 1]) = m .

(This is in fact asymptotically optimal.) Hint: Consider the method
with approximation centered at 1/n.
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(Rational approximation to exp on [—1,1]) Show that

8 n'n!
X r_ -
R L= 37 Gayian+ 1)1 -
Hint: Proceed as in 7). First observe that Exercise 7a) holds for
rational functions of degree n. The approximation is given by

3l z2)
€ rn,n 2 rn,n 2z

where |z| =1 and z := x + iy. Use estimates like those in the proof of
Theorem 10.2 to prove the result.

The (n,1) Padé approximant p, to f:=ZX[, a;z' has denominator
a,.,z— a, and, provided a, #0, satisfies

p.—f=0@""?).

a) Show that if f is entire, then there is a subsequence of {p,} that
converges to f uniformly on any given compact subset of C.

b) Show that there exists an entire function so that the full sequence
{p,} does not converge uniformly on any open set in C.
Hint: Show that the poles of the p, can be dense in C.

Exercise 9, due to Beardon and Perron, illuminates some of the problems
inherent in uniform convergence questions for Padé approximants. It was
conjectured that subsequential convergence holds for the sequence of (m, k)
Padé approximants (k fixed) and for the sequence of (m, m) Padé approxim-
ants. Much of the conjecture concerning convergence along rows (k fixed)
was recently settled by Buslaev, Gonchar, and Suetin [84]. They show, for
example, that if f is entire, some subsequence of the (m, k) Padé approxim-
ants (k fixed) converges uniformly to f on compact subsets of C. These
conjectures, due variously to Baker, Gammel, Graves-Morris, Wills, and
others are discussed in Baker and Graves-Morris [81]. A more complete
convergence theory is available if one is prepared to settle for weaker types
of convergence, for example, convergence in measure.

(More on the Padé approximants to exp) Let
Pon(2)= fo "(t+ 2)"e dt

Gn(2) = fo (t—z)'t"e " ar.
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a) Show, as in the proof of Theorem 10.2, that

1
qm,n(z)ez - pm,n(z) = zm+n+l J’O (u — 1)"ume(1_u)z du -
b) Show that, as m + n— oo,

(=1)"'m!n!

N ) TTRthe  onzl(m4n)_mtn+1l
(m+n+1) ¢ L o).

Un(2)€" = p,, ,(2) =

Hint: Observe that (u —1)"u” is essentially a “spike” at u:=
m/(m + n) and that

(=1)'m!n!

1
u—1)"u" du=
fo( e e SR

¢) Show that

z"': mi(n+m—k)

Pmn(2)i= P W z
Gon(2)i= S, LM e

-0 (n—Kk)k!

Recall that [ t"e™" dt = n!
d) Show that

. pm,n

P
e n!

. qm,n
and Qni=—3
m!

are polynomials with integer coefficients of degree m and n
respectively.
e) Show that, as n, m— oo,

?

P2 = (1 )1l L 4 (1))

and
Dn(2) = (n+ m)le™OT™E 4 o(1)]

The convergence is uniform on compact subsets.
Hint: Examine the coefficients of p,,  (z)/(n + m)!
f) Show that, as m, n— o, ’

: Pma2) (—1)"m!n!
Gm.n(2) B (m+n)!(m+n+1)

e[2n/(m+n)]zzm+n+1[1 + 0(1)] ]

The convergence is uniform on compact subsets that avoid any
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zeros of the denominator sequence. Observe that, by e), only
finitely many of these zeros lie in any compact set. Further details
may be found in Trefethen [84] or Braess [84].

g) Show that

Tpr ! 2n+1
n:n:p

i+ LT ol

R.(e,D,)=
Hint: Consider the Padé a?proximant centered at 2p%(2n +1).
That is, replace z by z —2p“/(2n + 1) in parts €) and f). This gives

the upper bound. Use Rouché’s theorem, as in the proof of
Theorem 10.2, to derive the lower estimate.

11. (On the main diagonal Padé approximants to log)

a) Suppose S, and T, are polynomials of degree n and suppose that
T, (x)logx—S,(x)=0(1—x)*""".
Show that, if T (x):=1t,+ t;x +---+¢,x", then

(T () log ] = E $ (D

()
XT, () log x]*Y & (—D)ix!
o]0 (DY
(_1) ! j=0
” ()

rw=2 ()

if we normalize so that ¢, :=1. [This is the denominator of the
(n, n) Padé approximant to log at the point 1.] Observe that T, is
. of degree n and has integral coefficients.
¢) Show (with the above normalization, ¢,:=1) that d,-S, has
integer coefficients, where d, :=LCM(1, .. ., n). '

and hence

=(-1D)",(x-1)".

b) Show that

d) Let 5.2
(x
€. (x):=logx— T ()"
Show that
. X (1 _ u)Zn
A
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Hint: Observe that €, := O(1— x)>*"". Now differentiate to get
Sn Tn B Tn S’Z
T?

n

. 1
¢.(x0)= - =0(1-x)".
Thus

xT2(x0)&,(x)= T2 - x(S,T,— T,5,) = O(1 — x)*" .

Since the middle term is a polynomial of degree 2n with lead
coefficient 1, we must have

xT2(x)% (x) = (1—x)*".
Show that

—Zo_, [KIKV[(k + n+ DIk — n)!]J(1 — x)" <!

(1))

)= <2nn)

é.(x)=

e) Show that

and that for x =0,

(1+vx)*™"

2+ 1) =T,x)=(1+v®™.

f) Show that, for x€(1— 8,1+ §),

5(1_\/7)2" <1—\/Y 2n
n \1+vx =|€.(@)|=nd, 1+\/Y)

where ¢; >0 and d; >0 depend only on 8§, 0< 6 <1.

10.2 REDUCED COMPLEXITY METHODS

We are primarily concerned with methods that accelerate the evaluation of
the elementary function by reducing the complexity of evaluating one of the
standard approximants. Most of the approximants listed in the previous
section evaluated by usual methods (such as, Horner’s rule) provide between
O(n) and O(n log n) digits for n arithmetic operations. The slight difference
comes from the more rapid convergence of the Taylor polynomials for exp
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than those for log. (See Exercise 1.) We proceed to examine three methods
of complexity reduction. While none of these methods is as fast as those of
Chapter 7, they all have their own particular advantages. The second
method, based on the fast Fourier transform, for example, applies to most
of the special functions.

10.2.1 Acceleration Based on Functional Equations

The exponential satisfies the functional equation

(10.2.1) f22)=[f2)] .

This allows us to reduce the calculation of the exponential to a small region
about the origin and then to approximate in that region using a Taylor or a
Padé approximant. From estimates like those of Section 10.1 and (10.2.1)

we have
(10.2.2) ez—[s (—"’;)]Zn L =1
' Y ni2"
and
4’!
2 z 1 nln!
(1023) 4 [rn,n(4n)] = 16"2 (2”)'(2”)' |Z| =1

where s, and r, , are, respectively, the nth Taylor polynomial and the (n, n)
Padé approximant to exp at zero. Both of these above estimates provide

0,(vA) and  Oy(VAM(n))

methods for the evaluation of exp.
The functional relation for log is

(10.2.4) f(2*)=2f(2)

Combined with (10.1.19), this leads to

o

(102.5) P log () =21 S, 1 <zz-n B 1)2k+1
WL Z = —n .
& S22k +1\2 711

Truncation after n terms leads to an approximation on |z — 1| < j that has
error O(4™") and yields an algorithm for log with complexity

0,(vA) and  Oy(VAM(n)).

These are good intermediate range estimates of exp and log. For
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n:=100, (10.2.3) provides in excess of 12,000-digit accuracy at the expense
of roughly 300 full precision multiplications. (300 terms of the Taylor series
provides roughly 600 digits.)

Variations of the above methods can be used to construct 0,,(vn)
algorithms for the circular functions and their inverses. (See Exercise 2.)
Since any elliptic function (Section 1.7) satisfies an algebraic “half-angle”
formula, we can, as above, construct Oop(nm”) algorithms for elliptic
functions provided we have expansions available at the origin. (Unfortu-
nately, convenient closed forms of the Taylor series for sn, for example, are
not available.)

10.2.2  Acceleration Based on the FFT

It is possible, based on FFT methods, to evaluate a polynomial or rational
function of degree n at n + 1 distinct points in O,,(n(log n)*). (See Exercise
3 of Section 6.2.) Our aim is to use this observation to accelerate the
evaluation of partial sums or related approximations. We illustrate with log.
Start with

(102.6) —10g(1—z)=z+%zz+%z3+---

and consider

2

n k
(10.2.7) s,a(z)i=> =
k=1 K
We can write
n—1
(10.2.8) 5,2(2)= 2 z"p, (kn)
k=0
where
n Zj
(10.2.9) (=2 =
P.(¥) 255y
Now, for fixed z, evaluate p,(kn) at k=0,1,...,n—1 in 0,,(n(log n)?)

(Exercise 4) and evaluate s, in a further O(n) operation. Since for |z| < 1,
s,2(z) provides Q(n”) digits of log z, we have constructed an algorithm for
log which is O, (n'"*(log n)*).

With care, this idea can be extended to produce

(102.10) O, (n'"*(logn)®) and  Oy(n'*(log n)*M(n))

algorithms for a variety of nonelementary transcendental functions. Almost
any function with regular Taylor coefficients is susceptible to such analysis.
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Algorithms for the gamma function and the hypergeometric functions, of
complexity given by (10.2.10), are presented in Exercises 6 and 7.

We can combine the methods of Section 10.2.1 with the above to
construct an

(10.2.11) O, (n"*(logn)®)  and  O4(n'"(log n)’M(n))

algorithm for log. This merely requires truncating (10.2.5), say, after n’
terms and evaluating the truncation using the FFT method in O, (n(log n)%)
steps. Note that this approximation provides O(n’) digits of log.

Likewise algorithms can be constructed for exp and the trigonometric

functions with complexity given by (10.2.11).
The relative difficulty of implementing these algorithms renders them

largely of theoretical interest.

10.2.3 Acceleration Based on Binary Splitting

If we wish to evaluate the constant e by summing the Taylor series at 1, then
we can and should take advantage of the reduced length of each individual
operation. With this in mind consider

(10.2.12) p(a, b):=bl/a!
and
+ +b - +b
(10.2.13) c(a, b):= p<“——b, b)a(a, “——>x<" a2 4 c<“ ) b)
2 2 2
where

c(a,a+1):=(a+1)x.

By construction,

c(0,2") Sak
(10.2.14) s k2=0 -
With x :=1, (10.2.14) approximates e with an error of less than e/(2")!, and
hence provides (n2") digits of e. We can use (10.2.13) to recursively
evaluate e with bit complexity O,((log n)M(n)).

Brent [76c] shows how to modify this to provide an Og((log n)’M(n))
algorithm for exp. This is outlined in Exercise 8.

Modifications and variations lead to O,4((log n)*M(n)) algorithms for all
the elementary functions. Particular values of various of the nonelementary
special functions are also amenable to this analysis. So, for example, is
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Euler’s constant. [See Exercises 10 and 11.] Exercise 9 outlines an
Op((log n)*M(n)) algorithm for 7 based on recursive evaluation of arctan.

It is perhaps worth underlining the observation that these acceleration
methods apply only to the bit complexity. The operational complexity is not
reduced. Nonetheless, the algorithm for the number e implicit in (10.2.12),
(10.2.13), and (10.2.14) is asymptotically as fast as any known and has the
virtue of being implementable using only integer addition and multiplica-
tion, except for a single final division.

Walz [Pr] has studied classes of asymptotic methods using extrapolation
and elimination techniques. These often outperform AGM-based methods
in the “microcomputer range” (less than 20 digits). Interestingly, for the
complete elliptic integral of the first kind he finds the AGM to be always
superior. For incomplete integrals this is not always so.

Comments and Exercises

Much of the material of this section is due to Brent [76¢]. In particular,
Exercises 3 and 8 follow Brent closely.

1. a) Show that truncating the series in (10.1.14) and using Horner’s
rule leads to an O, (n/log n) algorithm for exp.

b) Show that (10.1.18), (10.1.19), and (10.1.20) all lead to O,,(n)
algorithms for log using usual methods for evaluating the poly-
nomials or rational functions in question.

¢) Show, for n:=2" and & :=1/2", that (10.1.17) and (10.1.22) lead
to O, (n) algorithms for exp and log.

d) Analyze the complexity of (10.1.15), (10.1.16), and (10.1.21).

Assume in all parts that the method in question is used on a com-

pact region bounded away from the boundary of the domain of

convergence.

2. a) Use the functional relation

(10.2.15) 2 arctan <

z
7—)=arctanz
Vze+1+1

and the expansion

I <

arctan z =
o 2k+1

> (_1)k22k+1
k=

to construct on O, (rn''?) algorithm for arctan on |z| <5 =1.
b) Use the functional relation

2 .
z cosz+1
(10.2.16) [cos <§>] ==

to construct an Oop(nm) algorithm for cos on D;:
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¢) Show, in general, that if
fz)=2 a,z" lz|<1+8
n=0

and f(z/2) is an algebraic function of f(z), then one can construct
an algorithm of complexity

Oop(nm) and 0,(n""*M(n))

on D,.

Instead of approximating e*’>" by s,(z/2") in (10.2.2)., approximate
e*'*" —1 by s5,(2/2") — 1. Then repeatedly use the relation

1+el—1=2¢e+¢

to evaluate e* — 1. Show that this avoids requiring O(n'’?) guard digits.
This modification and its obvious analogue for the Padé approxim-

ant allow the calculation of exp without loss of significant digits beyond

the O(log n) loss inherent in performing n'’? operations.

Show that p,(y) of (10.2.9) can be written as

w,.(¥)

P(¥) =570

where w, and v, are polynomials of degree n. Use FFI methods to
show that the coefficients of w, and v, can all be calculated in
O,,(n(log n)?) and hence, that p,(y) can be evaluated at n points
in O,,(n(log n)?). (See Exercise 1b) of Section 6.2.)

a) Construct an Oop(nm(log n)?) algorithm for exp by writing

NZ-1 xn
D ==ty (0)+ o+ (N —1)
n=0 n!
where
Nm 2
X X X
= + ..
M) = [1 T NmT1 ! (Nmt D(Nm+2)
N—-1
+ x ]
(Nm+1)---(Nm+1)—-1)
and evaluating t,(m) for m=0,..., N—1. Care must be taken

to compute (Nk)! in the requisite time. » .
b) Show how part a) can be used to construct an O, (n""“(log n)")
algorithm for exp.
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¢) Construct an Oop(nm(log n)*) algorithm for the Bessel function of
order zero,

e (_l)kZZk
I(z)i= >l
o(2) ;::0 2211 k!

(An Oop(nuz(log n)*) algorithm for the gamma function)

(10.2.17)

a) From the definition
F(s):=f0 et dt

show, by breaking the integral at N and expanding, that

A = (_l)k Nk jm —r,s—1
(10.2.18) T(s)=N Z,O el A2

b) Show for s €[1, 2] that

6N k k
_ S (_1) N -N
T(s) - N Z,O T T | =2Ne Y.

¢) Use b) and FFT methods to construct an algorithm for the gamma
function of complexity
O,,(n'*(logn)®)y  and O, (n'*(log n)’M(n)).

(Oop(nl/z(log n)?*) algorithms for hypergeometric functions) We now
consider a ( general) hypergeometric function to be a function

(10.2.19) flz):==1+ i a,z"

where a,/a,_,:=R(n) for some fixed rational function R. In this
problem R is assumed to have rational (or precomputed) coefficients
and f is assumed to have a nonzero radius of convergence.

a) Show that the Gaussian hypergeometric series F(a, b; c; z) of
(1.3.5) is hypergeometric by the above definition. Show that,
provided a, b, and ¢, ¢ #0, =1, —2, . . ., are rational, F(a, b; c; z)
satisfies the additional assumptions.

b) Show that sin(vZ), e, log(1—2z), E/w, and K/# are all
hypergeometric functions, up to a rational normalization.

c) For fixed n let

d)
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S (2):= 'Z:o a,z*
T(k):= ljo R(@i) R(0):=1

and
O(k):= R(k) + R)R(k + 1)z + - -
+ R(K)R(k+1)---R(k+n—1)z""".

Observe that _
a,= ileR(k)
and show that
S > = 0(0)+ 2"Q(n) T(n) + 2" Q2n) T2n) + - -+
+ 2" 0(n(n — 1) T(n(n — 1)) .
Show that
T(n), T(2n), . . ., T(n(n — 1))

can all be evaluated in O, (n(log n)?).
Hint: Consider the rational function of y

n—1
V(y):=I1 R +y)
i=0
and observe that

T(kn)=V(0)-V(n)---V((k —1)n).

Now first compute the coefficients of V by recursively breaking the
problem in half and using a fast multiplication. Then calculate.: V at
the points V(0), V(n), V(2n), ..., V((n —1)n). (See Exercises 1
and 3 of Section 6.2.)

