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Preface

This book is an introduction to the theory surrounding the Riemann Hypoth-
esis. It is primarily a source book with the emphasis on the original papers
that make up Part II; while Part I serves as a compendium of known results
and as a primer for the material presented in the papers. The text is suitable
for a graduate course or seminar or simply as a reference for anyone interested
in this extraordinary conjecture.

We have divided the papers into two chapters. Chapter 11 consists of
four expository papers on the Riemann Hypothesis, while Chapter 12 gathers
original papers that develop the theory surrounding the Riemann Hypothesis.

Presumably the Riemann Hypothesis is difficult and perhaps none of the
approaches to date will bear fruit. This translates into a difficulty in selecting
appropriate papers. There is simply a lack of profound developments and
attacks on the full problem. However, there is an intimate connection between
the Prime Number Theorem and the Riemann Hypothesis. They are connected
theoretically and historically and the Riemann Hypothesis may be thought of
as a grand generalization of the Prime Number Theorem. There is a large
body of theory on the Prime Number Theorem and a progression of solutions.
Thus we have chosen several papers that give proofs of the Prime Number
Theorem.

Since there have been no successful attacks on the Riemann Hypothesis,
a large body of evidence has been generated in its support. This evidence is
largely computational, and hence we have included several papers that focus
on, or use computation of the zeta function. We have also included Weil’s
proof of the Riemann Hypothesis for function fields (Section 12.8), and the
deterministic polynomial primality test of Agrawal et al (Section 12.20).

The material in Part I is organized (for the most part) into independent
chapters. One could cover the material in any order; however, we would rec-
ommend starting with the four expository papers in Chapter 11. The reader
who is unfamiliar with the basic theory and algorithms used in studying the
Riemann zeta function may wish to begin with Chapters 2 and 3. The remain-
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ing chapters stand on their own quite nicely and can be covered in any order
the reader fancies (obviously with our preference being first to last). We have
tried to link the material to the original papers in order to facilitate in depth
of study of the topics presented.

We would like to thank the community of authors, publishers and libraries
for their kind permission and assistance in re-publishing the papers included
in Part II. In particular: “On Newman’s Quick Way to the Prime Number
Theorem” and “Pair Correlation of Zeros and Primes in Short Intervals”
are re-printed with kind permission of Springer Science and Business Media;
“The Pair Correlation of Zeros of the Zeta Function” is re-printed with kind
permission of the American Mathematical Society; and “On the DIfference
π(x)−Li(x)” is re-printed with kind permission of the London Mathematical
Society.
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Notation

The notation in this book is standard. Specific symbols and functions are
defined as needed throughout, and the standard meaning of basic symbols and
functions is assumed. The following is a list of symbols that appear frequently
in the text, and the meanings we intend them to convey.

⇒ “If . . . , then . . . ” in natural language
∈ membership in a set
:= defined to be
x ≡ y (mod p) x is congruent to y modulo p
[x] the integral part of x
{x} the fractional part of x
|x| the absolute value of x
x! for x ∈ N, x! = x · (x− 1) · . . . · 2 · 1
(n,m) the greatest common divisor of n and m
φ(x) Euler’s totient function evaluated at x
log(x) the natural logarithm, loge(x) = ln(x)
det(A) the determinant of matrix A
π(x) the number of prime numbers p ≤ x
Li(x) the logarithmic integral of x, Li(x) :=

∫ x

2
dt

log t∑
summation∏
product

→ tends towards
x+ towards x from the right
x− towards x from the left
f ′(x) the first derivative of f(x) with respect to x
<(x) the real part of x
=(x) the imaginary part of x
arg(x) the argument of a complex number x
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∆C arg(f(x)) the number of changes in the argument of f(x) along
the contour C

N the set of natural numbers {1, 2, 3, . . .}
Z the set of integers
Z/pZ the ring of integers modulo p
R the set of real numbers
R+ the set of positive real numbers
C the set of complex numbers
f(x) = O(g(x)) |f(x)| ≤ A|g(x)| for some constant A and all values

of x > x0 for some x0

f(x) = o(g(x)) limx→∞
f(x)
g(x) = 0

f � g |f(x)| ≤ A|g(x)| for some constant A and all values
of x > x0 for some x0

f �ε g |f(x)| ≤ A(ε)|g(x)| for some given function A(ε)
and all values of x > x0 for some x0

f(x) = Ω(g(x)) |f(x)| ≥ A|g(x)| for some constant A and all values
of x > x0 for some x0

f ∼ g limx→∞
f(x)
g(x) = 1



Part I

Introduction to the Riemann Hypothesis





1

Why This Book

One now finds indeed approximately this number of real roots within
these limits, and it is very probable that all roots are real. Certainly
one would wish for a stricter proof here; I have meanwhile temporar-
ily put aside the search for this after some fleeting futile attempts, as
it appears unnecessary for the next objective of my investigation [124].

Bernhard Riemann, 1859

The above comment appears in Riemann’s memoir to the Berlin Academy of
Sciences (Section 12.2). It appears to be a passing thought, yet it has become,
arguably, the most central problem in modern mathematics.

This book presents the Riemann Hypothesis, connected problems, and a
taste of the related body of theory. The majority of the content is in Part
II, while Part I contains a summary and exposition of the main results. It is
targeted at the educated non-expert; most of the material is accessible to an
advanced mathematics student, and much is accessible to anyone with some
university mathematics.

Part II is a selection of original papers. This collection encompasses sev-
eral important milestones in the evolution of the theory connected to the
Riemann Hypothesis. It also includes some authoritative expository papers.
These are the “expert witnesses” who offer the most informed commentary
on the Riemann Hypothesis.

1.1 The Holy Grail

The Riemann Hypothesis has been the Holy Grail of mathematics for a cen-
tury and a half. Bernhard Riemann, one of the extraordinary mathematical



4 1 Why This Book

talents of the 19th century, formulated the problem in 1859. The Hypothesis
makes a very precise connection between two seemingly unrelated mathemat-
ical objects (namely prime numbers and the zeros of analytic functions). If
solved, it would give us profound insight into number theory and, in particular,
the nature of prime numbers.

Why is the Riemann Hypothesis so important? Why is it the problem that
many mathematicians would sell their souls to solve? There are a number of
great old unsolved problems in mathematics, but none of them have quite the
stature of the Riemann Hypothesis. This stature can be attributed to a variety
of causes ranging from mathematical to cultural. In common with the other
old great unsolved problems, the Riemann Hypothesis is clearly very difficult.
It has resisted solution for 150 years and has been attempted by many of the
greatest minds in mathematics.

The problem was highlighted at the 1900 International Congress of Math-
ematicians; a conference held every 4 years and the most prestigious interna-
tional mathematics meeting. David Hilbert, a pre-eminent mathematician of
his generation, raised 23 problems that he thought would shape 20th century
mathematics. This was somewhat self-fulfilling as solving a Hilbert problem
guaranteed instant fame and perhaps local riches. Many of Hilbert’s problems
have now been solved. The most notable recent example is Fermat’s Last
Theorem, and was solved by Andrew Wiles in 1995.

Being one of Hilbert’s 23 problems was enough to guarantee the Riemann
Hypothesis centrality in mathematics for more than a century. Adding to in-
terest in the hypothesis a million dollar bounty in the form of a “Millennium
Prize Problem” of the Clay Mathematics Institute. That the Riemann Hy-
pothesis should be listed as one of seven such mathematical problems (each
with a million dollar prize associated with its solution) indicates not only the
contemporary importance of a solution, but also the importance of motivating
a new generation of researchers to explore the hypothesis further.

Solving any of the great unsolved problems in mathematics is akin to the
first ascent of Everest. It is a formidable achievement, but after the conquest
there is sometimes nowhere to go but down. Some of the great problems have
proven to be isolated mountain peaks, disconnected from their neighbours.
The Riemann Hypothesis is quite different in this regard. There is a large body
of mathematical speculation that becomes fact if the Riemann Hypothesis is
solved. We know many statements of the form “if the Riemann Hypothesis,
then the following interesting mathematical statement” and this is rather
different from the solution of problems such as the Fermat problem.

The Riemann Hypothesis can be formulated in many diverse and seemingly
unrelated ways; this is one of its beauties. The most common formulation is
that certain numbers, the zeros of the “Riemann Zeta function”, all lie on a
certain line (precise definitions later). This formulation can, to some extent,
be verified numerically.
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In one of the largest calculations done to date, it was checked that the
first ten trillion of these zeros lie on the correct line. So there are ten trillion
pieces of evidence indicating that the Riemann Hypothesis is true and not a
single piece of evidence indicating that it is false. A physicist might be over-
whelmingly pleased with this much evidence in favour of the Hypothesis; but
to the mathematician this is hardly evidence at all. However, it is interesting
ancillary information.

In order to prove the Riemann Hypothesis it is required to show that all of
these numbers lie in the right place, not just the first trillion. Until such a proof
is provided the Riemann Hypothesis cannot be incorporated into the body of
mathematical facts and accepted as true by mathematicians (Even though it
is probably true!). This is not just pedantic fussiness. Certain mathematical
phenomena that appear true, and that can be tested in part computationally,
are false, but only false past computational range (This is seen in papers 12.12,
12.9 and 12.14).

Accept for a moment that the Riemann Hypothesis is the greatest un-
solved problem in mathematics and that the greatest achievement any young
graduate student could aspire to is to solve it. Why isn’t it better known? Why
hasn’t it permeated public consciousness? (In the way black holes and unified
field theory have, at least to some extent.) Part of the reason for this is it is
hard to state rigourously, or even unambiguously. Some undergraduate math-
ematics is required in order for one to be familiar enough with the objects
involved to even be able to state the Hypothesis accurately. Our suspicion
is that a large proportion of professional mathematicians could not precisely
state the Riemann Hypothesis if asked.

If I were to awaken after having slept for a thousand years, my first
question would be: Has the Riemann hypothesis been proven?

Attributed to David Hilbert

1.2 Riemann’s Zeta and Liouville’s Lambda

The Riemann zeta function is defined, for <(s) > 1, by

ζ(s) =
∞∑

n=1

1
ns
. (1.2.1)

The Riemann Hypothesis is usually given as: the non-trivial zeros of the
Riemann zeta function lie on the line <(s) = 1

2 . There is already, of course, the
problem that the above series doesn’t converge on this line, so one is already
talking about an analytic continuation.
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Our immediate goal is to give as simple an (equivalent) statement of the
Riemann Hypothesis as we can. Loosely the statement is “the number of
integers with an even number of prime factors is the same as the number of
integers with an odd number of prime factors.” This is made precise in terms
of the Liouville Function.

The Liouville Function gives the parity of the number of prime factors.

Definition 1.1. The Liouville Function is defined by

λ(n) = (−1)ω(n)

where ω(n) is the number of, not necessarily distinct, prime factors in n, with
multiple factors counted multiply.

So λ(2) = λ(3) = λ(5) = λ(7) = λ(8) = −1 and λ(1) = λ(4) = λ(6) = λ(9) =
λ(10) = 1 and λ(x) is completely multiplicative (i.e., λ(xy) = λ(x)λ(y) for
any x, y ∈ N) taking only values ±1. (Alternatively one can define λ as the
completely multiplicative function with λ(p) = −1 for any prime p.)

The connections between the Liouville function and the Riemann Hypoth-
esis were explored by Landau in his doctoral thesis of 1899.

Theorem 1.2. The Riemann Hypothesis is equivalent to the statement that
for every fixed ε > 0,

lim
n→∞

λ(1) + λ(2) + . . .+ λ(n)
n

1
2+ε

= 0.

This translates to the following statement. The Riemann Hypothesis is equiv-
alent to the statement that an integer has equal probability of having an odd
number or an even number of distinct prime factors (in the precise sense given
above). This formulation has inherent intuitive appeal.

We can translate the equivalence once again. The sequence

{λ(i)}∞i=1 = {1,−1,−1, 1,−1, 1,−1, 1, 1, 1,−1, 1, 1,−1, 1, 1, 1, 1, 1,−1,−1, . . .}

behaves more or less like a random sequence of 1’s and -1’s in that the differ-
ence between the number of 1’s and -1’s is not much larger than the square
root of the number of terms.
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Fig. 1.1. {λ(i)}∞i=1 plotted as a “random walk,” by walking (±1,±1) through pairs
of points of the sequence.

This is an elementary and intuitive statement of the Riemann Hypothesis.
It is an example of the many diverse re-formulations given in Chapter 5. It is
relatively easy to formulate, and lends itself to a pretty picture, which makes
it a useful instructive tool.

1.3 The Prime Number Theorem

The Prime Number Theorem is a jewel of mathematics. It states that the
number of primes less than or equal to n is approximately n/ log n, and was
conjectured by Gauss in 1792, on the basis of substantial computation and
insight. One can view the Riemann Hypothesis as a precise form of the Prime
Number Theorem, where the rate of convergence is made specific (see Section
5.1).

Theorem 1.3 (The Prime Number Theorem). Let π(n) denote the num-
ber of primes less than or equal to n then

lim
n→∞

π(n)
n/ log(n)

= 1.

As with the Riemann Hypothesis, the Prime Number Theorem can be
formulated in terms of the Liouville Lambda function. A result also due to
Landau in his doctoral thesis of 1899.
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Theorem 1.4. The Prime Number Theorem is equivalent to the statement
that

lim
n→∞

λ(1) + λ(2) + . . .+ λ(n)
n

= 0.

So the Prime Number Theorem is a relatively weak statement of the fact that
an integer has equal probability of having an odd number or an even number
of distinct prime factors

The Prime Number Theorem was first proved independently by de la Vallée
Poussin (see Section 12.4) and Hadamard (see Section 12.3) around 1896,
although Chebyshev came close in 1852 (see Section 12.1). The first and easiest
proofs are analytic and exploit the rich connections between number theory
and complex analysis. It has resisted trivialization and no really easy proof is
known. This is especially true for the so called elementary proofs which use
little or no complex analysis, just considerable ingenuity and dexterity.

The primes arise sporadically and, apparently, relatively randomly, at least
in the sense that there is no easy way to find a large prime number with no
obvious congruences. So even the amount of structure implied by the Prime
Number Theorem is initially surprising.

Included in the original papers are a variety of proofs of the Prime Number
Theorem. Korevaar’s expository paper (see Section 12.16) is perhaps the most
accessible of these. We focus on the Prime Number Theorem for its intrinsic
interest but also because it represents a high point in the quest for resolution of
the Riemann Hypothesis. Now that we have some notion of what the Riemann
Hypothesis is, we can move on to the precise analytic formulation.



2

Analytic Preliminaries

The mathematician’s patterns, like the painter’s or the poet’s, must be
beautiful; the ideas, like the colours or the words must fit together in a
harmonious way. Beauty is the first test: there is no permanent place
in this world for ugly mathematics [59].

G. H. Hardy, 1967

In this chapter we develop some of the more important, and beautiful,
results in the classical theory of the zeta function. The material is mathe-
matically sophisticated; however, our presentation should be accessible to the
reader with a first course in complex analysis. At the very least, the results
should be meaningful even if the details are elusive.

We first develop the functional equation for the Riemann zeta function
from Riemann’s seminal paper, Ueber die Anzahl der Primzahlen unter einer
gegebenen Grösse (see 12.2), as well as some basic properties of the zeta
function. Then we present part of de la Vallée Poussin’s proof of the Prime
Number Theorem (see 12.4), in particular we prove that ζ( 1

2+it) 6= 0 for t ∈ R.
We also develop the main idea necessary to verify the Riemann Hypothesis,
namely we prove that N(T ) = T

2π log T
2π −

T
2π + O(log T ), where N(T ) is the

number of zeros of ζ(s) up to height T . Finally we give a proof of Hardy’s
result that there are infinitely many zeros of ζ(s) on the critical line, from
12.5. The original papers are included in Part II, and are the best entry point
to the material.

We begin with precise definitions of the functions under consideration.
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2.1 The Riemann Zeta Function

The Riemann Hypothesis is a precise statement, and in one sense what
it means is clear, but what it’s connected with, what it implies, where
it comes from, can be very unobvious [129].

M. Huxley

Defining the Riemann zeta function is of itself a non-trivial undertaking.
The function, while easy enough to formally define, is of sufficient complex-

ity that such a statement would be unenlightening. Instead we will “build”
the Riemann zeta function in small steps. We will, by and large, follow the
historic development of the zeta function from Euler to Riemann. This devel-
opment sheds some light on the deep connection between the zeta function
and the prime numbers. We begin with the following example of a Dirichlet
series.

Let s = σ + it be a complex number. We consider the Dirichlet series,
∞∑

n=1

1
ns

= 1 +
1
2s

+
1
3s

+ . . . . (2.1.1)

This series will be the first building block of the Riemann zeta function. Notice
that if we set s = 1 we obtain

∞∑
n=1

1
n

= 1 +
1
2

+
1
3

+ . . . ,

the well-known harmonic series, which diverges. Also notice that whenever
<(s) ≤ 1 the series will diverge. It is also easy to see that this series converges
whenever <(s) > 1 (this follows from the integral test). So this Dirichlet series
defines an analytic function in the region <(s) > 1. We will initially define
the Riemann zeta function to be

ζ(s) :=
∞∑

n=1

1
ns
, (2.1.2)

for <(s) > 1.
Euler was the first to give any substantial analysis of this Dirichlet series.

However, Euler confined his analysis to the real line. He was the first to
evalulate, to high precision, the values of the series for s = 2, 3, . . . , 15, 16. For
example, Euler established the formula,

ζ(2) = 1 +
1
4

+
1
9

+
1
16

+ · · · = π2

6
.

Riemann was the first to make an intensive study of this series as a function
of a complex variable.
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Euler’s most important contribution to the theory of the zeta function is
the Euler Product Formula. This formula demonstrates explicitly the connec-
tion between prime numbers and the zeta function. Euler noticed, by the Fun-
damental Theorem of Arithmetic, that every positive integer can be uniquely
written as a product of powers of different primes. Thus, for any n ∈ N, we
may write

n =
∏
pi

pei
i ,

where the pi range over all primes, and the ei are non-negative integers. The
exponents ei will vary as n varies, but it is clear that if we consider each n ∈ N
we will use every possible combination of exponents ei ∈ N. Thus,

∞∑
n=1

1
ns

=
∏
p

(
1 +

1
ps

+
1
p2s

+ · · ·
)
,

where the infinite product is over all the primes. On examining the convergence
of both the infinite series and the infinite product, we easily find

Theorem 2.1 (Euler Product Formula). For s = σ + it and σ > 1, we
have

ζ(s) =
∞∑

n=1

1
ns

=
∏
p

(
1− 1

ps

)−1

. (2.1.3)

The Euler product formula is also called the analytic form of the Fun-
damental Theorem of Arithmetic. It demonstrates how the Riemann zeta
function encodes information on the prime factorization of integers and the
distribution of primes.

We can also re-cast one of our earlier observations in terms of the Euler
Product Formula. Since convergent infinite products never vanish, it then
follows from the formula that,

Theorem 2.2. For all s ∈ C with <(s) > 1, we have ζ(s) 6= 0.

We have seen that the Dirichlet series (2.1.2) diverges for any s with <(s) ≤
1. In particular, when s = 1 the series is the harmonic series. Consequently,
the Dirichlet series (2.1.2) does not define the Riemann zeta function outside
the region <(s) > 1. We will continue to build the zeta function, as promised.
However, first we note that our definition of the zeta function, valid for <(s) >
1, actually forces the values of ζ(s) for all s ∈ C. This is a consequence of the
fact that ζ(s) is analytic for <(s) > 1, and continues analytically to the entire
plane, with one exceptional point, as explained below.

Here we recall that analytic continuation allows us to “continue” an an-
alytic function on one domain to an analytic function of a larger domain,
uniquely, under certain conditions. (Specifically, given functions f1, analytic
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on domain D1, and f2, analytic on domain D2, such that D1 ∩ D2 6= φ and
f1 = f2 on D1 ∩D2 then f1 = f2 on D1 ∪D2.) So if we can find a function,
analytic on C\{1}, that agrees with our Dirichlet series on D, then we have
succeeded in defining ζ(s) for all s ∈ C\{1}.

In his 1859 memoir, Riemann proves that the function ζ(s) can be con-
tinued analytically to a meromorphic function over the whole complex plane,
with the exception of s = 1. At s = 1, ζ(s) has a simple pole, with residue 1.

We now define the Riemann zeta function. Following convention, we write
s = σ + it when s ∈ C.

Definition 2.3. The Riemann zeta function ζ(s) is the analytic continuation
of the Dirichlet series (2.1.2) to the whole complex plane, minus the point
s = 1.

Defining the zeta function in this way is concise and accurate, but its
properties are quite unclear. We now continue to build the zeta function by
finding the analytic continuation of ζ(s) explicitly. To start with, when <(s) >
1, we can write

ζ(s) =
∞∑

n=1

1
ns

=
∞∑

n=1

n

(
1
ns
− 1

(n+ 1)s

)

= s

∞∑
n=1

n

∫ n+1

n

x−s−1dx.

Let x = [x] + {x}, where [x] and {x} are the integral and fractional parts of
x, respectively.

Since [x] is always the constant n for any x in the interval [n, n + 1) we
have

ζ(s) = s

∞∑
n=1

∫ n+1

n

[x]x−s−1dx = s

∫ ∞

1

[x]x−s−1dx.

By writing [x] = x− {x}, we obtain

ζ(s) = s

∫ ∞

1

x−sdx− s

∫ ∞

1

{x}x−s−1dx

=
s

s− 1
− s

∫ ∞

1

{x}x−s−1dx, σ > 1. (2.1.4)

We now observe that since 0 ≤ {x} < 1, the improper integral in (2.1.4)
converges when σ > 0 because the integral

∫∞
1
x−σ−1dx converges. Thus the

improper integral in (2.1.4) defines an analytic function of s in the region
<(s) > 0. Therefore, the meromorphic function at the right hand side of
(2.1.4) gives the analytic continuation of ζ(s) to the region <(s) > 0 and the
term s

s−1 gives the simple pole of ζ(s) at s = 1 with residue 1.
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Equation (2.1.4) only extends the definition of the Riemann zeta function
to the larger region <(s) > 0. However, Riemann used a similar argument to
obtain the analytic continuation to the whole complex plane. He started from
the classical definition of the gamma function Γ .

We recall that the gamma function extends the factorial function to the
entire complex plane with the exception of the non-positive integers. For s ∈ C
we define the gamma function Γ (s) as

Γ (s) :=
∫ ∞

0

e−tts−1dt.

The Γ function is analytic on the entire complex plane with the exception of
s = 0,−1,−2, . . ., and the residue of Γ (s) at s = −n is (−1)n

n! . Note that for
s ∈ N we have Γ (s) = (s− 1)!.

We now continue following Riemann. We have

Γ
(s

2

)
=
∫ ∞

0

e−tt
s
2−1dt

for σ > 0. On setting t = n2πx, we observe that

π−
s
2Γ
(s

2

)
n−s =

∫ ∞

0

x
s
2−1e−n2πxdx.

Hence, with some care on exchanging summation and integration, for σ > 1,

π−
s
2Γ
(s

2

)
ζ(s) =

∫ ∞

0

x
s
2−1

( ∞∑
n=1

e−n2πx

)
dx

=
∫ ∞

0

x
s
2−1

(
ϑ(x)− 1

2

)
dx,

where

ϑ(x) :=
∞∑

n=−∞
e−n2πx

is the Jacobi theta function. The functional equation (also due to Jacobi) for
ϑ(x) is

x
1
2ϑ(x) = ϑ(x−1),

and is valid for x > 0. This equation is far from obvious; however, the proof
lies beyond our focus. The standard proof proceeds using Poisson summation,
and can be found in Chapter 2 of [21].

Finally, using the functional equation of ϑ(x), we obtain

ζ(s) =
π

s
2

Γ
(

s
2

) { 1
s(s− 1)

+
∫ ∞

1

(
x

s
2−1 + x−

s
2−

1
2

)
·
(
ϑ(x)− 1

2

)
dx

}
.

(2.1.5)
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Due to the exponential decay of ϑ(x), the improper integral in (2.1.5) con-
verges for every s ∈ C and hence defines an entire function in C. Therefore,
(2.1.5) gives the analytic continuation of ζ(s) to the whole complex plane,
with the exception of s = 1.

Theorem 2.4. The function

ζ(s) :=
π

s
2

Γ
(

s
2

) { 1
s(s− 1)

+
∫ ∞

1

(
x

s
2−1 + x−

s
2−

1
2

)
·
(
ϑ(x)− 1

2

)
dx

}
is meromorphic with a simple pole at s = 1 with residue 1.

We have now succeeded in our goal of continuing the Dirichlet series (2.1.1)
that we started with, to ζ(s), a meromorphic function on C. We can now
consider all complex numbers in our search for the zeros of ζ(s). We are
interested in these zeros as they encode information about the prime numbers.
However, not all of the zeros of ζ(s) are of interest to us. Surprisingly we can
find, with relative ease, an infinite number of zeros, all lying outside of the
region 0 ≤ <(s) ≤ 1. We will refer to these zeros as the trivial zeros of ζ(s)
and we will exclude them from the statement of the Riemann Hypothesis.

Before discussing the zeros of ζ(s) we will develop a functional equation
for it. Riemann noticed that formula (2.1.5) not only gives the analytic con-
tinuation of ζ(s), but can also used to derive a functional equation for ζ(s).
He observed that the term 1

s(s−1) and the improper integral in (2.1.5) are
invariant under the substitution of s by 1− s. Hence we have

Theorem 2.5 (The Functional Equation). For any s in C,

π−
s
2Γ
(s

2

)
ζ(s) = π−

1−s
2 Γ

(
1− s

2

)
ζ(1− s).

For convenience, and clarity, we will define the xi function as

ξ(s) :=
s

2
(s− 1)π−

s
2Γ
(s

2

)
ζ(s). (2.1.6)

In view of (2.1.5), ξ(s) is an entire function and satisfies the simple functional
equation

ξ(s) = ξ(1− s). (2.1.7)

This shows that ξ(s) is symmetric around the vertical line <(s) = 1
2 .

We now have developed the zeta function sufficiently to begin considering
its various properties; in particular, the location of its zeros. There are a
few assertions we can make based on the elementary theory we have already
presented.

We begin our discussion by isolating the trivial zeros of ζ(s). Recall that
the only poles of Γ (s) are simple and situated at s = 0,−1,−2, . . .. It follows
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from (2.1.5) that ζ(s) has simple zeros at s = −2,−4, . . . (the pole s = 0 of
Γ ( s

2 ) is cancelled by the term 1
s(s−1) ). These zeros, arising from the poles of the

Gamma function, are termed the trivial zeros. From the functional equation
and Theorem 2.2, all other zeros, the non-trivial zeros, lie in the vertical strip
0 ≤ <(s) ≤ 1. In view of equation (2.1.6), the non-trivial zeros of ζ(s) are
precisely the zeros of ξ(s) and hence they are symmetric about the vertical
line <(s) = 1

2 . Also, in view of (2.1.5), they are symmetric about the real axis,
t = 0. We summarize these results in the following theorem.