Show that

0(0), Q(n), - , Q((n = 1)n)

can all be evaluated in O, (n(log n)*).
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Hint: Note that Q is a rational function of k of degree bounded by
n - degree(R). Now show that the coefficients of Q as functions of

k can be calculated in 0,,(n(log n)?) by proceeding recursively.
To do this consider

R(k) + [R(K)R(k+1)]z+ - - -
+ [R(k)R(k + 1) o R(k +2pn — 1)]Z2n—1
={R(k)+ -+ [R(k)R(k + 1)+ R(k+n—1)]z""Y

+ [z" ﬁ— R(i)]{R(k +n)+---+[R(k+n)

i=

XR(k+n+1)-- Rk +2n~1)]z""1)

and use a fast polynomial multiplication to recombine the pieces.
Finally evaluate Q(0), Q(n), ..., Q((n — 1)n) as before.

f) Use the preceding parts to construct

Oop(nm(log n)%) and 0,(n'"*(log n)’M(n))

algorithms for any hypergeometric function.

(An Og(log n)*M(n)) algorithm for exp)

a)
b)

©)

d)

Show that (10.2.13) can be used to recursively evaluate e with bit
complexity Og((log n)M(n)).

Use (10.2.13) for rational p/q, where pP=qg=2" to compute
e?'?. Show that the bit complexity is as in Exercise 8a).

Suppose x € [0, 1) is a binary 2"-digit number. Show that x can be
written as

=3
k=0 qx
where g, := 2% and 0 =p, < 2%
Write
e’ = H i

k=0

with p, and g, as in ). Show that this gives an Oy ((log n)*M(n))
algorithm for exp on [0, 1).

(An Ogx(log n)ZM(n)) algorithm for )

a) Consider the expansion

b)

10. a)

b)

10.2 Reduced Complexity Methods 335
1\ (1x) anxy’ N (1/xy
arctan <—‘ = - 5
x 1 3

and the recursion

c(a,a+1):= -x

+b a+b (b=a)/2
c(a, b):= p<02 ,b)c(a, —5— >(—x2)b

a+b> <a+b b>
+p<a,—2—c 5

where, for a < b,
pla, b):=(2a+1)-(2a+3)---(2b - 1).
Show that
_(0.2")
x2n+1+1p(172n)

n+1

calculates the (2"°' — 1)th partial sum of arctan (1/ )f)'
Show that for a fixed integer x >1 the above recursion computes

arctan (1/x) in
0,((log n)*M(n) .
This gives an Og((log n)*M(n)) algorithm for 7 from
m = 16 arctan (%) — 4 arctan (3

or any similar arctan formula.

Let f be a hypergeometric function defined as in Exercise 7 (wnh
the same additional assumptions). Show, for flxed p/q rational
inside the region of convergence of the expansion (10.2.19), that
f(p/q) can be calculated with bit complexity

05((log n)*M(n)) .

Show, for fixed rational p/q, that T'(p/q) can be calculated with
bit complexity

O5((log n)ZM(n)) :
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(On the complexity of Euler’s constant) FEuler’s constant or the
Euler—Mascheroni constant vy is defined by

vy = lim [1+—1—+1+---+l—lo m]—0577215
lim >+3 o, “logm|=0. 6649. . ..

(10.2.20)
It is related to the gamma function by the formula

Lo 11 (10 2)ere]

n=1

(10.2.21)
a) Use the recursion
T(z+1)==zl(2)

to prove that if I" has an expansion of form (10.2.21), then v is
given by (10.2.20).

b) The exponential integral E, is defined by

e dt
— -

(10.2.22) E,(x) = f )

Show that

k

(102.23) -E,(x)=vy +logx+ >, ( x>0.
k=1

_x)
k-k!
¢) Use (10.2.23) to construct an

05 ((log n)*M(n))

algoriFhm for vy by choosing x roughly of size 6n.

This method, suggested by Sweeney [63], is a reasonably efficient
method for computing y. Brent and McMillan [80] present a
number of algorithms for this computation. They calculate over
29,000 partial quotients of the continued fraction for y. As a

consequence they show that if v is rational the denominator of y
exceeds 10>

Chapter Eleven

Pi

Abstract. The first section of the chapter deals with the history of the
calculation of 7 and related matters, while the second section deals with its
transcendence. The third section looks at irrationality measures and includes a
proof of the irrationality of {(3). This chapter is largely self-contained and
indeed contains considerable related number theory, especially in the exer-
cises.

11.1 ON THE HISTORY OF THE CALCULATION OF =

The history of 7 presumably begins with man’s first attempts at estimating
the perimeter or area of a circle of given radius and as such starts at the
dawn of recorded history. The Egyptian Rhind (or Ahmes) Papyrus which
dates from approximately 2000 B.C., gives a value of (16/ 9)* =3.1604. . . for
. Various other early Babylonian and Egyptian estimates include 3, 3%,
and 3%. Implicit in the Bible (1 Kings 7: 23) is a value 3: “And he made a
molten sea, ten cubits from the one brim to the other; it was round all
about. . . and a line of thirty cubits did compass it round about.”

Mathematical interest in 7 comes into sharp focus in the classical Greek
period. The Greeks investigated the problem of “squaring the circle.” This
question and its final resolution over two millenia later will be pursued in
the next section. Currently we wish to review the primary Western develop-
ments in the calculation of .

Archimedes of Syracuse (287-212 B.c.) provided the first major landmark
in the quest for digits of m. By considering inscribed and circumscribed
polygons of 96 sides, Archimedes gave the estimate

10 1
3ﬁ<77<37.

337
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A salient feature of Archimedes’ method is that it can, in principle, be used
to provide any number of digits of .

If a, denotes the length of a circumscribed regular 6-2"-gon and b,
denotes the length of an inscribed regular 6-2"-gon about a circle of radius
1/2, then

(11.1.1) a4, =

(11.1.2) b,..,=Va,.b,.

This two-term iteration, starting with a,:=2V3 and b, :=3, can be used to
calculate 7. (See also Section 8.4.) The fourth iteration yields a, = 3.1427. ..
and b, =3.1410. . . and corresponds to estimating 7 using polygons with 96
sides.

If we observe that

an+1bn ( b )
+1 = an 0,
Bk (an+1+bn+1)(an+bn)

(111.3) a,.1— b

we again see that the error is decreased by a factor of approximately 4 with
each iteration. Variations of this modern formulation of Archimedes’
method provided the basis for virtually all extended precision calculations of
m for the next 1800 years, culminating with Ludolph van Ceulen (1540-
1610) who correctly computed 34 digits. The limitations of this method stem
from the relatively slow convergence and from the need to extract square
roots. (See Exercise 1.)
Frangois Vieta (1540-1603) gave the first infinite expansion

2 1 1 1 1 1 1 1 1 1
ey 2-y1\2 (J 11 NI
(11) T 2 2+2 2 2+2 2+2 2

which he derived by considering a limit of areas of inscribed 2"-gons. (See
Exercise 2.) John Wallis (1616-1703) through a complicated calculation
demanding prodigious numerical insight derived the infinite product ex-
pansion

(11.1.5) 2_1.3.3.5.5.7.7.9... :
This appears in his Arithmetica Infinitorum-of 1655. A few years later Lord

Brouncker (1620-1684), the first president of the Royal Society, recast this
as the continued fraction.

11.1 On the History of the Calculation of = 339
4
7T=
1+ 1 9

(1116) 24— 15 W\fssinj

2+ ———

94 49

247

The Scottish mathematician James Gregory (1638-1675) in 1671 provided
the underlying method for the next era in the history of the calculation of .
He showed that

11.1.7) t —J'X d_ —x—3+x—5—x—7+---
(11.1. arctan x = sx- g3 tT o

0 1+x>
and hence, on setting x :=1, that

T 1.1 1
(1118) 2—1—34"5'—74'"'
a formula independently discovered in 1674 by Leibniz (1646-1716). By the
beginning of the eighteenth century Abraham Sharp under the direction of
the English astronomer and mathematician E. Halley had obtained 71
correct digits of 7 using Gregory’s series (11.1.7) with x :=V1/3, namely,

T 1 ( 1 1 1 )
1 —=—=ll-gg5t+m3=—-5=+ ).
(11.1.9) 6 V3 3-3 3.5 3.7

It is the techniques of calculus that so expanded the scope for calculating,
and it is perhaps not surprising that Isaac Newton (1642-1727) himself
calculated 7 to 15 digits sometime in 1665-66. He used the series

3V3 ( 1 1 1 1 )
. =—+24| = - - - — e
(I1110) ===y 12 5.2 282 712
which is essentially an arcsin expansion. (See Exercise 4.) Newton was later
to write: “I am ashamed to tell you to how many figures I carried these
computations, having no other business at the time.” John Machin (1680-

1752) derived the formula which bears his name:

7 1) _ (L)
(11.1.11) 1 —4arctan<5 arctan 239/ -

Coupled with Gregory’s series for arctan this provides a very attractive
method for calculating 7 since the first term is well suited to decimal
arithmetic and the second term converges very rapidly. Machin calculated
100 digits this way in 1706. In the same year William Jones published his A
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New Introduction to the Mathematics, where he denoted the ratio of the
circumference to the diameter by the Greek letter =, presumably for the
first letter of periphery. It was, however, Leonard Euler (1707-1783) who
popularized the use of the symbol. Euler derived numerous series and
products for 7 and 7> Among the best-known are

2

(11.1.12) T3 iz
6 n=1 N1

and
51
(11.1.13) 2_ .

The explicit summation of (11.1.12) had eluded Liebniz and also the
Bernoulli brothers, Jacques and Jean. The method by which Euler derived
his evaluations of £7_, 1/n** is outlined in Exercise 7. This is to be found in
Euler’s Introducio in Analysin Infinitorum of 1748. The Machin-like formula

1 3
11.1.14 = <—) < )
( ) 7 =20 arctan 7 + 8 arctan 7
coupled with the expansion

2 2-4
11.1.15 t ——< +Zy+ z )

( ) arctan x 13y 35y+
where y := x%/(1 + x*), allowed Euler to compute 20 digits of = in under an
hour.

The next 200 years saw little change in the methods employed to calculate
7. In 1844 Johann Dase (1824-1861), a calculating prodogy, used the
formula

T 1 1 1
( 6) 1 arctan > + arctan 5 + arctan 3

to produce 205 digits of 7. (Dase’s arithmetical abilities were awesome—he
could multiply 100-digit numbers together in his head, a feat which took him
roughly 8 hours.)

The zenith (or nadir depending on your perspective) in premachine
calculations was achieved by William Shanks (1812-1882), who published
607 purported digits of 7, of which 527 were correct. Later Shanks pub-
lished an extension to 707 digits. This was also incorrect after the 527th
digit. These calculations took Shanks years and were performed in an
entirely straightforward fashion using no tricks or shortcuts. (See W. Shanks
[1853].) The mistakes went unnoticed until 1945, when D. F. Ferguson, in
one of the final hand calculations, produced 530 digits. Ferguson produced
808 digits in 1947, using a desk calculator and the formula

11.1 On the History of the Calculation of = 341

7 =3arctan () - arctan )+ artan (155
(11.1.17) 4—3arctan<4 +arctan | 55 | + arctan | 7oo= | -

Thus dawns the computer age. In June 1949 ENIAC (Electronic Numeri-
cal Integrator and Computer) was used to evaluate 2037 digits of 7 using
Machin’s formula and 70 hours elapsed time. An analysis of the distribution
of the digits was carried out by Metropolis, Reitwiesner, and von Neumann.
By 1958, Genuys had computed 10,000 digits on an IBM 704 in 100 minutes,
once again using Machin’s formula. Felton had performed a 10,000-digit
calculation in 1957; however, due to machine error it was only correct to
7480 digits. In 1961 D. Shanks and Wrench [62] used the identity

1
1 ) + 4 arctan <

~24arcan (3 (5 )
(11.1.18) 7 =24 arctan <§) + 8 arctan 57 739

and under 9 hours on an IBM 7090 to produce 100,000 digits of 7. This was
checked using the formula

1
18 57) 20 arctan <239)
The million-digit mark was set by Guilloud and Bouyer in 1973 on a CDC
7600. The calculation, which took just under a day, used (11.1.19) with
(11.1.18) as a check. '

Kanada, Tamura, Yoshino, and Ushiro [Pr] calculated in excess of 16
million digits using an AGM based algorithm, Algorithm 2.2, and checked
10 million digits using (11.1.19). The 16 million-digit calculation took under
30 hours on a HITAC M-280H and used an FFT-based fast multiplication.

At the end of 1985 the record belonged to W. Gosper. He calculated 17
million terms of the continued fraction expansion for 7 and so in excess of
this number of decimal digits—after a radix conversion from a binary
computation. His method is based on a very careful evaluation of Ramanu-
jan’s series (5.5.23) on a Symbolics 3670. (A remarkable feat considering
the size of the machine.) As is surprisingly often the case with these large
scale calculations, Gosper uncovered subtle design flaws which had not
surfaced in smaller calculations.

In January 1986, D. H. Bailey [Pr] computed 29,360,000 decimal digits of
7 on the CRAY-2 at the NASA Ames Research Center. This calculation
used only 12 steps of the quartic algorlthm (5.4.7) with r:=4. This results
in computing a(2*°), which agrees with 7 ' to more than 45 million places.
The calculation took less than 28 hours and was verified with a 40-hour
computation of 25 steps of Algorithm 2.1. It is amusing to observe that the
quartic calculation requires well under 100 full precision multiplications,
divisions, and root extractions.

In July 1986, Kanada reclaimed the record with a computation of 2%
decimal digits. He again used Algorithm 2.2, verified in September using
(5.4.7) with r:= 4, but reduced the elapsed time to 5 hours and 56 minutes
on a S-810/20 super computer. This represented a speed-up by a factor of

(11.1.19) = =48 arctan( ) + 32 arctan <
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15. His previous computation now used only 96 minutes of CPU time. Plans
were to compute 2°’ decimal digits (over 100 million) at the end of 1987.

Nor is the end in sight. It will probably be the case than hundreds or
thousands of millions of digits will be calculated by the end of the century.
(This is now more a matter of will than anything else.) Apart from
observations like “the sequence 314159 appears in the digits of 7 commenc-
ing at digit 9,973,760,” there is little we care to say about the digits. They
have, however, been subjected to considerable scrutiny. It is an open
question as to whether = is normal. That is, do all sequences of integers
appear with the same frequency in the digits (are one-tenth of the digits 7,
one-hundredth of the consecutive digit pairs 23, etc.)? On the basis of the
first 30 million digits the answer appears positive. This, of course, is no great
help in deciding the normality issue. (See Wagon [85].)

In terms of utility, even far-fetched applications such as measuring the
circumference of the universe require no more digits than Ludolph van
Ceulen had available—but then utility has had little to do with this particu-
lar story.

Comments and Exercises

This section presents only the highlights of the quest for digits. The matter
may be pursued in detail in Beckmann [77], a most useful though rather
individualistic history, and in Le Petit Archiméde [80]. Schepler’s chronog-
raphy [50] and Wrench’s history [60] are also of interest. Details of the more
recent calculations may be found in Tamura and Kanada [Pr], where a
compendium of Machin-like identities is provided.

There is also a considerable collection of m-related trivia. For example,
the Indiana House of Representatives attempted to legislate the value of =
in Bill 246 of 1897. The bill, which appears to proclaim 7 to be several
different incredibly inaccurate values, including 4 and 64/25 (see Beckmann
[77], and Singmaster [85]), passed the House and only floundered in the
Senate on the apparently chance intercession of C. A. Waldo, a professor at
Purdue. Keith [86] gives a 402 digit mnemonic for .

1. a) Show that the algorithm of (11.1.1) and (11.1.2) calculates 7 by
showing that g, and b, are as advertised.

b) Prove (11.1.3) and estimate how many iterations of (11.1.1) and
(11.1.2) are required to calculate 35 digits of 7. This should be
compared to Bailey’s [Pr] calculation which uses the same opera-
tions.

2. a) Prove, from the product expansions for sin and cos, that

sin 6
11.1.20 o=
( ) cos (6/2) cos (8/2%) cos (6/2°) - - - ol <.

b) Alternatively deduce (11.1.20) in an elementary fashion by setting

b)
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Fimeos () cos (3] o (3)
ni=cos |5 ) cos | >

and showing that

[ = sin 0

" 2"sin(8/27)
Set 6:=m/2 and use the formula cos(8/2)=V3+ 3cosf to
deduce Viéta’s formula (11.1.4)

2_\Ff 1[1\/1 W; 171
2 VaVz T2V Vz2 2V 2 V3

Prove Wallis’s formula (11.1.5) in the form

m_2:2:4-4-6-6-8-8

2 1.3-3-5-5-7-7-9

Hint: Show that

fﬂz.h,dzzy35 @m—l)
o SHoxax 2:4-6---2m 2
and

fﬂ/z sin®™ 'x dx = 2:4-6-2m

0 1-3-5- @m+1)

Establish the corresponding formula for e:

N2 2.4\ (4.6-6-8\ "2
2:=<I> <§7§> <5-5-7-7> T
Show that the volume of the 2n-dimensional unit sphere is 7"/n!

while the (2n+1)-dimensional unit sphere has the volume
2°**![n!/(2n + 1)!]7". Find a unified formula for these two cases.

|

Deduce (11.1.10) roughly as Newton did. Show that

1/4
l—[§= . Vx—x dx

24 32

and that

1/4 1/4

Vx—x*dx= . vx(V1—x)dx

0
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5. a) Deduce Machin’s formula Hint: Consider (a, + ib,)---(a, + ib,) = re’, 10| < , and use the
fact that

E=4arc‘[an<l)— t (1)
3 5 arctan 239

as follows. Let 6 := arctan . Then

1+iz>

ta; —ll (
arctan z = og\ 15/

(This gives an algorithmic check for Machin-like formulae. )

tan 26 = 2tang S b) Show, for positive integral u, v, and k and integral n and n, that
1-tan’6 12
an” 0 1 1\ _ km
and m arctan | — + n arctan )=
_ 120 _ 1 if and only if (1 —i)*(u+i)"(v +i)" is real.
tan40— 119 —1+ﬁ§ C) Verlfy
Hence ™ <1> . ( 1 ) Machin, 1706
7 =4 arctan 3 — arctan 239 (Machin, )
™ —1+tan 46 1
tan{d — — | = ————— = —. T 1 1
4 1+tan46 239 7 = arctan <§> + arctan <§> (Euler, 1738)
b) Show that arctan satisfies the addition formula 1 1
. % =2 arctan <§> — arctan (7> (Hermann, 1706)
arctan x + arctan y = arctan ( 1x ) xy<1.
- 1
T — 2 arctan <1> + arctan (—) (Hutton, 1776) .
¢) Show that 4 3 7

(11.1.21) arctan (%) = arctan (pi )+ arctan( q ) ‘ These are, in fact, all the nontrivial solutions of b). This was a
q

pi+pg+1 problem of Gravé’s solved by Stgrmer in 1897 The problem can
. 5 be reduced to finding integral solutions of 1+ x*=2y"or 1+ X =
and that if 1+ p“ = gr, y", n=3, n odd. (See Ribenboim [84].) Much related material on
1 Machin-like formulae occurs in Lehmer [38] and Todd [49].
(11.1.22) arctan ( ) + arctan ( ! ) = arctan ( ! ) 1
ptr pt 7. Prove Brouncker’s continued fraction by showing that
Formula (11.1.21) was known to Euler. Bromwich [26] attributes (11.1.22) 4 1
to Charles Dodgson (Lewis Carroll). T 1+ 9
+ —_—
6. (Machin-like formulae) ? 2+ 2
a) Show, for integral a; and b;, that Hint: Tt SR
int:
b, o
k@ = arctan ( ) + arctan (bz) + .-+ + arctan <&) si=a,ta;taa,taaa;t
“ %2 @n then
where k is an integer if and only if a
s=ayt ————
(@ +ib,) (@ + ib;)-+ - (a, + b,) 1- —
3
+
has zero imaginary part. 1T Ty as—
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This is a nonsimple continued fraction. The convergents satisfy
a similar recursion to that given in Exercise 2 of Section 11.3.
Apply this to

3 5 7
arctanx=x—x—+x——x—+'--
35 7

so that
0 -x° _—3x2
a, , A =X, a, T,a3— 5
and
X
arctan x = 5
1+ a 7
X
3I—x+ o
X
5-3x"+ ————.
7—5x---

Now set x := 1. (According to Beckmann, Brouncker merely announced
his result—the above derivation is essentially due to Euler.)
Consider the series

3 5
X

smx=x—§+§—---.
Observe that sin x =0 exactly when x = =ks. Now observe that on
setting y :=x’,

(11.1.23)

(11.1.24)

exactly when y = (km)’, k=1,2,3, .. .. If (11.1.24) were a polynomial,
we would know that the sum of the reciprocals of the roots of (11.1.23)
equals the negative of the coefficient of y and in general the sum of the
reciprocals of the powers would be expressible in terms of the coeffici-
ents and Bernoulli numbers. Thus we would deduce that

©

1 1 il 1 1
= — d = —
26 ™ G0

Use the product expansion for sin [Section 2.2, Exercise 1d)] to make
the above argument of Euler’s rigorous. (See also Exercise 14 of
Section 11.3.)

In computing 7 from (11.1.19) one must evaluate arctan () and
arctan (35 ). Use (11.1.15) to observe that

T
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1) < 1 2
)= —+
arcm“(m B\35 " 335

2-4 >
3+...
3-5(325)

and

arctan<—1—>—57< 1 + 2 + 24 +>
57 3250 © 3(3250)°  3-5(3250)° '

Thus terms of the second series are just decimal shifts of terms of the
first series. (See Ballantine [39].) How does this affect the complexity
of calculating the two arctans?

10. Prove that the number

0.12345678910111213---n(n+ 1) - - -

is normal. A proof may be found in Niven [56].

11.2 ON THE TRANSCENDENCE OF =

The problem of “squaring the circle” is the problem of constructing a square
of the same area as a given circle of radius 1, or alternatively given a line
segment of unit length of constructing a segment of length 7. The rules of
construction allow for the use of an unmarked straightedge and an unmar-
ked compass. A more precise definition of constructible is provided in
Exercise 1. In fact, the constructible numbers are exactly those numbers
which can be obtained from the integers by a finite sequence of rational
operations and extraction of square roots. (See Exercise 1.) Thus construct-
ible numbers are algebraic and the transcendentality of 7 shows the
impossibility of the problem.

The Greek notion of number, based on geometric construction, made
consideration of such problems more natural than they perhaps seem today.
Indeed the problem had arisen by the fifth century B.c. Anaxagoras, who
died in 428 B.C., had, according to Plutarch, considered it while in jail. His
contemporary, Hippocrates of Chios, the author of one of the first geometry
texts, also considered the question. The other classical Greek problems of
“duplicating the cube” and “trisecting the angle” also arose in this period.
The “Delian problem” of duplicating the cube (in volume), so named
because the oracle of Apollo at Delos had prescribed duplicating the cubical
altar as a means of halting the plague of 428 B.c., is equivalent to
constructing V2. (The impossibility of solving these problems is also discus-
sed in Exercise 1.)

By 414 B.c. attempts at constructing 7 had become so numerous that
Aristrophanes refers to “circle squarers” in his play “The Birds.” The term
came to refer to people who attempt the impossible. However, attempting
the futile is not always a waste of time. As Boyer [68, p. 71] points out:
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The better part of Greek mathematics, and of much later mathematical
thought, was suggested by efforts to achieve the impossible—or, failing
this, to modify the rules. The Heroic Age failed in its immediate
objective, under the rules, but the efforts were crowned with brilliant
success in other respects.

It is hard to know whether more energy has been consumed by attempts
at circle squaring or by calculations of 7. While doomed attempts to square
the circle flourish to this day, by the eighteenth century it had become
accepted in the mathematical community that the problem was probably
impossible. In 1755 the French Academy of Sciences refused to examine
any more quadratures while as early as 1668 Gregory had attempted to
prove their impossibility. The first substantial step in this direction was due
to Lambert (1728-1777), who proved  irrational in 1761. A subsequent
more rigorous proof was provided by Legendre (1752-1833). Legendre
proved the irrationality of 7 in his Eléments de Géométrie of 1794 and
commented:

It is probable that the number = is not even contained among the
algebraic irrationalities . . . But it seems to be very difficult to prove
this strictly. :

(See Exercise 3.) This belief was shared by Euler. Liouville established the
existence of transcendental numbers in 1840, and in 1873 Hermite proved e
transcendental. It had been proved irrational by Euler in 1737. Finally in
1882 F. Lindemann [1882] extended Hermite’s proof to cover the transcend-
ence of , thus laying to rest a 2300-year-old problem. This was simplified by
Weierstrass [67] in 1885, Hilbert [1893] in 1893, and many others. Lin-
demann in fact established more generally that

Be* 1+ -+ B e#0

for distinct algebraic numbers «, ..., «, and nonzero algebraic numbers
Bis- -5 B, (See Exercise 7.) The transcendentality of 7 follows since
¢ —1=0. This is the signal achievement of the nineteenth century with
regard to transcendental number theory. Note that Lindemann’s theorem
implies the transcendence of cos «, sin «, and tan « for algebraic « # 0 and
also the transcendence of log 8 for B algebraic, 8 #0 or 1.

In 1900 Hilbert, as the seventh of his 23 problems posed at the Interna-
tional Congress in Paris, asked whether a” is transcendental for « algebraic
(¢ #0,1) and B an algebraic irrational. This was solved independently by
Gelfond and Schneider in 1934. (See Niven [56]). It is interesting to note
that Hilbert had speculated that this problem would probably resist solution
longer than the Riemann hypothesis or Fermat’s last theorem. In 1966
Baker substantially generalized the Gelfond—Schneider theorem by showing
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that any nonvanishing linear combination of logarithms of algebraic num-
bers with algebraic coefficients is transcendental. That is, if «; and B; are
nonzero algebralc numbers then 8, + X7, o; log B; # 0. (See Baker [75] )
Note that i* = ¢~"'% and so transcendence of e’ follows from the Gelfond-
Schneider theorem.

Comments and Exercises

For a discussion of constructibility one might consult Famous Problems in
Elementary Geometry by Klein [1897]. The treatment we give in Exercise 1
follows Clark [71]. The exercises on transcendental numbers follow Baker
[75], Hardy and Wright [60], Hua [82], and LeVeque [77], and for the most
part are simplifications of the original arguments. The particularly simple
proof of the irrationality of 7 (outlined in Exercise 3) is due to Niven [56].
The reader interested in pursuing these matters in depth is directed to Baker
[75], Mahler [67], or Lang [66a].

1. (On constructible numbers, doubling the cube, and trisecting the
angle) Constructible numbers can be defined by:

(1) The points (0,0) and (0, 1) are constructible.
(ii) Lines joining constructible numbers are constructible.

(iii) Circles with constructible centers and constructible radii (that
is, the radius is the distance between two constructible points)
are constructible.

(iv) The points of intersection of constructible lines and circles are
constructible.

It is the points of (iv) that form the constructible numbers.

a) Prove that the constructible numbers are a subset of the algebraic
numbers.

b) Show that perpendicular bisectors are constructible. See the hint
provided in the illustration. Hint:
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c) Show that a circle through three given points is constructible. Sec
the hint provided in the illustration. Hint:

d) Show that the constructible numbers form a field. See the hint
provided in the illustration. Hint:

0, %)
(=10 (xy, 0)
© -y
e) A number field C is constructible if C=Q(c,,...,c,), where
¢,,...,cC, are all constructible. Show that if C is constructible,

then C has degree 2™ over Q.

f) Show that real extensions of degree 2 are constructible.

g) (The impossibility of doubling the altar) Use e) to show that V2 is
not construcible and so the Delian problem is not solvable.

h) (The impossibility of trisecting the angle) Show that constructing
an angle 6 is equivalent to constructing cos  and show that a 60°
angle is constructible. Show that

c0s30 =4cos®> 0 —3cos 8
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and hence, that cos 20° is a root of
8x’ —6x — 1.

Show that the above polynomial is irreducible over Q and hence, by
part e), that a 20° angle is not constructible. Show that the
constructibility of 6, given a rational cos36, depends only on
whether 4x® — 3x — cos 36 factors over Q. Show that a 30° angle is
constructible.

The following series of exercises is on transcendental and algebraic
numbers. Recall that « is algebraic of degree n if « is the root of an
irreducible polynomial of degree n with integer coefficients. If « satisfies no
such algebraic equation, it is transcendental.

2. (On Liouville numbers)

a) Prove that if « is algebraic of degree n, then for all £ >0 and for all
c>0,

Cc

n+e

a—£‘<
q

0<

has only finitely many solutions with p and q integral.
Hint: Suppose « satisfies

p(a):=a,a”+---+a,=0.

Then, provided p/q is not a root of p,

)3

So by the mean value theorem, for p/g€[a—1, @ +1],

\a B _13' - le@ = p(pig)l 2l
q sup  |p(x)| "~ ¢
xEfa-1, a+1]
for some D, and the result follows.

A much deeper result of Roth (see Baker [75]) shows that a)
holds with ¢"** replaced by ¢°**.
b) Use a) to show that

8

=
n

1 S|
! d = n
1 107 an k nz=l 1022

n
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are transcendental by showing that the partial sum approximations
would violate a).

¢) Modify the construction of b) to exhibit uncountably many trans-
cendental numbers. (In fact, all infinite subseries of « are transcen-
dental, which exhibits an uncountable set of such numbers.)

d) Show that the algebraic numbers are countable and hence, that
almost all numbers are transcendental. Numbers that can be proved
transcendental because they can be approximated too rapidly by
rationals are called Liouville numbers. More precisely, a is a
Liouville number if for every m there exists a rational p/q, g > 1, so
that

0< ’a - B' < -—1;,; .
ql 4

€) Prove that Liouvile numbers are transcendental.

f) Show that the set of Liouville numbers has measure zero.

g) Show that the Liouville numbers have Baire category II. Show, in
fact, that the complement of the Liouville numbers is of Baire
category I. Actually it is a nowhere dense F,. (Recall that a set is
category I if it is the countable union of nowhere dense sets and
that a set is nowhere dense if its closure has empty interior. A set is
category II if it is not category I. See Oxtoby [80}.)

(On the irrationality of e and )

a) Prove that e is-rrational.
Hint: Suppose e = g/p and consider

‘ql@lo (1) - l) )

i! e

Show that this is an integer strictly between 0 and 1.
b) Show that for any positive integer n,

has the property that f and all its derivatives are integer valued at
x=0 and x =1 and that for x € (0, 1),

1
0<flx) <.

¢) Prove that e” is irrational for integer p #0.
Outline: Suppose e’ = a/b with a, b €N. With f as in b), set

F(x):= pf(x) = p" fP00) + - + [ (0).
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Show, by differentiating e”*F(x), that

1
b fo p*" e f(x) dx = aF(1) — bF(0)
is an integer but that the left-hand side above lies strictly between 0

and 1 for large n.

d) Deduce from c) that e? is irrational for all rational g # 0.
e) Show that = (and hence =) is irrational.

Outline: Suppose 7’ =a/b with a, bEN. Let f be as in b) and
consider

G(x):=b" éo (D FH )y,
Then
d% {G(x) sin (7x) — wG(x) cos (wx)} = 7’a"f(x) sin (7x)
and
7 fol a"f(x) sin (7x) dx = G(0) + G(1).

However, G(0) and G(1) are integers while as in c) the integral on
the left is strictly between 0 and 1 for large n.

(On the transcendence of e) This exercise outlines Hilbert’s proof of
the transcendence of e, a proof which, as LeVeque [77] puts it, is “as
elegant as it is mysterious.”

a) Recall that, for k£ an integer,
I, := f: x*e™* dx = k!
and thus if p is polynomial with integer coefficients,
f: x*p(x)e™ dx = k!p(0) mod(k + 1)!

b) Suppose e algebraic. Then there are integers a; so that
agtae+ae’+--+ae =0 a,#0.

Let
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/3 /3 3
L :=L x=1)---(x=n)]" e dx

let

S:=a0f0 +a1ef1 +---+a"e"f
n

and let

1 n
T2=alef+---+ae"f.
0 r 0

Observe that S+ T=0.

¢) Show that, for infinitely many m, S/m! is a nonzero integer. To do
this, observe that if y 1= x — k, then

(" aoL Y'Po(y)e™ dy k=0
a.e fk =
“"fo Y Updpe”dy k=1

where the p, are particular polynomials with integer coefficients.
Now use a) to see that the first term of S is divisible by m!; that the
rest are divisible by (m + 1)!; and that for infinitely many m the first
term is not divisible by (m + 1)!.

d) Show that lim,,_,, |T|/m!=0. To do this let

M:= max |(x - 1)(x =2)--- (x — n)|(x + 1)

O=x=n

and show that

k
a
"fo

|Tl__ Mm+1
m 0< m! >—>O'

< k'ak'Mm+1

whence

e) Observe that, since S+ T =0, ¢) and d) lead to a contradiction, and
hence e cannot be algebraic.

(Qn the transcendence of ) The exercise outlines Baker’s [75] synthe-
sis of Hilbert’s proof of the transcendence of 7.

b)

d)
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Suppose 6, := iw is algebraic. Let / be the lead coefficient of the
minimal polynomial for iz and let 6,, . . ., 6, be the other roots of
the minimal polynomial. Since ¢'" = —1,

(1+eM(1+e%)---(1+e9)=0.
Show that expanding the above yields a nonzero integer » such that
q+€a1+"'+€a"=0

where ¢ :=2%— n and each a; is a nonzero sum of some subset of
the 6, of the form X §,6,, §,=0 or 1. Show that any elementary

iz
symmetric function of laj, ..., la, with integer coefficients is in-

teger valued. (See Exercise 6.)
Let

a

I(a):=f0 e 'f(r) dt
where
=0 =) (1= @)
for some prime p. Let
Ji=la)+---+ Ia,).