Theorem 2.6. The zeros of ζ(s) satisfy:

1. ζ(s) has no zero for <(s) > 1;

2. the only pole of ζ(s) is at s = 1; it has residue 1 and is simple;

3. ζ(s) has trivial zeros at s = −2,−4, . . . ;

4. the non-trivial zeros lie inside the region 0 ≤ <(s) ≤ 1 and are symmetric
about both the vertical line <(s) = 1

2 , and the real axis =(s) = 0;

5. the zeros of ξ(s) are precisely the non-trivial zeros of ζ(s).

The strip 0 ≤ <(s) ≤ 1 is called the critical strip and the vertical line
<(s) = 1

2 is called the critical line.
Riemann commented on the zeros of ζ(s) in his memoir (see the statement

at the start of Chapter 1). From his statements the Riemann Hypothesis was
formulated.

Conjecture 2.7 (The Riemann Hypothesis). All non-trivial zeros of ζ(s)
lie on the critical line <(s) = 1

2 .

Riemann’s eight page memoir has legendary status in mathematics. It not
only proposed the Riemann Hypothesis, but also accelerated the development
of analytic number theory. Riemann conjectured the asymptotic formula for
the number, N(T ), of zeros of ζ(s) in the critical strip with 0 ≤ γ < T to be

N(T ) =
T

2π
log

T

2π
− T

2π
+O(log T )

(proved by von Mangoldt in 1905). Additionally, he conjectured the product
representation of ξ(s) to be

ξ(s) = eA+Bs
∏
ρ

(
1− s

ρ

)
e

s
ρ , (2.1.8)

where A, B are constants and ρ runs over all the non-trivial zeros of ζ(s)
(proved by Hadamard in 1893).
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2.2 Zero-free Region

An approach to the Riemann Hypothesis is to expand the zero-free region as
much as possible. However, the proof that the zero-free region includes the
vertical line <(s) = 1 (i.e., ζ(1 + it) 6= 0 for all t ∈ R) is already non-trivial.
In fact, this statement is equivalent to the Prime Number Theorem, namely

π(x) ∼ x

log x
, x→∞

(a problem that required a century of mathematics to solve). Since we wish to
focus our attention here on the analysis of ζ(s), we refer the reader to proofs
of this equivalence in 12.3, 12.4 and 12.16.

Theorem 2.8. For all t ∈ R, ζ(1 + it) 6= 0.

Proof. In order to prove this result we follow the 1899 approach of de la Vallée
Poussin (see 12.4). Recall that when σ > 1, the zeta function can be defined
as the Dirichlet series (2.1.2) and that the Euler product formula gives us

ζ(s) =
∞∑

n=1

1
ns

=
∏
p

(
1− 1

ps

)−1

, (2.2.1)

where s = σ + it. Taking logarithms of each side of (2.2.1), we obtain

log ζ(s) = −
∑

p

log
(

1− 1
ps

)
.

Using the Taylor expansion of log(1− x) at x = 0, we have

log ζ(s) =
∑

p

∞∑
m=1

m−1p−sm

=
∑

p

∞∑
m=1

m−1p−σmp−imt

=
∑

p

∞∑
m=1

m−1p−σme−imt log p. (2.2.2)

It follows that the real part of log ζ(s) is

<(log ζ(s)) =
∑

p

∞∑
m=1

m−1p−σm cos(mt log p). (2.2.3)

Note that, by (2.2.3),
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3<(log ζ(σ)) + 4<(log ζ(σ + it)) + <(log ζ(σ + 2ti))

= 3
∑

p

∞∑
m=1

m−1p−σm + 4
∑

p

∞∑
m=1

m−1p−σm cos(mt log p)

+
∑

p

∞∑
m=1

m−1p−σm cos(2mt log p)

=
∑

p

∞∑
m=1

1
m

1
pσm

(
3 + 4 cos(mt log p) + cos(2mt log p)

)
.

Using logW = log |W |+ i arg(W ) and the elementary inequality

2(1 + cos θ)2 = 3 + 4 cos θ + cos(2θ) > 0, (2.2.4)

valid for any θ ∈ R, we obtain

3 log |ζ(σ)|+ 4 log |ζ(σ + it)|+ log |ζ(σ + 2ti)| > 0,

or equivalently,
|ζ(σ)|3|ζ(σ + it)|4|ζ(σ + 2it)| > 1. (2.2.5)

Since ζ(σ) has a simple pole at σ = 1 with residue 1, the Laurent series of
ζ(σ) at σ = 1 is

ζ(σ) =
1

1− σ
+ a0 + a1(σ − 1) + a2(σ − 1)2 + · · · = 1

1− σ
+ g(σ),

where g(σ) is analytic at σ = 1. Hence, for 1 < σ ≤ 2, we have |g(σ)| ≤ A0,
for some A0 > 0, and

|ζ(σ)| = 1
1− σ

+A0.

Now we will show that ζ(1+ it) 6= 0 by using inequality (2.2.5). To obtain
a contradiction, suppose that there is a zero on the line σ = 1. So ζ(1+it) = 0
for some t ∈ R, t 6= 0. Then by the mean-value theorem,

|ζ(σ + it)| = |ζ(σ + it)− ζ(1 + it)|
= |σ − 1||ζ ′(σ0 + it)|, 1 < σ0 < σ

≤ A1(σ − 1),

where A1 is a constant depending only on t. Also, when σ approaches 1 we
have |ζ(σ+2it)| < A2, where A2 again depends only on t. Note that in (2.2.5)
the degree of the term σ− 1, which is 4, is greater than that of the term 1

σ−1 ,
which is 3. So for fixed t, as σ tends to 1+, we have

lim
σ→1+

|ζ(σ)|3|ζ(σ + it)|4|ζ(σ + 2it)|

≤ lim
σ→1+

(
1

σ − 1
+A0

)3

A1
4(σ − 1)4A2

= 0.
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This contradicts (2.2.5). Hence we conclude that ζ(1 + it) 6= 0 for any t ∈ R.
ut

This result gives us a critical part of the proof of the Prime Number
Theorem, by extending the zero-free region of ζ(s) to include the line <(s) = 1.
It would seem intuitive that by extending the zero-free region even further we
could conclude other powerful results on the distribution of the primes. In
fact, it can be proved more explicitly that the asymptotic formula,

π(x) =
∫ x

2

dt

log t
+O(xΘ log x),

is equivalent to
ζ(σ + it) 6= 0, for σ > Θ, (2.2.6)

where 1
2 ≤ Θ ≤ 1. In particular, the Riemann Hypothesis (that is Θ = 1/2 in

(2.2.6)) is equivalent to the statement,

π(x) =
∫ x

2

dt

log t
+O(x

1
2 log x).

This formulation gives an immediate method by which to expand the zero-
free region. However, we are still unable to improve the zero-free region in the
form (2.2.6) for any Θ < 1. The best result to date, proved by Vinogradov
and Korobov independently in 1958, is that ζ(s) has no zeros in the region

σ ≥ 1− c(α)
(log |t|+ 1)α

for any α > 2/3 [80, 156].

2.3 Counting the Zeros of ζ(s)

Proving that the non-trivial zeros of ζ(s) have real part 1
2 , and proving that the

non-trivial zeros of ζ(s) lie outside a prescribed region, are both, presumably,
extremely difficult. However we can still glean valuable heuristic evidence for
the Riemann Hypothesis by counting non-trivial zeros. We can develop tools
that allow us to count the number of zeros in the critical strip with imaginary
part |=(s)| < T for any positive real number T . Once we know how many
zeros should lie in a given region, we can verify the Riemann Hypothesis in
that region computationally. In this section we develop the theory that will
allow us to make this argument.

We begin with the argument principle. The argument principle in complex
analysis gives a very useful tool to count the zeros or the poles of a meromor-
phic function inside a specified region. For a proof of this well-known result
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in complex analysis see §79 of [31].

The Argument Principle. Let f be meromorphic in a domain interior to
a positively oriented simple closed contour C such that f is analytic and non-
zero on C. Then,

1
2π
∆C arg(f(z)) = Z − P,

where Z is the number of zeros, P is the number of poles of f(z) inside C,
counting multiplicities, and ∆C arg(f(s)) counts the changes in the argument
of f(s) along the contour C.

We apply this principle to count the number of zeros of ζ(s) within the
rectangle {σ + it ∈ C : 0 < σ < 1, 0 ≤ t < T}. We denote this number by

N(T ) := |{σ + it : 0 < σ < 1, 0 ≤ t < T, ζ(σ + it) = 0}|.

As previously mentioned, the following theorem was conjectured by Rie-
mann [125] and proved by von Mangoldt [159]. We follow the exposition of
Davenport from [40]. We present the proof in more detail than is typical in this
book, as it exemplifies the general form of arguments in this field. Such argu-
ments can be relatively complicated and technical; the reader is forewarned.

Theorem 2.9. With N(T ) as defined above, we have

N(T ) =
T

2π
log

T

2π
− T

2π
+O(log T ).

Proof. Instead of working directly with ζ(s), we will make use of the ξ(s)
function, defined in (2.1.6). Since ξ(s) has the same zeros as ζ(s) in the critical
strip, and ξ(s) is an entire function, we can apply the argument principle to
ξ(s) instead of ζ(s). Let R be the positively oriented rectangular contour with
vertices −1, 2, 2 + iT and −1 + iT . By the argument principle we have,

N(T ) =
1
2π
∆R arg(ξ(s)).

We now divide R into three sub-contours. Let L1 be the horizontal line seg-
ment from −1 to 2. Let L2 be the contour consisting of the vertical line
segment from 2 to 2 + iT and then the horizontal line segment from 2 + iT to
1
2 + iT . Finally, let L3 be the contour consisting of the horizontal line segment
from 1

2 + iT to −1 + iT and then the vertical line segment from −1 + iT to
−1. Now,

∆R arg(ξ(s)) = ∆L1 arg(ξ(s)) +∆L2 arg(ξ(s)) +∆L3 arg(ξ(s)). (2.3.1)
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We wish to trace the argument change of ξ(s) along each contour.
To begin with, there is no argument change along L1 since the values of

ξ(s) here are real, and hence all arguments of ξ(s) are zero. Thus,

∆L1 arg(ξ(s)) = 0. (2.3.2)

From the functional equation for ξ(s) we have,

ξ(σ + it) = ξ(1− σ − it) = ξ(1− σ + it).

So the argument change of ξ(s) as s moves along L3 is the same as the argu-
ment change of ξ(s) as s moves along L2. Hence, in conjunction with (2.3.2),
Equation (2.3.1) becomes

N(T ) =
1
2π

2∆L2 arg(ξ(s)) =
1
π
∆L2 arg(ξ(s)). (2.3.3)

From the definition (2.1.6) and the basic relation zΓ (z) = Γ (z + 1) we have

ξ(s) = (s− 1)π−
s
2Γ
(s

2
+ 1
)
ζ(s). (2.3.4)

Next we work out the argument changes of these four factors of the right hand
side of Equation (2.3.4) along L2 separately.

We begin by considering ∆L2 arg(s− 1). One has

∆L2 arg(s− 1) = arg
(
−1

2
+ iT

)
− arg(1)

= arg
(
−1

2
+ iT

)
=
π

2
+ arctan

(
1

2T

)
=
π

2
+O(T−1)

because arctan
(

1
2T

)
= O(T−1).

Next we consider ∆L2 arg(π−
s
2 ):

∆L2 arg(π−
s
2 ) = ∆L2 arg

(
exp

(
−s

2
log π

))
= arg

(
exp

(
−1

2

(
−1

2
+ iT

)
log π

))
= arg

(
exp

(
1− 2iT

4
log π

))
= −T

2
log π.
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Now we use Stirling’s formula to give the asymptotic estimate for Γ (s),
(see (5) of Chapter 10 in [40]),

logΓ (s) =
(
s− 1

2

)
log s− s+

1
2

log 2π +O(|s|−1), (2.3.5)

which is valid when |s| tends to ∞ and the argument satisfies −π + δ <
arg(s) < π − δ for any fixed δ > 0. So we have,

∆L2 arg
(
Γ

(
1
2
s+ 1

))
= =

(
logΓ

(
5
4

+
iT

2

))
= =

{(
3
4

+ i
T

4

)
log
(

5
4

+ i
T

2

)
− 5

4
− iT

2
+

1
2

log 2π +O(T−1)
}

=
1
2
T log

T

2
− 1

2
T +

3
8
π +O(T−1).

Putting all these together we obtain, from (2.3.3),

N(T ) =
1
π
∆L2 arg ξ(s)

=
T

2π
log

T

2π
− T

2π
+

7
8

+ S(T ) +O(T−1), (2.3.6)

where

S(T ) :=
1
π
∆L2 arg ζ(s) =

1
π

arg ζ
(

1
2

+ iT

)
. (2.3.7)

It now remains to estimate S(T ).
Taking the logarithmic derivative of the Hadamard product representation

(2.1.8), we obtain

ξ′(s)
ξ(s)

= B +
∑

ρ

−1
ρ

1− s
ρ

+
∑

ρ

1
ρ

= B +
∑

ρ

(
1

s− ρ
+

1
ρ

)
. (2.3.8)

Since ξ(s) is alternatively defined by (2.1.6), we also have

ξ′(s)
ξ(s)

=
1
s

+
1

s− 1
+

1
2

log π +
1
2
Γ ′

Γ

(
1
2
s

)
+
ζ ′(s)
ζ(s)

. (2.3.9)

Now combining (2.3.8) and (2.3.9) we have,

−ζ
′(s)
ζ(s)

=
1

s− 1
−B − 1

2
log π +

1
2
Γ ′

Γ

(
1
2
s+ 1

)
−
∑

ρ

(
1

s− ρ
+

1
ρ

)
.

Given t ≥ 2 and 1 ≤ σ ≤ 2, by Stirling’s formula for Γ (s),
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(

1
2
s+ 1

)∣∣∣∣ ≤ A3 log t,

so we have

−<
(
ζ ′

ζ
(s)
)
≤ A4 log t−

∑
ρ

<
(

1
s− ρ

+
1
ρ

)
. (2.3.10)

If s = σ + it, 2 ≤ t and 1 < σ ≤ 2, then

−<

(
ζ
′

ζ
(s)

)
< A4 log t−

∑
ρ

<
(

1
s− ρ

+
1
ρ

)
. (2.3.11)

Since ζ
′

ζ (s) is analytic at s = 2 + iT ,

−<

(
ζ
′

ζ
(2 + iT )

)
≤ A5 (2.3.12)

for some positive absolute constant A5. If ρ = β + iγ and s = 2 + iT , then

<
(

1
s− ρ

)
= <

(
1

2− β + i(T − γ)

)
=

2− β

(2− β)2 + (T − γ)2

≥ 1
4 + (T − γ)2

� 1
1 + (T − γ)2

as 0 < β < 1. Also we have <( 1
ρ ) = β

β2+γ2 ≥ 0, so by Equations (2.3.11) and
(2.3.12), ∑

ρ

1
1 + (T − γ)2

�
∑

ρ

<
(

1
s− ρ

)
� log T.

We have proven that for T ≥ 1,∑
ρ

1
1 + (T − γ)2

= O(log T ). (2.3.13)

It immediately follows that∣∣∣∣{ρ = β + iγ : 0 < β < 1, T ≤ γ ≤ T + 1, ζ(ρ) = 0
}∣∣∣∣

≤ 2
∑

T≤γ≤T+1

1
1 + (T − γ)2

≤ 2
∑

ρ

1
1 + (T − γ)2

� log T. (2.3.14)
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For large t and −1 ≤ σ ≤ 2,

ζ
′

ζ
(s) = O(log t) +

∑
ρ

(
1

s− ρ
− 1

2 + it− ρ

)
. (2.3.15)

When |γ − t| > 1, we have∣∣∣∣ 1
s− ρ

− 1
2 + it− ρ

∣∣∣∣ = 2− σ

|(s− ρ)(2 + it− ρ)|
≤ 3

(γ − t)2
,

and therefore,∣∣∣∣ ∑
|γ−t|>1

(
1

s− ρ
− 1

2 + it− ρ

) ∣∣∣∣ ≤ ∑
|γ−t|>1

3
(γ − t)2

�
∑

ρ

1
1 + (γ − t)2

� log t.

This, combined with (2.3.15), gives

ζ
′

ζ
(s) =

∑
|γ−t|≤1

(
1

s− ρ
− 1

2 + it− ρ

)
+O(log t). (2.3.16)

Next, from Equation (2.3.7), we have

πS(T ) = arg ζ
(

1
2

+ iT

)
=
∫ 2+iT

1
2+iT

ζ
′

ζ
(s)ds = log ζ(s)

∣∣∣∣2+iT

1
2+iT

. (2.3.17)

Since logω = log |ω|+ i argω,

−
∫ 2+iT

1
2+iT

=

(
ζ
′

ζ
(s)

)
ds = − arg(ζ(s))

∣∣∣∣2+iT

1
2+iT

= − arg(ζ(2 + iT )) + arg
(
ζ

(
1
2

+ iT

))
.

Therefore we have

−
∫ 2+iT

1
2+iT

=ζ
′

ζ
(s)ds = O(1) + πS(T ).

Thus, with (2.3.16) and (2.3.17),

S(T ) �
∑

|γ−t|<1

∫ 2+iT

1
2+iT

=
(

1
s− ρ

− 1
2 + it− ρ

)
ds+ log T,

and we have∫ 2+iT

1
2+iT

=
(

1
s− ρ

)
ds = = log(s− ρ)

∣∣∣∣2+iT

1
2+iT

= arg(s− ρ)
∣∣∣∣2+iT

1
2+iT

� 1.
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By (2.3.14) we obtain that

S(T ) �
∑

|γ−T |<1

1 + log T � log T,

and finally that

N(T ) =
T

2π
log

T

2π
− T

2π
+O(log T ).

This completes the proof.
ut

We now have the theoretical underpinnings for verifying the Riemann Hy-
pothesis computationally. We can adapt these results to give us a feasible
method of counting the number of zeros of ζ(s) in the critical strip up to
any desired height. Combined with efficient methods of computing values of
ζ( 1

2 + it) we can gain valuable heuristic evidence in favour of the Riemann
Hypothesis and, in part, justify over a century of belief in its truth. For a
detailed development of these ideas, see Chapter 3.

2.4 Hardy’s Theorem

Hardy’s Theorem is one of the first important results in favour of the Riemann
Hypothesis. It establishes a fact that is the most basic necessary condition for
the Riemann Hypothesis to be true. Consequently it gives the first critical
result for belief in the Hypothesis. We will now present and prove Hardy’s
Theorem. For Hardy’s original paper, see 12.5; we follow the exposition of
Edwards [48].

Theorem 2.10 (Hardy’s Theorem). There are infinitely many zeros of
ζ(s) on the critical line.

Proof. The idea of the proof is to apply Mellin’s inversion to ξ(s), namely if

F (s) =
∫ ∞

−∞
f(x)x−sdx,

then,

f(s) =
∫ a+i∞

a−i∞
F (z)zs−1dz.

For an introduction to Mellin’s inversion see §2.7 of [146].
Recall Equations (2.1.5),

ζ(s) =
π

s
2

Γ
(

s
2

) { 1
s(s− 1)

+
∫ ∞

1

(
x

1
2 s−1 + x−

1
2 s− 1

2

)
·
(
ϑ(x)− 1

2

)
dx

}
,
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and (2.1.6)
ξ(s) =

s

2
(s− 1)π−

s
2Γ
(s

2

)
ζ(s).

After some substitution and simplification, we realize

2ξ(s)
s(s− 1)

=
∫ ∞

0

u−s

(
ϑ(u2)− 1− 1

u

)
du

for 0 < <(s) < 1. Application of Mellin’s inversion formula gives

ϑ(z2)− 1− 1
z

=
1

2πi

∫ 1
2+i∞

1
2−i∞

2ξ(s)
s(s− 2)

zs−1ds. (2.4.1)

We first note that the function ϑ(z2) =
∑∞

n=−∞ e−πn2z2
is not only defined

for z ∈ R, but also for z ∈W where

W := {z ∈ C : −π
4
< arg(z) <

π

4
}.

We claim that ϑ(z2) and all its derivatives approach zero as s approaches eiπ/4

(e.g., along the circle |z| = 1 in W ). In fact, using the functional equation
z

1
2ϑ(z) = ϑ(z−1), we have

ϑ(z2) =
∞∑

n=−∞
(−1)ne−πn2(z2−i)

= −ϑ(z2 − i) + 2ϑ(4(z2 − i))

= − 1
(z2 − i)1/2

ϑ

(
1

z2 − i

)
+

1
(z2 − i)1/2

ϑ

(
1

4(z2 − i)

)
=

1
(z2 − i)1/2

∑
n odd

e
− πn2

4(z2−i) .

Since uke−1/u approaches zero as u −→ 0+ for any integer k, ϑ(z2) and all its
derivatives approach zero as z approaches eiπ/4 in the wedge W .

Consider now the integral of the right hand side of Equation (2.4.1). In
view of (2.1.4) we have∣∣∣∣ζ (1

2
+ it

)∣∣∣∣ =
∣∣∣∣ 1/2 + it

−1/2 + it
− (1/2 + it)

∫ ∞

1

{x}x− 1
2−it−1dx

∣∣∣∣
≤ 1 + |1/2 + it|

∫ ∞

1

x−3/2dx

� |t|,

as t −→ ±∞. Also from Formula (2.3.5) for the Gamma function, we have

logΓ
(

1
4

+ i
t

2

)
=
(
−1

4
+ i

t

2

)
log
(

1
4

+ i
t

2

)
− 1

2
− i t

2
+

1
2

log 2π +O(|t|−1).
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It follows that ∣∣∣∣Γ (1
4

+ i
t

2

)∣∣∣∣� e−
π
4 |t|,

as t −→ ±∞. Thus we have∣∣∣∣ξ(1
2

+ it

)∣∣∣∣� |t|3e−π
4 |t|,

which shows that the integral in the right hand side of (2.4.1) convereges in
the wedge W , and hence is analytic in W .

Formula (2.4.1) takes a simpler form if the operator z(d2/dz2)z is applied
to both sides to give

H(z) =
1

2πi

∫ 1
2+i∞

1
2−i∞

2ξ(s)zs−1ds,

where

H(z) := z
d2

dz2
zϑ(z2).

This shows, similarly to ϑ(z2), that H(z) and all of its derivatives approach
zero as z approaches eiπ/4. Using the Taylor series of the exponential function,
we obtain

z1/2H(z) =
1
π

∫ ∞

−∞
ξ

(
1
2

+ it

)
zitdt

=
1
π

∫ ∞

−∞
ξ

(
1
2

+ it

) ∞∑
n=0

(it log z)n

n!
dt

=
∞∑

n=0

cn(i log z)n,

where

cn =
1
πn!

∫ ∞

−∞
ξ

(
1
2

+ it

)
tndt.

Since ξ(s) is symmetric about the critical line, c2n+1 = 0 for all n.
Suppose Hardy’s theorem is false. Then ξ

(
1
2 + it

)
has a finite number of

zeros, and ξ
(

1
2 + it

)
does not change sign for all large t ∈ R. For example, if

ξ
(

1
2 + it

)
is positive for t ≥ T , then

c2nπ(2n)! = 2
∫ ∞

0

ξ

(
1
2

+ it

)
t2ndt

≥ 2
∫ T+2

0

ξ

(
1
2

+ it

)
t2ndt

≥ 2

{
−
∫ T

0

∣∣∣∣ξ(1
2

+ it

)∣∣∣∣T 2ndt+
∫ T+2

T+1

ξ

(
1
2

+ it

)
(T + 1)2ndt

}
≥ A6(T + 1)2n −A7T

2n
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for some positive constants A6 and A7. Hence, c2n > 0 for all sufficiently large
n. Similarly, if ξ

(
1
2 + it

)
is negative for t ≥ T , then c2n < 0 for all sufficiently

large n. Thus, if the function z1/2H(z) is differentiated sufficiently many times
with respect to i log z, then the right hand side becomes an even power series
in which every term has the same sign. Consequently, as z approaches eiπ/4,
the value of this even power series does not approach zero. However, it must
approach zero as d/d(i log z) = −izd/dz, and differentiating repeatedly carries
z1/2H(z) to a function which approaches zero as z approaches eiπ/4. This
contradiction proves Hardy’s theorem.

ut

As we noted previously, Hardy’s Theorem establishes a minimal necessary
condition for the truth of the Riemann Hypothesis. Mathematicians have con-
tinued to attack the Riemann Hypothesis from this angle, by proving necessary
conditions of increasing difficulty. Selberg proved that a positive proportion
of the zeros of ζ(s) lie on the critical line (a result that, in part, earned him
the Fields Medal in 1950) [133]. This was improved by Levinson to the result
that 1

3 of the zeros lie on the critical line [89]. The best and most recent result
in this vein is due to Conrey who proved that 2

5 of the zeros lie on the critical
line [33].





3

Algorithms for Calculating ζ(s)

The Riemann Hypothesis has been open since its “proposal” in 1859. The most
direct form of attack is to compute: to search for a counter-example, and also
to search computationally for insight. Mathematicians from the time of Rie-
mann have developed a large body of computational techniques, and evidence
in support of the Riemann Hypothesis. The advent of modern computing em-
powered mathematicians with new tools, and motivated the development of
more efficient algorithms for the computation of ζ(s).

This chapter presents a basic sketch of the analytic ideas on which these
algorithms are based, the three main algorithms used to compute values
of ζ(s), and the analysis required to verify the Riemann Hypothesis within
large regions of the critical strip. For additional details, which are sometimes
formidable, the reader is directed to the sources cited within.

3.1 Euler-Maclaurin Summation

The zeta function is difficult to evaluate, especially in the critical strip. For
this reason sophisticated methods have been developed and applied in order
to perform these evaluations. Euler-Maclaurin summation was one of the first
methods used to compute values of ζ(s). Euler used it in the computation
of ζ(n) for n = 2, 3, . . . , 15, 16. It was also used by Gram, Backlund and
Hutchinson in order to verify the Riemann Hypothesis for t ≤ 50, t ≤ 200 and
t ≤ 300 respectively (s = 1

2 + it).

Euler-Maclaurin Evaluation of ζ(s). For N ≥ 1 one has
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ζ(s) =
N−1∑
n=1

n−s +
∫ ∞

N

x−sdx+
1
2
N−s − s

∫ ∞

N

B1({x})x−s−1dx

=
N−1∑
n=1

n−s +
N1−s

s− 1
+

1
2
N−s +

B2

2
sN−s−1 + · · ·

· · ·+ B2v

(2v)!
s(s+ 1) · · · (s+ 2v − 2)N−s−2v+1 +R2v,

where

R2v = −s(s+ 1) · · · (s+ 2v − 1)
(2v)!

∫ ∞

N

B2v({x})x−s−2vdx.

Here Bi(x) denotes the ith Bernoulli polynomial, Bi denotes the ith Bernoulli
number, and {x} denotes the fractional part of x.

Definition 3.1. [48] The Bernoulli Numbers, Bn, are defined by the generat-
ing function

x

ex − 1
=

∞∑
n=0

Bnx
n

n!
.

The nth Bernoulli Polynomial, Bn(x), is given by

Bn(x) :=
n∑

j=0

(
n

j

)
Bn−jx

j .