Show, by using a) and repeated integration by parts, that for
m:=Hm+1p-1,

I==¢2 fP0) -2 2 fDa,).
j=0 j=0 k=1
Show that J is an integer. To do this, observe that the right-hand

term is a symmetric function of la,,. . ., la,.
Show that for j# p — 1,

p!If(0)
while for j=p —1,
FER0) = (p = DI-D" (- @, ).
Thus for p sufficiently large,

(p—D!fPP©0) and  plrfPD(0).
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€) Show that, for j=p —1, and p sufficiently large

FPe)=0.

Show that
P2 2 fey).
j=0 k=1
Hence with d)
7= (p - 1)!
f) Show, however, that for some M independent of p,
U] = [SK(a,)| < M?.

This contradicts ¢) for large p and finishes the proof.

(On symmetric polynomials) A polynomial in n variables is symmetric
if it remains unchanged by any permutation of the variables. An
elementary symmetric polynomial f, in the variables x,, . . ., x, is defined
by

V=x)y—x)(y=x,)=y"—fy" Ly T = (-1)F,

a) Show by induction that any symmetric polynomial in n variables
with integer coefficients can be written as a polynomial with integer
coefficients in the elementary symmetric functions.

b) Lets,:=x\+ -+ x* Prove Newton’s identities:

S = (=1 kf + (-1 > (D5,  k=n

]':

and

S=CD S (s, k>n.

j=k-n

(Lindemann’s theorem) This proof of Lindemann’s theorem follows
Baker [75] and assumes some general familiarity with algebraic integers.
(An algebraic number whose minimal polynomial has lead coefficient 1:
observe that if @ is an algebraic number and the lead coefficient of the
minimal polynomial is /, then la is an algebraic integer.)
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Lindemann’s Theorem

If a,. .., a, are distinct algebraic numbers and i, . . . , B, are nonzero
algebraic numbers, then

‘Bleal + e+ Bne“n # 0.
a) Suppose that
Bes+ -+ B,e=0.

Show that one can assume that

(i) The B; are ordinary integers.
(i) There exist integers 0 = ny < n, <-:-<n, = n so that, for each 7,

@, (g5

is a complete set of conjugates and
Brw1="""=Bn,,-

b) Let ! be an integer so that la,,...,la, and IB,,...,IB, are
algebraic integers. For p a large prime, let

P a) (- a)

x—q

fix) =

For 1=i=<n, let
Jii=Bl(a)+- 0 + B.I(a,)

where
a

I(a) :=f e“"'f,(r) dt.

0

Show that

n

]

J=-

M

;—:1 kagj)(ak)

0

]

J

is an algebraic integer and that

(p = DH (o)
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and for p sufficiently large

plf () j=p-1, k=i
while

! fP)  otherwise .

(An algebraic number « is divisible by 4 if a/k is an algebraic
integer.)

c¢) Show that |[J;---J,| is a nonzero integer divisible by (p — 1)! and
hence |J,---J |=(p - D

d) Show that there exists C independent of p so that

[+ Tl = 0(CP)

and that this contradicts c).
8. (Lengths and measures)

a) Suppose P is a polynomial with integer coefficients of length L and
de.gree D. Suppose a is an algebraic number with minimal polyno-
mial of degree d and length /. (The length is the sum of the absolute
value of the coefficients.) Show that either

Pla)=0
or
[max(1, |a[)]”
1
= —
- Ld—llD -

|P(e)| =

Hint: Suppose «, := « has minimal polynomial
O(x) = gx + -+ + g,
and let a,, . . ., @, be the remaining roots of Q. Show that
qq- P(ay)P(ay) - P(ay)
is a nonzero integer [if P(a;)# 0]. Since

|P()| =< L max(1, |a,|)”
we have

1=1g211PGa)] 11 [L max(1, |a])"]

=1°L“" max(1, |a;|)"°| P(a,)|
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where the last inequality requires showing
d
[=]q, 1__[1 max(1, |e;|)

and follows from part b) of this exercise.
b) Let P and Q be polynomials and let

w(P) :=exp U'o loglP(ez””)|dt] .
Show that
i) w(PQ)=npP)u(Q)
ii) w(P)=length (P)"
i) w(x—c)=px—|c)
iv) w((x—c)")=px—0)
v)  p(x—c)=max(l,]c|)

vi) u <c ll_j[l (x — ai)) = ]c|lli[l max(1, |e]).
(w is called the measure of P)
The next exercise constructs a form
Pa(X)e™ + -+ (X)€" + py(x) = O(x DI

where the p, are polynomials of degree =m with integer coefficients. Such
forms can be viewed as higher dimensional Padé approximants. Setting
x:=1 in the above leads to a polynomial in e that can, in conjunction with
Exercise 8, be used to prove the transcendence of e. Setting x := i, so that
¢™=—1, leads to a proof of the transcendence of #. Such forms were
examined by Hermite. It was, however, Mahler [31] who showed how to
base the transcendence proofs on them.

9. (Another proof of the transcendance of e and )
a) Suppose that we can find V, so that

Vo=V, 1= pe™ o+t piet 4 py= 0TV
where each p, is of degree m and p,:=x" +---. Then

Vim+l) = Snenx NS Slex — O(xn(m+l)—l)
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where each s, is of degree m. In particular
(m+1) __ +1
Vi =n"TV e
and
ng-f-l) — xmex .

b) Prove that, for sufficiently smooth G, if

6= [ o= o7fee)

then G("’”)(x) = f(x). Use this to show that

V,= f (x —0)"V,_,(t)e' dt

?,ZEHIH g O S

s+
X e'17h2 "dtn"'dl-
¢) Thus
—_ (n!)m+1 (n+ m - I -
mn =l X Dim+1) lfo M(x) dt
where
Tl _ 1 1,1
dt::f . f f
0 0 0 Jo dtn dt
and where

MO = [(1= 1)+ (1= )2 g2 . omens

X etlxetltzxetltzt3x L.

e iy t,x

d) Use c) to show that V, .m» defined as in a), exists and is uniquely

defined for all m and n.
e) Show that if C, is a circle of radius § > n, then

- m!(n!)m+1 etx dt

v
2w fcs [tt—1) (¢ — )™

n,m

Hinz: Use the residue theorem to see that V., n is of the right form
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Observe by expanding e¢” and evaluating on circles of large radius
that

1% — O(x(n+l)(m+1)—l)'
f) Show that, with § <1,

m!(n!)'"HJ' e dt
2 s Mg (t+ k=)™

pi(x) =

Hint: Show by the residue theorem that p, is a polynomial of
degree m and that, with e),

E Pkek =

k=0
Note that

x

Pk(x)z(”!)m[g?]m( 10(t+ek )"'“)

ik

t=0 )

The n:=1 case of ) and f) provides an alternate derivation of
the Padé approximant, equation (10.1.15).
g) Use f) to show that

d, p;

has integer coefficients [d,, = LCM(1, ..., n)].
h) Let n be fixed. Show from c) that for m sufficiently large,

V.(x)#0 for x #0.

Note that this is trivial for real x #0.
i) Let D >e and let

(x) = dﬂ n, m(x)
From c) show that

W, .(x)= E ak].x"ekx
0=k=n
0=j=m

where the a,; are integers. Use ¢) and the fact that d, < e" ) for
large n (Exerc1se 6 of Section 11.3) to show that for m + n large,

IW (x)| _ | |(n+1)(m+1)—1en|x|DnM(n!)m+lm
S - [(n+1)(m+1)—1]!
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Show from f) with & :=1/n, that for m + n large,

n2(m+l)Dnm(m!)2n(m+1)
lakjls (n_l)m+l

i) Let x0 and n be fixed. Then for m sufficiently large,

nm

C1
< =
O IWn,m(x)l = m"m

and

la;| = c3"m”™

where ¢, and c, are constants, independent of n and m.
k) Show that e is transcendental.
Hint: Let P, (e)=W, (1) for fixed large n. Show that as m— o,

P, (e) is sufficiently small that, by Exercise 8, e must be transcen-
dental.

1) Show that = is transcendental.
Hint: Let x:=iw in i) so that ¢ = —1. Now proceed as in k).
Observe that W, , (imr) is a polynomial of degree m in .

11.3 IRRATIONALITY MEASURES

We examine the rate of approximation of e, 7, and log 2 by rationals. For
example, we show, for p and g integers and ¢ sufficiently large, that

(11.3.1) ‘7,_11’>__

Estimates such as (11.3.1) are termed irrationality measures. The expected
rate of rational approximation is as follows: If f(x) is a positive nonincreas-
ing function, then

(11.3.2) 'a—‘é’d%

has infinitely many integer solutions in p and g for almost all & exactly when

(11.3.3) 2231 flg)=-c,
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Thus, with probability 1, we expect

)4 1
11.3.4 ‘a - —‘ <
(11.3.4) a9l q’logq
to have infinitely many solutions, while
11.3.5 ‘a———’<— £ omills,
( ) 2| < Plog ™

usually has only finitely many solutions. This result is due to Khinchin [64].
(See also Exercise 2 of Section 11.2 and Exercise 1 of this section.)
It is standard to the theory of continued fractions that if

(11.3.6) [a—ll < p,qEZ

q ‘ 2¢*
then p/q is a convergent of the simple continued fraction for «, while of any
two consecutive convergents of the continued fraction, at least one of them
satisfies (11.3.6). (See Exercise 2.) Roth’s theorem states that for algebraic
a,

(11.3.7) ’a—£‘<F £>0

has at most finitely many solutions. (See Baker [75].)
For specific transcendentals exact estimates are usually unknown, but e
can be analyzed very precisely.

Theorem 11.1

If
(2n— k)!
(11.3.8) G
g k)'k'( D"
then
s, 1 loglogt,
(11.3.9) e— 7 = 3 m [1+0(1)].

Proof. From Exercise 10 of Section 10.1, with s, :=P, , (1) and
=@, .(1) we have
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s, In!
(11.3.10) == WZH), e[1+ o(1)]
and
2n)!t
(11.3.11) t = (ni,) e ?[1+ o(1)].

The result now follows, as an application of Stirling’s formula gives

2log ¢
(11.3.12 m+1=— 8l
) n+1 loglog £, [1+0(1)]. O
Theorem 11.2
If p, g€ Z and
e
q1 4q

then, for some n, p/q =s,/t,, where s, and ¢, are as in Lemma 11.1.

n n?

]

Proof. The continued fraction for (e —1)/2 is given by

e —
2

If p,:=(s,—¢,)/2 and g, :=1,, then one can verify that

1
(11.3.13) =[0,1,6,10,14,18,...]:=[a,, a,, . . ..

(113'14) pn=anpn-l+pn—2 p0=0 p1=1

(11315) qn=anqn—l+qn—2 q0:1 q1=1

This, with Theorem 11.1, shows that P./q, are the convergents for the

simple continued fraction for (e =~ 1)/2 and that expansion (11.3.13) h
(See Exercise 2.) In particular, if P (11.3.13) holds.

1
e—g‘<——5 then ‘

e—1 p—gq 1
R

2 2 1787
and by Exercise 2i), (p — ¢)/2q is a convergent of (11.3.13). O
Corollary 11.1

Let 0<6 <1 and let v be a positive integer. Then

(11.3.16) ’elfv_l_’fs 1+5 loglog ¢
q 2v g’loggq
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has infinitely many integer solutions, while

el/u p~51—6.10g_10_g_q

11.3.17
( ) 2v g’logq

has at most finitely many integer solutions.

The above corollary due to Davis [79] shows that e'’”" is atypical with
respect to the rate of rational approximation [compare (11.3.4) and
(11.3.5)]. For v =1, Corollary 11.1 can be deduced from Theorem 11.1
without reference to Theorem 11.2 on continued fractions. (See Exercise 4.)
For general v the proof is left as Exercise 5.

We now turn to irrationality measures for a, {(2), and {(3). The
approach follows Beuker’s [79] elegant treatment of Apéry’s startling proof

of the irrationality of {(3).

Lemma 11.1

Let r and s be nonnegative integers.

. ? for some n in Z r>s
@ [[Xr&d_ {11 1
oJo 1-—uxy 5(2)_F_? ———— pe r=s>0
£(2) r=s=0
@ [ [ endd
o Jo 1—=xy
% for some n in Z r=s
1 1 1
2[{(3)—F—§ ———— ;—3] r=s>0
20(3) r=s=0

where d_:=LCM(1,2,. .., 1).

Proof. Consider

1 1 xr+8ys+5
(11.3.18) I-=J1) fo 1—xy dx dy-

If we expand (1 — xy)”™" and integrate term by term, we get

8

1
o(k+r+8+D(k+s+6+1)

(11.3.19) I=
k
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which on setting 6 = 0 establishes the r = s case of (a). For r>s,

1=§1[ 1 _ 1 ]

ko —slk+s+86+1 k+r+6+1
1 1 1
(11.3.20 - [* ]
) r—s s+1+6+ +r+6

which establishes the rest of (a). If we differentiate I with respect to 6 and
set 6 =0, we get

(11.3.21) f f Xyllogxy \
1—xy

and part (b) follows from differentiating (11.3.19) and (11.3.20). O

Theorem 11.3

{(2) = 76 is irrational.

Proof. Let p, be the “shifted” Legendre polynomial

(11.3.22) D.(x)i=— {%}nx"(l -x)"
and note that
(11.3.23) p.(x) = kZZO <Z> ("nTk]f)! (-1

is a polynomial of degree n with integer coefficients. Consider

[T A=»"p.(x)
I,:= PR e d
(11.3.24) fo -xy Y
)f f Ly )xx)(,lfx) dx dy

f g

(11.3.25) xy(1-»A—x) _ <\/§_ 1>5
1—_xy - 2

[1v1s/1;t(1 c)equality for x =y =(V5-1)/2] we have, by (11.3.24) and Lemma
1(a),

(11.3.26) 0<|Inl5<\/§2_1 ’

) .
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On the other hand by the same lemma applied to the first form of I,

(11.3.27) |1l =
where
<& (n\[(n) (ntk)!
(11.3.28) B= 2 (k)(k) Akl
a, is an integer and d, = LCM(L, 2, . ,n). It is a simple consequence of

the prime number theorem (see Exerc1se 6) that, for any n>1,
(11.3.29) d,= 0(e™).
Furthermore, Stirling’s formula and a little calculus lead to the estimate

1+V3\” L (1+VE\"
2 SBnSC3n4 2

where ¢, >0, c,, ¢;, and ¢, are constants. In fact, van der Poorten [79] gives

(11.3.30) c1n52<

g, = 0B V92l [y o (1]

From (11.3.26), (11.3.27), (11.3.29), and (11.3.30) we deduce that for
sufficiently large n,

(11.3.31) 0< lg(z) - j— <

= 148+
n n

. 2 .
where v, :=d’> 8, and a,, are integers, and where

log[(1+V3)/(V35 - D]

1=0.092159. ..>0.
log {[(1+ V5)/2)%¢*

(11.3.32) 6:=

Thus (11.3.31) proves the irrationality of {(2) = w6, O

Theorem 11.4
For p and q integers and g sufficiently large,

1
(11.3.33) - %l >
and

1
(11.3.34) ]77—%]> e
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Proof. From (11.3.30), (11.3.31), (11.3.32), and Exercise 3 we deduce
that, given £ >0, if

1
? —— < ql+1/§+e

for sufficiently large g, then p/q = a,/y, for some n. [Here a,, v,, and
6:=0.092. .. are as in (11.3.31).] Thus we need only verify (11.3. 33) for
p/q = a,lv,. This follows from the observation that, for small 7> 0 and for

large n,
(\/3—1 )5"
In> 5 -7l .

[See (11.3.24) and (11.3.25).] In conjunction with (11.3.27) this leads to

S V5=Di2—-a"
YH

@ -

One now finishes the result by using estimates (11.3.29) and (11.3. 30) to
show that
[(V5-D/2-q" 1 1

>
3 11.86
Yn Yn Yn

for large n and small 7.
The irrationality measure for 7 follows from the irrationality measure for
7 since, for large q,

2

1 1
l7r+p/ql o

’7,_13

O

q’ Iw+p/q| l

The first irrationality measure for 7 was due to Mahler [53] (see also
Mabhler [67]), who showed that

This was later refined by Mignotte [74] to
P ’ 1
T— > = =2
l q q20.6 q

and by Chudnovsky and Chudnovsky [84] to

l ’ ;
T > e q large
q

(Which can be marginally sharpened).
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Theorem 11.5

£(3) is irrational.

Proof. Consider

Y —logx
(11.3.35) In:=f0 fo —l_g—xyypn(x)pn(y) dx dy
where, as in (11.3.22),
1([d
P,,(x) pr) {d_} x"(1-x)".

We observe that

—logxy=j 1
1—xy 0 1-(1—-xy)z

and rewrite (11.3.35) as

I = j j j 1p_n((xl)pn(y) dx dy dz.