If N is at all large, say N is approximately the same size as |s|, then the
terms of the series decrease quite rapidly at first and it is natural to expect
that the remainder R2v will be very small. In fact, we have that

|R2v| ≤
∣∣∣∣s(s+ 1) · · · (s+ 2v + 1)B2(v+1)N

−σ−2v−1

2(v + 1)!(σ + 2v + 1)

∣∣∣∣ .
The application of Euler-Maclaurin summation to ζ(s) is discussed at

length in chapter 6 of [48].

3.2 Backlund

Around 1912, Backlund developed a method of determining the number of
zeros of ζ(s) in the critical strip 0 < <(s) < 1 up to a given height [48,
p. 128]. This is part of proving that the first N zeros of ζ(s) all lie on the
critical line.
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Recall from Chapter 2 that N(T ) denotes the number of zeros (counting
multiplicities) of ζ(s) in R, the rectangle {0 ≤ <(s) ≤ 1, 0 ≤ =(s) ≤ T}, and
∂R is the boundary of R, oriented positively. In [126] Riemann observed that

N(T ) =
1

2πi

∫
∂R

ξ′(s)
ξ(s)

ds

and proposed the estimate

N(T ) ∼ T

2π
log

T

2π
− T

2π
.

This estimate was first proved by von Mangoldt in 1905 [159]. In [10] Backlund
obtained the specific estimate,∣∣∣∣N(T )−

(
T

2π
log

T

2π
− T

2π
+

7
8

)∣∣∣∣ < 0.137 log T + 0.443 log log T + 4.350

for all T ≥ 2.
This estimate can be deduced by using good estimates to R2v as presented

in the preceeding section. Current computational methods have superceded
this estimate.

3.3 Hardy’s Function

One way of computing the zeros of any real-valued function is to find small
intervals in which that function changes sign. This method cannot be applied
naively to arbitrary complex-valued functions. So, in order to calculate zeros
of ζ(s) which lie on the critical line we would like to find a real-valued function
whose zeros are exactly the zeros of ζ(s) on the critical line. This is achieved
by considering the function ξ(s). In particular, we recall that ξ(s) satisfies

ξ(s) =
s

2
(s− 1)π−

s
2Γ (

s

2
)ζ(s)

((2.1.6)). Since ξ(s) is a real-valued function on the critical line, we will find
the zeros of ξ(s) by determining where the function changes sign. We develop
Hardy’s function following [48, p. 119] (also see Section 2.1): for s = 1

2 + it,
we have

ξ(s) =
(

1
4

+
it

2

)(
−1

2
+ it

)
π−

1
4−

it
2 Γ

(
1
4

+
it

2

)
ζ

(
1
2

+ it

)
= −1

2

(
1
4

+ t2
)
π−

1
4−

it
2 Γ

(
1
4

+
it

2

)
ζ

(
1
2

+ it

)
=
[
e< log Γ ( 1

4+ it
2 ) · π− 1

4

(
−t2

2
− 1

8

)]
×
[
ei= log Γ ( 1

4+ it
2 ) · π− it

2 ζ

(
1
2

+ it

)]
.
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Now since the factor in the first set of brackets is always a negative real
number, the sign of ξ( 1

2 + it) depends entirely on the sign of the second factor.
We define Hardy’s Z-function to be

Z(t) := eiθ(t)ζ

(
1
2

+ it

)
where θ(t) is given by

θ(t) := = logΓ
(

1
4

+
it

2

)
− t

2
log π.

Now it is clear that the sign of ξ( 1
2 + it) is opposite that of Z(t).

At this point it seems that since ζ( 1
2 + it) appears in the formula for Z(t)

we have not gained any interesting information. However, the Riemann-Siegel
formula which appears in the next section allows for efficient computation of
Z(t) to determine the zeros of ζ( 1

2 + it).

3.4 The Riemann-Siegel Formula

The Riemann-Siegel Formula was discovered amongst Riemann’s private pa-
pers by Siegel in 1932 [135]. It gives an improvement over Euler-Maclaurin
summation in approximating values of ζ(s). It aided computation, and added
to the empirical evidence for the Riemann Hypothesis. However, it does not
give enough information by itself to be used for direct verification of the Hy-
pothesis. This is because the formula only gives a fast method of finding zeros
of ζ(s) for which <(s) = 1

2 .
We begin with the approximate functional equation for the Riemann zeta

function.

Theorem 3.2 (Approximate Functional Equation). Let x, y ∈ R+ with
2πxy = |t|; then for s = σ + it with 0 ≤ σ ≤ 1, we have

ζ(s) =
∑
n≤x

1
ns

+ χ(s)
∑
n≤y

1
n1−s

+O(x−σ) +O(|t| 12−σyσ−1),

where χ(s) is given by

χ(s) = 2sπs−1 sin
(πs

2

)
Γ (1− s).

The approximate functional equation can be used to calculate Z(t) in the
following way. First we set x = y =

√
|t|/2π. This yields,

ζ(s) =
bxc∑
n=1

1
ns

+ χ(s)
bxc∑
n=1

1
n1−s

+ Em(s).
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Here the error term Em(s) satisfies Em(s) = O(|t|−σ/2). Now we substitute
s = 1

2 + it and multiply by eiθ(t) to obtain,

Z(t) = eiθ(t)

bxc∑
n=1

1
n

1
2+it

+ e−iθ(t)

bxc∑
n=1

1
n

1
2−it

+O(t−
1
4 )

= 2
bxc∑
n=1

cos(θ(t)− t log n)
n

1
2

+O(t−
1
4 ).

This is the basis of the Riemann-Siegel formula. All that is required to
apply this formula to compute Z(t) is a more precise formula for the error
term. The formula is derived at length in Chapter 7 of [48].

The Riemann-Siegel Formula. For all t ∈ R,

Z(t) = 2
N∑

n=1

(
cos (θ(t)− t log n)

n
1
2

)

+
e−iθ(t)e−

tπ
2

(2π)
1
2+ite−

iπ
4 (1− ie−tπ)

∫
CN

(−x)− 1
2+ite−Nxdx

ex − 1
,

where CN is a positively oriented closed contour containing all of the points
±2πiN, ±2πi(N − 1), . . . , ±2πi and 0.

In practice, algorithms use the truncated series, and a numerical approxi-
mation to the integral, in order to realize a useful approximation to Z(t) and
thus to ζ( 1

2 + it). Note that the term “Riemann-Siegel Formula” can refer to
the above formula, or to the Approximate Functional Equation given at the
start of the section, depending on the source.

3.5 Gram’s Law

We have that Z(t) = eiθ(t)ζ
(

1
2 + it

)
, from which it easily follows that

ζ

(
1
2

+ it

)
= e−iθ(t)Z(t)

= Z(t) cos θ(t)− iZ(t) sin θ(t).

Thus,

= ζ

(
1
2

+ it

)
= −Z(t) sin θ(t).

The sign changes of ζ( 1
2 + it) depend on the sign changes of Z(t) and

sin θ(t). Gram showed that we can find the zeros of sin θ(t) relatively easily;
we call these points “Gram points”. We define the nth Gram point, gn, to be
the unique real number satisfying θ(gn) = nπ. This definition leads us to the
formulation of Gram’s Law.
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Gram’s Law. Hardy’s function Z(t) satisfies (−1)nZ(gn) > 0 at the Gram
points gn.

Although named Gram’s Law, this statement was originally formulated
by Hutchinson [70], and is frequently broken (although up to large values of t
exceptions are surprisingly few).

Gram points which conform to Gram’s Law are called “good” and those
which do not are called “bad”. We give the definition of Gram blocks first
formulated by Rosser et al. [128]. A Gram block of length k is an interval Bj =
[gj , gj+k) such that gj and gj+k are good Gram points and gj+1, . . . , gj+k−1

are bad Gram points. These blocks were introduced to deal with exceptions
to Gram’s Law [25]. This motivates the formulation of Rosser’s Rule,

Rosser’s Rule. The Gram block Bm satisfies Rosser’s Rule if Z(t) has at
least k zeros in Bm = [gm, gm+k).

Rosser’s Rule was proven to fail infinitely often by Lehman in 1970 [86],
however it still provides a useful tool for counting zeros of ζ(s) on the critical
line. Brent, in [25], gives the following result.

Theorem 3.3. If K consecutive Gram blocks with union [gn, gp) satisfy Rosser’s
Rule, where

K ≥ 0.0061 ln2 (gp) + 0.08 ln (gp),

then
N(gn) ≤ n+ 1 and p+ 1 ≤ N(gp).

These rules lead to computationally feasible methods of verifying the Rie-
mann Hypothesis up to a desired height.

3.6 Turing

Alan Turing [149] presented an algorithm that gave higher precision calcula-
tions of the zeta function. However, this development was made redundant
with better estimates for the error terms in the Riemann-Siegel formula [118].

Turing also developed a method for calculating N(T ) that is much better
than Backlund’s method outlined in section 3.2. Turing’s method only requires
information about the behaviour of ζ(s) on the critical line.

Let gn denote the nth Gram point, and suppose gn is a Gram point at
which Gram’s law fails. So (−1)nZ(gn) > 0 fails. We want to find a point
close to gn, gn + hn, such that (−1)nZ(gn + hn) > 0. Turing showed that if
hm = 0 and if the values of hn for n near m are not too large, then N(gm)
must take the value N(gm) = m+ 1 [48].
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Let S(N) denote the error in the approximation N(T ) ∼ π−1θ(T ) + 1, so
S(N) = N(T ) − π−1θ(T ) − 1. Then from Turing’s results, in order to prove
that S(gm) = 0 one only need prove that −2 < S(gm) < 2 as S(gm) is an
even integer [48, p. 173].

3.7 The Odlyzko-Schönhage Algorithm

The Odlyzko-Schönhage algorithm is currently the most efficient algorithm
for determining values t ∈ R for which ζ( 1

2 + it) = 0. .It uses the fact that
the most computationally complex part of the evaluation using the Riemann-
Siegel formula are computations of the form

g(t) =
M∑

k=1

k−it.

The algorithm employs the Fast Fourier Transform (FFT) to convert sums
of this type into rational functions. The authors also give a fast algorithm
for computing rational function values. The details are found in [118]. The
algorithm presented computes the first n zeros of ζ( 1

2 + it) in O(n1+ε) (as
opposed to O(n

3
2 ) using previous methods).

3.8 A Simple Algorithm for the Zeta Function

The following method uses tools for the acceleration of series convergence to
evaluate

η(s) :=
∞∑

n=1

(−1)n−1

ns
= (1− 21−s)ζ(s).

Algorithm 1. Let

dk := n

k∑
i=0

(n+ i− 1)!4i

(n− i)!(2i)!

then

ζ(s) =
−1

dn(1− 21−s)

n−1∑
k=0

(−1)k(dk − dn)
(k + 1)s

+ γn(s)

where for s = σ + it with σ ≥ 1
2

|γn(s)| ≤ 2
(3 +

√
8)n

1
|Γ (s)|

1
|(1− 21−s)|

≤ 3
(3 +

√
8)n

(1 + 2|t|)e
|t|π
2

|(1− 21−s)|



36 3 Algorithms for Calculating ζ(s)

The proof of this algorithm relies on the properties of Chebyshev polyno-
mials and can be found in [23].

3.9 Further Reading

A detailed exposition on strategies for evaluating ζ(s) can be found in [22]. The
authors consider the advantages of several algorithms, and several variations
of those described above. The material includes time and space complexity
benchmarks for specific algorithms, and the more general ideas/context from
which these algorithms arise.
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Empirical Evidence

It would be very discouraging if somewhere down the line you could
ask a computer if the Riemann Hypothesis is correct and it said, ‘Yes,
it is true, but you won’t be able to understand the proof.’ [69]

Ron Graham

The Riemann Hypothesis has endured for more than a century as a widely
believed conjecture. There are many reasons why it has endured, and captured
the imagination of mathematicians worldwide. In this chapter we will explore
the most direct form of evidence for the Riemann Hypothesis, empirical ev-
idence. Arguments for the Riemann Hypothesis often include its widespread
ramifications and appeals to mathematical beauty; however, we also have a
large corpus of hard facts. With the advent of powerful computational tools
over the last century, mathematicians have increasingly turned to computa-
tional evidence to support conjectures, and the Riemann Hypothesis is no
exception. To date ten trillion zeros of the Riemann zeta function have been
calculated, and all conform to the Riemann Hypothesis. It is, of course, im-
possible to verify the Hypothesis through direct computation; however, com-
putational evidence fulfills several objectives. First, and most obviously, it
helps to convince mathematicians that the Hypothesis is worth attempting to
prove. It allows us to prove tangential results that are intricately connected
to the Riemann Hypothesis (for example disproving the Mertens Conjecture).
Finally, numerical data allows us the opportunity to recognize other patterns,
and develop new ideas with which to attack the Hypothesis (for example the
Hilbert-Pólya conjecture, discussed in Section 4.3).

4.1 Verification in an Interval

In Chapter 2 we presented a thorough definition of the Riemann zeta function
using analytic continuation. From that analysis it is clear that calculating
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zeros of the zeta function is not a simple undertaking. The tools needed to
compute zeros are discussed in Chapter 3. However, in order to verify the
Riemann Hypothesis it is not sufficient to merely compute zeros. A rigourous
verification of the Hypothesis in a given interval can be effected in the following
way [18].

First, we state Cauchy’s Residue Theorem.

Theorem 4.1. Let C be a positively oriented simple closed contour. If a func-
tion f is analytic inside and on C except for a finite number of singular points
zk (k = 1, 2, . . . , n) inside C, then

n∑
k=1

Resz=zk
f(z) =

1
2πi

∫
C

f(z)dz,

where Resz=zk
f(z) is the residue of f(z) at the pole z = zk.

This is a fundamental result in complex analysis and can be found in any
text on the subject. For a proof of this theorem see Section 63 of [31].

Now, let s = 1
2 + it for t ∈ C, and let N1(T ) be the number of zeros of

ζ(s) in the rectangle R with vertices at −1− iT, 2− iT, 2 + iT,−1 + iT (note
that N1(T ) = 2N(T ) where N(T ) is as defined in the first section of Chapter
2). Then by Theorem 4.1 we have

N1(T )− 1 =
1

2πi

∫
∂R

−ζ
′(s)
ζ(s)

ds,

as long as T is not the imaginary part of a zero of ζ(s). The −1 term, which
appears on the left hand side of the equation, corresponds to the pole of ζ(s)
located at s = 1.

Both ζ(s) and ζ ′(s) can be computed to arbitrarily high precision, for
example using the Riemann-Siegel formula or Euler-Maclaurin summation
formula (see Section 3.4). The exact value forN1(T )−1 is obtained by dividing
the integral by 2πi and rounding off to the nearest integer.

In his 1859 paper [124], Riemann introduced the function

ξ(t) =
1
2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s),

which is analytic everywhere in C and has zeros with imaginary part between
− 1

2 and 1
2 [124]. Riemann “conjectured” that all zeros α of ξ(t) are real, that

is, all nontrivial zeros of the Riemann zeta function are of the form 1
2 + iα.

Let t̂ be a real variable. Then, in view of the intermediate value theorem
in calculus, ξ(t̂) is continuous and real, so there will be a zero of odd order
between any two points where the sign of ξ(t̂) changes. If the number of sign
changes of ξ(t̂) in [−T, T ] equals N1(T ), then all zeros of ζ(s) in R are simple
and lie on the critical line. It has been verified that the first ten trillion zeros
are simple and satisfy the Riemann Hypothesis [54].
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Conjecture 4.2. All non-trivial zeros of ζ(s) are simple.

All zeros of the Riemann zeta function are believed to be simple [36],
though the falsity of this conjecture would not disprove the Riemann Hypoth-
esis. However, zeros of higher order would be problematic for many current
computational techniques. For further details regarding Riemann Hypothesis
verification see Sections 3.2, 3.5 and 3.6.

4.2 A Brief History of Computational Evidence

The first computations of zeros were performed by Riemann himself, prior
to the presentation of his paper 12.2. These computations were never pub-
lished, but they formed the basis of his famous conjecture. Siegel, in his study
of Riemann’s notes, uncovered both the fact that Riemann had performed
some calculations of the values of ζ(s), and his brilliant method. The formula
Riemann devised was published by Siegel in the 1930s, and it subsequently be-
came known as the Riemann-Siegel formula (see 3.4). It has formed the basis
of all large-scale computations of the Riemann zeta function [34, pp 343–344].

The following table outlines the history of computational evidence sup-
porting the Riemann Hypothesis.

Year Number of computed zeros above
the real axis

Computed by

1859 (approx.) 1 B. Riemann [48, p. 159]

1903 15 J. P. Gram [55]

1914 79 R. J. Backlund [10]

1925 138 J. I. Hutchinson [70]

1935 1041 E. C. Titchmarsh [145]

1953 1,104 A. M. Turing [150]

1956 15,000 D. H. Lehmer [88]

1956 25,000 D. H. Lehmer [87]

1958 35,337 N. A. Meller [96]

1966 250,000 R. S. Lehman [85]

1968 3,500,000 J. B. Rosser, et al [128]

1977 40,000,000 R. P. Brent [160]

1979 81,000,001 R. P. Brent [25]

1982 200,000,001 R. P. Brent, et al [26]

1983 300,000,001 J. van de Lune, H. J. J. te Riele [151]

1986 1,500,000,001 J. van de Lune, et al [152]

2001 10,000,000,000 J. van de Lune (unpublished)

2004 900,000,000,000 S. Wedeniwski [160]

2004 10,000,000,000,000 X. Gourdon [54]
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Even a single exception to Riemann’s conjecture would have enor-
mously strange consequences for the distribution of prime numbers. . . If
the Riemann Hypothesis turns out to be false, there will be huge os-
cillations in the distribution of primes. In an orchestra, that would be
like one loud instrument that drowns out the others—an aesthetically
distasteful situation [19].

Enrico Bombieri

This body of evidence seems impressive; however, there are reasons why
one should be wary of computational evidence. The Riemann Hypothesis is
equivalent to the assertion that, for real t, all local maxima of ξ(t) are positive
and all local minima of ξ(t) are negative [18]. It has been suggested that a
counterexample, if one exists, would be found in the neighborhood of unusually
large peaks of |ζ( 1

2 +it)|. However, such peaks do occur, but only at very large
heights [18]. This fact, among others, should discourage the reader from being
persuaded solely by the numbers in the table above.

4.3 The Riemann Hypothesis and Random Matrices

How could it be that the Riemann zeta function so convincingly mimics
a quantum system without being one? [32]

M. Berry

One of the more popular ideas regarding the Riemann Hypothesis is that
the zeros of the zeta function can be interpreted as eigenvalues of certain ma-
trices. This line of thinking is attractive and is potentially a good way to attack
the Hypothesis, as it gives a connection to physical phenomena. This connec-
tion to the natural world grounds the abstract statement of the Hypothesis
to the real world in a way that many mathematicians find compelling.

The connection between the Riemann Hypothesis and random matrices
has its roots in the work of Hilbert and Pólya. Both, independently, enquired
whether for zeros 1

2 +iγj of ζ(s), the numbers γj belong to a set of eigenvalues
of a Hermitian operator.

Not only would the truth of the conjecture indicate that all the numbers
γj are real, but it would link the zeros to an important tool of physics. As
such, the conjecture might give a natural reason for all the nontrivial zeros to
be on the critical line [17].

Empirical results indicate that the zeros of the Riemann zeta function
are indeed distributed like the eigenvalues of certain matrix ensembles, in
particular the Gaussian unitary ensemble. This suggests that random matrix
theory might provide an avenue for the proof of the Riemann Hypothesis.
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From Hilbert and Pólya the idea of connecting the zeros of the zeta func-
tion to eigenvalues progressed in the work of Montgomery and Dyson.

Recall from Section 2.3 that the number of zeros of ζ(s) in the critical
strip with 0 ≤ <(s) < T is given by

N(T ) =
T

2π
log

T

2π
− T

2π
+O(log T ). (4.3.1)

Denote the imaginary parts of the first n zeros above the real axis by

γ1 ≤ γ2 ≤ γ3 ≤ · · · ≤ γn,

in order of increasing height (if two zeros are equal in their imaginary parts,
then we order them according to their real parts in increasing order). It follows
from (4.3.1) that

γn ∼
2πn
log n

.

Under the Riemann Hypothesis, Montgomery studied the gaps δj = γj+1−
γj between consecutive zeros, first normalizing them to have mean length 1,
asymptotically. The normalized gaps, denoted δ̂j , are given by

δ̂j = γ̂j+1 − γ̂j ,

where
γ̂n = N(γn) .

The difference
γ̂j+k − γ̂j

is known as the kth consecutive spacing [138].
Let α and β be positive real numbers, with α < β. Let γ̂1 < · · · < γ̂n be

the non-trivial zeros of the Riemann zeta function along σ = 1
2 , normalized

as above. Now let the number of kth consecutive spacings in [α, β] be given
by

|{(j, k) : 1 ≤ j ≤ n, k ≥ 0, (γ̂j+k − γ̂j) ∈ [α, β]}|
n

.

Montgomery conjectured in the early 1970’s that the number of kth consecu-
tive spacings in [α, β] behaves asymptotically as follows.

Conjecture 4.3 (Montgomery’s Pair Correlation Conjecture).

|{(j, k) : 1 ≤ j ≤ n, k ≥ 0, (γ̂j+k − γ̂j) ∈ [α, β]}|
n

∼
∫ β

α

(
1− sin2(πx)

(πx)2

)
dx,

as n→∞ [138, 99].
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indexconjecture!of Montgomery
This conjecture is based on results that are provable assuming the Riemann

Hypothesis, as well as on conjectures for the distribution of twin primes and
other prime pairs [34].

The function

1− sin2(πx)
(πx)2

is called the pair correlation function for zeros of the Riemann zeta function
[138]. Part of the folklore surrounding the Riemann Hypothesis and random
matrices is a meeting between the physicist Freeman Dyson and the mathe-
matician Hugh Montgomery at Princeton [129]. Montgomery showed Dyson
the pair correlation function for the zeta function, and the latter recognized
that it is also the pair correlation function for suitably normalized eigenvalues
in a Gaussian Unitary Ensemble. For a discussion of the theory of random ma-
trices, including the theory of Gaussian Unitary Ensembles, see Mehta [95].

Fig. 4.1. The eigenvalues of a random 40× 40 unitary matrix, 40 consecutive zeros
of ζ(s) scaled to wrap once around the circle, and 40 randomly chosen points on the
unit circle. Figure from [34] (see Section 11.3).

Dyson’s insight prompted Montgomery to reformulate his conjecture as
follows.

Conjecture 4.4 (Montgomery-Odlyzko Law). The distribution of spac-
ings between nontrivial zeros of the Riemann zeta function is statistically iden-
tical to the distribution of eigenvalue spacings in a Gaussian Unitary Ensemble
[77].

In the 1980s, Odlyzko verified the Riemann Hypothesis in large intervals
around the 1020th zero of the zeta function [34, 118]. Using the normalization

δ̂n = (γn+1 − γn)
log(γn/2π)

2π
,

Odlyzko calculated the pair correlation for zeros in these intervals (see [114]
for Odlyzko’s results and other computations).
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The following figure is a plot of the correlation function (solid line) with
a superimposed scatterplot of empirical data.

Fig. 4.2. The pair-correlation function for GUE (solid) and for 8 × 106 zeros near
the 1020th zero of ζ(s) above the real axis. Figure from [34] (see Section 11.3).

Repulsion between successive zeros is predicted by Montgomery’s conjec-
ture. However, some pairs of zeros occur very close together. The zeros at
1
2 + (7005 + t)i for t ≈ 0.06286617 and t ≈ 0.1005646 form one such pair.
The appearance of closely-spaced nontrivial zeros is known as Lehmer’s phe-
nomenon.

4.4 Skewes Number

In Section 4.2, we mentioned that there are reasons to be wary of compu-
tational evidence. The Skewes number is a perfect example of the potential
misleading nature of numerical data, and serves as another warning to those
who would be convinced by numbers alone. The Skewes number is the smallest
n such that π(n) < Li(n) fails.

The Prime Number Theorem gives

π(n) ∼ Li(n),

as n→∞. Preliminary calculations suggested that π(n) < Li(n) for all n, and
was conjectured by many mathematicians including Riemann and Gauss. This
conjecture was refuted in 1912 by Littlewood, who proved that the inequality
fails for some n [58]. Two years later, Littlewood proved that in fact the
inequality fails for infinitely many n.

We have seen the close connection of the Riemann Hypothesis and the
Prime Number Theorem. As a consequence of this connection, bounds on the
Skewes number depend on the truth or falsity of the Riemann Hypothesis.
The following bounds all require the assumption of the Riemann Hypothesis.
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In 1933, Skewes gave the upper bound n ≤ 10101034

[136]. In 1966, Lehman
showed that there are more than 10500 successive integers between 1.53×101165

and 1.65× 101165 for which the inequality fails [84]. Using better approxima-
tions to the zeros of ζ(s), te Riele in 1987 showed that there are at least 10180

successive integers in [6.627×10370, 6.687×10370] for which the inequality fails
[142]. This was improved to 1.39× 10316 by Bays and Hudson in 2000 [16].

Skewes also found a bound that does not require the Riemann Hypothesis.
First Skewes defines Hypothesis H to be

Hypothesis H. Every complex zero s = σ+ it of the Riemann zeta function
satisfies

σ − 1
2
≤ X−3 log−2(X)

provided that |t| < X3.

Note that Hypothesis H is weaker than the Riemann Hypothesis, so the nega-
tion of Hypothesis H is stronger than the negation of the Riemann Hypothesis.
In 1955, assuming the negation of Hypothesis H, Skewes computed the upper

bound n ≤ 10101010
3

[137].
The best current bounds on the Skewes numbers lie well beyond the limits

of our computing power. It is entirely possible that a counter-example to the
Riemann Hypothesis lies beyond our computational limits, and hence that
our efforts will inevitably and unfailingly generate positive evidence for a
false conjecture.

So for all practical purposes, the Riemann zeta function does not show
its true colours in the range available by numerical investigations. You
should go up to the height 1010000 then I would be much more convinced
if things were still pointing strongly in the direction of the Riemann
Hypothesis. So numerical calculations are certainly very impressive,
and they are a triumph of computers and numerical analysis, but they
are of limited capacity. The Riemann Hypothesis is a very delicate
mechanism. It works as far as we know for all existing zeros, but we
cannot, of course, verify numerically an infinity of zeros, so other
theoretical ways of approach must be found, and for the time being
they are insufficient to yield any positive conclusion [129].

Aleksandar Ivić
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Equivalent Statements

Riemann’s insight was that the frequencies of the basic waveforms that
approximate the psi function are determined by the places where the
zeta function is equal to zero . . .To me, that the distribution of prime
numbers can be so accurately represented in a harmonic analysis is
absolutely amazing and incredibly beautiful. It tells of an arcane music
and a secret harmony composed by the prime numbers [19].

Enrico Bombieri

. . . there is a sense in which we can give a one-line non technical state-
ment of the Riemann Hypothesis: ‘The primes have music in them’
[14].

M. Berry and J. P. Keating

In this chapter we discuss several statements that are equivalent to the
Riemann Hypothesis. By restating the Riemann Hypothesis in different lan-
guage, and in entirely different disciplines, we gain more possible avenues of
attack. We group these equivalences into three categories: equivalences that
are entirely number theoretic; equivalences that are closely related to the an-
alytic properties of the zeta function and other functions; and equivalences
which are truly cross-disciplinary. These equivalences range from old to rela-
tively new, from central to arcane and from deceptively simple to staggeringly
complex.

5.1 Number Theoretic Equivalences

Number theoretic equivalences of the Riemann Hypothesis provide a natural
method of explaining the Hypothesis to non-mathematicians without appeal-
ing to complex analysis. While it is unlikely that any of these equivalences will
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lead directly to a solution, they provide a sense of how intricately the Riemann
zeta function is tied to the primes. We begin by repeating our definition of
the Liouville function.

Definition 5.1. The Liouville Function is defined by

λ(n) := (−1)ω(n),

where ω(n) is the number of, not necessarily distinct, prime factors in n, with
multiple factors counted multiply.

This leads to an equivalence that can be roughly stated in terms of proba-
bility. Namely, the Riemann Hypothesis is equivalent to the statement that an
integer has an equal probability of having an odd number or an even number
of distinct prime factors. More formally we have:

Equivalence 5.2. The Riemann Hypothesis is equivalent to

λ(1) + λ(2) + · · ·+ λ(n) � n1/2+ε,

for every positive ε.

See Section 1.2 for further discussion of this equivalence.
The next equivalence we discuss has a long history. Recall that the Prime

Number Theorem states that π(x) ∼ Li(x), where Li(x) is the logarithmic
integral, defined as follows.

Definition 5.3. The logarithmic integral, Li, of x is defined as

Li(x) :=
∫ x

2

dt

log t
.

We also define π(x), the prime counting function.

Definition 5.4. The prime counting function, denoted π(x), is the number of
primes less than or equal to a real number x.

The Prime Number Theorem, in the form π(x) ∼ Li(x), was conjectured
by Gauss in 1849, in a letter to Enke [52]. Gauss made his conjecture on the
basis of his calculations (done by hand) of π(x) and contemporary tables of
values of Li(x). A short table of his findings appears in his letter to Enke.

Below Here are Prime Integral
R

dn
log n

Error

500,000 41,556 41,606.4 +50.4

1,000,000 78,501 79,627.5 +126.5

1,500,000 114,112 114,263.1 +151.1

2,000,000 148,883 149,054.8 +171.8

2,500,000 183,016 183,245.0 +229.0

3,000,000 216,745 216,970.6 +225.6

Table 5.1. Table of Gauss’ calculations of π(x) from his letter to Enke [52].
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The Prime Number Theorem, proved independently by Hadamard (see
Section 12.3) and de la Vallée Poussin (see Section 12.4), requires showing
that ζ(s) 6= 0 when <(s) = 1. However, the Riemann Hypothesis gives us
a more accurate asymptotic estimation to the error in the Prime Number
Theorem.

Equivalence 5.5. The assertion that

π(x) = Li(x) +O(
√
x log x)

is equivalent to the Riemann Hypothesis [18].

The next equivalence involves the Mertens function, for which we will need
the Möbius function.

Definition 5.6. The Möbius function, µ(n), is defined in the following way:

µ(n) :=


0 if n has a square factor
1 if n = 1
(−1)k if n is a product of k distinct primes.

We now define the Mertens function as follows.

Definition 5.7. The Mertens function, denoted M(x), is defined by

M(x) :=
∑
n≤x

µ(n) ,

where x is real [147, p. 370].

In terms of the Mertens function we have the following equivalence.

Equivalence 5.8. The Riemann Hypothesis is equivalent to

M(x) = O(x
1
2+ε)

for any ε > 0 [147].

Proving that M(x) = O(x
1
2+ε) for any ε < 1

2 is an open problem and would
be an impressive result.

We can also reformulate the Riemann Hypothesis in terms of the sum of
divisors function. The sum of divisors function is defined as follows.

Definition 5.9. For n ∈ N,

σ(n) :=
∑
d|n

d.
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This function is a special case of the divisor function σk(n) (i.e., for k = 1),
which is defined as the sum of the kth powers of the divisors of n [82].

The following equivalence is due to Robin.

Equivalence 5.10. The Riemann Hypothesis is equivalent to the statement
that, for all n > 5040,

σ(n) < eγn log log n

where γ is Euler’s constant [127].

Robin also showed, unconditionally, that

σ(n) < eγn log log n+ 0.6482
n

log log n

for all n ≥ 3.
Building on Robin’s work, Lagarias proved another equivalence to the

Riemann Hypothesis which involves the sum of divisors function.

Equivalence 5.11. The following statement is equivalent to the Riemann Hy-
pothesis,

σ(n) ≤ Hn + exp(Hn) log(Hn),

for all n ≥ 1, with equality only for n = 1 [82].

Here Hn is the nth harmonic number defined as follows.

Definition 5.12. The nth harmonic number is given by

Hn :=
n∑

j=1

1
j
.

Of particular interest is the fact that Lagarias’ equivalence is a precise in-
equality. Eric Rains verified the inequality for 1 ≤ n ≤ 5040.

By using the Mertens function we can re-cast an earlier equivalence in
terms of Farey series. The term Farey series is entirely misleading, as they
were not discovered by Farey, nor are they series. Farey series were in fact
discovered by Haros, and are defined as follows.

Definition 5.13. The Farey series of order n is the set of rationals a
b with

0 ≤ a ≤ b ≤ n and (a, b) = 1, arranged in increasing order [48].

For example, the Farey series of order 3 is given by

F3 =
{

0
1
,
1
3
,
1
2
,
2
3
,
1
1

}
.

We denote the jth term of Fn by Fn(j). It is easy to see that the number, m,
of terms in the Farey series of order n is m = 1+

∑n
j=1 φ(j) where φ(j) is the

Euler totient function. Now we can formulate the following equivalence.
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Equivalence 5.14. The Riemann Hypothesis is equivalent to

m∑
j=1

∣∣∣∣Fn(j)− j

m

∣∣∣∣ = O(n
1
2+ε)

where ε > 0 [48].

5.2 Analytic Equivalences

In this section we explore various equivalences that are connected to the
Riemann zeta function analytically. These problems vary from direct conse-
quences of the definition of the zeta function to more abstruse re-formulations.
Generally these problems are classical, and have arisen in the course of re-
search into the properties of ζ(s). They offer more promising avenues of attack
on the Hypothesis.

We begin by re-stating the Riemann Hypothesis in terms of the Dirichlet
eta function, or the alternating zeta function.

Equivalence 5.15. The Riemann Hypothesis is equivalent to the statement
that all zeros of the Dirichlet eta function

η(s) :=
∞∑

k=1

(−1)k−1

ks
= (1− 21−s)ζ(s)

which fall in the critical strip 0 < <(s) < 1 lie on the critical line <(s) = 1/2.

We can also consider the convergence of 1/ζ(s) and the values of the
derivative, ζ ′(s).

Equivalence 5.16. The convergence of

∞∑
n=1

µ(n)
ns

for σ > 1/2 is necessary and sufficient for the Riemann Hypothesis [147,
pp 369–370]. Note that for σ > 1

1
ζ(s)

=
∞∑

n=1

µ(n)
ns

.

Equivalence 5.17. The Riemann Hypothesis is equivalent to the non-vanishing
of ζ ′(s) in the region 0 < σ < 1/2 [140].
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Recall from Chapter 2 that in deriving the functional equation for ζ(s) we
defined the ξ function,

ξ(s) :=
s

2
(s− 1)π−

s
2Γ
(s

2

)
ζ(s).

Lagarias derived the following criterion on ξ(s) [81].

Equivalence 5.18. The Riemann Hypothesis is equivalent to

<
(
ξ′(s)
ξ(s)

)
> 0.

Continuing to work with ξ(s), we define λn as

λn :=
1

(n− 1)!
dn

dsn
(sn−1 log ξ(s)).

Now we can state an equivalence relating the Riemann Hypothesis to the value
of λn.

Equivalence 5.19. The Riemann Hypothesis is equivalent to the non-negativity
of λn for all n ≥ 1 [90].

Since the Riemann Hypothesis is a statement regarding zeros of the zeta
function, it is no surprise that we can re-formulate the Hypothesis into other
statements involving the zeros of ζ(s). The following two equivalences give
examples of non-trivial reformulations that use these zeros.

Equivalence 5.20. The Rieman Hypothesis is equivalent to the following
statement: ∑

ρ

(
1−

(
1− 1

ρ

)n)
> 0

for each n = 1, 2, 3, ..., where ρ runs over the complex zeros of ζ(s) [20].

Note that ∑
ρ

(
1−

(
1− 1

ρ

)n)
= λn|s=1,

where λn is defined as in Equivalence 5.19.

Equivalence 5.21. The RH is true if and only if the integral

I =
∫

σ= 1
2

log(|ζ(s)|)
|s|2

dt = 0,
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where s = σ + it [14]. Moreover, this integral can be exactly expressed as the
sum

I = 2π
∑

<(ρ)> 1
2

log
∣∣∣∣ ρ

1− ρ

∣∣∣∣ ,
where ρ is a zero of ζ(s) in the region indicated.

Hardy and Littlewood derived another equivalence to the Riemann Hy-
pothesis that sums values of ζ(s), evaluated at odd integers.

Equivalence 5.22. The Riemann Hypothesis holds if and only if
∞∑

k=1

(−x)k

k!ζ(2k + 1)
= O(x−

1
4 ),

as x→∞ [60].

For the next equivalence we will need some definitions. We first define the
Xi function as,

Ξ(iz) :=
1
2

(
z2 − 1

4

)
π−z/2− 1

4Γ

(
1
2
z +

1
4

)
ζ

(
z +

1
2

)
.

We note that Ξ( z
2 )/8 is the Fourier transform of the signal Φ(t), given by,

Φ(t) :=
∞∑

n=1

(2π2n4e9t − 3πn2e5t)e−πn2e4t

,

for t ∈ R and t ≥ 0. Now we consider the Fourier transform of Φ(t)eλt2 , which
we will denote as H(λ, z),

H(λ, z) := Ft[Φ(t)eλt2 ](z),

where λ ∈ R and z ∈ C. We can see that H(0, z) = Ξ( z
2 )/8. It was proven

in 1950 by de Bruijn that H has only real zeros for λ ≥ 1
2 . Furthermore, it is

known that there exists a constant Λ such that if H(λ, z) = 0, then z is real
if and only if λ ≥ Λ. The value Λ is called the de Bruijn-Newman constant.
Now we can state the Riemann Hypothesis in terms of the de Bruijn-Newman
constant.

Equivalence 5.23. The Riemann Hypothesis is equivalent to the conjecture
that Λ ≤ 0 [39, 38].

There are several lower bounds on Λ, the best at this time being −2.7 ·10−9 <
Λ, proven by Odlyzko in 2000 [117]. It had been conjectured by C. M. Newman
that Λ satisfies Λ ≥ 0 [104].

Salem, in 1953, gave the following criterion for the truth of the Riemann
Hypothesis.
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Equivalence 5.24. The Riemann Hypothesis holds if and only if the integral
equation ∫ ∞

−∞

e−σyϕ(y)
eex−y + 1

dy = 0

has no bounded solution, ϕ(y), other than the trivial solution ϕ(y) = 0, for
1
2 < σ < 1 [131].

The following elegant equivalence, due to Volchkov, connects the zeros of
the Riemann zeta function to Euler’s constant γ.

Equivalence 5.25. The Riemann Hypothesis is equivalent to∫ ∞

0

(1− 12t2)(1 + 4t2)−3

∫ ∞

1/2

log |ζ(σ + it)| dσdt = π(3− γ)/32,

where γ is Euler’s constant [157].

Julio Alacántara-Bode, building on the work of Beurling, re-fomulated
the Riemann Hypothesis using the Hilbert-Schmidt integral operator. The
Hilbert-Schmidt integral operator A on L2(0, 1) is given by

[Af ](θ) :=
∫ 1

0

f(x)
{
θ

x

}
dx,

where {x} is the fractional part of x. Now the Riemann Hypothesis can be
stated as follows.

Equivalence 5.26. The Riemann hypothesis is true if and only if the Hilbert-
Schmidt operator A is injective [5].

We can also re-state the Riemann Hypothesis in terms of ergodic theory.
A theorem of Dani gives that, for each y > 0, there exist ergodic measures,
m(y), on the space M = SL2(Z)\SL2(R), supported on closed orbits of period
1/y of the horocyclic flow.

Equivalence 5.27. The Riemann Hypothesis is equivalent to the statement
that for any smooth function f on M ,∫

M

fdm(y) = o(y
3
4−ε)

for any ε > 0 as y → 0 [154].
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5.3 Other Equivalences

At first glance the remaining equivalences seem to have little to do with the
zeros of a complex-valued function. They are interesting as examples of the
intricate connections between various mathematical disciplines, but they have
not indicated novel approaches to tackling the Riemann Hypothesis.

We begin by defining the Redheffer Matrix of order n. The n×n Redheffer
matrix, Rn := [Rn(i, j)], is defined by

Rn(i, j) =

{
1 if j = 1 or if i|j
0 otherwise.

It can easily be shown that detRn =
∑n

k=1 µ(k). We can simply use this to
state the Riemann Hypothesis by employing a previous equivalence.

Equivalence 5.28. The Riemann Hypothesis is true if and only if

det(Rn) = O(n
1
2+ε)

for any ε > 0.

This was shown by Redheffer in [123]. Now we can use the Redheffer matrices
to translate the Riemann Hypothesis into the language of graph theory. We let
Rn be the Redheffer matrix as defined above, and set Bn := Rn − In (where
In is the n× n identity matrix). Now we let Gn be the directed graph whose
adjacency matrix is Bn. Finally we let the graph Gn be the graph obtained
from Gn by adding a loop at node 1 of Gn. Now we can re-state the Riemann
Hypothesis in terms of the cycles of Gn.

Equivalence 5.29. The following statement is equivalent to the Riemann Hy-
pothesis:

|#(odd cycles in Gn)−#(even cycles in Gn)| = O(n
1
2+ε)

for any ε > 0 [15].

The Nyman-Beurling equivalent form translates the Riemann Hypothesis
into a statement about the span of a set of functions.

Equivalence 5.30. The closed linear span of {ρα(t) : 0 < α < 1} is L2(0, 1)
if and only if the Riemann Hypothesis is true, where

ρα(t) :=
{α
t

}
− α

{
1
t

}
,

{x} is the fractional part of x, and L2(0, 1) is the space of square integrable
functions on (0, 1) [13].
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We can also re-formulate the Riemann Hypothesis in terms of a problem
regarding the order of group elements.

Equivalence 5.31. The Riemann Hypothesis is equivalent to the statement
that for sufficiently large n,

log g(n) <
1√

Li(n)

where g(n) is the maximal order of elements of the symmetric group Sn of
degree n [94].

Finally, a problem about the rate of convergence of certain discrete mea-
sures is equivalent to the Riemann Hypothesis. Denote the nonzero reals by
R∗, and let Cr

c (R∗) be the set of all functions f : R∗ → C that are r times
differentiable and have compact support. For y ∈ R∗ and for f ∈ C2

c (R∗),
define

my(f) :=
∑
n∈N

yφ(n)f(y1/2n) ,

with φ the Euler totient function. Let

m0(f) :=
∫ ∞

0

(
6
π2

)
uf(u) du .

Equivalence 5.32. The RH is true if and only if my(f) = m0(f) + o(y
3
4−ε)

as y → 0, for every function f ∈ C2
c (R∗) and every ε > 0 [154].
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Extensions of the Riemann Hypothesis

It is common in mathematics to generalize hard problems to even more diffi-
cult ones. Sometimes this is productive and sometimes not. However, in the
Riemann Hypothesis case this is a valuable enterprise that allows us to see
a larger picture. These stronger forms of the RH allow the proof of many
conditional results that appear to be plausible (see papers 11.1 and 11.2) and
add to the heuristic evidence for the RH.

We begin by once again stating the RH in its classical form. We then give
a variety of extensions to other related problems. There is some variation in
the literature on these problems as to names and abbreviations. We attempt
to use standard notations as reflected in the source material; however, this is
not always possible.

6.1 Riemann Hypothesis

A usual formulation of the problem is as follows (see [18]),

Conjecture 6.1 (The RH). The nontrivial zeros of ζ(s) have real part equal
to 1

2 .

The fundamental object under consideration is ζ(s). As before, the Rie-
mann zeta function, ζ(s), is the function of the complex variable s, defined in
the half-plane <(s) > 1 by the absolutely convergent series

ζ(s) :=
∞∑

n=1

1
ns
,

and in the whole complex plane by analytic continuation (see Chapter 2).
This statement of the problem can be simplified by introducing the Dirich-

let eta function, also known as the alternating zeta function.
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Definition 6.2. The Dirichlet eta function is defined as

η(s) :=
∞∑

k=1

(−1)k−1

ks
= (1− 21−s)ζ(s).

Since η(s) converges for all s ∈ C, with <(s) > 0, one needs not consider
analytic continuation. The Riemann Hypothesis is true if and only if the zeros
of η(s) in the strip 0 < <(s) < 1 all lie on the line <(s) = 1

2 . This equivalence,
and other elementary equivalences, are discussed further in Chapter 5.

6.2 Generalized Riemann Hypothesis

The Riemann zeta function is the object considered by the Riemann Hypoth-
esis. However, ζ(s) is a special case within a larger, more general class of
functions. The Generalized Riemann Hypothesis (gRH) considers this larger
class of functions, the class of Dirichlet L-functions [18]. We will build these
functions in the same way we built the Riemann zeta function in Chapter 2.
We define a Dirichlet L-series to be,

L(s, χk) :=
∞∑

n=1

χk(n)n−s

where χk(n) is a number theoretic character modulo k, defined by the prop-
erties,

χk(1) = 1,
χk(n) = χk(n+ k),

for all m and n
χk(m)χk(n) = χk(mn),

and for (k, n) 6= 1,
χk(n) = 0.

A character modulo k is said to be primitive if no χd(n) exists such that
χk(n) = χd(n) and d|k, d 6= k. The unique χk(n) such that χk(n) = 1 for all
n with (k, n) = 1 is called the principal character modulo k.

A Dirichlet L-function, L(s, χk), is the analytic continuation of the associ-
ated Dirichlet L-series. We can see that ζ(s) belongs in this class of functions
as
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L(s, χ1) =
∞∑

n=1

χ1(n)n−s =
∞∑

n=1

n−s = ζ(s).

We now state the gRH as follows.

Extension 6.3 (The gRH). All non-trivial zeros of L(s, χk) have real part
equal to 1

2 [30, p. 3].

Non-trivial in this case means L(s, χk) = 0 for s ∈ C, such that 0 < <(s) < 1.
We see that gRH implies RH, as ζ(s) is a member of the class of Dirichlet

L-functions. We also note that, unlike ζ(s), L(s, χk) may have zeros on the
line =(s) = 0; however, all of these zeros are known and are considered to be
trivial zeros.

Note that there is variation in the literature regarding generalized vs.
extended Riemann Hypthesis. Also, the theory of global L-functions is rich and
extends far beyond the points considered here (see [75] for a more thorough
discussion).

6.3 Extended Riemann Hypothesis

We define the Legendre symbol,
(

n
p

)
, as

(
n

p

)
=

 1, if the congruence x2 ≡ n (mod p) has a solution
0, if p|n

−1, if the congruence x2 ≡ n (mod p) has no solution.

Consider the series,

Lp(s) :=
∞∑

n=1

(
n

p

)
1
ns
.

The Extended Riemann Hypothesis considers the extension of Lp(s) to the
entire complex plane through analytic continuation.

Extension 6.4 (The eRH). The zeros of Lp(s) with 0 < <(s) < 1 all lie on
the line <(s) = 1

2 [30, p. viii].

Since
(

a
b

)
is a specific example of a number theoretic character, the Ex-

tended Riemann Hypothesis is an instance of the Generalized Riemann Hy-
pothesis, presented in Section 6.2.
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6.4 Equivalent Extended Riemann Hypothesis

If we define π(x; k, l) to be

π(x; k, l) := |{p : p ≤ x, p is prime, and p ≡ l (mod k)}|

then an equivalent eRH is as follows.

Extension 6.5 (An Equivalent eRH). For (k, l) = 1 and ε > 0,

π(x; k, l) =
Li(x)
φ(k)

+O(x
1
2+ε)

where φ(k) is Euler’s totient function, and Li(x) :=
∫ x

2
dt

log t .

This statement can be found in [9]. The authors of [9] credit Titchmarsh
(circa 1930).

6.5 Another Extended Riemann Hypothesis

Let K be a number field with ring of integers OK . The Dedekind zeta function
of K is given by,

ζK(s) :=
∑

a

N(a)−s

for <(s) > 1, where the sum is over all integral ideals of OK , and N(a) is the
norm of a. Again we consider the extension of ζK(s) to the entire complex
plane through analytic continuation.

Extension 6.6 (Another eRH). All zeros of the Dedekind zeta function of
any algebraic number field, with 0 < <(s) < 1, lie on the line <(s) = 1

2 .

This statement includes the Riemann Hypothesis as the Riemann zeta
function is the Dedekind zeta function over the field of rational numbers [3].

6.6 Grand Riemann Hypothesis

In order to state the Grand Riemann Hypothesis we need to define automor-
phic L-functions. This requires sophisticated tools and we refer the interested
reader to another source, such as [163], in order to develop the necessary
background.
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Let A be the ring of adeles of Q and let π be an automorphic cuspidal
representation of the general linear group GLm(A) with central character χ.
The representation π is equivalent to

⊗
v πv with v = ∞ or v = p and πv

an irreducible unitary representation of GLm(Qv). For each prime and local
representation πp we define

L(s, πp) :=
m∏

j=1

(
1− αj,π(p)p−s

)−1

where the m complex parameters αj,π(p) are determined by πp. For v = ∞,
π∞ determines parameters µj,π(∞) such that

L(s, π∞) :=
m∏

j=1

ΓR(s− µj,π(∞))

where
ΓR(s) = π−s/2Γ (s/2).

The standard automorphic L-function associated with π is defined by

L(s, π) :=
∏
p

L(s, πp)

Now if we define
Λ(s, π) := L(s, π∞)L(s, π),

then Λ(s, π) is entire and satisfies the functional equation

Λ(s, π) = επN
1
2−s
π Λ(1− s, π̃)

where Nπ ≥ 1 is an integer, επ is of modulo 1 and π̃ is the contragredient
representation π̃(g) = π(tg−1). General conjectures of Langlands assert these
standard L-functions multiplicatively generate all L-functions.

As a simple and explicit example of automorphic L-function, consider the
discriminant

∆(z) := e2πiz
∞∏

n=1

(
1− e2πinz

)24
:=

∞∑
n=1

τ(n)e2πinz.

Then ∆(z) is a meromophic function in the upper half plane satisfying the
transformation rule

∆

(
az + b

cz + d

)
= (cz + d)12∆(z)

for a, b, c, d ∈ Z satisfying ad− bc = 1. Associated to ∆, we let
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L(s,∆) :=
∞∑

n=1

τ(n)
n11/2

n−s =
∏
p

(
1− τ(p)

p11/2
p−s + p−2s

)−1

.

Now L(s,∆) is entire and satisfies the functional equation

Λ(s,∆) := ΓR

(
s+

11
2

)
ΓR

(
s+

13
2

)
L(s,∆) = Λ(1− s,∆).

The Grand Riemann Hypothesis asserts that the zeros of Λ(s, π) (and in
particular, those of Λ(s,∆)) all lie on <(s) = 1

2 .

Extension 6.7. All of the zeros, of any automorphic L-function, with 0 <
<(s) < 1, lie on the line <(s) = 1

2 .

Sarnak discusses the Grand Riemann Hypothesis in more detail in 11.2.
The objects considered by extensions to the Riemann Hypothesis become

more specialized and complicated. We refer the interested reader to more
comprehensive resources for further material on these problems [75, 76].
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Right now, when we tackle problems without knowing the truth of the
Riemann Hypothesis, it’s as if we have a screwdriver. But when we
have it, it’ll be more like a bulldozer [79].

Peter Sarnak

The consequences of a proof of the Riemann Hypothesis to prime numbers
and elementary number theory are apparent, as are their connection to practi-
cal applications such as cryptography. Aside from these considerations a large
body of theory has been built on the Riemann Hypothesis. This body of math-
ematics is further heuristic evidence in support of the Riemann Hypothesis,
as a positive result would confirm many other plausible conjectures in number
theory. These results also provide further motivation for mathematicians to
prove the Riemann Hypothesis and add to its importance to mathematics as
a whole. In this chapter we consider some of the more important statements
which would become true should a proof of the Riemann Hypothesis be found.

7.1 The Prime Number Theorem

The Prime Number Theorem was proved independently in 1896 and 1899 by
Hadamard and de la Vallée Poussin respectively.

Theorem 7.1 (The Prime Number Theorem). π(n) ∼ Li(n) as n→∞.

The proof relies on showing that ζ(s) has no zeros of the form 1+ it for t ∈ R.
Thus it follows from the truth of the Riemann Hypothesis.

It is interesting to note that Erdős and Selberg both found an “elementary”
proof of the Prime Number Theorem. Here elementary means that the proofs
do not use any advanced theory in complex analysis, in particular they use
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no advanced theory of ζ(s). These proofs appear in Sections 12.11 and 12.10
respectively. The simplest proof we know of is due to Newman (included in
Section 12.15) and is elegantly presented by Korevaar in Section 12.16. The
fact that the Prime Number Theorem can be proven independently of the
Riemann zeta function adds some plausibility to the Riemann Hypothesis.

7.2 Goldbach’s Conjecture

In 1742, Goldbach conjectured, in a letter to Euler, that every natural num-
ber, n ≥ 5, is a sum of three prime numbers (Euler gave the equivalent re-
formulation; every even number greater than 3 is a sum of two primes) [75].
This conjecture is referred to as Goldbach’s strong conjecture and is one of the
oldest unsolved problems in number theory. A related problem is Goldbach’s
weak conjecture.

Conjecture 7.2 (Goldbach’s Weak Conjecture). Every odd number, n >
7, can be expressed as a sum of three odd primes.

Hardy and Littlewood proved in [61] that the gRH implies Goldbach’s weak
conjecture for sufficiently large n. In 1937, Vinogradov gave the following
result without assuming any variant of the RH.

Theorem 7.3. Every sufficiently large odd number, N ≥ N0, is the sum of
three prime numbers [155].

The number N0 is effectively computable. However, the best known N0 is still
too large to be verified, even with the aid of a computer. In 1997 Deshouillers,
Effinger, te Riele, and Zinoviev proved the following result.

Theorem 7.4. Assuming the gRH, every odd number, n > 5, can be expressed
as a sum of three prime numbers. [47]

7.3 More Goldbach

Hardy and Littlewood [62] proved that if the gRH (see Section 6.2) is true,
then almost all even numbers are a sum of two primes. Specifically, if E(N)
denotes the number of even integers, n < N , that are not a sum of two primes,
then E(N) = O(N

1
2+ε) for any ε > 0.

Another important result along these lines was proven by J.J. Chen in
1973.

Theorem 7.5 (Chen’s Theorem). Every sufficiently large even integer is
a sum of a prime and a product of at most two primes [29].
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7.4 Primes in a Given Interval

A question of interest in the study of prime numbers concerns the existence
of a prime p such that a < p < b for given a and b. Bertrand’s Postulate of
1845 states that between a and 2a there is always a prime number (for a > 1).
It is not difficult to show the following under the assumption of the Riemann
Hypothesis.