An n-fold integration by parts with respect to x yields

Y (xy2)"(1-X)"p,(y)
I —f f 0 [=(=xp)z]"! dx dy dz

which, on substituting w := (1 — z)/[1 — (1 — xy)z], becomes
(1-x)"(A=w)'p, ()
(11.3.36) I—f f f 1= (1= xy)w dx dy dw

[ [ BT g g,
[T- (= mw]™ |

where the last equality follows from an n-fold integration by parts with
respect to y. For 0=x, y, w=1,

(L= wd=wy(1=3) _ s
1-(1—xy)w =(vV2-1)

and from (11.3.36),

(11.3.37) 0< I, =2{3)(V2-1)".
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From Lemma 11.1(5),

!

a

B.{(3)——

(11.3.38) I = .
n dn

where a/, B,’,‘, and d] are integers. Since ¢’ (V2 —1)* <1 and B, grows at
most geometrically [see (11.3.42)], we deduce that there exists 8’ > 0 so that
(11.3.39) 0< ’5(3) _ | !

Bady 1 (B
for large n. This proves the irrationality of ¢(3). O

Corollary 11.2

For p and g integers and g sufficiently large,

1
(11.3.40) |£(3) - %1 > PRzl

Proof. The proof is similar to the proof of Theorem 11.3 and 11.4. One
first calculates B, explicitly from (11.3.35) and (11.3.23),

(11.3.41) Bézzé()(z)z(":k)z'

From Stirling’s formula one can show that

(11.3.42) Cen(1+ V2" =g = (14 V2)™
for constants ¢, >0, ¢,, c;, and ¢,. In fact,

. 21+ V2y
11.3.43 . U D) I
( ) B n**(2mV2)**

The.remainder of the proof follows much as in Theorem 11.4, and the
details are left as Exercise 8. O ,

(1+\/7)“”[1+0<1)}

n

Similar considerations lead to the irrationality measures for log.

Theorem 11.6
Let p, g, and n be integers. Then

p

(11.3.44) 10g2_5'> Lo large
i

and for any £ >0, and fixed n> N,

(11.3.45)

’logn+1 P
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The proof of the theorem is sketched in Exercise 9 or in Alladi and
Robinson [79]. Similar results may be found in Baker [75]. The best known
irrationality estimate for log2 is also due to Chudnovsky and Chudnovsky
[84], who show that the constant can be reduced to 4.13... in (11.3.44).

Comments and Exercises
Results on the rational approximation of e may be found in Adams [66],
Bundschuh [71], and Davis [79]. Adams shows that the number of relatively
prime integer solutions of

e_e|<
q

1
— and 1<g<n

q

behaves like 3 log n/(log log n) (rather than the expected clog n that holds

for almost all numbers).
Transcendence estimates of type

1
(11.3.46) |7~ B> mogs hlarge

where 8 is an algebraic number of degree d and height & (the height is the
modulus of the maximum coefficient of the minimal polynomial) due to

Feldman are discussed in Baker [75].
Irrationality measures are often difficult. The best known estimate for e”

is
1

qc log log ¢ ¢ a constant.

Apéry’s proof of the irrationality of £(3) does not obviously extend to
other values of . It is not known whether {(2n +1) is irrational for n>1.
Equally, whether (log 7)/m, e + m, Catalan’s constant, and Euler’s constant

are irrational is unknown.

1. Let f be a positive nonincreasing function so that

M

lf(q)<°°.

q
Show that the set of « for which

\a_£\<M
q q

has infinitely many solutions has (Lebesque) measure zero. (The other
half of Khinchin’s theorem is more delicate.)
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Hint: Fix N. For each g > N consider intervals of radius f(q)/q around

the g points 0/g, 1/q, ..., (g —1)/q. The measure of the union of all
these intervals is bounded by

2f(q)
quvq q

(On simple continued fractions) For integral a,, a,=0, a;>0,i#0,
let

1
[ag,ay,...,a,]i=a,+ 1
a, + 1
a, +
a, +
} 1
Ta
and let "
lag, a;,...]:= lim {a,, a,, ..., a,].

Unless otherwise specified, we assume the continued fraction is
infinite. The nth convergent is defined by
P

g Tlaan. .l
a) Show that the convergents satisfy

(11.3.47) Pr=08,Pp 1t Ppy pi=aa,+t1l  py=a,

(11.3.48) 9. =@pq,-1 4,5 9= a, 90 =1
(11.3.49) Padn-1 = Proidn = (-1

(11.3.50) Pn9n-2" Pn24, = (—1)a,

(11.3.51) Pon o Pon=z Panvr  Pancy

92 92n-2 92n+1 92n-1

Deduce that p, and g, are relatively prime. Note that {p,} and
{q,} are increasing sequences.
b) Show that continued fractions are well defined, that is, show that
the limit in the definition always exists.
¢) Rational numbers have two representations since
[ag,...,a,]=lay,...,a,_,+1] a,=1

n

and
lag, - .,a,]=lay,....a,_1,a,—-1,1] a,+#1.

Show that a number is rational if and only if it has a finite simple
continued fraction. [See e€).]
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d) Leta,:=[a,,a,.,,...] where a:={a,, a,,...]. Show that

2 Y
qn qn(arlﬂ-lqn + qn—l)

o —

Thus {pZn/an} T a and {p2n+l/q2n+1} ‘L a"
e) One constructs the simple continued fraction to a as follows

(L }:= integer part). Let
a,:=lal and = a

and proceed inductively to let

‘= —_]:_— and Ay = |-an+1J
a,— |a,]

&,

unless a, — |@,] =0, in which case the algorithm terminates.
Show that

a=la,a,,...]

and if the continued fraction is infinite, then the representation is

unique.
f) Show from d) that

1 1
<—3.
qnqn+1 q,,

_Pn
.

<

a

g) (Best approximation property) Show that if 0<g<gq, and if
p/q#p,/q,, then

- al < ‘I—J —«af.

q

Pn
4,

Hint: Prove |p, — q,a|<|p — qa|. Show first that one may as-
sume gq,_;<qg<gq,. Now wrte q:=ugq,+vq,_,, p:=up,+
p,-1, and p,—q,0=u(p,~q,@) + V(P,_y~ g, @) Show
that ¥ and v are nonzero integers and that u(p, — g,a) and
v(p,_; — q,-,«) have the same sign.
h) Show that if for z >1,
_pztr

T p,q,r,sEZ

and

g>s>0 ps —qr=*1
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Pi
then r/s and p/q are consecutive convergents of the continued

fraction for a.
Hint: Write p/q as a continued fraction and show that if

P
==la,,...,a,
g =% ]
then
a=lay,...,a,,Zz] and z2={a,,1, 42y ---].
[There are two representations for p/q [part c)]. Choose the one
for which n satisfies ps — qgr = (—1)"""]
Show that if

g
q! 2q
then p/q is a convergent of a.
Hint: Suppose
_1 n—16
P_a=UD 20 5.1
q q 2
and
p
5 =[ag, a;,...,4a,].
Write
— pnz +pn—1
qnz + qn—l

where p,/q; is the ith convergent to p/q. Show that z>1 and
apply h).
Of two consecutive convergents at least one satisfies

‘a —Pn < Lz
q.! 24,
Hint: By a), if the above fails, then
1 Prs1 P p ’ p 1 1
= Ll _Tn o fn | 4 [Enl (__ -
P PR L PR I P b P Yo

Hurwitz has shown that of any three consecutive convergents at
least one satisfies

k)

D
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p,.\ 1
a——|<—=73.
9.1 Vg

This cannot be sharpened since, for example,

\_\_/_S_t_l_pl> 1 6>0
2

q1” (V5-8)g’
for g sufficiently large. (See, for example, Hua [82].)
(Fibonacci numbers) Let
F,.=F,+F._, Fyi=F=1.
Show that {F,,,/F,} are the convergents to (1 +V5)/2. Show
that

1+V5
2

=[1,1,1,1,...].

Show that
V1+a’=|a,2a,2a,2a,...].

Show that a periodic continued fraction (one where a,,, = 4, for
some / and all large k) represents a quadratic irrational (the root
of a quadratic equation with integer coefficients).

(Lagrange) Show that a quadratic irrational has a periodic con-
tinued fraction. Thus with m) this characterizes quadratic irra-

tionals.
Hint: Suppose re’ +sa +t=0and a =[a,, a;, a,, . - .]. Then by
d),

a= pn—la:l +pn—2
qn—la;l + qn—Z

Substitute this into the quadratic equation for « to obtain integers
A,, B,, and C, with
(11.3.52) A (a))’+ B,a,+ C,=0.

Express A,, B,, and C, in terms of r, s, and ¢ and show that
A, #0. Show that

B2—4A,C,=s"—4rt

and that
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Show, using f), that

|4, =2lra| +r| +|s]
|Gl =2[ra| +|r| +]s|
and
|B,|* =4|A,C,|+|s* —4r].
Hence |A4,], |B,|, and | C,| are bounded independently of zn. Thus

‘(A,.,I, B,,C,)=(A,,B,.C,)=(A,,B,, C,,) for three distinct
indices n, n,, and n,, and by (11.3.52) one of

a =a’ or a =a or a =«

which implies the periodicity of a.
o) Show, using i), that any integral solution of Pell’s equation

2 oyr .
n*—dm*=1 d a positive integer

has n/m a convergent of the continued fraction of Vd.
This outline of the basic theory follows Hardy and Wright [60].
Suppose there exists a sequence of rationals { p,/g,} and 8 >0 so that

R 1
(11.3.53) ‘a—p— <-tm
and
(11.3.54) Gn < qneq <q.T°W.
Then either
P _ P f
7" a or some n
or for ¢ >0 and for g > ¢
P 1
'a - a' > g
Hmt Let |a —p{g[ =1/g"*""?**") ¢ >0, and choose n so that
an*l_q<2qn en
P _Pn 1 1
’E - _é: < q1+5 t Trinee
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and if p/q # p,/q,,
4n

1/6+8" °

q

1<Z +

&
n

Q

The right-hand side, however, is less than 1 for g large
Refine Exercise 3 to deduce Corollary 11.1, with v :=1, directly from

Theorem 11.1.
(Irrationality measure for e'’V) Let v be a positive integer. As in
Exercise 10 of section 10.1, let

-3 e )
and

t, = v"{i (L2_n—_k)_' (— 1>k .

v

e S nln! e {1V
e’ t_: =(2—n+—1me (;) [1+ 0(1)]
and that
t,=0v" (—2;:? e V¥ [1+ o(1)].
Hence

b) As in Exercises 3 and 4, show that if p/q #s,/1, for some n then

CU
€ _"‘>,—2

Q

for large g, where c, is a positive constant depending only on v.
¢) Deduce Corollary 11.1.

Let d, :=LCM(1, ..., n).

a) Show that there is a constant C so that

d,=C".



378

b)

b)

Hint:

(L, :=I1p :) @n! and (2n)! =4"

nln! nln!
where the product is taken over the primes p;, n < p, <2n. Thus

dy, <Ty,d,d\ys, <87d, .

2n*n

Le.t m(n) denote the number of primes less than or equal to #. The
prime number theorem asserts that

m(n)~ log n’

(See, for example, Hardy and Wright [60].) Use this to prove that
d,=0(e’") for any 6 >1.
Hint:
d, = Hp}"’ <pn™™

where the product is taken over the primes =n and where ¢ is the
largest integer so that p* =< n.

Show that
K
2 @18y """ 8y zl_ 28, ag
im1(xta)(x+a) x x(xta)-(xtag)
Show that
2_ DR =D 1 2=p
k=1(’1_1) (n _k) n* 2n\
(%)
n
Hint: Use a) with x:=n’ and a, := — k>
Set
_1 (kD (n—k)!
T2 B+ k)
Show that '
- (k= 1)1
(_1)k"(5n,k _ ( ) [( ) ]

8,,-1,k) = (nz _ 12) . .(nz _ kz)

®
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and

Y et 13t
S (M) e ()

d) Let N—x in ¢) to deduce that

1
(=23 C
n=1 (2n>
n
n
(This exercise follows van der Poorten [79] and is essentially due
to Apéry.)

Finish the proof of Corollary 11.2.
(Irrationality measures for log)

a) Let p (x):=[d/dx]"x"(1 - x)". Then as in (11.3.23),

p0=2 (177 F )

Estimate p,(—m). In particular show that for m €N there exist
¢, >0, c,, c5, and ¢, so that

cn*(Vm+1+ V) <p, (-m)<csp(Vm+1+ V)"
Hint: By Stirling’s formula, up to a power of n

(3 i) L]

(1 _ a)l—a a2a
where k := an. It is now a calculus exercise to maximize the above
by differentiating with respect to «. The maximum occurs at

a:=vVm/(m+1). -

b) Prove that for large g,

behaves like [

1
log2—§‘>Tﬁ3.

(11.3.55)
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10.

a)
b)

Pi
Outline: Let p, be as in (11.3.22) and let

1
P (x)
o 1+x dx

f pn(X) pn(—)

(11.3.36) 1I,:=

1
p.(=1)
dx + o 1+x dx

= 2+ p,(~1) log2

n

where a, is an integer and d, is as in Exercise 6. (Note that

(1+x][ pn(x) r2.(=D]) Furthermore integrating I by parts n
times with respect to x yields

llnl=f1£(1_—x)ndx.

(11.3.57) o e

Estimate || from above and below by computing that the max-
imum of x(1 — x)/(1+ x) occurs at x :=V?2 — 1. For large n,
(11.3.58) V2-1-)Y"=|I|=(V2-1+)*".
From (11.3.56), (11.3.58), and part a) prove (11.3.55).
Prove, for ¢ >0 and n> N_, that

n+1—£‘> 21+e q large .
9! q

log

Compare (11.3.4) and (11.3.5).
Hint: Consider

f P =pa(=m) ' p,(=m)

1+ x/m o T+ xim &

and proceed as in b). Note that

1 f X1 -x)" 1 1
I|= dx < —n -
| l (1 + x/m)n+1 X m 4
Show that 6,(¢q) and 6,(g) are irrational for rational ¢q:=1/n,
n=1,2,3,....
(Euler) Show that m*+ n*=p® with m, n, p integral implies
mn =0.

Use b) to show that 6,, 6,, and 6, are never all nonzero and
rational.

11. 2a)
b)
12. a)
b)
<)
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Show that

(11.3.59) [i (—1)n]2=§l .

S Qk+ 1)

Outline: Let

N N (___1)m+n ﬁ 1
“2 2 GG D 2 Gk )
and
N m
_ oy (=D

8N._ mgl—N m-—n

Show that
N N m+n

_ ¢ (=D

—gvg:v (2n+1)(m—n)
and that

1
el = N1

Thus prove (11.3.59) by showing that 6y, — 0.

“Evaluate {(2) = w°/6 from a) and Gregory’s formula.

Show that for 0= x < 1, one has the following functional equation
for the dilogarithm L7_, x"/n’:

(11.3.60) log (1 - x)logx + ﬁ:}x—z §=) (1_") 6 .

Hint: Show by taking derivatives that the left-hand side is zero.
Evaluate the constant by letting x — 0.
(Euler) Show that

2 @

1
- 1 5 (log2)* =

7 -
,,12"n

Let Liy(x) denote the trilogarithm L,_, x"/n’. Show that, for
0< x <1, the following identity due to Landen holds:

Liy(x) + Li;(1—x) + L13<1———) Li (1)

2

=———10g(1——x)—llog(x)log (1—x)+ log® (1—x).
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13.

Pi

d) Deduce that Li;(1) = {(3) and that

. (1
i) Ll3<§) < Li;(1) — log2 + = log 2)
ii) L13<—2—) =3 Li;(1) + G log( > )
- l log® <3 — \/3)
12 % \" 2 /-
Show that

log[(V5+1)/2]
{(3)=Liy(1) = 10L £ coth (¢) dt

and combine -this with Exercise 17a) of Section 5.5 to provide
another verification of Exercise 7d). This is discussed in Lewin
[81, Sec. 6.3].

(Euler) Establish

w©

a—Xx
a) [cot (7x) — cot (7a)] ‘2 CEDITED)
b) ’[cot (mx) cosec? (mx)] = > 1 3
-= (x — n)
4 4 2 2 < 1
0 w [COSSC (mx) — 3 cosec (wx)] => -
3 = (x—n)
d ==
) s14n®—-1 2
= 1 7" —8
°) 21 (4n* - 1) 16
- 1 32-37
f
) 21 (4n* -1y’ 64
S 1 m* + 307 — 384
J 21 (4n*-1)" 768
Hint: Use x:= 1 and
11 2
2n—=1 2n+1 4p*-1"

14.

15.

11.3 Irrationality Measures

(Evaluation of {(2m)) Define {B,}, the Bernoulli numbers, by

Zm
(11.3.61) ez ~ 2 B,, —— (2 T |z =27
B,:=—1%and BZn+12=0, n=1,2,3,....
a) Show that
S (n+ 1)
> B, =0.
2 (")
b) Show, from (11.3.61), that
2miz .
mzcot(wz) = e + iz
© zZm
— 1 2 2m 2m
2 (-nnem ——(2 T

and from the product expansion for sin that

1n—z

Nlr—n

@ cot (mz) =

c) Show that

o 1 m—1 B2m 277)2’"
d) Thus
(@=-% =g {O=53

(Evaluation of B(2m + 1)) Define {E,,}, the Euler numbers, by

b) Show that

383
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16.

Pi
_T__3 45182k + 1) 2%
cos(mz) 2o

where, as before,

pk+1y:= S

2 2n+ 1)2k+1 .

¢) Show that

|E2kl <7T>2k+1

BRk+1)= 20260 =

2
d) Thus

3 5
a T S

B)=7 B3 =735 B(5) = 1536 -

There are similar evaluations for more general L functions.
Lo . 2n
(Series involving ( " >)

a) Show that

2xarcsinx _ w  (2x)*"
V 1—x2 m=1 <2m> )
m
m

Hint: Let f:= (arcsin x)/V 1 — x°. Show that

A=-xf=1+xf.

Show that
2% =1 <2m>
m
m

also satisfies the above differential equation. (Compare Exercise

16 of Section 5.5.)
b) Show that

2(arcsin x)’ = i ﬁ)z—m—

m=1 2<2m> ’
m
m

d)
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Hint: Use a) and the fact that

2x arcsin x

V1-x?

d .
x (arcsin x)° =

Show, by differentiating in a), that

i Qx> X | xarcsin x
m=1 <2m> 1-x* (A-x)"?
m

Specialize the above series or the derivatives of the above series to
show that

i 1 =27r\/§+9

1 27
()
2‘0 1 _ V3
)

ad m
’n2=1<2—m—>-—ﬁ(7r\/§+9)
m
2 m2 =7T+3
m=1<2m>
m
= 3" 27
> -2
m=1 2<2m> 9
m m
ad 3" 4qr
=—=+
El(Zm) V3 >
m
s D™ 1 4V VE+
2: 575 e
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m=1 2<2m> 2
m
m
e) Show that
1 _ - (2n) N
V1-—4x ,,2=0 n .
and that
1-V1-—4x S 1 /2n) ,
2log|\ ————— | = - x".
2x 1 h \n
Thus

R 1<1-3---2n—1)
1°g4—,§1n 2-4--2n /-

f) From e) deduce that
( 2n>
n 2n

2n+1x

it <2n) ar
2 D=3

n=1

0
n=1

1
= — 1 2
o (arcsin 2x)

and that

Further material is available in Lewin [81], Lehmer [85], and
Zucker [85]. There is an interesting evaluation of Comtet’s, namely,

i 1 177

= omy 3240
()
m

g) We conclude with Ramanujan’s

> ———1——=§G—7§Tlog(2+\/§)

3
m=0 2( 2m)
2m+1) "
with G denoting Catalan’s constant. .
Hint: Use part a), and parts b) and h) of Exercise 10 in Section

5.6.

Bibliography

[1881] N. H. Abel, Oeuvres Complétes (Grondahl and Son, Christiania, 1881).

(64]
[66]

(66)
[74]

(7]

(Pr]
(Pr]

(76]
(79]

(86]
(74]
[764]
[76b]

[Pr]
(80]

[81]
[P1]
(35]
[64]

(78]
(81]

M. Abramowitz and 1. Stegun, Handbook of Mathematical Functions (Dover, New
York, 1964).

W. W. Adams, “Asymptotic Diophantine Approximation to e,” Proc. Natl. Acad. Sci.
55 (1966), 28-31.

L. V. Ahlfors, Complex Analysis, 2nd ed. (McGraw-Hill, New York, 1966).

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms (Addison-Wesley, Reading, MA, 1974).

K. Alladi and M. L. Robinson, “On Certain Irrational Values of the Logarithm,”
Lecture Notes in Mathematics 751, (Springer, Berlin, 1966).

G. Almkvist, “A Solution to a Tantalizing Problem,” (in press).

— and B. C. Berndt, “Gauss, Landen, Ramanujan, the Arithmetic-Geometric Mean,
Ellipses, the Ladies Diary, , and the American Revolution,” MAA Monthly (in press).

G. E. Andrews, The Theory of Partitions (Addison-Wesley, Reading, MA, 1976).

——, “An Introduction to Ramanujan’s ‘Lost’ Notebook,” MAA Monthly 86 (1979),
89-108.

——, “The Fifth and Seventh Order Mock Theta Functions,” Trans. AMS 273 (1986),
113-134.

T. M. Apostol, Mathematical Analysis, 2d ed. (Addison-Wesley, Reading, MA, 1974).
, Introduction to Analytic Number Theory (Springer, New York, 1976).

——, Modular Functions and Dirichlet Series in Number Theory (Springer, New York,
1976).

J. Arazy, J. Claesson, S. Janson, and J. Peetre, “Means and Their Iterations.”

R. Askey, “Ramanujan’s Extensions of the Gamma and Beta Functions,” MAA
Monthly 87 (1980), 346-359.

R. Backstrom, “On Reciprocal Series Related to Fibonacci Numbers,” Fibonacci Quart.
19 (1981), 14-21.

D. H. Bailey, “The Computation of 7 to 29,360,000 Decimal Digits Using Borweins’
Quartically Convergent Algorithm” (in press).

W. N. Bailey, Generalized Hypergeometric Series (Cambridge Univ. Press, London,
1935).

A. Baker, “Approximation to the Logarithms of Certain Rational Numbers,” Acta
Arith. 10 (1964), 315-323.

——, Transcendental Number Theory (Cambridge Univ. Press, London, 1975).

G. A. Baker and P. Graves-Morris, Padé Approximants, vols. I and 11 (Addison-Wesley,
Reading, MA, 1981).

387



388

(39]

(50]
(61]

(77)
(72]

(27)
(61]

(Pr]
(Pr]
(79]
(84]

(Pr]
(73]

(69]

[1888]
[66]

(75]
(86]
[85]
(85]
[83]
[84a]
[84b]
[84c]
[84d)
[86]

(Pr]

Bibliography

J. P. Ballantine, “The Best (?) Formula for Computing # to a Thousand Places,” MA A
Monthly 46 (1939), 499-501.

E. F. Beckenbach, “A Class of Mean Value Functions,” MAA Monthly 52 (1950), 1-6.

and R. Bellman, An Introduction to Inequalities (Random House, New York,
1961).

P. Beckmann, A History of Pi, 4th ed. (Golem Press, Boulder, CO, 1977).

M. Beeler, R. W. Gosper, and R. Schroeppel, “Hakmem,” MIT Artificial Intelligence
Lab., MIT, Cambridge, MA, 1972.

E. T. Bell, “Algebraic Arithmetic,” AMS Collog. 7, 1927.

R. Bellman, A Brief Introduction to Theta Functions (Holt, Rinehart and Winston, New
York, 1961).

B. C. Berndt, The Jacobian Elliptic Functions, Chapter 18 of Ramanujan’s Second
Notebook (Springer, to be published).

B. C. Berndt, Modular Equations of Degrees 3, 5, and 7 and Associated Theta Function
Identities, Chapter 19 of Ramanujan’s Second Notebook (Springer, to be published).
F. Beukers, ““A Note on the Irrationality of ¢(2) and ¢(3),” Bull. London Math. Soc. 11
(1979), 268-272.

S. Bhargava and Chandrashekar Adiga, “On Some Continued Fraction Identities of
Srinivasa Ramanujan,” Proc. AMS 92 (1984), 13-18.

A. J. Biagioli, “A Proof of Two Identities of Ramanujan.”

G. Birkhoff, A Source Book in Classical Analysis (Harvard Univ. Press, Cambridge,
MA, 1973).

——and G. C. Rota, Ordinary Differential Equations, 2d ed. (Blaisdell, Waltham, MA,
1969).

C. W. Borchardt, Gesammelte Werke (Berlin, 1888).

A. Borel, S. Chowla, C. S. Herz, K. Iwasawa, and J. P. Serre, “Seminar on Complex
Multiplication,” Lecture Notes in Mathematics 21 (Springer, Berlin, 1966).

A. Borodin and 1. Munro, The Computational Complexity of Algebraic and Numeric
Problems (American Elsevier, New York, 1975).

D. Borwein and J. M. Borwein, “Alternating Series in Several Dimensions,” MAA
Monthly (1986) to appear. '

» — and K. F. Taylor, “Convergence of Lattice Sums and Madelung’s Con-
stant,” J. Math. Phys. 26 (1985), 2299-3009.

J. M. Borwein, “Some Modular Identities of Ramanujan Useful in Approximating ,”
Proc. AMS 95 (1985), 365-371.

— and P. B. Borwein, “A Very Rapidly Convergent Product Expansion for #,” BIT
23 (1983), 538-540.

and » “The Arithmetic-Geometric Mean and Fast Computation of Elementary
Functions,” SIAM Rev. 26 (1984), 351-365.

—— and ——, “Cubic and Higher Order Algorithms for =,” Can. Math. Bull. 27
(1984), 436-443.
and , “Explicit Algebraic Nth Order Approximations to Pi,” in Approximation

Theory and Spline Functions, NATO ASI Ser., S. P. Singh, J. H. W. Burry, and B.
Watson, Eds. (Reidel, Dordrecht, 1984).

——, “Reduced Complexity Calculation of Log,” Dalhousie Technical Report.

—— and —, “More Quadratically Converging Algorithms for m,” Math Comput. 46
(1986), 247-253.

J. M. Borwein and P. B. Borwein, “Approximating 7 with Ramanujan’s Solvable
Modular Equations” (in press).

Bibliography 389
[85] P. B. Borwein, “On the Complexity of Computing Factorials,” J. Algorithms 6 (1985),
376-380.
[Pr] ——, “Problem,” SIAM Rev. (in press).
[53] F. Bowman, Introduction to Elliptic Functions (English Universities Press, London,
1953).
[68] C. B. Boyer, A History of Mathematics (Wiley, New York, 1968).
[84] D. Braess, “On the Conjecture of Meinardus on Rational Approximation to e*, II,” J.

Approx. Theory 40 (1984), 375-379.

[76a] R. P. Brent, “Fast Multiple-Precision Evaluation of Elementary Functions,” J. ACM 23
(1976), 242-251.

[766] —, “Multiple-Precision Zero-Finding Methods and the Complexity of Elementary
Function Evaluation,” in Analytic Computational Complexity, J. F. Traub, Ed.
(Academic Press, New York, 1976).

, “The Complexity of Multiple-Precision Arithmetic,” in Complexity of Computa-

tional Problem Solving, R. S. Anderssen and R. P. Brent, Eds. (Univ. of Queensland

Press, Brisbane, 1976).

[76¢]

[80] —— and G. M. MacMillan, “Some New Algorithms for High-Precision Calculation of
Euler’s Constant,” Math. Computar. 34 (1980), 305-312.
[83] D. M. Bressoud, “An Easy Proof of the Rogers—Ramanujan Identities,” J. Number

Theory 16 (1983), 235-241.
[1875] C. Briot and J. C. Bouquet, Théorie des Fonctions Elliptiques (Paris, 1875).

[26) T. J. I. A. Bromwich, An Introduction to the Theory of Infinite Series, 2d ed.
(Macmillan, London, 1926).

[71]  P. Bundschuh, “Irrationalitdtsmasse fir e®, a # 0 rational oder Liouville-Zahl,” Math.
Ann. 192 (1971), 229-242.

[84] V. I. Buslaev, A. A. Gonchar, and S. P. Suetin, “On the Convergence of Subsequences
of the nth Row of a Padé Table,” Math. U.S.S.R. Sbornik 48 (1984), 535-540.

[71] L. Carlitz, “Reduction Formulae for Fibonacci Summations,” Fibonacci Quart. 9
(1971), 449-466, 510.

[71] B. C. Carlson, “Algorithms Involving Arithmetic and Geometric Means,” MAA
Monthly 78 (1971), 496-505.

[72] ——, “The Logarithmic Mean,” MAA Monthly 79 (1972), 615-618.

[75] ——, “Invariance of an Integral Average of a Logarithm,” MAA Monthly 82 (1975),
379-382.

[771 ——, Special Functions of Applied Mathematics (Academic Press, New York, 1977).

[78] ——, “Short Proofs of Three Theorems on Elliptic Integrals,” SIAM J. Math. Anal. 9
(1978), 524-528.

[57] 1. W. S. Cassels, An Introduction to Diophantine Approximation (Cambridge Univ.

Press, London, 1957).
[1874] A. Cayley, “A Memoir on the Transformations of Elliptic Functions,” Phil. Trans.
164 (1874), 397-456.

[1895] , An Elementary Treatise on Elliptic Functions (Bell and Sons, 1895; republished
Dover, New York, 1961).

[85] K. Chandrasekharan, Elliptic Functions (Springer, Berlin, 1985).

[66] E.W. Cheney, Introduction to Approximation Theory (McGraw-Hill, New York, 1966).

[84] D. V. Chudnovsky and G. V. Chudnovsky, ‘“Padé and Rational Approximation to
Systems of Functions and Their Arithmetic Applications,” Lecture Notes in Mathematics
1052 (Springer, Berlin, 1984).

[71]  A. Clark, Elements of Abstract Algebra (Wadsworth, Belmont, CA, 1971).



390

[Pr]
[69]
[65]
[67]
[84]
[55)
[81]
[79]
[54]

(29)
(71)

(65)
(73]
(58]
(79]
(53]
(81]
(82]
(83]
(86]
[84a]
[84b]
[1866]
(38]
[80]

(85]

" Bibliography

J. E. Cohen and R. D. Nussbaum, “Arithmetic-Geometric Means of Positive Matrices”
(in press).

S. A. Cook and S. O. Aanderaa, “On the Minimum Computation of Functions,” Trans.
AMS 142 (1969), 291-314.

J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine Calculation of Complex
Fourier Series,” Math. Comp. 19 (1965), 297-301.

——, P. A. Lewis, and P. D. Welch, “History of the Fast Fourier Transform,” Proc.
IEEE 55 (1967), 1675-1677.

D. A. Cox, “The Arithmetic-Geometric Mean of Gauss,” L’Enseignement Math. 30
(1984), 275-330.

——, “Gauss and the Arithmetic-Geometric Mean,” Notices of the AMS 32 (1985),
147-151.

J. H. Davenport, “On the Integration of Algebraic Functions,” Lecture Notes in
Computer Science 102 (Springer, Berlin, 1981).

C. S. Davis, “A Note on Rational Approximation,” Bull. Austral. Math. Soc. 20 (1979),
407-410.

C. Denninger, “On the Analogue of the Formula of Chowla and Selberg for Real
Quadratic Fields,” J. Reine Ang. Math. 351 (1984), 171-191.

L. E. Dickson, Introduction to the Theory of Numbers (Dover, New York, 1929).

——, History of the Theory of Numbers, vols. I-1I1 (1919, 1920, 1923), reprinted
Chelsea, New York, 1971).

M. Dutta and L. Debnath, Elements of the Theory of Elliptic and Associated Functions
(World Press Private, Calcutta, 1965).

P. Du Val, Elliptic Functions and Elliptic Curves (Cambridge Univ. Press, London,
1973).
A. Eagle, The Elliptic Functions as They Should Be (Galloway and Porter, Cambridge,
1958).

C. H. Edwards, Jr., The Historical Development of the Calculus (Springer, New York,
1979).

A. Erdélyi et al., Higher Transcendental Functions, vols. 1-3 (McGraw-Hill, New York,
1953-1955).

J. A. Ewell, “An Easy Proof of the Triple-Product Identity,” MAA Monthly 88 (1981),
270-272.

——, “Consequences of Watson’s Quintuple Product Identity,” Fibonacci Quart. 20
(1982), 256-262.

——, “A Simple Proof of Fermat’s Two-Square Theorem,” MAA Monthly 90 (1983),
635-637.

J. A. Ewell, “On the enumerator for sums of three squares,” Fibonacci Quart. 24
(1986), 151-153.

D. M. E. Foster and G. M. Phillips, “The Arithmetic-Harmonic Mean,” Math. Comput.
42 (1984), 183-191.

and , “A Generalization of the Archimedean Double Sequence,” J. Math.
Anal. Appl. 101 (1984), 575-581.

C. F. Gauss, Werke (Gottingen, 1866-1933), vol. 3, pp. 361-403.

C. Gini, “Di una Formula Compressiva delle Medie,” Metron. 13 (1938), 3-22.

M. L. Glasser and I. J. Zucker, “Lattice Sums in Theoretical Chemistry,” Advances and
Perspectives 5 (1980), 67-139.

D. Goldfeld, “Gauss’ Class Number Problem for Imaginary Quadratic Fields,” Bull.
AMS 13 (1985), 23-37.

Bibliography 391

[61] B. Gordon, “Some Identities in Combinatorial Analysis,” Quart. J. Math. 12 (1961),
285-290.

[84] H. W. Gould and M. E. Mays, “Series Expansions of Means,” J. Math. Anal. Appi. 101
(1984), 611-621.