Theorem 7.6. If the Riemann Hypothesis is true, then for sufficiently large
x and for any α > 1

2 , there exists a prime, p, in (x, x+ xα) [122].

7.5 The Least Prime in Arithmetic Progressions

The extended Riemann Hypothesis can be applied to the problem of comput-
ing (or estimating) π(x; k, l), where π(x; k, l) is defined as,

π(x; k, l) := |{p : p is prime, p ≤ x, and p ≡ l (mod k)}|.

Titchmarsh proved the following result given the eRH (see Section 6.3).

Theorem 7.7. If the eRH is true, then the least prime p ≡ l (mod k) is less
than k2+ε, where ε > 0 is arbitrary and k > k0(ε) [30, p. xiv].

Unconditionally, the best known result is due to Heath-Brown that the
least prime p satisfies p� k5.5 [65].

7.6 Primality Testing

The performance of a variety of algorithms for primality testing rely on
the gRH. The probabilistic Miller-Rabin primality test runs in determinis-
tic polynomial-time assuming the gRH [98]. Also, the probabilistic Solovay-
Strassen algorithm is provably deterministic under the gRH [2]. However both
of these results are superseded by the results of Agrawal, Kayal and Saxena
(presented in Section 12.20). Their paper contains an unconditional deter-
ministic polynomial-time algorithm for primality testing. Again the removal
of the gRH as an assumption adds to the plausibility of the RH.
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7.7 Artin’s Conjecture

There is no statement in the literature that is uniquely identified as Artin’s
Conjecture. We present one such conjecture related to primitive roots in Z/pZ.

Definition 7.8. Given a prime, p, an integer a is a primitive root modulo p
if aα 6≡ 1 (mod p) for any 0 < α ≤ p− 2.

Artin’s Conjecture is as follows.

Conjecture 7.9. Every a ∈ Z, where a is not square and a 6= −1, is a prim-
itive root modulo p for infinitely many primes p.

The Conjecture was proven by Hooley in 1967 assuming the gRH [68]. Artin’s
Conjecture was proven unconditionally for infinitely many a by Ram Murty
and Gupta using sieve methods [101, 102]. This result was improved in 1986
by Heath-Brown to the following.

Theorem 7.10. If q, r, s are three nonzero multiplicatively independent in-
tegers such that none of q, r, s,−3qr,−3qs,−3rs, qrs is a square, then the
number n(x) of primes p ≤ x for which at least one of q, r, s is a primitive
root modulo p satisfies n(x) � x

log2 x
[64].

From this it follows that there are at most two positive primes k for which
Artin’s conjecture fails. These results also add to the plausibility of the RH
as they are unconditional.

7.8 Bounds on Dirichlet L-series

Let L(1, χD) be the Dirichlet L-series,

L(1, χD) =
∞∑

n=1

χD(n)
n

,

at 1, where χD is a non-principal Dirichlet character with modulus D (see
Section 6.2). It is well known [56] that |LD(1, χ)| is bounded by

D−ε �ε |LD(1, χ)| � logD.

Littlewood [92], assuming the gRH, gave the following bounds on |LD(1, χ)|:

1
log logD

� |LD(1, χ)| � log logD.
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7.9 The Lindelöf Hypothesis

The Lindelöf Hypothesis (LH) states that ζ( 1
2 + it) = O(tε) for any ε > 0,

t ≥ 0. We can make the statement that ζ(σ + it) = O(|t|max{1−2σ,0}+ε) for
any ε > 0, 0 ≤ σ ≤ 1. If the Riemann Hypothesis holds, then the Lindelöf
Hypothesis follows; however, it is not known whether the converse is true [147,
p. 328]. We define the function N(σ, T ) as follows.

Definition 7.11. N(σ, T ) is the number of zeros of ζ(β+ it) such that β > σ,
for 0 < t ≤ T .

We can see that if the RH is true, then N(σ, T ) = 0 if σ 6= 1
2 . Also, if we

take N(T ) to be the number of zeros of ζ(σ + it) in the rectangle, 0 ≤ σ < 1,
0 ≤ t ≤ T , then N(σ, T ) ≤ N(T ) [147]. The Lindelöf Hypothesis is equivalent
to the following statement.

Equivalence 7.12 (An Equivalent LH). For every σ > 1
2 ,

N(σ, T + 1)−N(σ, T ) = o(log T ) [11].

This statement shows the relevance of the Lindelöf Hypothesis in terms of the
distribution of the zeros of ζ(s).

7.10 Titchmarsh’s S(T ) Function

In [147], Titchmarsh considers at length some consequences of a proof of the
Riemann Hypothesis. He introduces the functions S(T ) and S1(T ), defined as
follows.

Definition 7.13. For a real variable T ≥ 0, set

S(T ) := π−1 arg ζ
(

1
2

+ iT

)
,

and

S1(T ) :=
∫ T

0

S(t)dt.

The connection between ζ(s) and S1(T ) is given by the following theorem
[147, p. 221].

Theorem 7.14. We have that,

S1(T ) =
1
π

∫ 2

1
2

log |ζ(σ + iT )|dσ +O(1).
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The following results concerning S(T ) and S1(T ) follow under the assump-
tion of the RH.

Theorem 7.15. Under the RH, for any ε > 0, each of the inequalities

S(T ) > (log T )
1
2−ε,

and
S1(T ) < −(log T )

1
2−ε

have solutions for arbitrarily large values of T .

Recall that f(x) = Ω(g(x)) if |f(x)| ≥ A|g(x)| for some constant A, and all
values of x > x0 for some x0.

Theorem 7.16. Under the RH we have for any ε > 0 that

S1(T ) = Ω
(
(log T )

1
2−ε
)
.

Titchmarsh proves that S(T ) = O(log T ) and S1(T ) = O(log T ) without
the RH. If we assume the RH then we can make the following improvements.

Theorem 7.17. Under the RH we have

S(T ) = O

(
log T

log log T

)
,

and

S1(T ) = O

(
log T

(log log T )2

)
.

Proofs of these theorems and their connection to the behaviour of ζ(s) are
given in detail in [147, § 14.10].

7.11 Mean Values of ζ(s)

An ongoing theme in the study of the Riemann zeta function, ζ(s), has been
the estimation of the mean values (or moments) of ζ(s),

Ik(T ) :=
1
T

∫ T

0

∣∣∣∣ζ (1
2

+ it

)∣∣∣∣2k

dt,

for integer k ≥ 1. Upper bounds for Ik(T ) have numerous applications, for
example, in zero-density theorems for ζ(s) and various divisor problems.

In 1918, Hardy and Littlewood [60] proved that
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I1(T ) ∼ log T

as T →∞. In 1926, Ingham [71] showed that

I2(T ) ∼ 1
2π2

(log T )4.

Although it has been conjectured that

Ik(T ) ∼ ck(log T )k2

for some positive constant ck, no asymptotic estimate for Ik when k ≥ 3
is known. Conrey and Ghosh (in an unpublished work) conjectured a more
precise form of the constant ck, namely

Ik(T ) ∼ a(k)g(k)
Γ (k2 + 1)

(log T )k2
,

where

a(k) :=
∏
p

((
1− 1

p

)k2 ∞∑
m=0

(
Γ (m+ k)
m!Γ (k)

)2

p−m

)
,

and g(k) is an integer whenever k is an integer. The results of Hardy-
Littlewood and Ingham give g(1) = 1 and g(2) = 2 respectively. Keating and
Snaith [78] suggested that the characteristic polynomial of a large random
unitary matrix can be used to model the value distribution of the Riemann
zeta function near a large height T . Based on this, Keating and Snaith made
an explicit conjecture on the integer g(k) in terms of Barnes’ G-function.

Conrey and Ghosh showed in [35] that the RH implies

Ik(T ) ≥ (a(k) + o(1))(log T )k2

as T → ∞. Later, Balasubramanian and Ramachandra [12] removed the as-
sumption of the RH. Their result was subsequently improved by Soundarara-
jan in [139] to

Ik(T ) ≥ 2(ak + o(1))(log T )k2

for k ≥ 2.
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Failed Attempts at Proof

George Pólya once had a young mathematician confide to him that he
was working on the great Riemann Hypothesis. “ I think about it every
day when I wake up in the morning,” he said. Pólya sent him a reprint
of a faulty proof that had been once been submitted by a mathematician
who was convinced he’d solved it, together with a note: “If you want
to climb the Matterhorn you might first wish to go to Zermatt where
those who have tried are buried.” [67]

In this chapter we discuss four famous failed attempts at the Riemann
Hypothesis. Though flawed, all of these attempts spurred further research
into the behaviour of the Riemann zeta function.

8.1 Stieltjes and The Mertens Conjecture

Recall that the Mertens’ function is defined as

M(n) :=
n∑

k=1

µ(k)

where µ(k) is the Möbius function. The statement generally referred to as the
Mertens Conjecture is that for any n ≥ 1, |M(n)| < n

1
2 . The truth of the

Mertens conjecture implies the truth of the Riemann Hypothesis. In 1885,
Stieltjes published a note in the Comptes Rendus of the Paris Academy of
Sciences in which he claimed to have proved that M(n) = O(n

1
2 ). However

he died without publishing his result, and no proof was found in his papers
posthumously [46]. Odlyzko and te Riele prove in [119] that the Mertens con-
jecture is false. They show that,
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lim sup
n→∞

M(n)n−
1
2 > 1.06 and,

lim inf
n→∞

M(n)n−
1
2 < −1.009.

Their proof relies on accurate computation of the first 2000 zeros of ζ(s).
While it is not impossible that M(n) = O(n

1
2 ) they feel that it is improbable.

The Riemann Hypothesis is in fact equivalent to the conjecture that M(n) =
O(n

1
2+ε), for any ε > 0 (see chapter 5 for equivalences).

8.2 Hans Rademacher and False Hopes

In 1945, Time Magazine reported that Hans Rademacher had submitted a
flawed proof of the Riemann Hypothesis to the journal Transactions of the
American Mathematical Society. The text of the article follows:

A sure way for any mathematician to achieve immortal fame would
be to prove or disprove the Riemann hypothesis. This baffling theory,
which deals with prime numbers, is usually stated in Riemann’s sym-
bolism as follows: “All the nontrivial zeros of the zeta function of s,
a complex variable, lie on the line where sigma is 1/2 (sigma being
the real part of s).” The theory was propounded in 1859 by Georg
Friedrich Bernhard Riemann (who revolutionized geometry and laid
the foundations for Einstein’s theory of relativity). No layman has ever
been able to understand it and no mathematician has ever proved it.
One day last month electrifying news arrived at the University of
Chicago office of Dr. Adrian A. Albert, editor of the Transactions of
the American Mathematical Society. A wire from the society’s secre-
tary, University of Pennsylvania Professor John R. Kline, asked Editor
Albert to stop the presses: a paper disproving the Riemann hypothe-
sis was on the way. Its author: Professor Hans Adolf Rademacher, a
refugee German mathematician now at Penn.
On the heels of the telegram came a letter from Professor Rademacher
himself, reporting that his calculations had been checked and con-
firmed by famed Mathematician Carl Siegel of Princeton’s Institute
for Advanced Study. Editor Albert got ready to publish the historic
paper in the May issue. U.S. mathematicians, hearing the wildfire ru-
mor, held their breath. Alas for drama, last week the issue went to
press without the Rademacher article. At the last moment the profes-
sor wired meekly that it was all a mistake; on rechecking. Mathemati-
cian Siegel had discovered a flaw (undisclosed) in the Rademacher
reasoning. U.S. mathematicians felt much like the morning after a
phony armistice celebration. Sighed Editor Albert: “The whole thing
certainly raised a lot of false hopes.” [143]
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8.3 Turán’s Condition

Turán showed that if for all N sufficiently large, the N th partial sum of ζ(s)
does not vanish for σ > 1, then the Riemann Hypothesis follows [148]. How-
ever, H. Montgomery proved that this approach will not work as for any
positive c < 4

π − 1, the N th partial sum of ζ(s) has zeros in the half-plane
σ > 1 + c log log N

log N . [100]

8.4 Louis de Branges’ Approach

Louis de Branges is currently Edward C. Elliott Distinguished Professor of
Mathematics at Purdue University. In 1985, de Branges published a proof
of another famous open problem, the Bieberbach Conjecture. The conjecture
considers the class, S, of all f(s) = s + a2s

2 + a3s
3 + . . . which are analytic

and satisfy |f(s)| = 1, for any |s| = 1.

Theorem 8.1. For all n > 1, and all f ∈ S, |an| ≤ n.

The proof followed several incomplete attempts by de Branges. Since proving
the Bieberbach Conjecture, he has claimed several times to have a proof of
the Riemann Hypothesis. However, none of these are accepted by the mathe-
matical community. In the words of Karl Sabbagh,

. . . another mathematician was quietly working away, ignored or ac-
tively shunned by his professional colleagues, on his proof of the Rie-
mann Hypothesis, a proof to which he was putting the final touches
early in 2002. He was Louis de Branges, a man to be taken seriously,
one would think, because he had previously proved another famous
theorem – the Bieberbach Conjecture. [130, p. 115]

An extensive profile of de Branges and one of his earlier proofs can be found
in [130]. A press release from Purdue regarding de Branges’ latest claim can
be found in [24].

The approach used by de Branges has been disputed by Conrey and Li in
[37]. The relevant papers by de Branges are [42, 43, 44, 45]. Also papers can
be found on de Branges’ website, [41].

8.5 No Really Good Idea

There have probably been very few attempts at proving the Riemann
hypothesis, because, simply, no one has ever had any really good idea
for how to go about it [32]!
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Atle Selberg

Many proofs have been offered by less illustrious mathematicians. Several
popular anecdotes to this effect involve the editor of a mathematical journal
staving off enthusiastic amateur mathematicians who are ignorant of the sub-
tleties of complex analysis. Roger Heath-Brown relates his experience with
these attempts,

I receive unsolicited manuscripts quite frequently – one finds a par-
ticular person who has an idea, and no matter how many times you
point out a mistake they correct that and produce something else that
is also a mistake. [130, p. 112]

Any basic web-search will reveal several short and easy ‘proofs’ of the
Hypothesis. Given the million dollar award for a proof, we suspect many
more will be offered.
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Formulae

The following is a reference list of useful formulae involving ζ(s), and its
relatives. Throughout the variable n is assumed to lie in N [1].

1. The Euler Product Formula (p. 11):

ζ(s) =
∞∑

n=1

1
ns

=
∏
p

(
1− 1

ps

)−1

,

for <(s) > 1, and p prime.

2. A globally convergent series representation for the Riemann zeta function
(Havil (2003, p. 206)):

ζ(s) =
1

1− 21−s

∞∑
n=0

1
2n+1

n∑
k=0

(−1)k

(
n

k

)
(k + 1)−s,

for s ∈ C \ {1}.

3. A relation with the Möbius function (Havil (2003, p. 209)):

1
ζ(s)

=
∞∑

n=1

µ(n)
ns

,

for <(s) > 1, and where µ is the Möbius function.
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4. A quotient relation (Lehman (1960), Hardy and Wright (1979)):

ζ(2s)
ζ(s)

=
∞∑

n=1

λ(n)
ns

,

for <(s) > 1, and where λ is the Liouville function.

5. Another quotient relation (Hardy and Wright (1979, p. 255)):

ζ(s)
ζ(2s)

=
∞∑

n=1

µ2(n)
ns

,

for <(s) > 1, and where µ is the Möbius function.

6. Another quotient relation (Hardy and Wright (1979, p. 254)):

ζ2(s)
ζ(2s)

=
∞∑

n=1

2ω(n)

ns
,

for <(s) > 1, and where ω(n) is the number of distinct
prime factors of n.

7. A formula for ζ(2) as a binomial sum (Guy (1994, p. 257), Bailey et al.
(2006, p. 70)):

ζ(2) = 3
∞∑

k=1

1
k2
(
2k
k

) .

8. A formula for ζ(3) as a binomial sum (Guy (1994, p. 257), Bailey et al.
(2006, p. 70), Apéry):

ζ(3) =
5
2

∞∑
k=1

(−1)k−1

k3
(
2k
k

) .
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9. A formula for ζ(4) as a binomial sum (Guy (1994, p. 257), Bailey et al.
(2006, p. 70)):

ζ(4) =
36
17

∞∑
k=1

1
k4
(
2k
k

) .
10. A sum identity:

∞∑
n=2

(ζ(n)− 1) = 1.

11. A formula for ζ(s) at an even integer:

ζ(2n) =
22n−1|B2n|π2n

(2n)!
,

where Bn is the nth Bernoulli number.

12. Another formula for ζ(s) at an even integer:

ζ(2n) =
(−1)n+122n−3π2n

(22n − 1)(2n− 2)!

∫ 1

0

E2(n−1)(x)dx,

where En is the nth Euler polynomial.

13. A formula for ζ(s) at an odd integer:

ζ(2n+ 1) =
(−1)n22n−1π2n+1

(22n+1 − 1)(2n)!

∫ 1

0

E2n(x) tan
(π

2
x
)
dx,

where En is the nth Euler polynomial.

14. A relation between ζ(s) and ζ ′(s):

ζ ′(−2n) =
(−1)nζ(2n+ 1)(2n)!

22n+1π2n
.
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15. The analytic Continuation for ζ(s) (p. 13):

ζ(s) =
π

s
2

Γ
(

s
2

) ( 1
s(s− 1)

+
∫ ∞

1

(
x

s
2−1 + x−

s
2−

1
2

)(ϑ(x)− 1
2

)
dx

)
,

for s ∈ C \ {1}, and where ϑ(x) is the Jacobi ϑ function.

16. A functional Equation for ζ(s) (p. 14):

π−
s
2Γ
(s

2

)
ζ(s) = π−

1−s
2 Γ

(
1− s

2

)
ζ(1− s),

for s ∈ C \ {0, 1}.

17. The reflection functional equation (Hardy (1999, p. 14), Krantz (1999,
p. 160)):

ζ(1− s) = 2(2π)−s cos
(sπ

2

)
Γ (s)ζ(s),

for s ∈ C \ {0, 1}.

18. The definition of ξ(s) (p. 14):

ξ(s) =
s

2
(s− 1)π−

s
2Γ
(s

2

)
ζ(s),

for all s ∈ C.

19. The functional Equation for ξ(s) (p. 14):

ξ(s) = ξ(1− s),

for all s ∈ C.

20. The definition of η(s) (p. 56):

η(s) =
∞∑

k=1

(−1)k−1

ks
= (1− 21−s)ζ(s),

for <(s) > 1.



9 Formulae 77

21. The definition of Ξ(iz) (p. 51):

Ξ(iz) =
1
2

(
z2 − 1

4

)
π−

z
2−

1
4Γ

(
z

2
+

1
4

)
ζ

(
z +

1
2

)
,

for any complex z.

22. The definition of S(T ) (p. 65):

S(T ) = π−1 arg ζ
(

1
2

+ iT

)
,

for any real T .

23. The definition of S1(T ) (p. 65):

S1(T ) =
∫ T

0

S(t)dt,

for T > 0.

24. The definition of Z(t) (p. 32):

Z(t) = ei(= log Γ( 1
4+ it

2 )− t
2 log π)ζ

(
1
2

+ it

)
,

for any real t.

25. The Approximate Functional Equation (p. 32):

ζ(s) =
∑
n≤x

1
ns

+ χ(s)
∑
n≤y

1
n1−s

+O(x−σ) +O(|t| 12−σyσ−1),

where s = σ + it, 2πxy = |t| for x, y ∈ R+, 0 ≤ σ ≤ 1 and,

χ(s) = 2sπs−1 sin
(πs

2

)
Γ (1− s).
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26. The Riemann-Siegel Formula (p. 33):

Z(t) = 2
N∑

n=1

(
cos (θ(t)− t log n)

n
1
2

)
+O(t−

1
4 ),

for t > 0, and where N = b
√
|t|/2πc.

27. A power series expansion of lnΓ (1 + z) :

lnΓ (1 + z) = − ln (1 + z)− z(γ − 1) +
∞∑

n=2

(−1)n(ζ(n)− 1)
zn

n
,

for |z| < 1.

28. An integral representation of ζ(s):

ζ(s) =
1

Γ (s)

∫ ∞

0

xs−1

ex − 1
dx,

for s > 1.

29. Another integral representation of ζ(s):

ζ(s) =
1

(1− 21−s)Γ (s)

∫ ∞

0

xs−1

ex + 1
dx,

for s > 1.

30. A multiple integrals formula for ζ(n):

ζ(n) =
∫ 1

0

· · ·
∫ 1

0︸ ︷︷ ︸
n times

dx1dx2 · · · dxn

1− x1x2 · · ·xn
.
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31. The Mellin transform (Balazard and Saias (2000)):

∫ ∞

0

{
1
t

}
ts−1dt = −ζ(s)

s
,

for 0 < <(s) < 1, and where {x} is the fractional part
of x.

32. A representation involving a unit square integral (various parts done by
Guillera and Sondow (2005), Hadjicostas (2002), Beukers (1979)):

∫ 1

0

∫ 1

0

(− ln(xy))s

1− xy
dxdy = Γ (s+ 2)ζ(s+ 2),

for <(s) > 1, for s ∈ N,and for s = 0 and s = 1.

33. The Laurent Series for ζ(s) at s = 1:

ζ(s) =
1

s− 1
+

∞∑
n=0

(−1)n

n!
γn(s− 1)n,

where

γn = lim
m→∞

(
m∑

k=1

(ln k)n

k
− (lnm)n+1

n+ 1

)

is the nth Stieltjes constant.

34. A sum identity (Bailey et al. (2006, pp. 72–77)):

∞∑
k=1

1
k2 − x2

=
∞∑

n=0

ζ(2n+ 2)x2n

=
1− πx cot(πx)

2x2
,

for any complex number x that is not a
non-zero integer.
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35. A simple pole formula (Whittaker and Watson (1990, p. 271)):

lim
s→1

(
ζ(s)− 1

s− 1

)
= γ,

where γ is the Euler-Mascheroni constant.

36. A sum identity (Havil (2003, pp. 109 and 111–112)):

∞∑
k=2

(−1)kζ(k)
k

= γ,

where γ is the Euler-Mascheroni constant.

37. Another sum identity (B. Cloitre, pers. comm. (11 Dec., 2005), Borwein
et al. (2002, eqn. 27)):

∞∑
k=2

ζ(k)xk−1 = −ψ0(1− x)− γ,

where ψ0 is the digamma function, and γ is the
Euler-Mascheroni constant.
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Timeline

There is over three hundred years of history surrounding the Riemann Hy-
pothesis and the Prime Number Theorem. While the authoritative history of
these ideas has yet to appear, this timeline briefly summarizes the high and
low points.

1737 Euler proves the Euler Product Formula [46]; namely, for real
s > 1

∞∑
n=1

1
ns

=
∏

p prime

(
1− 1

ps

)−1

.

1738 Euler invents the “Euler-Maclaurin summation method.”

1742 Maclaurin invents the “Euler-Maclaurin summation method.”

1742 Goldbach proposes the Goldbach Conjecture to Euler in a letter.

1792 Gauss proposes what would later become the Prime Number
Theorem.

1802 Haros discovers and proves results concerning the general prop-
erties of Farey Series.

1816 Farey re-discovers Farey series and is given credit for their in-
vention. In the somewhat unfair words of Hardy,
“Farey is immortal because he failed to understand a theorem
which Haros had proved perfectly fourteen years before [59].”
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1845 Bertrand postulates that for a > 1 there is always a prime that
lies between a and 2a.

1850 Chebyshev proves Bertrand’s Postulate using elementary meth-
ods.

1859 Riemann publishes his Ueber die Anzahl der Primzahlen unter
einer gegebenen Grösse in which he proposes the RH. The orig-
inal statement is,
“One now finds indeed approximately this number of real roots
within these limits, and it is very probable that all roots are real.
Certainly one would wish for a stricter proof here; I have mean-
while temporarily put aside the search for this after some fleeting
futile attempts, as it appears unnecessary for the next objective
of my investigation [124].”
Riemann’s paper contains the functional equation,

π−
s
2Γ
(s

2

)
ζ(s) = π−

1−s
2 Γ

(
1− s

2

)
ζ(1− s)

and the formula,

ξ(t) =
1
2
s(s− 1)π−

s
2Γ
(s

2

)
ζ(s)

for s = 1
2 + it. His work also contains analysis of the Riemann

zeta function. Some of Riemann’s analysis is over-looked until it
is re-invigourated by Siegel (see 1932).

1885 Stieltjes claims to have a proof of what would later be called
the Mertens Conjecture. His proof is never published, nor found
amongst his papers posthumously. The Mertens Conjecture im-
plies the Riemann Hypothesis. This is perhaps the first signifi-
cant failed attempt at a proof.

1890 Some time after this date Lindelöf proposed the Lindelöf Hy-
pothesis. This conjecture concerns the distribution of the zeros
of Riemann’s zeta [147, p. 328]. It is still unproven.

1896 Hadamard and de la Vallée Poussin independently prove the
Prime Number Theorem. The proof relies on showing that ζ(s)
has no zeros of the form 1 + it for t ∈ R.
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1897 Mertens publishes the Mertens Conjecture. (This conjecture is
proved incorrect by Odlyzko and te Riele, see 1985).

1901 Von Koch proves that the Riemann Hypothesis is equivalent to
the statement that,

π(x) =
∫ x

2

dt

log t
+O(

√
x log x).

1903 Gram calculates the first 15 zeros of ζ(s) on the critical line.

1903 In the decade following 1903, Gram, Backlund and Hutchinson
independently apply Euler-Maclaurin summation to calculate
ζ(s) and to verify the RH for t ≤ 300 (where s = 1

2 + it).

1912 Littlewood proves that the Mertens Conjecture implies the RH.

1912 Littlewood proves that π(n) < Li(n) fails for some n.

1912 Backlund develops a method of determining the number of zeros
of ζ(s) in the critical strip 0 < <(s) < 1 up to a given height
[48, p. 128]. This method is used through 1932.

1914 Hardy proves that infinitely many zeros of ζ(s) lie on the critical
line.

1914 Backlund calculates the first 79 zeros of ζ(s) on the critical line.

1914 Littlewood proves that π(n) < Li(n) fails for infinitely many n.

1914 Bohr and Landau prove that if N(σ, T ) is the number of zeros
of ζ(s) in the rectangle 0 ≤ =(s) ≤ T, σ < <(s) ≤ 1 then
N(σ, T ) = O(T ), for any fixed σ ≥ 1

2 .

1919 Pólya conjectures that the summatory Liouville function,

L(x) :=
x∑

n=1

λ(n),
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where λ(n) is the Liouville function, satisfies L(x) ≤ 0 for x ≥ 2.
(This conjecture is proved incorrect by Haselgrove, see 1958).

1920 Carlson proves the density theorem.

Theorem 10.1 (The Density Theorem). For any ε > 0 and
1
2 ≤ σ ≤ 1, we have N(σ, T ) = O(T 4σ(1−σ)+ε).

1922 Hardy and Littlewood show that the gRH implies Goldbach’s
Weak Conjecture.

1923 Hardy and Littlewood [62] prove that if the gRH is true, then
almost all even numbers are the sum of two primes. Specifically,
if E(N) denotes the number of even integers, less than N , that
are not a sum of two primes, then E(N) � N

1
2+ε.

1924 Franel and Landau discover an equivalence to the RH involving
Farey series. The details are not complicated, but are rather
lengthy.

1925 Hutchinson calculates the first 138 zeros of ζ(s) on the critical
line.

1928 Littlewood [92] shows that the gRH bounds LD(1, χ) as,

1
log logD

� |LD(1, χ)| � log logD.

1932 Siegel analyzes Riemanns private (and public) papers. He finds
(amongst other things) a formula for calculating values of ζ(s)
that is more efficient than Euler-Maclaurin summation. The
method is referred to as the Riemann-Siegel Formula and is used
in some form up to the present.
Siegel is credited with re-invigourating Riemann’s most impor-
tant results regarding ζ(s). In the words of Edwards, “It is indeed
fortunate that Siegel’s concept of scholarship derived from the
older tradition of respect for the past rather than the contem-
porary style of novelty [48, p. 136].”

1934 Speiser shows that the Riemann Hypothesis is equivalent to the
non-vanishing of ζ ′(s) in 0 < σ < 1

2 .
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1935 Titchmarsh calculates the first 1,041 zeros of ζ(s) on the critical
line.

1937 Vinogradov proves the following result related to Goldbach’s
Conjecture without assuming any variant of the RH.

Theorem 10.2. Every sufficiently large odd number is a sum of
3 prime numbers.

1940 Ingham shows that N(σ, T ) = O(T 3( 1−σ
2−σ ) log5 T ). This is still

the best known result for 1
2 ≤ σ ≤ 3

4 .

1941 Weil proves that the Riemann Hypothesis is true for function
fields [162].

1942 Ingham publishes a paper building on the conjectures of Mertens
and Pólya. He proves that not only do both conjectures imply
the truth of the Hypothesis, and the simplicity of the zeros, but
they also imply a linear dependence between the imaginary parts
of the zeros.

1942 Selberg proves that a positive proportion of the zeros of ζ(s) lie
on the critical line.

1943 Alan Turing publishes two important developments. The first is
an algorithm for computing ζ(s) (made obsolete by better esti-
mates to the error terms in the Riemann-Siegel Formula). The
second is a method for calculating N(T ), and gives a powerful
tool for verifying the RH up to a given height.

1945 Time magazine publishes a short article detailing a recent failed
attempt at a proof of the RH. The proof was submitted for review
and publication to Transactions of the American Mathematical
Society by Hans Rademacher and subsequently withdrawn.

1948 Turán shows that if for all N sufficiently large, the N th par-
tial sum of ζ(s) does not vanish for σ > 1 then the Riemann
Hypothesis follows [148].
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1949 Selberg and Erdős, building on the work of Selberg, both find
‘elementary’ proofs of the Prime Number Theorem.

1951 In [147], Titchmarsh considers at length some consequences of a
proof of the Riemann Hypothesis. He considers sharper bounds
for ζ(s), as well as the functions S(T ) and S1(T ).

1951 Sometime before 1951, Titchmarsh found that the eRH can be
applied in considering the problem of computing (or estimating)
π(x; k, l). He showed that if the eRH is true, then the least p ≡ l
(mod k) is less than k2+ε, where ε > 0 is arbitrary and k > k0(ε).
[30, p. xiv]

1953 Turing calculates the first 1,104 zeros of ζ(s) on the critical line.

1955 Skewes bounds the first n such that π(n) < Li(n) fails. This
bound is improved in the future, but retains the name ‘Skewes
number’.

1955 Beurling finds the Nyman-Beurling equivalent form.

1956 Lehmer calculates the first 15,000 zeros of ζ(s) on the critical
line, and later in the same year the first 25,000 zeros.

1958 Meller calculates the first 35,337 zeros of ζ(s) on the critical line.

1958 Haselgrove disproves Pólya’s conjecture.

1966 Lehman improves Skewes’ bound.

1966 Lehman calculates the first 250,000 zeros of ζ(s) on the critical
line.

1967 Hooley proves that Artin’s Conjecture holds under the assump-
tion of the eRH. Artin’s Conjecture is,

Conjecture 10.3. Every a ∈ Z, where a is not square and a 6=
−1, is a primitive root modulo p for infinitely many primes p.
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Hooley’s proof appears in [68].

1968 Rosser, Yohe and Schoenfeld calculate the first 3,500,000 zeros
of ζ(s) on the critical line.

1968 Louis de Branges makes the first of his several attempts to prove
the RH. Other proofs were offered in 1986, 1992 and 1994.

1973 Montgomery conjectures that the correlation for the zeros of the
zeta function is,

1− sin2(πx)
(πx)2

.

1973 Chen proves that every sufficiently large even integer is a sum of
a prime and a product of at most two primes.

1974 The probabilistic Solovay-Strassen algorithm for primality test-
ing is published. It can be made deterministic under the gRH
[2].

1975 The probabilistic Miller-Rabin algorithm for primality testing is
published. It runs in polynomial time under the gRH [2].

1977 Redheffer shows that the Riemann Hypothesis is equivalent to
the statement that,

det (Rn) = O(n
1
2+ε)

for any ε > 0, where Rn := [Rn(i, j)] is the n × n matrix with
entries,

Rn(i, j) =

{
1 if j = 1 or if i|j
0 otherwise.

1977 Brent calculates the first 40,000,000 zeros of ζ(s) on the critical
line.

1979 Brent calculates the first 81,000,001 zeros of ζ(s) on the critical
line.
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1982 Brent, van de Lune, te Riel and Winter calculate the first
200,000,001 zeros of ζ(s) on the critical line.

1983 van de Lune and te Riele calculate the first 300,000,001 zeros of
ζ(s) on the critical line.

1983 Montgomery proves that the 1948 approach of Turán will not
lead to a proof of the RH. This is because for any positive c <
4
π − 1 the N th partial sum of ζ(s) has zeros in the half-plane
σ > 1 + c log log N

log N . [100]

1984 Ram Murty and Gupta prove that Artin’s Conjecture holds for
infinitely many a without assuming any variant of the Riemann
Hypothesis.

1985 Odlyzko and te Riele prove in [119] that the Mertens conjecture
is false. They speculate that, while not impossible, it is improb-
able that M(n) = O(n

1
2 ). The Riemann Hypothesis is in fact

equivalent to the conjecture, M(n) = O(n
1
2+ε).

1986 van de Lune, te Riele and Winter calculate the first 1,500,000,001
zeros of ζ(s) on the critical line.

1986 Heath-Brown proves that Artin’s Conjecture fails for at most
two primes.

1987 te Riele lowers the Skewes number.

1988 Odlyzko and Schönhage publish an algorithm for calculating val-
ues of ζ(s). The Odlyzko-Schönhage algorithm is currently the
most efficient algorithm for determining values t ∈ R for which
ζ( 1

2 +it) = 0. The algorithm (found in [118]) computes the first n
zeros of ζ( 1

2 +it) in O(n1+ε) (as opposed to O(n
3
2 ) using previous

methods).

1988 Barratt, Forcade and Pollington formulate a graph theoretic
equivalent to the Riemann Hypothesis through Redheffer ma-
trices.
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1989 Odylzko computes 175 million consecutive zeros around t = 1020.

1989 Conrey proves that more than 40% of the nontrivial zeros of ζ(s)
lie on the critical line.

1993 Alcántara-Bode shows that the Riemann Hypothesis is true if
and only if the operator A is injective, where A is the Hilbert-
Schmidt integral operator on L2(0, 1).

1994 Verjovsky proves that the Riemannn Hypothesis is equivalent
to a problem about the rate of convergence of certain discrete
measures.

1995 Volchkov proves that the statement,∫ ∞

0

(1− 12t2)(1 + 4t2)−3

∫ ∞

1
2

log |ζ(σ + it)|dσdt =
π(3− γ)

32

is equivalent to the Riemann Hypothesis, where γ is Euler’s con-
stant.

1995 Amoroso proves that the statement that ζ(s) does not vanish for
<(z) ≥ λ+ ε is equivalent to,

h̃(FN ) � Nλ+ε

where,

h̃(FN ) =
1
2π

∫ π

−π

log+ |FN (eiθ)|dθ

and FN (z) =
∏

n≤N Φn(z) where Φn(z) denotes the nth cyclo-
tomic polynomial, and log+ (x) = max (0, log x).

1997 Hardy and Littlewood’s 1922 result concerning Goldbach’s Con-
jecture is improved by Deshouillers, Effinger, te Riele and Zi-
noviev. They prove,

Theorem 10.4. Assuming the gRH, every odd number greater
than 5 can be expressed as a sum of 3 prime numbers. [47]

2000 Conrey and Li argue that the approach used by de Branges can-
not lead to proof of the RH [37].
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2000 Bays and Hudson lower the Skewes number.

2000 The Riemann Hypothesis is named by the Clay Mathematics
Institute as one of seven “Millennium Prize Problems.” The so-
lution to each problem is worth one million US dollars.

2001 van de Lune calculates the first 10,000,000,000 zeros of ζ(s) on
the critical line.

2004 Wedeniwski calculates the first 900,000,000,000 zeros of ζ(s) on
the critical line.

2004 Gourdon calculates the first 10,000,000,000,000 zeros of ζ(s) on
the critical line.
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Expert Witnesses

Hilbert included the problem of proving the Riemann hypothesis in his
list of the most important unsolved problems which confronted math-
ematics in 1900, and the attempt to solve this problem has occupied
the best efforts of many of the best mathematicians of the twentieth
century. It is now unquestionably the most celebrated problem in math-
ematics and it continues to attract the attention of the best mathemati-
cians, not only because it has gone unsolved for so long but also be-
cause it appears tantalizingly vulnerable and because its solution would
probably bring to light new techniques of far-reaching importance [48].

H. M. Edwards

This chapter contains four expository papers on the Riemann Hypothesis.
These are our ‘expert witnesses’, and they provide the perspective of special-
ists in the fields of analytic number theory and complex analysis. The first
two papers were commissioned by the Clay Mathematics Institute to serve as
official prize descriptions. They give a thorough description of the problem,
the surrounding theory, and probable avenues of attack. The last paper out-
lines reasons why mathematicians should remain skeptical of the Hypothesis,
and possible sources of disproof.
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11.1

Problems of the millennium: The Riemann hypothesis,
E. Bombieri (2000–2001)

The failure of the Riemann Hypothesis would create havoc in the dis-
tribution of prime numbers. This fact alone singles out the Riemann
Hypothesis as the main open question of prime number theory [63].

Enrico Bombieri

This paper is the official problem description for the Millenium Prize of-
fered by the Clay Mathematics Institute. Bombieri gives the classical formula-
tion of the Riemann Hypothesis. He also writes about the history and signifi-
cance of the Riemann Hypothesis to the mathematical community. The paper
also includes some justification for the prize, by way of heuristic argument
for the truth of the Hypothesis. The paper includes an extensive bibliography
of standard sources on the Riemann zeta function, as well as sources which
consider broader extensions of the Riemann Hypothesis.
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Problems of the Millennium: the Riemann Hypothesis

E. Bombieri

I. The problem. The Riemann zeta function is the function of the complex
variable s , defined in the half-plane1 �(s) > 1 by the absolutely convergent series

ζ(s) :=
∞∑

n=1

1
ns
,

and in the whole complex plane C by analytic continuation. As shown by Riemann,
ζ(s) extends to C as a meromorphic function with only a simple pole at s = 1,
with residue 1, and satisfies the functional equation

π−s/2 Γ(
s

2
) ζ(s) = π−(1−s)/2 Γ(

1− s
2
) ζ(1− s). (1)

In an epoch-making memoir published in 1859, Riemann [Ri] obtained an ana-
lytic formula for the number of primes up to a preassigned limit. This formula is
expressed in terms of the zeros of the zeta function, namely the solutions ρ ∈ C of
the equation ζ(ρ) = 0.
In this paper, Riemann introduces the function of the complex variable t defined

by

ξ(t) =
1
2
s(s− 1)π−s/2Γ(

s

2
) ζ(s)

with s = 1
2+it , and shows that ξ(t) is an even entire function of t whose zeros have

imaginary part between −i/2 and i/2. He further states, sketching a proof, that in
the range between 0 and T the function ξ(t) has about (T/2π) log(T/2π)− T/2π
zeros. Riemann then continues: “Man findet nun in der That etwa so viel reelle
Wurzeln innerhalb dieser Grenzen, und es ist sehr wahrscheinlich, dass alle Wurzeln
reell sind.”, which can be translated as “Indeed, one finds between those limits
about that many real zeros, and it is very likely that all zeros are real.”
The statement that all zeros of the function ξ(t) are real is the Riemann hy-

pothesis.
The function ζ(s) has zeros at the negative even integers −2,−4, . . . and one

refers to them as the trivial zeros. The other zeros are the complex numbers 1
2 + iα

where α is a zero of ξ(t). Thus, in terms of the function ζ(s), we can state

Riemann hypothesis. The nontrivial zeros of ζ(s) have real part equal to 1
2 .

In the opinion of many mathematicians the Riemann hypothesis, and its exten-
sion to general classes of L -functions, is probably today the most important open
problem in pure mathematics.

II. History and significance of the Riemann hypothesis. For references
pertaining to the early history of zeta functions and the theory of prime numbers,
we refer to Landau [La] and Edwards [Ed].

1 We denote by �(s) and �(s) the real and imaginary part of the complex variable s . The use
of the variable s is already in Dirichlet’s famous work of 1837 on primes in arithmetic progression.
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The connection between prime numbers and the zeta function, by means of the
celebrated Euler product

ζ(s) =
∏
p

(1− p−s)−1

valid for �(s) > 1, appears for the first time in Euler’s book Introductio in Analysin
Infinitorum, published in 1748. Euler also studied the values of ζ(s) at the even
positive and the negative integers, and he divined a functional equation, equivalent
to Riemann’s functional equation, for the closely related function

∑
(−1)n−1/ns

(see the interesting account of Euler’s work in Hardy’s book [Hard]).
The problem of the distribution of prime numbers received attention for the first

time with Gauss and Legendre, at the end of the eighteenth century. Gauss, in a
letter to the astronomer Hencke in 1849, stated that he had found in his early years
that the number π(x) of primes up to x is well approximated by the function2

Li(x) =
∫ x

0

dt
log t

.

In 1837, Dirichlet proved his famous theorem of the existence of infinitely many
primes in any arithmetic progression qn+a with q and a positive coprime integers.
On May 24, 1848, Tchebychev read at the Academy of St. Petersburg his first

memoir on the distribution of prime numbers, later published in 1850. It contains
the first study of the function π(x) by analytic methods. Tchebychev begins by
taking the logarithm of the Euler product, obtaining3

−
∑

p

log(1 − 1
ps
) + log(s− 1) = log (

(s− 1)ζ(s)), (2)

which is his starting point.
Next, he proves the integral formula

ζ(s)− 1− 1
s− 1 =

1
Γ(s)

∫ ∞

0

(
1

ex − 1 −
1
x
) e−xxs−1 dx, (3)

out of which he deduces that (s−1)ζ(s) has limit 1, and also has finite derivatives
of any order, as s tends to 1 from the right. He then observes that the derivatives
of any order of the left-hand side of (2) can be written as a fraction in which the
numerator is a polynomial in the derivatives of (s − 1)ζ(s), and the denominator
is an integral power of (s− 1)ζ(s), from which it follows that the left-hand side of
(2) has finite derivatives of any order, as s tends to 1 from the right. From this,
he is able to prove that if there is an asymptotic formula for π(x) by means of a
finite sum

∑
akx/(log x)k , up to an order O(x/(log x)N ), then ak = (k − 1)! for

k = 1, . . . , N −1. This is precisely the asymptotic expansion of the function Li(x),
thus vindicating Gauss’s intuition.
A second paper by Tchebychev gave rigorous proofs of explicit upper and lower

bounds for π(x), of the correct order of magnitude. Here, he introduces the count-
ing functions

ϑ(x) =
∑
p≤x

log p , ψ(x) = ϑ(x) + ϑ( 2
√
x) + ϑ( 3

√
x) + . . .

2 The integral is a principal value in the sense of Cauchy.
3 Tchebychev uses 1 + ρ in place of our s . We write his formulas in modern notation.
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and proves the identity4 ∑
n≤x

ψ(
x

n
) = log [x]! .

From this identity, he finally obtains numerical upper and lower bounds for ψ(x),
ϑ(x) and π(x).
Popular variants of Tchebychev’s method, based on the integrality of suitable

ratios of factorials, originate much later and cannot be ascribed to Tchebychev.
Riemann’s memoir on π(x) is really astonishing for the novelty of ideas intro-

duced. He first writes ζ(s) using the integral formula, valid for �(s) > 1:

ζ(s) =
1
Γ(s)

∫ ∞

0

e−x

1− e−x
xs−1 dx, (4)

and then deforms the contour of integration in the complex plane, so as to obtain
a representation valid for any s . This gives the analytic continuation and the
functional equation of ζ(s). Then he gives a second proof of the functional equation
in the symmetric form (1), introduces the function ξ(t) and states some of its
properties as a function of the complex variable t .
Riemann continues by writing the logarithm of the Euler product as an integral

transform, valid for �(s) > 1:
1
s
log ζ(s) =

∫ ∞

1

∏
(x)x−s−1 dx (5)

where ∏
(x) = π(x) +

1
2
π( 2
√
x) +

1
3
π( 3
√
x) + . . . .

By Fourier inversion, he is able to express
∏
(x) as a complex integral, and compute

it using the calculus of residues. The residues occur at the singularities of log ζ(s)
at s = 1 and at the zeros of ζ(s). Finally an inversion formula expressing π(x) in
terms of

∏
(x) yields Riemann’s formula.

This was a remarkable achievement which immediately attracted much attention.
Even if Riemann’s initial line of attack may have been influenced by Tchebychev
(we find several explicit references to Tchebychev in Riemann’s unpublished Nach-
lass5) his great contribution was to see how the distribution of prime numbers is
determined by the complex zeros of the zeta function.
At first sight, the Riemann hypothesis appears to be only a plausible interesting

property of the special function ζ(s), and Riemann himself seems to take that view.
He writes: “Hiervon wäre allerdings ein strenger Beweis zu wünschen; ich habe
indess die Aufsuchung desselben nach einigen flüchtigen vergeblichen Versuchen
vorläufig bei Seite gelassen, da er für den nächsten Zweck meiner Untersuchung
entbehrlich schien.”, which can be translated as “Without doubt it would be desir-
able to have a rigorous proof of this proposition; however I have left this research
aside for the time being after some quick unsuccessful attempts, because it appears
to be unnecessary for the immediate goal of my study.”

4 Here [x] denotes the integral part of x .
5 The Nachlass consists of Riemann’s unpublished notes and is preserved in the mathematical

library of the University of Göttingen. The part regarding the zeta function was analyzed in depth
by C.L. Siegel [Sie].
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On the other hand, one should not draw from this comment the conclusion that
the Riemann hypothesis was for Riemann only a casual remark of minor interest.
The validity of the Riemann hypothesis is equivalent to saying that the deviation
of the number of primes from the mean Li(x) is

π(x) = Li(x) +O
(√
x log x

)
;

the error term cannot be improved by much, since it is known to oscillate in both
directions to order at least Li(

√
x) log log log x (Littlewood). In view of Riemann’s

comments at the end of his memoir about the approximation of π(x) by Li(x), it
is quite likely that he saw how his hypothesis was central to the question of how
good an approximation to π(x) one may get from his formula.
The failure of the Riemann hypothesis would create havoc in the distribution of

prime numbers. This fact alone singles out the Riemann hypothesis as the main
open question of prime number theory.
The Riemann hypothesis has become a central problem of pure mathematics, and

not just because of its fundamental consequences for the law of distribution of prime
numbers. One reason is that the Riemann zeta function is not an isolated object,
rather is the prototype of a general class of functions, called L-functions, associated
with algebraic (automorphic representations) or arithmetical objects (arithmetic
varieties); we shall refer to them as global L-functions. They are Dirichlet series
with a suitable Euler product, and are expected to satisfy an appropriate functional
equation and a Riemann hypothesis. The factors of the Euler product may also
be considered as some kind of zeta functions of a local nature, which also should
satisfy an appropriate Riemann hypothesis (the so-called Ramanujan property).
The most important properties of the algebraic or arithmetical objects underlying
an L -function can or should be described in terms of the location of its zeros and
poles, and values at special points.
The consequences of a Riemann hypothesis for global L -functions are important

and varied. We mention here, to indicate the variety of situations to which it can
be applied, an extremely strong effective form of Tchebotarev’s density theorem
for number fields, the non-trivial representability of 0 by a non-singular cubic form
in 5 or more variables (provided it satisfies the appropriate necessary congruence
conditions for solubility, Hooley), and Miller’s deterministic polynomial time pri-
mality test. On the other hand, many deep results in number theory which are
consequences of a general Riemann hypothesis can be shown to hold independently
of it, thus adding considerable weight to the validity of the conjecture.
It is outside the scope of this article even to outline the definition of global L -

functions, referring instead to Iwaniec and Sarnak [IS] for a survey of the expected
properties satisfied by them; it suffices here to say that the study of the analytic
properties of these functions presents extraordinary difficulties.
Already the analytic continuation of L -functions as meromorphic or entire func-

tions is known only in special cases. For example, the functional equation for the
L -function of an elliptic curve over Q and for its twists by Dirichlet characters is an
easy consequence of, and is equivalent to, the existence of a parametrization of the
curve by means of modular functions for a Hecke group Γ0(N); the real difficulty
lies in establishing this modularity. No one knows how to prove this functional
equation by analytic methods. However the modularity of elliptic curves over Q

has been established directly, first in the semistable case in the spectacular work
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of Wiles [Wi] and Taylor and Wiles [TW] leading to the solution of Fermat’s Last
Theorem, and then in the general case in a recent preprint by Breuil, Conrad,
Diamond and Taylor.
Not all L -functions are directly associated to arithmetic or geometric objects.

The simplest example of L -functions not of arithmetic/geometric nature are those
arising from Maass waveforms for a Riemann surface X uniformized by an arith-
metic subgroup Γ of PGL(2,R). They are pull-backs f(z), to the universal cov-
ering space �(z) > 0 of X , of simultaneous eigenfunctions for the action of the
hyperbolic Laplacian and of the Hecke operators on X .
The most important case is again the group Γ0(N). In this case one can intro-

duce a notion of primitive waveform, analogous to the notion of primitive Dirichlet
character, meaning that the waveform is not induced from another waveform for a
Γ0(N ′) with N ′ a proper divisor of N . For a primitive waveform, the action of
the Hecke operators Tn is defined for every n and the L -function can be defined
as

∑
λf (n)n−s where λf (n) is the eigenvalue of Tn acting on the waveform f(z).

Such an L -function has an Euler product and satisfies a functional equation anal-
ogous to that for ζ(s). It is also expected that it satisfies a Riemann hypothesis.
Not a single example of validity or failure of a Riemann hypothesis for an L -

function is known up to this date. The Riemann hypothesis for ζ(s) does not seem
to be any easier than for Dirichlet L -functions (except possibly for non-trivial
real zeros), leading to the view that its solution may require attacking much more
general problems, by means of entirely new ideas.

III. Evidence for the Riemann hypothesis. Notwithstanding some skepticism
voiced in the past, based perhaps more on the number of failed attempts to a
proof rather than on solid heuristics, it is fair to say that today there is quite a
bit of evidence in its favor. We have already emphasized that the general Riemann
hypothesis is consistent with our present knowledge of number theory. There is
also specific evidence of a more direct nature, which we shall now examine.

First, strong numerical evidence.
Interestingly enough, the first numerical computation of the first few zeros of

the zeta function already appears in Riemann’s Nachlass. A rigorous verification of
the Riemann hypothesis in a given range can be done numerically as follows. The
number N(T ) of zeros of ζ(s) in the rectangle R with vertices at −1 − iT, 2 −
iT, 2 + iT, −1 + iT is given by Cauchy’s integral

N(T )− 1 = 1
2πi

∫
∂R
−ζ

′

ζ
(s) ds,

provided T is not the imaginary part of a zero (the −1 in the left-hand side of
this formula is due to the simple pole of ζ(s) at s = 1). The zeta function and
its derivative can be computed to arbitrary high precision using the MacLaurin
summation formula or the Riemann-Siegel formula [Sie]; the quantity N(T ) − 1,
which is an integer, is then computed exactly by dividing by 2πi the numerical
evaluation of the integral, and rounding off its real part to the nearest integer (this
is only of theoretical interest and much better methods are available in practice for
computing N(T ) exactly). On the other hand, since ξ(t) is continuous and real
for real t , there will be a zero of odd order between any two points at which ξ(t)
changes sign. By judiciously choosing sample points, one can detect sign changes
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of ξ(t) in the interval [−T, T ] . If the number of sign changes equals N(T ), one
concludes that all zeros of ζ(s) in R are simple and satisfy the Riemann hypothesis.
In this way, it has been shown by van de Lune, te Riele and Winter [LRW] that
the first 1.5 billion zeros of ζ(s), arranged by increasing positive imaginary part,
are simple and satisfy the Riemann hypothesis.
The Riemann hypothesis is equivalent to the statement that all local maxima

of ξ(t) are positive and all local minima are negative, and it has been suggested
that if a counterexample exists then it should be in the neighborhood of unusually
large peaks of |ζ(12 + it)| . The above range for T is T ∼= 5× 108 and is not large
enough for |ζ(12 + it)| to exhibit these peaks which are known to occur eventually.
However, further calculations done by Odlyzko [Od] in selected intervals show that
the Riemann hypothesis holds for over 3 × 108 zeros at heights up to6 2 × 1020 .
These calculations also strongly support independent conjectures by Dyson and
Montgomery [Mo] concerning the distribution of spacings between zeros.
Computing zeros of L -functions is more difficult, but this has been done in sev-

eral cases, which include examples of Dirichlet L -functions, L -functions of elliptic
curves, Maass L -functions and nonabelian Artin L -functions arising from number
fields of small degree. No exception to a generalized Riemann hypothesis has been
found in this way.

Second, it is known that hypothetical exceptions to the Riemann hypothesis
must be rare if we move away from the line �(s) = 1

2 .
Let N(α, T ) be the number of zeros of ζ(s) in the rectangle α ≤ �(s) ≤ 2,

0 ≤ �(s) ≤ T . The prototype result goes back to Bohr and Landau in 1914, namely
N(α, T ) = O(T ) for any fixed α with 1

2 < α < 1. A significant improvement of the
result of Bohr and Landau was obtained by Carlson in 1920, obtaining the density
theorem N(α, T ) = O(T 4α(1−α)+ε) for any fixed ε > 0. The fact that the exponent
here is strictly less than 1 is important for arithmetic applications, for example
in the study of primes in short intervals. The exponent in Carlson’s theorem has
gone through several successive refinements for various ranges of α , in particular
in the range 3

4 < α < 1. Curiously enough, the best exponent known up to date
in the range 1

2 < α ≤ 3
4 remains Ingham’s exponent 3(1− α)/(2− α), obtained in

1940. For references to these results, the reader may consult the recent revision by
Heath-Brown of the classical monograph of Titchmarsh [Ti], and the book by Ivic
[Iv].