[1881] E. M. Goursat, “Sur I'Equation Différentielle Linéaire qui Admet pour Intégrale la
Série Hypergéométrique,” Ann. Sci. I’ Ecole Normale Sup. (2) 10 (1881), 3-142.

[80] I.S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products (Academic
Press, New York, 1980).

[1892] A. G. Greenhill, The Applications of Elliptic Functions (1892; republished Dover, New
York, 1959).

[09] H. Hancock, Theory of Elliptic Functions (1909, republished Dover, New York, 1958).

[28] M. Hannah, “The Modular Equations,” Proc. London Math. Soc. 28 (1928), 46-52.

[75] E. R. Hansen, A Table of Series and Products (Prentice-Hall, Englewood Cliffs, NIJ,

1975).
[40] G. H. Hardy, Ramanujan (Cambridge Univ. Press, London, 1940).
[59] ——, I. E. Littlewood, and G. Polya, Inequalities, 2d ed. (Cambridge Univ. Press,

London, 1959).

and E. M. Wright, An Introduction to the Theory of ‘Numbers, 4th ed. (Oxford
Univ. Press, London, 1960).

[77)  P. Henrici, Applied and Computational Complex Analysis, vols. 1 and 2 (Wiley, New
York, 1974, 1977).

[12] C. Hermite, Oeuvres, vol. 3 (Paris, 1912), pp. 150-181.

[17] ——, Oeuvres, vol. 4 (Paris, 1917), pp. 357-377.

[05] and T. J. Stieltjes, Correspondence d’Hermite et de Stieltjes, vol. 2 (Gauthiers-
Villars, Paris, 1905).

[1893] D. Hilbert, Math. Ann. 43 (1893), 216-219.

[85] M. D. Hirschhorn, “A Simple Proof of Jacobi’s Two Square Theorem,” MAA Monthly
92 (1985), 579-580.

[70] A.S. Householder, The Numerical Treatment of a Single Nonlinear Equation (McGraw-
Hill, New York, 1970).

[82] L. K. Hua, Introduction to Number Theory (Springer, Berlin, 1982).

[84] D. Hughes, Master’s Thesis, Dalhousie Univ., Halifax, NS, 1984.

[1796] J. Ivory, “A New Series for the Rectification of the Ellipsis; Together with Some
Observations on the Evolution of the Formula (a* + b —2ab(cos ¢)"),” Trans. Roy.
Soc. Edinburgh 4 (1796), 177-190.

[1829] G. J. Jacobi, “Fundamenta Nova Theoriae Functionum Ellipticorum,” 1829; Jacobi’s
Gesammelte Werke, vol. 1 (Berlin, 1881-1891), pp. 49-239.

[84] E. Kaltofen and N. Yui, “On the Modular Equation of Order 11,” Proc. 1984
MACSYMA User’s Conf., pp. 472-485.

[Pr] Y. Kapnada, Y. Tamura, S. Yoshino, and Y. Ushiro, “Calculations of = to 10,013,395
Decimal Places Based on Gauss—Legendre Algorithm and Gauss Arctangent Relation,”
preprint (1983).

[57] L. Kaplansky, An Introduction to Differential Algebra (Hermann, Paris, 1957).

[86] M. Keith, “Circle digits a self-referential story,” The Mathematical Intelligencer 8
(1986), 56-57.

[64] A. Khinchin, Continued Fractions (Chicago Univ. Press, Chicago, 1964).

[24] L. V. King, On the Direct Numerical Calculation of Elliptic Functions and Integrals
(Cambridge Univ. Press, London, 1924).

(60]




392 Bibliography

[1897] F. Klein, Famous Problems of Elementary Geometry, transl. by W. Beman and D. E.
Smith (Ginn and Co., Boston, 1897).

[79] , “Development of Mathematics in the 19th Century,” 1928, Trans., Math. Sci.
Press, R. Hermann Ed. (Brookline, MA, 1979).
[1892] and R. Fricke, Vorlesungen iiber die Theorie der Elliptischen Modulfunktionen

(Teubner, Leipzig, 1890, 1892).

[81] D. Knuth, The Art of Computer Programming, vol. 2: Seminumerical Algorithms 2nd
ed. (Addison-Wesley, Reading, MA 1981).

[711  A. Krazer, Lehrbuch der Theta-Funktionen (Chelsea, New York, 1971).

[78] H. T. Kung and J. F. Traub, “All Algebraic Functions Can be Computed Fast,” J.
ACM 25 (1978), 245-260.

[1899] E. Landau, “Sur la Série des Invers de Nombres de Fibonacci,” Bull. Soc. Math. France
27 (1899), 298-300.

[58] E. Landau, Elementary Number Theory (Chelsea, New York, 1958).
[66a] S. Lang, Introduction to Transcendental Numbers (Addison-Wesley, Reading MA,

1966).

[66b] ——, Introduction to Diophantine Approximation (Addison-Wesley, Reading, MA
1966).

[73] ——, Elliptic Functions (Addison-Wesley, Reading, MA, 1973).

[78] E. B. Leach and M. C. Sholander, “Extended Mean Values,” MAA Monthly 85 (1978),
84-90.

[1811] A. M. Legendre, Exercises de Calcul Intégral, vols. 1-3 (Paris, 1811-1819).
[38] D. H. Lehmer, “On Arctangent Relations for =,” MAA Monthly 45 (1938),

657-664.
[71]] ——, “On the Compounding of Certain Means,” J. Math. Anal. Appl. 36 (1971)
183-200. ’
[85] ——, “Interesting Series Involving the Central Binomial Coefficient,” MAA Monthly 92

(1985), 449-457.

[66] J. Lehner, A Short Course in Automorphic Functions (Holt, Rinehart and Winston,
New York, 1966).

[80] Le Petit Archiméde, no. 6465, “Numéro Spécial 7w (1980).

[777 W. J. LeVeque, Fundamentals of Number Theory (Addison-Wesley, Reading, MA
1977). ’

[81] L. Lewin, Polylogarithms and Associated Functions (North Holland, New York, 1981).

[74]  Tung-Po Lin, “The Power Mean and the Logarithmic Mean,” MAA Monthly 81 (1974)
879-883. ’

(1882] F. Lindemann, “Uber die Zahl 7,” Math. Ann. 20 (1882), 213-225.

[1884] 7. I-,iouville, “Sur des Classes Trés Etendues de Quantités dont la Valeur n’est ni
Rationnelle ni méme Réductible a des Irrationnelles Algébriques,” Compt. Rend. 18
(1844), 883885, 910-911.

[81] J. D. Lipson, Elements of Algebra and Algebraic Computing (Addison-Wesley, Reading
MA, 1981). ’

[66] W. Magnus, Formulas and Theorems for the Special Functions of Mathematical Physics
(Springer, Berlin, 1966).

[31] K. Mahler, “Zur Approximations der Exponentialfunktion und des Logarithmus, I, I1,”
J. Reine Ang. Math. 166 (1931), 118-136, 137-150.

[53] ——, “On the Approximation of m,” Indagiones Math. 15 (1953), 30-42.

(67)
[75)
(83]
(74)

[70]
(16]

77
[69]
(79]

(82]

85)
(84]

(56)
(78]
(80]
(81

(84)
(73]
(60]
(84

[14]
[62]
[77)
[73)

(84]
(85]

(27)

(48]
(72)

Bibliography 393

, “Application of Some Formulae by Hermite to the Approximation of Exponen-
tials and Logarithms,” Math. Ann. 168 (1967), 200-227.

D. Masser, “Elliptic Functions and Transcendence,” Lecture Notes in Mathematics 437
(Springer, Berlin, 1975).

G. Miel, “On Calculations Past and Present: The Archimedean Algorithm,” MAA
Monihly 90 (1983), 17-35.

M. Mignotte, “Approximations Rationalles de 7 et Quelques Autres Nombres,” Bull.
Soc. Math. France, Mem. 37 (1974), 121-132.

D. S. Mitrinovic, Analytic Inequalities (Springer, New York, 1970).

L. J. Mordell, “Note on Class Relation Formulae,” Messenger of Math. 45 (1916),
75-80.

G. Nemeth, “Relative Rational Approximation of the Function €’ Math. Notes 21
(1977), 325-328. .

R. Nevanlinna and V. Paatero, Introduction to Complex Analysis (Addison-Wesley,
Reading, MA, 1969).

D. J. Newman, “Approximation with Rational Functions,” AMS Regional Conf. Ser. in
Mathematics, no. 41 (1979).

, “Rational Approximation Versus Fast Computer Methods,” Lectures on Approxi-
mation and Value Distribution (Presses de I'Université de Montréal, Montreal, 1982),
pp- 149-174.

——, “A Simplified Version of the Fast Algorithms of Brent and Salamin,” Math.
Comput. 44 (1985), 207-210.

M. Newman and D. Shanks, “On a Sequence Arising in Series for 7,” Math. Comput.
42 (1984), 191-217.

I. Niven, “Irrational Numbers,” Carus Math. Monograph 11 (MAA, 1956).

M. Nyvoll, ‘Tilnoermelsesformler for Ellipsebuer,” BIT 25-26 (1978), 70-72.

J. Oxtoby, Measure and Category, 2d ed. (Springer, New York, 1980).

G. M. Phillips, “Archimedes the Numerical Analyst,” MAA Monthly 88 (1981),
165-169.

— ., “Archimedes and the Complex Plane,” MAA Monthly 91 (1984), 108-114.

H. Rademacher, Topics in Analytic Number Theory (Springer, Berlin, 1973).

E. D. Rainville, Special Functions (Macmillan, New York, 1960).

K. G. Ramanathan, “On Ramanujan’s Continued Fraction,” Acta Arith. 43 (1984),
209-225.

S. Ramanujan, “Modular Equations and Approximations to ,” Quart. J. Math. 45
(1914), 350-372.

—, Collected Papers (Chelsea, New York, 1962).

R. Rankin, Modular Forms and Functions (Cambridge Univ. Press, London, 1977).
H. E. Rauch and A. Lebowitz, Elliptic Functions, Theta Functions and Riemann
Surfaces (Williams and Wilkins, Baltimore, MD, 1973).

P. Ribenboim, “Consecutive Powers,” Expo. Math. 2 (1984), 193-221.

, “Representation of Real Numbers by Means of Fibonacci Numbers,” L’ Enseigne-
ment Mathematiques 3 (1985), 249-259.

J. F. Ritt, “Meromorphic Functions with Addition or Multiplication Theorems,” Trans.
AMS 29 (1927), 341-360.

—, Integration in Finite Terms (Columbia Univ. Press, New York, 1948).

M. Rosenlicht, “Integration in Finite Terms,” MAA Monthly 79 (1972), 963-972.




394
(76]
(82]
(50]
(771
(82]
(76]
[71]
(67]
(82]
(62]

[1853]

(85]
[66]

(85]
(74]

[75]
(80]

(63]
[Pr]
[1893]
(49]
(75]
[79]
(84]
(65]

(79]

(85]
(74]

Bibliography

E. Salamin, “Computation of 7 Using Arithmetic-Geometric Mean,” Math. Comput. 30
(1976), 565-570.

T. Sasaki and Y. Kanada, ““Practically Fast Multiple-Precision Evaluation of log (x),” J.
Inf. Process. 5 (1982), 247-250.

H. C. Schepler, “The Chronology of Pi,” Math. Mag. (1950), 165-170, 216-228,
279-283.

1. J. Schoenberg, “On the Arithmetic-Geometric Mean,” Delta 7 (1977), 49-65.
——, Mathematical Time Exposures (MAA, Washington, DC, 1982).
B. Schoenberg, Elliptic Modular Functions (Springer, Berlin, 1976).

A. Schénhage and V. Strassen, “Schnelle Multiplikation Grosser Zahlen,” Computing 7
(1971), 281-292.

A. Selberg and S. Chowla, “On Epstein’s Zeta-Function.” J. Reine Ang. Math. 227
(1967), 86-110.

D. Shanks, “Dihedral Quartic Approximations and Series for ,” J. Number Theory 14
(1982), 397-423.

——and J. W. Wrench, Jr., “Calculation of # to 100,000 Decimals,” Math. Comput. 16
(1962), 76-99.

W. Shanks, Contributions to Mathematics Comprising Chiefly of the Rectification of the
Circle to 607 Places of Decimals (G. Bell, London, 1853).

D. Singmaster, “The Legal Values of Pi,” Math. Intelligencer 7 (1985), 67-72.

L. J. Slater, Generalized Hypergeometric Functions (Cambridge Univ. Press, London,
1966).

E. U. Stickel, “Fast Computation of Matrix Exponential and Logarithms,” Analysis 5
(1985), 163-173.

K. B. Stolarsky, Algebraic Numbers and Diophantine Approximation (Marcel Dekker,
New York, 1974).

——, “Generalizations of the Logarithmic Mean,” Math. Mag. 48 (1975), 87-92.

——, “The Power and Generalized Logarithmic Means,” MAA Monthly 87 (1980),
545-548.

D. Sweeney, “On the Computation of Euler’s Constant,” Math. Comput. 17 (1963),
170-178. ’

Y. Tamura and Y. Kanada, ‘“Calculation of 7 to 4,196,393 Decimals Based on
Gauss—-Legendre Algorithm,” Math Comput. (in press).

J. Tannery and J. Molk, Fonctions Elliptiques, vols. 1 and 2 (1893; republished Chelsea,
New York, 1972).

J. Todd, “A Problem on Arctangent Relations,” MAA Monthly 8 (1949), 517-528.
——, “The Leminiscate Constants,” Communication of the ACM 18 (1975), 14-19.
——, Basic Numerical Mathematics, vol. 1 (Academic Press, New York, 1979).

L. Trefethen, “The Asymptotic Accuracy of Rational Best Approximations to e° on a
Disk,” J. Approx. Theory 40 (1984), 380-383.

F. G. Tricomi, “Sull ‘Algoritmo Iterativo del Borchardt e su di una sua Generaliz-
zazione,” Rend. Arc. Mat. Palermo 14 (1965), 85-94.

A. van der Poorten, “A Proof that Euler Missed. . . , Apéry’s Proof of the Irrationality
of {(3),” Math. Intelligencer 1 (1979), 195-203.

S. Wagon, “Is 7 Normal,” The Mathematical Intelligencer 7 (1985), 65-67.

M. Waldschmidt, “Nombres Transcendants,” Lecture Notes in Mathematics 402 (Spring-
er, New York, 1974).

[69]
[P1]
[29]
[32]
[33]
[35]
[08]
[67]
[76]
[27]

(84]
(80]

[60]

[77)

[79]
(84]
(85)
[76a)

[76b]

Bibliography 395

J. L. Walsh, “Interpolation and Approximation by Rational Functions in the Complex
Domain,” AMS Collog. Publ. 20, 5th ed. (1969).

G. Walz, “Effiziente Berechnung spezieller Funktionen mittels asymptotischer Ent-
wicklungen und Eliminationsprozeduren (Mannheim).

G. N. Watson, “Theorems Stated by Ramanujan (VII): Theorems on Continued
Fractions,” J. London Math. Soc. 4 (1929), 39-43.

—, “Some Singular Moduli (1),” Quart. J. Math. 3 (1932), 81-98.

—, “The Marquis and the Land Agent,” Math. Gaz. 17 (1933), 5-17.

—_, “Generating Functions of Class Numbers,” Compos. Math. 1 (1935), 39-68.

H. Weber, Lehrbuch der Algebra (1908 republished Chelsea, New York, 1980).

K. Weierstrass, Werke, vol. 2 (republished Frankfurt, 1967), pp- 341-362.

A. Weil, Elliptic Functions According to Eisenstein and Kronecker (Springer, New York,
1976).

E. T. Whittaker and G.N. Watson, A Course of Modern Analysis, 4th ed. (Cambridge
Univ. Press, London, 1927).

J. Wimp, Computation with Recurrence Relations (Pitman, London, 1984).

S. Winograd, “Arithmetic Complexity of Computations,” SIAM Reg. Conf. Ser. in
Applied Mathematics 33 (1980).

J. W. Wrench, Jr., “The Evolution of Extended Decimal Approximations to w,” Math.
Teacher 53 (1960), 644—650.

1. J. Zucker, “The Evaluation in Terms of I'-Functions of the Periods of Elliptic Curves
Admitting Complex Multiplication,” Math. Proc. Cambridge Phil. Soc. 82 (1977),
111-118.

—, “The Summation of Series of Hyperbolic Functions,” SIAM J. Math. Anal. 10
(1979), 192-206.

——, “Some Infinite Series of Exponential and Hyperbolic Functions,” SIAM J. Math.
Anal. 15 (1984), 406—413. .

——, “On the Series L5, ( X ) k" and Related Sums,” J. Number Theory 20 (1985),
92-102.

— and M. M. Robertson, “Some Properties of Dirichlet L-Series,” J. Phys. A 9
(1976), 1207-1214.
and ——, A Systematic Approach to the Evaluation of Z(,,,_,”((,.O)(am2 + bmn +
en?)™5 J. Phys. A 9 (1976), 1215-1225.