Third, it is known that more than 40% of nontrivial zeros of ζ(s) are simple and
satisfy the Riemann hypothesis (Selberg [Sel], Levinson [Le], Conrey [Conr]). Most
of these results have been extended to other L -functions, including all Dirichlet
L -functions and L -functions associated to modular forms or Maass waveforms.

IV. Further evidence: varieties over finite fields. It may be said that the
best evidence in favor of the Riemann hypothesis derives from the corresponding
theory which has been developed in the context of algebraic varieties over finite
fields. The simplest situation is as follows.
Let C be a nonsingular projective curve over a finite field Fq with q = pa

elements, of characteristic p . Let Div(C) be the additive group of divisors on C

6 The most recent calculations by Odlyzko, which are approaching completion, will explore
completely the interval [1022, 1022 + 1010] .
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defined over Fq , in other words formal finite sums a =
∑
aiPi with ai ∈ Z and

Pi points of C defined over a finite extension of Fq , such that φ(a) = a where φ
is the Frobenius endomorphism on C raising coordinates to the q -th power. The
quantity deg(a) =

∑
ai is the degree of the divisor a . The divisor a is called

effective if every ai is a positive integer; in this case, we write a > 0. Finally, a
prime divisor p is a positive divisor which cannot be expressed as the sum of two
positive divisors. By definition, the norm of a divisor a is Na = qdeg(a) .
The zeta function of the curve C , as defined by E. Artin, H. Hasse and F.K.

Schmidt, is

ζ(s, C) =
∑
a>0

1
Nas

.

This function has an Euler product

ζ(s, C) =
∏
p

(1−Np−s)−1

and a functional equation

q(g−1)sζ(s, C) = q(g−1)(1−s)ζ(1 − s, C)

where g is the genus of the curve C ; it is a consequence of the Riemann-Roch
theorem. The function ζ(s, C) is a rational function of the variable t = q−s ,
hence is periodic7 with period 2πi/ log q , and has simple poles at the points s =
2πim/ log q and s = 1+2πim/ log q for m ∈ Z . Expressed in terms of the variable
t , the zeta function becomes a rational function Z(t, C) of t , with simple poles at
t = 1 and t = q−1 . The use of the variable t , rather than q−s , is more natural in
the geometric case and we refer to Zeta functions, with a capital Z, to indicate the
corresponding objects.
The Riemann hypothesis for ζ(s, C) is the statement that all its zeros have real

part equal to 1
2 ; in terms of the Zeta function Z(t, C), which has a numerator of

degree 2g , has zeros of absolute value q−
1
2 .

This is easy to verify if g = 0, because the numerator is 1. If g = 1, a proof
was obtained by Hasse in 1934. The general case of arbitrary genus g was finally
settled by Weil in the early 1940s (see his letter to E. Artin of July 10, 1942 where
he gives a complete sketch of the theory of correspondences on a curve [We1]); his
results were eventually published in book form in 1948 [We2].
Through his researches, Weil was led to the formulation of sweeping conjectures

about Zeta functions of general algebraic varieties over finite fields, relating their
properties to the topological structure of the underlying algebraic variety. Here
the Riemann hypothesis, in a simplified form, is the statement that the reciprocals
of the zeros and poles of the Zeta function (the so-called characteristic roots) have
absolute value qd/2 with d a positive integer or 0, and are interpreted as eigenvalues
of the Frobenius automorphism acting on the cohomology of the variety. After
M. Artin, A. Grothendieck and J.-L. Verdier developed the fundamental tool of
étale cohomology, the proof of the corresponding Riemann hypothesis for Zeta
functions of arbitrary varieties over finite fields was finally obtained by Deligne
[Del1], [Del2]. Deligne’s theorem surely ranks as one of the crowning achievements

7 Similarly, ζ(s) is almost periodic in any half-plane �(s) ≥ 1 + δ , δ > 0.
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of twentieth century mathematics. Its numerous applications to the solution of long-
standing problems in number theory, algebraic geometry and discrete mathematics
are witness to the significance of these general Riemann hypotheses.
In our opinion, these results in the geometric setting cannot be ignored as not

relevant to the understanding of the classical Riemann hypothesis; the analogies
are too compelling to be dismissed outright.

V. Further evidence: the explicit formula. A conceptually important gener-
alization of Riemann’s explicit formula for π(x), obtained by Weil [We3] in 1952,
offers a clue to what may lie still undiscovered behind the problem.
Consider the class W of complex-valued functions f(x) on the positive half-line

R+ , continuous and continuously differentiable except for finitely many points at
which both f(x) and f ′(x) have at most a discontinuity of the first kind, and at
which the value of f(x) and f ′(x) is defined as the average of the right and left
limits there. Suppose also that there is δ > 0 such that f(x) = O(xδ) as x→ 0+
and f(x) = O(x−1−δ) as x→ +∞ .
Let f̃(s) be the Mellin transform

f̃(s) =
∫ ∞

0

f(x)xs dx
x
,

which is an analytic function of s for −δ < �(s) < 1 + δ .
For the Riemann zeta function, Weil’s formula can be stated as follows. Let

Λ(n) = log p if n = pa is a power of a prime p , and 0 otherwise. We have

Explicit Formula. For f ∈ W we have

f̃(0)−
∑

ρ

f̃(ρ) + f̃(1) =
∞∑

n=1

Λ(n)
{
f(n) +

1
n
f(
1
n
)
}
+ (log 4π + γ)f(1)

+
∫ ∞

1

{
f(x) +

1
x
f(
1
x
)− 2

x
f(1)

} dx
x− x−1

.

Here the first sum ranges over all nontrivial zeros of ζ(s) and is understood as

lim
T→+∞

∑
|�(ρ)|<T

f̃(ρ).

In his paper, Weil showed that there is a corresponding formula for zeta and
L -functions of number fields as well as for Zeta functions of curves over finite fields.
The terms in the right-hand side of the equation can be written as a sum of terms
of local nature, associated to the absolute values of the underlying number field, or
function field in the case of curves over a field of positive characteristic. Moreover,
in the latter case the explicit formula can be deduced from the Lefschetz fixed point
formula, applied to the Frobenius endomorphism on the curve C . The three terms
in the left-hand side, namely f̃(0),

∑
f̃(ρ), f̃(1), now correspond to the trace of

the Frobenius automorphism on the l -adic cohomology of C (the interesting term∑
f̃(ρ) corresponds to the trace on H1 ), while the right-hand side corresponds

to the number of fixed points of the Frobenius endomorphism, namely the prime
divisors of degree 1 on C .
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Weil also proved that the Riemann hypothesis is equivalent to the negativity of
the right-hand side for all functions f(x) of type

f(x) =
∫ ∞

0

g(xy) g(y) dy,

whenever g ∈ W satisfies the additional conditions

∫ ∞

0

g(x)
dx
x
=

∫ ∞

0

g(x) dx = 0.

In the geometric case of curves over a finite field, this negativity is a rather easy
consequence of the algebraic index theorem for surfaces, namely:

Algebraic Index Theorem. Let X be a projective nonsingular surface defined
over an algebraically closed field. Then the self-intersection quadratic form (D ·D) ,
restricted to the group of divisors D on X of degree 0 in the projective embedding
of X , is negative semidefinite.

The algebraic index theorem for surfaces is essentially due to Severi8 in 1906
[Sev,§2,Teo.I]. The proof uses the Riemann-Roch theorem on X and the finiteness
of families of curves on X of a given degree; no other proof by algebraic methods is
known up to now, although much later several authors independently rediscovered
Severi’s argument.
The algebraic index theorem for nonsingular projective varieties of even dimen-

sion over the complex numbers was first formulated and proved by Hodge, as a
consequence of his theory of harmonic forms. No algebraic proof of Hodge’s theo-
rem is known, and it remains a fundamental open problem to extend it to the case
of varieties over fields of positive characteristic.
The work of Montgomery [Mo], Odlyzko [Od] and Rudnick and Sarnak [RS] on

correlations for spacings of zeros of ξ(t) suggests that L -functions can be grouped
into a few families, in each of which the spacing correlation is universal; the conjec-
tured spacing correlation is the same as for the limiting distribution of eigenvalues
of random orthogonal, unitary or symplectic matrices in suitable universal families,
as the dimension goes to ∞ . All this is compatible with the view expressed by
Hilbert and Pólya that the zeros of ξ(t) could be the eigenvalues of a self-adjoint
linear operator on an appropriate Hilbert space. It should also be noted that a
corresponding unconditional theory for the spacing correlations of characteristic
roots of Zeta functions of families of algebraic varieties over a finite field, has been
developed by Katz and Sarnak [KS], using methods introduced by Deligne in his
proof of the Riemann hypothesis for varieties over finite fields. Thus the problem
of spacing correlations for zeros of L -functions appears to lie very deep.
All this leads to several basic questions.
Is there a theory in the global case, playing the same role as cohomology does

for Zeta functions of varieties over a field of positive characteristic? Is there an
analogue of a Frobenius automorphism in the classical case? Is there a general
index theorem by which one can prove the classical Riemann hypothesis? We are

8 Severi showed that a divisor D on X is algebraically equivalent to 0 up to torsion, if it has
degree 0 and (D ·D) = 0. His proof holds, without modifications, under the weaker assumption
(D ·D) ≥ 0, which yields the index theorem.
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here in the realm of conjectures and speculation. In the adelic setting propounded
by Tate and Weil, the papers [Conn], [Den], [Hara] offer glimpses of a possible setup
for these basic problems.
On the other hand, there are L -functions, such as those attached to Maass

waveforms, which do not seem to originate from geometry and for which we still
expect a Riemann hypothesis to be valid. For them, we do not have algebraic and
geometric models to guide our thinking, and entirely new ideas may be needed to
study these intriguing objects.

Institute for Advanced Study, Princeton, NJ 08540
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Problems of the millennium: The Riemann hypothesis,
P. Sarnak (2004)

The Riemann Hypothesis is the central problem and it implies many,
many things. One thing that makes it rather unusual in mathematics
today is that there must be over five hundred papers - somebody should
go and count - which start “Assume the Riemann Hypothesis”, and
the conclusion is fantastic. And those [conclusions] would then become
theorems... With this one solution you would have proven five hundred
theorems or more at once [129].

Peter Sarnak

This paper was written for the 2004 annual report of the Clay Mathe-
matics Institute. In the paper, Peter Sarnak elaborates on Bombieri’s official
problem description. Sarnak focuses his attention on the Grand Riemann Hy-
pothesis and presents some connected problems. He suggests that a proof
of the Grand Riemann Hypothesis would follow analogously to the proof of
the Weil conjectures, and states his skepticism towards the random matrix
approach.
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Problems of the Millennium: The Riemann Hypothesis (2004)

by

Peter Sarnak
Princeton University & Courant Institute of Math. Sciences.

The Riemann Hypothesis (RH) is one of the seven millennium prize problems put forth by
the Clay Mathematical Institute in 2000. Bombieri’s statement [Bo1] written for that occasion is
excellent. My plan here is to expand on some of his comments as well as to discuss some recent
developments. RH has attracted further attention of late in view of the fact that three popular
books were written about it in 2003 and a fourth one is forthcoming in 2005. Unlike the case
of Fermat’s Last Theorem, where the work of Frey, Serre and Ribet redefined the outlook on
the problem by connecting it to a mainstream conjecture in the theory of modular forms (the
“Shimura-Taniyama-Weil Conjecture”), in the case of RH we cannot point to any such dramatic
advance. However, that doesn’t mean that things have stood still.

For definiteness we recall the statement of RH. For !(s) > 1 the zeta function is defined by

ζ(s) =
∞∑

n=1

n−s = Π
p

(1− p−s)−1, (1)

the product being over the prime numbers. Riemann showed how to continue zeta analytically in
s and he established the Functional Equation:

Λ(s) := π−s/2 Γ
(s

2

)
ζ(s) = Λ(1− s) , (2)

Γ being the Gamma function. RH is the assertion that all the zeros of Λ(s) are on the line
of symmetry for the functional equation, that is on !(s) = 1

2 . Elegant, crisp, falsifiable and
far-reaching this conjecture is the epitome of what a good conjecture should be. Moreover, its
generalizations to other zeta functions (see below) have many striking consequences making the
conjecture even more important. Add to this the fact that the problem has resisted the efforts of
many of the finest mathematicians and that it now carries a financial reward, it is not surprising
that it has attracted so much attention.

We begin by describing the generalizations of RH which lead to the Grand Riemann Hypothesis.
After that we discuss various consequences and developments. The first extension is to the zeta
functions of Dirichlet, which he introduced in order to study primes in arithmetic progressions
and which go by the name L-functions. Let χ be a primitive Dirichlet character of modulus q (i.e.
χ(mn) = χ(m) χ(n), χ(1) = 1, χ(m + bq) = χ(m)) then L is defined by

L(s, χ) =
∞∑

n=1

χ(n)n−s = Π
p

(1− χ(p)p−s)−1 . (3)
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As with zeta, L(s, χ) extends to an entire function and satisfies the functional equation:

Λ(s, χ) := π−(s+aχ)/2 Γ

(
s + aχ

2

)
L(s, χ) = εχq

1
2−s Λ(1− s, χ̄) , (4)

where aχ = (1+χ(−1))/2 and εχ is the sign of a Gauss sum (see [Da]). These L(s, χ)’s give all the
degree one L-functions (i.e., in the product over primes each local factor at p is the inverse of a
polynomial of degree one in p−s). The general L-function of degree m comes from an automorphic
form on the general linear group of m by m invertible matrices, GLm. As an explicit example of
a degree two L-function, consider the discriminant

#(z) = e2πiz
∞
Π

n=1

(
1− e2πinz

)24
:=

∞∑

n=1

τ(n) e2πinz , (5)

for z in the upper half plane. #(z) is a holomorphic cusp form of weight 12 for the modular group.
That is

#
(

az + b

cz + d

)
= (cz + d)12#(z)

for a, b, c, d ∈ Z, ad− bc = 1. Associated to # is its degree two L-function,

L(s,#) =
∞∑

n=1

τ(n)

n11/2
n−s = Π

p

(
1− τ(p)

p11/2
p−s + p−2s

)−1

. (6)

L(s,#) is entire and satisfies the functional equation

Λ(s,#) := ΓR

(
s +

11

2

)
ΓR

(
s +

13

2

)
L(s,#) = Λ(1− s,#) ,

where
ΓR(s) = π−s/2 Γ(s/2) . (7)

The definition in the general case requires more sophisticated tools, which can be found in
[We1] for example. Let A be the ring of adeles of Q and let π be an automorphic cuspidal
representation of GLm(A) with central character χ (see [J]). The representation π is equivalent to
⊗
v

πv with v = ∞(Q∞ = R) or v = p and πv an irreducible unitary representation of GLm(Qv).

Corresponding to each prime p and local representation πp one forms the local factor L(s, πp) which
takes the form:

L(s, πp) = Πm
j=1 (1− αj,π(p)p−s)−1 (8)

for m complex parameters αj,π(p) determined by πp [T]. Similarly for v = ∞, π∞ determines
parameters µj,π(∞) such that

L(s, π∞) = Πm
j=1 ΓR(s− µj,π(∞)) . (9)
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The standard L-function associated to π is defined using this data by

L(s, π) = Π
p

L(s, πp) . (10)

The completed L-function is given as before by

Λ(s, π) = L(s, π∞) L(s, π) . (11)

From the automorphy of π one can show that Λ(s, π) is entire and satisfies a Functional Equation
(see [J])

Λ(s, π) = επ N
1
2−s
π Λ(1− s, π̃), (12)

where Nπ ≥ 1 is an integer and is called the conductor of π, επ is of modulus 1 and is computable
in terms of Gauss sums and π̃ is the contragredient representation π̃(g) = π(tg−1).

General conjectures of Langlands assert these standard L-functions multiplicatively generate all
L-functions (in particular Dedekind Zeta Functions, Artin L-functions, Hasse-Weil Zeta Functions,
. . .). So at least conjecturally one is reduced to the study of these. We can now state the general
hypothesis (GRH).

Grand Riemann Hypothesis

Let π be as above then the zeros of Λ(s, π) all lie on !(s) = 1
2 .

L(s, π) is a generating function made out of the data πp for each prime p and GRH naturally
gives very sharp information about the variation of πp with p. Many of its applications make direct
use of this. However, there are also many applications where it is the size of L(s, π) on !(s) = 1

2
that is the critical issue (this coming from the ever growing number of formulae which relate values
of L-functions at special points such as s = 1

2 to arithmetic information and to periods, see [Wa]
and [Wat] for example). GRH implies uniform and sharp bounds. Define the analytic conductor
Cπ of π to be NπΠm

j=1(1 + |µj,π(∞)|). It measures the complexity of π. In what follows we fix m.
For X ≥ 1 the number of π with Cπ ≤ X is finite. It is known [Mo] that for each ε > 0 there
is a constant Bε such that |L(σ + it,π)| ≤ BεCε

π for σ ≥ 1 + ε and t ∈ R. The Grand Lindelöf
Hypothesis (GLH) is the assertion that such bounds continue to hold for σ ≥ 1

2 . Precisely, that
for ε > 0 there is B′

ε such that for t ∈ R

|L
(

1

2
+ it,π

)
| ≤ B′

ε((1 + |t|)Cπ)ε . (13)

GRH implies GLH with an effective B′
ε for ε > 0.

It would be interesting to compile the long list of known consequences (many of which are quite
indirect) of GRH and GLH. At the top of the list would be the prime number theorem with a
sharp remainder term, the connection going back to Riemann’s paper. He gives a formula for the
number of primes less than X from which the prime number theorem would follow if one knew
some deeper information about the zeros of zeta. In fact, the eventual proof of the prime number
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theorem went via this route with Hadamard and de la Vallée Poussin showing that ζ(s) )= 0 for
!(s) ≥ 1 (this is also known for all the L(s, π)’s). Other consequences of GRH for the family
of Dirichlet L-functions followed, including the surprising result of Goldbach type due to Hardy
and Littlewood, who showed that every sufficiently large odd integer is a sum of three primes.
Later I. Vinogradov developed some fundamental novel methods which allowed him to prove this
result unconditionally. A more recent application, again of GRH for Dirichlet L-functions, which
was noted in Bombieri [Bo1] is the algorithm of Miller which determines whether a large integer
n is prime in O((log n)4) steps. Two years ago, Agrawal-Kayal and Saxena [A-K-S] put forth a
primality testing algorithm (like Miller’s it is based on Fermat’s little Theorem) which they show
without recourse to any unproven hypothesis, runs in O((log n)15/2) steps (the important point
being that it is polynomial in log n). Thus in practice GRH is used as a very reliable working
hypothesis, which in many cases has been removed.

We give four examples of results in the theory of primes, Diophantine equations and mathe-
matical physics which so far have been established only under GRH.

(A) (Serre), [Se, p. 632 and 715]: Given two non-isogeneous elliptic curves E and E ′ over Q,
there is a prime p which is O((log NENE′)2) for which E and E ′ have good reduction at p
and their number of points mod p are different. Here NE is the conductor of E.

(B) (Artin’s primitive root conjecture): If b )= ±1 or a perfect square then b is a primitive root for
infinitely many primes p [ Ho].

(C) Ramanujan points out that congruence tests prevent x2 + y2 +10z2 representing any positive
integer of the form 4λ(16µ + 6). He asks which numbers not of this form are not represented
and lists 16 such. There are in fact exactly 18 such exceptions [O-S], 3, 7, 21, 31, 33, 43,
67, 79, 87, 133, 217, 219, 223, 253, 307, 391, 679, 2719. (The story for a general ternary
quadratic form is similar but a little more complicated)

(D) The problem of the rate of equidistribution in the semi-classical limit of quantum eigenstates
for a Hamiltonian which is classically chaotic, is a central one in “quantum chaos.” The only
Hamiltonian for which progress has been achieved is that of geodesic motion on an arithmetic
hyperbolic surface where the equidistribution and its exact rate are known assuming GLH
[Wat].

Towards problems (B), (C) and (D) slightly weaker but impressive unconditional results are
known. In [HB] following [G-M] it is shown that there are at most three squarefree positive b’s for
which (B) is not true. Following the advance in [I], a general result about ternary quadratic forms
is proven in [D-SP] from which it follows that the list of exceptions in (C) is finite. The method
does not give an effective bound for the largest possible exception. As for (D) for arithmetic
hyperbolic surfaces, the equidistribution problem is all but settled in [Li] using ergodic theoretic
methods.

The passage to such results is often based on approximations to GRH and GLH that have
been proven. The basic approximations to GRH that are known are zero free regions (the best
ones for zeta being based on I. Vinogradov’s method (see [I-K] for example)), and zero density
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theorems which give upper bounds for the total number of zeros that a family of L-functions can
have in a box σ0 ≤ σ < 1 and |t| ≤ T , where σ0 ≥ 1

2 and T > 0. The best known approximation
of GRH for the L-functions L(s, χ) is the Bombieri-A.Vinogradov Theorem [Bo2], [V]. It gives
sharp bounds for the average equidistribution of primes in progressions and it has often served as
a complete substitute for GRH in applications. The approximations to GLH which are decisive in
various applications (including (C) above) are the so-called subconvex estimates (see [I-S]) which
are known in some generality. Neither the zero density theorems nor the subconvex estimates
are known for general families of automorphic L-functions and establishing them would be an
important achievement.

As pointed out in [Bo1] there is an analogue of RH for curves and more generally varieties
defined over finite fields. These analogues in their full generality are known as the Weil Conjectures.
They have had a major impact and they have been proven! There are at least two fundamental
steps in the proof. The first is the linearization of the problem [A-G-V], that is the realization
of the zeros of the corresponding zeta functions in terms of eigenvalues of a linear transformation
(specifically the eigenvalues of Frobenius acting on an associated cohomology group). This is then
used together with a second step [De] which involves deforming the given variety in a family. The
family has a symmetry group (the monodromy group) which is used together with its high tensor
power representations and a positivity argument to prove the Weil Conjectures for each member
of the family at once (see [K] for an overview). Like GRH, the Weil Conjectures have found
far-reaching and often unexpected applications.

The success of this analogue is for many a guide as to what to expect in the case of GRH itself.
Apparently both Hilbert and Polya (see the letter from Polya to Odlyzko [Od1]) suggested that
there might be a spectral interpretation of the zeros of the zeta function in which the corresponding
operator (after a change of variable) is self-adjoint, hence rendering the zeros on the line σ = 1

2 .
While the evidence for the spectral nature of the zeros of any Λ(s, π) has grown dramatically in
recent years, I don’t believe that the self-adjointness idea is very likely. It is not the source of the
proof of the Weil Conjectures. In fact, it is the deformation in families idea that lies behind much
of the progress in the known approximations to GRH and GLH and which seems more promising.

The spectral nature of the zeros emerges clearly when studying the local statistical fluctuations
of the high zeros of a given Λ(s, π) or the low-lying zeros of a given family of L-functions. These
statistical distributions are apparently dictated by random matrix ensembles [K-S]. For a given
Λ(s, π) the local fluctuations of high zeros are universal and follow the laws of fluctuations of the
eigenvalue distribution for matrices in the Gaussian Unitary Ensemble (GUE). We call this the
“Montgomery-Odlyzko Law.” For low-lying zeros in a family there is a symmetry type that one can
associate with the family from which the densities and fluctuations can be predicted. The analogues
of these fluctuation questions are understood in the setting of varieties over finite fields [K-S], and
this in fact motivated the developments for the Λ(s, π)’s. Numerical experimentations starting
with [Od2] have given further striking confirmation of this statistical fluctuation phenomenon.
Based on this and a more sophisticated analysis, Keating and Snaith have put forth very elegant
conjectures for the asymptotics of the moments of L(1

2 + it,π) for |t| ≤ T a T → ∞, as well
as for L(1

2 , π) as π varies over a family (see [C-F-K-S-R] and also [D-G-H], the latter being an
approach based on multiple Dirichlet series). The numerical and theoretical confirmation of these
conjectures is again very striking.
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The above gives ample evidence for there being a spectral interpretation of the zeros of an L-
function and indeed such interpretations have been given. One which has proven to be important
is via Eisenstein series [La]. These are automorphic forms associated with boundaries of arithmetic
quotients of semi-simple groups. These series have poles at the zeros of L-functions (hence the
zeros can in this way be thought of as resonances for a spectral problem). Combining this with
a positivity argument using the inner product formula for Eisenstein series (“Maass Selberg For-
mula”) yields effective zero free regions in !(s) ≤ 1 for all L-functions whose analytic continuation
and functional equations are known (see [G-L-S]). As mentioned earlier, general conjectures of
Langlands assert that the L-functions in question should be products of standard L-functions but
this is far from being established. This spectral method for non-vanishing applies to L-functions
for which the generalizations of the method of de la Vallée Poussin do not work and so at least for
now, this method should be considered as the most powerful one towards GRH.

Connes [Co] defines an action of the idele class group A∗/Q∗ on a singular space of adeles
(the action is basically multiplication over addition). In order to make sense of the space he uses
various Sobolev spaces and shows that the decomposition of this abelian group action corresponds
to the zeros of all the Λ(s, χ)’s which lie on !(s) = 1

2 . This artificial use of function spaces in
order to pick up only the eigenvalues of the action that lie on a line, makes it difficult to give a
spectral interpretation. In a recent paper Meyer [Me] fixes this problem by using a much larger
space of functions. He shows that the decomposition of the action on his space has eigenvalues
corresponding to all the zeros of all the Λ(s, χ)’s whether they lie on !(s) = 1

2 or not. In this way he
gives a spectral interpretation of the zeros of Dirichlet’s L-functions. Taking traces of the action he
derives (following Connes) the explicit formula of Weil-Guinand-Riemann [We2]. This derivation is
quite different from the usual complex analytic one which is done by taking logarithmic derivatives,
shifting contours and using the functional equation. Whether this spectral interpretation can be
used to prove anything new about L-functions remains to be seen. The explicit formula itself has
been very useful in the study of the distribution of the zeros of L-functions. In [Bo3] an in-depth
investigation of the related Weil quadratic functional is undertaken.

There have been many equivalences of RH that have been found over the years. Without their
having led to any new information about the zeta function and without being able to look into the
future, it is difficult to know if such equivalences constitute any real progress. In an evolving paper,
de Branges constructs a Hilbert space of entire functions from an L-function. He relates positivity
properties of associated kernel functions to the zeros of the L-function. Whether this approach
can be used to give any information about the zeros of the L-function is unclear. In any case, it
should be noted that the positivity condition that he would like to verify in his recent attempts, is
false since it implies statements about the zeros of the zeta function which are demonstrably false
[C-L].