Symbol Description Section Formula
1
B B(x, y) ;=j Fla- e, Beta function 1.6 1.6.5
’ 0
sn(u.k) dt 1.7 1.7.1
sn(u, k) u .=J; ———(1 — - K9 2.7 275
ca(n.k) dr 1.7 1.7.2
1= e .
Symbol List | e A 27 2T
y ‘ dn(u. k) dr 1.7 1.7.3
dn(u, k) u-=ﬁ Va-D)@ —r5) 2.7 2.7.7
21 <_1_ _ L) 17
» p@)i= 5+ EL‘ eI
Weierstrass function
Symbol Description Sectiou Formula 0 8,(q) = 3 q(n+ll2)2 2.1 2.1.1
2 n=—w
AGM Arithmetic-Geometric Mean Iteration 1.1 1.1.1 and w
= > g 2.1 2.1.2
1.1.2 6, 6(q):= 2 4
M(-, ") Common limit of the AGM 1.1 1.1.5 : i ) 21 213
i _ _1yg" . 1.
AGC(-, 9) Common limit of the AGM 1.1 ; o 6:(9) ,.:_m( e
a,.b,,c, Variables in the AGM 11 ‘ ’ r,(n) = number of representations of n -
2 .
k, Legendre form of the AGM 1.1 1.1.11 as a sum of two squares .
k' k' i=V1-k Complementary modulus 1.1 6.(s) 6(s):=6(q) where gi=e 2'3
. . — 2 2 .
f the derivative of f 1.1 k(q) k(q):=k=03(q)/05(q) \s
' 2 .
" de : dt k'(q) k'(q):= k' =63(9)/03(q)
K(k) K(k)¢=f =f 1.3 1.3.1
° Vi-k%sin*e Jo V(-7 - k%) K(k) K(k) = 72_7 03(q) 2.3
complete elliptic integral of the 1st kind q g= o~ K WKW . 23
=g 2.3
2 V- K k(s) k(s):=k(q)  where qg:=e .
E(k Ek:=f Vl—kzsin26d6=f ——d 1.3 132
() ) 0 0 \/1——7 0.z, q) General theta functions 2.6 261
' - o 2.6
complete elliptic integral of the 2nd kind 9(q) Theta functions in g, z:=0
K'(k) K'(k):= K(k") 1.3 133 8(2) Theta functions in z, g suppressed 2.6
E'(k) E'(k):= E(k') 1.3 1.3.4 0(z) Theta functions in z, ¢ and j suppressed 2.6
F(a, b c, 2) Hypergeometric function 1.3 1.3.5 = n 313
. 2 ] Qo Q,(q):= I1 (1-4™) 3.1
@i-1nn 2i-DM:=1-3-5-...-(2i—1) 1.3 =1
w2 ' = 2n 3.1 3.1.3
b L (b | o.(9:=I1 1+
IC, - Ia, b :=f —— - K'<—) 1.4 1.4.4 2, : as
¢ (@ 5) ° Va’cos’6+b’sing @ a ml
w2 . = 1+¢" ™" 3.1 3.1.3
I, J(a, b) :=J; Va® cos® § + b sin” § df = aE’<§) 1.4 1.4.5 Q, Q.(q) ”11 (1+q
7 - _ 3.13
G G(k):= k"K' K(k) 15 0, 0y(ey:=I1 =g . 31
G* G (k)= k' k'K'(k 15 ‘ -~
® ® A* A*(r):=k(q)  where g=e ™" 32
e -t x—1 . ”
r F(x).—L e 'dt,  Gamma function 1.6 1.6.4 o 6 (=23, (=1)'(2n +1)g""?F 3.2
1 n=0
I !
396 |

397



Symbol Description Section Formula
85 6(q)i=2 X (~1yg* ¥’ 3.2 3.2.5
07 0:(q):=2 2 (—1)"*"V%2p 4 1)g1D* 3.2 3.2.6
n=0
n ql”on, Eta function 32 329
f q "0, 3.2 3.2.9
h V2g''", 3.2 3.2.9
f 77", 3.2 3.2.9
Dy E_:_, a,,'= > a, ., 3.2
nm= na‘:.;::
G, G,:=(2kk')™V"? =27""f(~=m) 3.2 3.2.13
kyZ 1/2 —i/a
& 8ni= (‘ﬁ) =277 (v=m) 32 32.13
(::,) Gaussian or g-binomial coefficients 3.3 3.3.1
9
(9, (@)= [T a-gmia-g=m 3.3 332
r, ry(n) 1= number of representations of # as a sum
of four squares 3.5 3.5.1
5} ”1("):=Zd 35
dln
w(n) w(n) := a,(n) + o(0dd (n)) 35 3.5.2
q-1
—mir?
S(p- ) S(p, q)i= 2 &7 35
r=0
M(f) M(f):=M(f) :=L fx)x* " ldx , Mellin transform 3.6 3.6.1
14 L(s):= > R Riemann zeta function 3.6
n=1
() 8():=(8()-1)/2 3.6
3 _B . ‘
L(B) L(B):=2, =5 [B|<1,  Lambert series 3.7 3.7.5
n=1
F, Fy,:=0,F:=1,F, '=F +F,_,, Fibonacci numbers 3.7
(Ex. 3)
L, Ly:=2,L:=1,L, =L, +L,_,, Lucas numbers 3.7
F 4 ¥ = {im(r) > 0} 4.3
H* X*:=H U (i} U{Q} 43
T-group Inhomogeneous modular group 4.3
A-group 4.3
Fr Fundamental set of I'-group 4.3
F, Fundamental set of A-group 4.3

398

T

Symbol Description Section Formula
11 4.3
Sr (0 1) (Ex. 1)
0 —1) 4.3
Tr 10 (Ex. 1)
1 2 4.3
5 (o 1 (Ex. 1)
1 0) 4.3
T (z 1 (Ex. 1)
6. (q) ¢ it
A Al :=k2t =[2_ ) = 4.3
O=KO=505] - ¢
2 3
J J@):= % (1,\—2(3—2% , Klein’s absolute invariant 4.3
j j(@):=17281(2) 4.3
T, {(‘C’ "):ad—bc=piab, c,deZ} 44 441
transformations of order p
_(p 0 44
A 4,=(5 1) :
1 i
A, A,..=(0 p), i=0,1,...,p-1 4.4
=(P 0 4.4
B, 5,=(§ 1) :
B, B,.'=((1) 127’), i=0,1,...,p-1 44
P
W, W, A):=[T(x—4), A:=2reB, 4.4 4.4.2
i=0
pth order modular equation for A
P
F, F(x, j)= I_To (x=j),  Jii=joA, 44 4.4.6
pth order modular equation for j
Q, Q@ adjoin the pth roots of unity 4.4
I4
Q, 0,0, 0=l v-u) 45 45.1
i=0
pth order modular equation for u
u, u, = (_1)(p2_1)/8(/\(qp))1/8 = (t— 1)(p2—l)/8u(qp) , q= eim 45 451
u, u, 1= (M(a*g"P)N5 = u(a®q'"?), k=0,1,...,p—1 45 4.5.1
o =e¥mP
2
M, M,(1, k)= of (3;?,2,) = KK%) ., Multiplier of order p 4.6 4.6.1
3
k, k,:=k(e"™7)  pth singular value 4.6
A Li=k,=k(e™"7) 4.6
=BT =k(e™” 5.1 5.1.1
a(r) a(r)-=7<——m, k.—k(e ) . 1.

399



Symbol Description Section Formula
8(r) 8(r):=vr~2a(r) 5.1 5.1.9
._ PP(q) = P(q'")
R Rl ky:=2202 "9 )
’ ’ X 9)o3(a"") 2
d 2n
P P(g):i=1-24 5 " _
(q) 2 1= = 5.2 5.2.8
_ pkk’2 aM _
g, g,(L, k) MR d—k" (k) + M3 k)P~ pk? 5.2 5.2.11
o o(p)i=R (k. k), ki=e ™7 5.2 5.2.12
k, For n €N, compute k,,, by solving Wp(kf',, K.)=0 5.4
. -1
m, m,i=M_ (k.. k,.) 5.4 5.4.1
r, r,o=R,(k,, k,.,) 5.4 5.4.1
e, e, = [m,r, + mi(1+K2)— p(1+ k2, )]/3 5.4 5.4.1
., @, =ma, - p"VFe, 5.4 5.4.2
F s S (0),00), X
LF, Fi(a, b;c;x): ZO O i Where 5.5 5.5.1
_Tla+tn)
(a), (a),:= @) =a(a+l)...(a+n-1), rising factorial 5.5
S b),(c), x"
F. Fy(a,b,c;d, e;x):= @.(),(), x*
JF, JFy( e; x) Eo RO 5.5 552
K K(k):f.p(l_ LN
| g 7 2Fil 3 s,2+s,1,k 5.5 553
_m 1 1
E E(k):=7 '2F1<— 3785t s Lk kz) 5.5 5.5.4
= 1
G G:= Z an+ 1)2 ) Catalan’s constant 5.6
n=0 (Ex. 10)
O(a,) b,=Ma,) if b, = O(a,) and a,=0(b,) 6.1
Op Bit complexity 6.1
O, Operational complexity 6.1
FFT Fast Fourier Transform 6.2
M(n) Bit complexity of multiplication 6.4
6.3
(Ex.3)
D(n) Bit complexity of division 6.4
R(n) Bit complexity of root extraction 6.4
anb a A bi=min(a, b) 8.1 8.1.1
avb a v b:max(a, b) 8.1 8.1.1
Ly ty(x) = M(x,1), M a mean, the trace 8.1
R R~ {0} 8.1
M, My(a, b):= £ 'M(f(a), £(b)) 8.1
M, M, denotes M, when f(x) = x* 8.1

400

Symbol Description Section Formul:
a’ + b?\'"?
H, H,(a, b):= < 5 ) , a,b>0, Holder means 8.1 8.1.7
M(a’, b?) M?(a, b)
M(a, b):= - T = 8.1 8.1.9
M MO @ 57Ty T M, )
a’ + b?
L‘7 Lp(a, b) = W N Lehmer means 8.1 8.1.1(
. a:+b::|1/:—r .
G,, G, (a,b):= [a, 5 ,  Ginimeans 8.1 8.1.1
MyH LY 4
MI/ Mjf(a, b).—[.—bT‘ » a#b 8.1 8.1.1:
[ ap _ bp ]1/p~1
Sp Sp(a, b):= fop—l(a, b)= p(T—T) s p#0,1, 8.1 8.1.1
Stolarsky means
F(a, b):= Sy(a, b), Logarithmic mean 8.1 8.1.1
S $(a, b):= S,(a, b), Identric mean 8.1 8.1.1
a s(@” = b7) ]uu—:)
E . E, (a,b):= [r(a’ =) 8.1 8.1.1
M>N M(¢(a), 6(b)) = ¢(N(a, b)),  dominance - 8.2
M~N if M>@ N and N> ¢, M, equivalence 8.2
M®N Compound Mean of M and N 8.3 8.3.1
M=N M comparable to N 8.3
M®,N The Gaussian product (Def. 8.2) 8.3
[M, N], The Gaussian mean iterativé process (Def. 8.2) 8.3
M®,N The Archimedean product (Def. 8.2) 8.3
{M, N], The Archimedean mean iterative process (Def. 8.2) 8.3
N* N*(a, b) = N(M(a, b), b)
M M(a, b):=M(a A b,av b) 8.3 8.3.5
. 1 L2 2 . re W2 2y . 1 jm a’'—1 2\-8 2y-8"
R(e; 8,85 x5, y%) R(a,S,S,x,y).————ﬂ(a’a,) , ! E+x) " @+y) " ar 8.5 8.5.1
G C;'=F®F (,j=1,2,3,4) 8.5 8.5.2
+
F, Fy(a, b)i= “—22 8.5 8.5.
F, F,(a, b):=Vab 8.5 8.5.2
+
F, Fy(a, b):= %5 b.a 8.5 8.5.0
+
F, Fi(a, b):= 2 > LI 8.5 8.5.
arcsl(x) arcsl(x) := J; 1-sH""%ds 8.5 85/
arcsth(x) arcslh(x) :=J; A+sH""ds 8.5 8.5.1

401



Symbol Description Section Formula
a a:=(a, ,ay) 8.7
N
L,(a) Lp(a')1=<z )/(Z a’” ‘), Lehmer means 8.7 8.7.3
1 1/p
H,(a) H,(a@):= (N > a:’) ,  Holder means 8.7 8.7.4
i=1
N
® M, The common limit (when it exists) of [M', ..., M"] 8.7
i=1
(M., MY @y 1= MY(@,), or vectorially d, ., = M(a,) 8.7 87.5
N
®, M N-dimensional Gaussian product 8.7
i=1
N
®,M N-dimensional Archimedean product 8.7 8.7.6
i=t
+ac +
He(a, ¢) He(a, ¢):= afacc R Heronian mean 8.7 8.7.8
S(a, c) S(a, c):=He ®, G(a, c) 8.7
Y N!F,(a,)
M M, (@, ay,...,ay)= “[ —L] 8.7 7.10
Inf Int ( e 2 f l?_::o Hk#/‘ (ak - a,‘) 8.7.
TG(f: F) The algebraic transformation group of f over F 8.8
had , ( 1)i+j+k
b.(2s b.(25) 1= ——
L (25) ,(25) ”E e 9.2 9.2.1
had , _1)x+/
b,(2s b,(25):= E L~ 9.2 2.2
2(29) (@)= 3 o 9.2
ad , ( 1)i+j+k+l
b,(2s b,(25):= s
«(29) +(29) .,,;,::-m F Ty 9.2 923
o _1 n+l -
a(s) a(s):= 2, ( n), =(1-2"7)(s), 9.2
n=1
oy
B(s) B6)=2 5y 9.2
L.,(s) L.(9)i= 2 (d|mn™’ 9.2
n=1 (Ex. 6)
(@ 9). @ @)= 11 (1-ag*) 9.4 9.4.5
k=0 (Ex.7)
M,(n) M, (k,, k,2,) 9.5
N, N,:=7%(g)/n*(¢""”), 7 given by 3.2.9 9.5 9.5.15
D, D;:={z€C||z| =5} 10.1
P, Algebraic polynomials of degree n 10.1
171 £l 2= sup 72 01 1011
E.(f, 4) E,(f, 4):=min f—plla 10.1 10.1.2

402

Symbol Description Section Formu
= = mi - 1 10.1.2
R.(f. A) R,(f, A):=R,(f)= min [f-plql. 10
| i 1,1 ! ? 2 10.2.
¥ -y:=’L1_qL[1+§+§+~~-+;—logm], Euler’s constant  10.
d, d,=LCM(L,2,...,n) 1.3
1 11.3
ay, Q.. -, 4, {ag, ay,...,a,]'=ay+ ——— Ex. 2)
0 1 N 1
a
! Capt
1
+a,+—
2o
simple continued fraction
i 11.3
(4. @ - - -] ,1,1}2 [ag.ay,- . -5 a,] (Ex.2)
2 ,z_3 2l 11.3.
== B, 5> z|=2m 11.3
B, -1 27 & P 2 l2|
Bl=—% and B,,.,:=0, n=1,2,3,
Bernoulli numbers
- (-1) EZ 2" T
- <3,
Ea cos z ?;:0 (2n)! 2|
11.3 11.3

Euler numbers
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Strict mean, 230
Strict multidimensional mean, 266
Strong equivalence, 241, 243
of iterations, 252
Sums of squares:
of two squares, 82, 285, 290
of three squares, 66, 151, 286
of four squares, 81
of others, 71, 287, 292, 293
Supremum norm, 316
Symmetric mean, 231
Symmetric multidimensional mean, 266
Symmetric polynomiai, 356

Tan, computation of, 227
Theta functions, 10, 33, 91, 93
basic identities, 64, 67, 68, 70, 71, 73, 74, 111
finite transformation, 86, 87
general theta functions, 52
one-dimensional heat equation, 56
theta transformation formulae, 38, 44, 54, 87
Theta series, 91
Trace of mean, 231
Transcendence of ¢, 348, 353, 359
Transcendence of m, 347, 348, 352, 354
Transcendental functions, 274
Transcendental number, 351, 352
Transformation of order p, 119
Transformations of complete elliptic integrals:
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Transformations of complete elliptic integrals
(Continued)
algebraic transformation for K, 21
of generalized integrals, 179, 180, 185
higher order, 102f
quadratic transformations for £ and K, 12, 13
quadratic transformations for XK, 36
Triangular numbers, 286, 288
Trilogarithm, 381
Triple-product identity, 62, 65, 66, 72, 306
Tschimhaus transformation, 136
Turing machines, 201

Ultimately monotone, 235, 241

Vieta's formula, 338, 343

Wallis’ formula, 338, 343
Weierstrass function, 27, 30, 141

{(2), irrationality of, 366

{(3), irrationality of, 369

{(3), series for, 180, 379

Zeta function, 87, 88
functional equation for, 89
relation to prime distribution, 90
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