We end with some philosophical comments. We have highlighted GRH as the central problem.
One should perhaps entertain the possibility that RH is true but GRH is false or even that RH
is false. In fact Odlyzko, who has computed the 1023-rd zero of zeta and billions of its neighbors,
notes that the fact that the first 1013 zeros are on the line !(s) = 1

2 (Gourdon 2004) should not
by itself be taken as very convincing evidence for RH. One reason to be cautious is the following.
The function S(t) which measures the deviation of the number of zeros of height at most t from
the expected number of such zeros, satisfies |S(t)| < 1 for t < 280 (and hence immediately all
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the zeros in this range are on the half line), while the largest observed value of S(t) in the range
that it has been computed, is about 3.2. On the other hand it is known that the mean-square of
S(t) is asymptotically 1

2π2 log log t ([Sel]), and hence S(t) gets large but does so very slowly. One
can argue that unless S(t) is reasonably large (say 100), one has not as yet seen the true state
of affairs as far as the behavior of the zeros of zeta. Needless to say, the height t for which S(t)
is of this size is far beyond the computational capabilities of present day machines. Returning
to the expected scenario that RH is true, it is quite possible (even likely) that the first proof of
RH that is given will not generalize to the Λ(s, π) cases. Most people believe that any such proof
for zeta would at least apply to the family of Dirichlet L-functions.∗ In fact it would be quite
disappointing if it didn’t since the juicy applications really start with this family. The millennium
prize correctly focuses on the original basic case of zeta, however a closer reading of the fine-print
of the rules shows them to be more guarded in the case that a disproof is given. As far as the issue
of what might or might not be true, some may feel that GRH is true for the Λ(s, π)’s for which
π is arithmetic in nature (in particular that the coefficients in the local factor L(s, πp) should be
algebraic) but that for the more transcendental π’s such as general Maass forms, that it may fail.
I am an optimist and don’t contemplate such a world.

To conclude, we point the reader to the interesting recent article by Conrey on the Riemann
Hypothesis [Conr] as well as the comprehensive treatment by Iwaniec and Kowalski [I-K] of the
modern tools, which are used in the study of many of the topics mentioned above.
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120 11 Expert Witnesses

11.3

The Riemann hypothesis, J. B. Conrey (2003)

It’s a whole beautiful subject and the Riemann zeta function is just the
first one of these, but it’s just the tip of the iceberg. They are just the
most amazing objects, these L-functions - the fact that they exist, and
have these incredible properties are tied up with all these arithmetical
things - and it’s just a beautiful subject. Discovering these things is like
discovering a gemstone or something. You’re amazed that this thing
exists, has these properties and can do this. [129]

J. Brian Conrey

J. Brian Conrey presents a variety of theory on the Riemann Hypothesis
motivated by three workshops sponsored by the American Institute of Math-
ematics. This paper gives a detailed account of the various approaches that
mathematicians have undertaken to attack the Riemann Hypothesis. Conrey
reports on the most active areas of current research into the Hypothesis, and
focuses on the areas that currently enjoy the most interest. Particularly, he
highlights recent work on the connections between random matrix theory, the
Riemann zeta function and L-functions. He also discusses the Landau-Siegel
zero and presents the recent innovative approach of Iwaniec towards its elim-
ination.
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The Riemann
Hypothesis

J. Brian Conrey

H
ilbert, in his 1900 address to the Paris
International Congress of Mathemati-
cians, listed the Riemann Hypothesis as
one of his 23 problems for mathe-
maticians of the twentieth century to

work on. Now we find it is up to twenty-first cen-
tury mathematicians! The Riemann Hypothesis
(RH) has been around for more than 140 years, and
yet now is arguably the most exciting time in its
history to be working on RH. Recent years have seen
an explosion of research stemming from the con-
fluence of several areas of mathematics and
physics.

In the past six years the American Institute of
Mathematics (AIM) has sponsored three workshops
whose focus has been RH. The first (RHI) was in
Seattle in August 1996 at the University of Wash-
ington. The second (RHII) was in Vienna in Octo-
ber 1998 at the Erwin Schrödinger Institute, and the
third (RHIII) was in New York in May 2002 at the
Courant Institute of Mathematical Sciences. The
intent of these workshops was to stimulate think-
ing and discussion about one of the most chal-
lenging problems of mathematics and to consider
many different approaches. Are we any closer to
solving the Riemann Hypothesis after these ef-
forts? Possibly. Have we learned anything about the
zeta-function as a result of these workshops? Def-
initely. Several of the participants from the work-
shops are collaborating on the website (http://

www.aimath.org/WWN/rh/) which provides an
overview of the subject.

Here I hope to outline some of the approaches
to RH and to convey some of the excitement of
working in this area at the present moment. To
begin, let us examine the Riemann Hypothesis 
itself. In 1859 in the seminal paper “Ueber die 
Anzahl der Primzahlen unter eine gegebener
Grösse”, G. B. F. Riemann outlined the basic ana-
lytic properties of the zeta-function

ζ(s) := 1+ 1
2s
+ 1

3s
+ · · · =

∞∑
n=1

1
ns
.

The series converges in the half-plane where the
real part of s is larger than 1. Riemann proved
that ζ(s) has an analytic continuation to the whole
plane apart from a simple pole at s = 1. Moreover,
he proved that ζ(s) satisfies an amazing functional
equation, which in its symmetric form is given by

J. Brian Conrey is director of  the American Institute of
Mathematics. His email address is conrey@aimath.org.
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Figure 1. ζ( 1
2 + it) for 0 < t < 50.
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ξ(s) := 1
2s(s − 1)π− s

2 Γ
( s

2

)
ζ(s) = ξ(1− s),

where Γ (s) is the usual Gamma-function.
The zeta-function had been studied previously

by Euler and others, but only as a function of a real
variable. In particular, Euler noticed that

ζ(s) =
(

1+ 1
2s
+ 1

4s
+ 1

8s
+ . . .

)

×
(

1+ 1
3s
+ 1

9s
+ . . .

)(
1+ 1

5s
+ . . .

)
. . .

=
∏
p

(
1− 1

ps

)−1

,

where the infinite product (called the Euler prod-
uct) is over all the prime numbers. The product con-
verges when the real part of s is greater than 1. It

is an analytic version of the fundamental theorem
of arithmetic, which states that every integer can
be factored into primes in a unique way. Euler used
this product to prove that the sum of the recipro-
cals of the primes diverges. The Euler product sug-
gests Riemann’s interest in the zeta-function: he
was trying to prove a conjecture made by Legendre
and, in a more precise form, by Gauss:

π (x) := #{primes less than x} ∼
∫ x

2

dt
log t

.

Riemann made great progress toward proving
Gauss’s conjecture. He realized that the distribu-
tion of the prime numbers depends on the distri-
bution of the complex zeros of the zeta-function.
The Euler product implies that there are no zeros
of ζ(s) with real part greater than 1; the functional
equation implies that there are no zeros with real
part less than 0, apart from the trivial zeros at
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Figure 2. Contour plot of �ζ(s) , the curves �ζ(s) = 0 (solid) and �ζ(s) = 0 (dotted), contour plot of
�ζ(s).

Figure 3. 3-D plot of |�ζ(s)|, and the curves �ζ(s) = 0 (solid) and �ζ(s) = 0 (dotted). This may be the
first place in the critical strip where the curves �ζ(s) = 0 loop around each other.
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s = −2,−4,−6, . . . . Thus, all of the complex zeros
are in the critical strip 0 ≤ �s ≤ 1. Riemann gave
an explicit formula for π (x) in terms of the com-
plex zeros ρ = β+ iγ of ζ(s) . A simpler variant of
his formula is

ψ(x) :=
∑
n≤x
Λ(n)

= x−
∑
ρ

xρ

ρ
− log 2π − 1

2 log(1− x−2),

valid for x not a prime power, where the von Man-
goldt function Λ(n) = logp if n = pk for some k and
Λ(n) = 0 otherwise. Note that the sum is not ab-
solutely convergent; if it were, then 

∑
n≤xΛ(n)

would have to be a continuous function of x, which
it clearly is not. Consequently, there must be infi-
nitely many zeros ρ. The sum over ρ is with mul-
tiplicity and is to be interpreted as limT→∞

∑
|ρ|<T.

Note also that |xρ| = xβ ; thus it was necessary to
show that β < 1 in order to conclude that∑
n≤xΛ(n) ∼ x , which is a restatement of Gauss’s

conjecture.

The functional equation shows that the complex
zeros are symmetric with respect to the line �s = 1

2.
Riemann calculated the first few complex zeros
1
2 + i14.134 . . ., 12 + i21.022 . . . and proved that the
number N(T ) of zeros with imaginary parts be-
tween 0 and T is

N(T ) = T
2π

log
T

2πe
+ 7

8
+ S(T )+O(1/T ),

where S(T ) = 1
π argζ(1/2+ iT ) is computed by

continuous variation starting from argζ(2) = 0
and proceeding along straight lines, first up to
2+ iT and then to 1/2+ iT. Riemann also proved
that S(T ) = O(logT ) . Note for future reference that
at a height T the average gap between zero heights
is ∼ 2π/ logT. Riemann suggested that the num-
ber N0(T ) of zeros of ζ(1/2+ it) with 0 < t ≤ T
seemed to be about

T
2π

log
T

2πe

and then made his conjecture that all of the zeros
of ζ(s) in fact lie on the 1/2-line; this is the Rie-
mann Hypothesis.

Riemann’s effort came close to proving Gauss’s
conjecture. The final step was left to Hadamard and
de la Vallée Poussin, who proved independently in
1896 that ζ(s) does not vanish when the real part
of s is equal to 1 and from that fact deduced
Gauss’s conjecture, now called the Prime Number
Theorem.

Initial Ideas
It is not difficult to show that RH is equivalent to
the assertion that for every ε > 0,

π (x) =
∫ x

2

dt
log t

+O(x1/2+ε).

However, it is difficult to see another way to ap-
proach π (x) and so get information about the zeros.

Another easy equivalent to RH is the assertion
that M(x) = O(x1/2+ε) for every ε > 0, where

M(x) =
∑
n≤x
µ(n)

and µ(n) is the Möbius function whose definition
can be inferred from its generating Dirichlet series
1/ζ :

1
ζ(s)

=
∞∑
n=1

µ(n)
ns

=
∏
p

(
1− 1

ps

)
.

Thus, if p1, . . . , pk are distinct primes, then
µ(p1 . . . pk) = (−1)k; also µ(n) = 0 if p2 | n for some
prime p. This series converges absolutely when
�s > 1. If the estimate M(x) = O(x1/2+ε) holds for
every ε > 0, then it follows by partial summation
that the series converges for every s with real part
greater than 1/2; in particular, there can be no
zeros of ζ(s) in this open half-plane, because zeros
of ζ(s) are poles of 1/ζ(s) . The converse, that RH
implies this estimate for M(x) , is also not difficult
to show.

Instead of analyzing π (x) directly, it might seem
easier to work with M(x) and prove the above es-
timate, perhaps by some kind of combinatorial
reasoning. In fact, Stieltjes let it be known that he
had such a proof. Hadamard, in his famous 1896
proof of the Prime Number Theorem, refers to
Stieltjes’s claim and somewhat apologetically offers
his much weaker theorem that ζ(s) does not van-
ish on the 1-line in the hope that the simplicity of
his proof will be useful. Stieltjes never published
his proof.

Mertens made the stronger conjecture that

|M(x)| ≤ √x;

clearly this implies RH. However, Mertens’s con-
jecture was disproved by Odlyzko and te Riele in
1985. The estimate M(x) = O(

√
x ) is also likely to

Figure 4. Explicit formula for ψ(x) using the
first 100 pairs of zeros.
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even used RH as a defense: he once sent a postcard
to his colleague Harald Bohr prior to crossing the
English Channel one stormy night, claiming that he
had solved RH. Even though Hardy was an atheist,
he was relatively certain that God, if he did exist,
would not allow the ferry to sink under circum-
stances so favorable to Hardy!

Hilbert seems to have had somewhat contra-
dictory views about the difficulty of RH. On one 
occasion he compared three unsolved problems: 
the transcendence of 2

√
2, Fermat’s Last Theorem,

and the Riemann Hypothesis. In his view, RH would
likely be solved in a few years, Fermat’s Last The-
orem possibly in his lifetime, and the transcendence
question possibly never. Amazingly, the transcen-
dence question was resolved a few years later by
Gelfond and Schneider, and, of course, Andrew
Wiles recently proved Fermat’s Last Theorem. An-
other time Hilbert remarked that if he were to
awake after a sleep of five hundred years, the first
question he would ask was whether RH was solved.

Near the end of his career, Hans Rademacher,
best known for his exact formula for the number
of partitions of an integer, thought he had dis-
proved RH. Siegel had checked the work, which was
based on the deduction that a certain function
would absurdly have an analytic continuation if RH
were true. The mathematics community tried to get
Time magazine interested in the story. It tran-
spired that Time became interested and published
an article only after it was discovered that
Rademacher’s proof was incorrect.

Evidence for RH
Here are some reasons to believe RH.
• Billions of zeros cannot be wrong. Recent work

by van de Lune has shown that the first 10 billion
zeros are on the line. Also, there is a distributed
computing project organized by Sebastian We-
deniwski—a screen-saver type of program—that
many people subscribe to, which claims to have
verified that the first 100 billion zeros are on the
line. Andrew Odlyzko has calculated millions of
zeros near zeros number 1020,1021 , and 1022

(available on his website).
• Almost all of the zeros are very near the 1/2-

line. In fact, it has been proved that more than
99 percent of zeros ρ = β+ iγ satisfy
|β− 1

2 | ≤ 8/ log |γ| .
• Many zeros can be proved to be on the line. Sel-

berg got a positive proportion, and N. Levinson
showed at least 1/3; that proportion has been
improved to 40 percent. Also, RH implies that
all zeros of all derivatives of ξ(s) are on the
1/2-line. It has been shown that more than 
99 percent of the zeros of the third derivative
ξ′′′(s) are on the 1/2-line. Near the end of his
life, Levinson thought he had a method that 
allowed for a converse to Rolle’s theorem in 

Figure 5. 1/|ζ(x+ iy)| for 0 < x < 1 and
16502.4 < y < 16505 .

be false, but a proof of its falsity has not yet been
found.

Subsequent Efforts
In England in the early 1900s the difficulty of the
question was not yet appreciated. Barnes assigned
RH to Littlewood as a thesis problem. Littlewood
independently discovered some of the develop-
ments that had already occurred on the continent.
Hardy, Littlewood, Ingham, and other British math-
ematicians were responsible for many of the results
on the zeta-function in the first quarter of the cen-
tury. Hardy and Littlewood gave the first proof
that infinitely many of the zeros are on the 1/2-
line. They found what they called the approximate
functional equation for ζ(s) . Later, Siegel uncovered
a very precise version of this formula while study-
ing Riemann’s notes in the Göttingen library; the
formula is now called the Riemann-Siegel formula
and gives the starting point for all large-scale cal-
culations of ζ(s) . Hardy and Littlewood gave an 
asymptotic evaluation of the second moment of
ζ( 1

2 + it); Ingham proved the asymptotics for the
fourth moment.

Much effort has also been expended on the un-
proved Lindelöf hypothesis, which is a consequence
of RH. The Lindelöf hypothesis asserts that for
every ε > 0,

ζ(1/2+ it) = O(tε) as t →∞.
Hardy and Littlewood proved that
ζ(1/2+ it) = O(t1/4+ε) . This bound is now called
the “convexity bound”, since it follows from the
functional equation together with general princi-
ples of complex analysis (the maximum modulus
principle in the form of the Phragmén-Lindelöf
theorem). Weyl improved the bound to t1/6+ε with
his new ideas for estimating special trigonometri-
cal sums, now called Weyl sums.

Hardy grew to love the problem. He and Little-
wood wrote at least ten papers on the zeta-
function. Hardy once included proving RH on a
list of New Year’s goals he set for himself. Hardy
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this situation, implying that if ξ′(s) has at least
a certain proportion of zeros on the line, then
so does ξ and similarly for ξ′′ to ξ′ and so on.
However, no one has been able to make this 
argument work.

• Probabilistic arguments. For almost all random
sequences of −1’s and +1’s, the associated sum-
matory function up to x is bounded by x1/2+ε.
The Möbius sequence appears to be fairly ran-
dom.

• Symmetry of the primes. RH tells us that the
primes are distributed in as nice a way as pos-
sible. If RH were false, there would be some
strange irregularities in the distribution of
primes; the first zero off the line would be a very
important mathematical constant. It seems un-
likely that nature is that perverse!

Various Approaches
There is an often-told story that Hilbert and Pólya
independently suggested that the way to prove RH
was to interpret the zeros spectrally, that is, to find
a naturally occurring Hermitian operator whose
eigenvalues are the nontrivial zeros of ζ(1/2+ it).
Then RH would follow, since Hermitian operators
have real eigenvalues. This idea has been one of the
main approaches that has been tried repeatedly.

We describe an assortment of other interesting
approaches to RH.

Pólya’s Analysis
Pólya investigated a chain of ideas that began with
Riemann: namely, studying the Fourier transform
of Ξ(t) := ξ( 1

2 + it) , which as a consequence of the
functional equation is real for real t and an even
function of t . RH is the assertion that all zeros of
Ξ are real. The Fourier transform can be computed
explicitly:

Φ(t) :=
∫∞
−∞
Ξ(u)eitu du

=
∞∑
n=1

(2n4π2 exp(9t/2)− 3n2π exp(5t/2))

× exp
(−πn2e2t) .

It can be shown that Φ and Φ′ are positive for pos-
itive t . One idea is to systematically study classes
of reasonable functions whose Fourier transforms
have all real zeros and then try to prove that Ξ(t)
is in the class. A sample theorem in this direction
is due to de Bruijn:

Let f (t) be an even nonconstant entire function
of t such that f (t) ≥ 0 for real t and
f ′(t) = exp(γt2)g(t), where γ ≥ 0 and g(t) is an en-
tire function of genus ≤ 1 with purely imaginary
zeros only. Then Ψ (z) =

∫∞
−∞ exp {−f (t)}eiztdt has

real zeros only.

In particular, all the zeros of the Fourier trans-
form of a first approximation (see Titchmarsh for
details)

φ(t) =(2π cosh
9t
2
− 3 cosh

5t
2

)
× exp(−2π cosh 2t)

to Φ(t) are real. These ideas have been further 
explored by de Bruijn, Newman, D. Hejhal, and
others. Hejhal (1990) has shown that almost all of
the zeros of the Fourier transform of any partial
sum of Φ(t) are real.

Probabilistic Models
Researchers working in probability are intrigued by
the fact that the ξ-function arises as an expecta-
tion in a moment of a Brownian bridge:

2ξ(s) = E(Ys )

where
Y :=

√
2
π

(
max
t∈[0,1]

bt − min
t∈[0,1]

bt
)

with bt = βt − tβ1 where βt is standard Brownian
motion. See a paper of Biane, Pitman, and Yor (Bull.
Amer. Math. Soc. (N.S.) 38 (2001), 435–65).

Functional Analysis: The Nyman-Beurling
Approach
This approach begins with the following theorem
of Nyman, a student of Beurling.

RH holds if and only if

spanL2(0,1){ηα,0 < α < 1} = L2(0,1)

where

ηα(t) = {α/t} −α{1/t}

and {x} = x− [x] is the fractional part of x.

This has been extended by Baez-Duarte, who
showed that one may restrict attention to integral
values of 1/α . Balazard and Saias have rephrased
this in a nice way:

RH holds if and only if

inf
A

∫∞
−∞

∣∣∣1−A( 1
2 + it)ζ( 1

2 + it)
∣∣∣2 dt

1
4 + t2

= 0,

where the infimum is over all Dirichlet
polynomials A .

Let dN be the infimum over all Dirichlet poly-
nomials

A(s) =
N∑
n=1

ann−s

of length N. They conjecture that dN ∼ C/ logN ,
where C =∑ρ 1/|ρ|2. Burnol has proved that

dn ≥
1

logN

∑
ρ on the line

mρ

|ρ|2 ,
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Figure 6. Duality: The Fourier transform of the error term in the Prime Number Theorem (note the spikes at
ordinates of zeros) and the sum over zeros −∑xρ with |ρ| < 100 (note the peaks at primes and prime powers).

where mρ is the multiplicity of the zero ρ. If RH
holds and all the zeros are simple, then clearly
these two bounds are the same.
Weil’s Explicit Formula and Positivity Criterion
André Weil proved the following formula, which is
a generalization of Riemann’s formula mentioned
above and which specifically illustrates the de-
pendence between primes and zeros. Suppose h is
an even function that is holomorphic in the strip
|�t| ≤ 1/2+ δ and that satisfies h(t) =
O((1+ |t|)−2−δ) for some δ > 0, and let

g(u) = 1
2π

∫∞
−∞
h(r )e−iur dr .

Then we have the following duality between primes
and zeros of ζ :∑

γ
h(γ) =2h( i2 )− g(0) logπ

+ 1
2π

∫∞
−∞
h(r )

Γ ′

Γ
( 1

4 +
1
2 ir )dr

− 2
∞∑
n=1

Λ(n)√
n
g(logn).

In this formula, a zero is written as ρ = 1/2+ iγ
where γ ∈ C ; of course RH is the assertion that
every γ is real. Using this duality Weil gave a cri-
terion for RH:

RH holds if and only if∑
γ
h(γ) > 0

for every (admissible) function h of the form
h(r ) = h0(r )h0(r ) .

Xian-Jin Li has given a very nice criterion which,
in effect, says that one may restrict attention to a
specific sequence hn:

The Riemann Hypothesis is true if and only if
λn ≥ 0 for each n = 1,2, . . . where

λn =
∑
ρ

(1− (1− 1/ρ)n).

As usual, the sum over zeros is limT→∞
∑
|ρ|<T .

Another expression for λn is

λn =
1

(n− 1)!
dn

dsn
(sn−1 logξ(s))

∣∣∣∣
s=1
.

It would be interesting to find an interpretation

(geometric?) for these λn, or perhaps those asso-

ciated with a different L-function, to make their pos-

itivity transparent.

Selberg’s Trace Formula

Selberg, perhaps looking for a spectral interpreta-

tion of the zeros of ζ(s) , proved a trace formula

for the Laplace operator acting on the space of

real-analytic functions defined on the upper half-

plane H = {x+ iy : y > 0} and invariant under

the group SL(2,Z) of linear fractional transforma-

tions with integer entries and determinant one,

which acts discontinuously on H . This invariance

is expressed as

f
(az + b
cz + d

)
= f (z);

the Laplace operator in this case is

∆ = −y2

(
∂2

∂x2
+ ∂2

∂x2

)
.

The spectrum of ∆ splits into a continuous part and

a discrete part. The eigenvalues λ are all positive

and, by convention, are usually expressed as

λ = s(1− s). The continuous part consists of all

s = 1/2+ it , t ≥ 0, and we write the discrete part

as sj = 1
2 + irj. Then
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Some Other Equivalences of Interest
Here are a few other easy-to-state equivalences of
RH:
• Hardy and Littlewood (1918): RH holds if and only

if
∞∑
k=1

(−x)k

k!ζ(2k+ 1)
= O(x−1/4) as x→∞.

• Redheffer (1977): RH holds if and only if for
every ε > 0 there is a C(ε) > 0 such that
|det(A(n))| < C(ε)n1/2+ε , where A(n) is the n× n
matrix of 0’s and 1’s defined by A(i, j) = 1 if
j = 1 or if i divides j , and A(i, j) = 0 otherwise.
It is known that A(n) has n− [n log 2]− 1 eigen-
values equal to 1. Also, A has a real eigenvalue
(the spectral radius) which is approximately 

√
n ,

a negative eigenvalue which is approximately
−√n, and the remaining eigenvalues are small.

• Lagarias (2002): Let σ (n) denote the sum of the
positive divisors of n. RH holds if and only if

σ (n) ≤ Hn + exp(Hn) logHn

for every n, where Hn = 1+ 1
2 +

1
3 + · · · +

1
n .

Other Zeta- and L-Functions
Over the years striking analogies have been ob-
served between the Riemann zeta-function and
other zeta- or L-functions. While these functions are
seemingly independent of each other, there is grow-
ing evidence that they are all somehow connected
in a way that we do not fully understand. In any
event, trying to understand, or at least classify, all
of the objects which we believe satisfy RH is a rea-
sonable thing to do. The rest of the article will give
a glimpse in this direction and perhaps a clue to
the future.

First, some examples of other functions that we
believe satisfy RH. The simplest after ζ is the
Dirichlet L-function for the nontrivial character of
conductor 3:

L(s, χ3) = 1− 1
2s
+ 1

4s
− 1

5s
+ 1

7s
− 1

8s
+ . . . .

Figure 7. The eigenvalues of a random 40 x 40 unitary matrix, 40 consecutive zeros of ζ(s) scaled to wrap once
around the circle, and 40 randomly chosen points on the unit circle.

∞∑
j=1

h(rj ) =− h(0)− g(0) log π
2 −

1
2π

∫∞
−∞
h(r )G(r )dr

+ 2
∞∑
n=1

Λ(n)
n
g(2 logn)

+
∑
P

∞∑
:=1

g(: logP ) logP
P:/2 − P−:/2

where g, h, and Λ are as in Weil’s formula and

G(r ) = Γ
′

Γ
( 1

2 + ir )+
Γ ′

Γ
(1+ ir )− π

6
r tanhπr

+ π
coshπr

( 1
8 +

√
3

9 cosh πr
3 ).

The final sum is over the norms P of prime 
geodesics of SL(2,Z)\H. The values taken on by P
are of the form (n+

√
n2 − 4 )2/4, n ≥ 3, with 

certain multiplicities (the class number h(n2 − 4)).
H. Haas was one of the first people to compute 
the eigenvalues r1 = 9.533 . . . , r2 = 12.173 . . ., r3 =
13.779 . . . of SL(2,Z) in 1977 in his University 
of Heidelberg Diplomarbeit. Soon after, Hejhal 
was visiting San Diego, and Audrey Terras pointed
out to him that Haas’s list contained the numbers
14.134 . . . , 21.022 . . . : the ordinates of the first few
zeros of ζ(s) were lurking amongst the eigenval-
ues! Hejhal discovered the ordinates of the zeros
of L(s, χ3) (see section 7) on the list too. He un-
raveled this perplexing mystery about six months
later. It turned out that the spurious eigenvalues
were associated to “pseudo cusp forms” and ap-
peared because of the method of computation
used. If the zeros had appeared legitimately, RH
would have followed because λ = ρ(1− ρ) is pos-
itive. (The 1979 IHÉS preprint by P. Cartier and
Hejhal contains additional details of the story.)

The trace formula resembles the explicit for-
mula in certain ways. Many researchers have at-
tempted to interpret Weil’s explicit formula in
terms of Selberg’s trace formula.
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This can be written as an Euler product∏
p≡1 mod 3

(1− p−s )−1
∏

p≡2 mod 3

(1+ p−s )−1,

it satisfies the functional equation

ξ(s, χ3) :=
(
π
3

)− s2 Γ ( s+1
2 )L(s, χ3) = ξ(1− s, χ3),

and it is expected to have all of its nontrivial zeros
on the 1/2-line. A similar construction works for
any primitive Dirichlet character.

Dedekind, Hecke, Artin, and others developed the
theory of zeta-functions associated with number
fields and their characters. These have functional
equations and Euler products, and are expected to
satisfy a Riemann Hypothesis. Ramanujan’s tau-
function defined implicitly by

x
∞∏
n=1

(1− xn)24 =
∞∑
n=1

τ(n)xn

also yields an L-function. The associated Fourier se-
ries ∆(z) :=∑∞

n=1 τ(n) exp(2πinz) satisfies

∆
(az + b
cz + d

)
= (cz + d)12∆(z)

for all integers a, b, c, d with ad − bc = 1. A func-
tion satisfying these equations is called a modular
form of weight 12. The associated L-function

L∆(s) :=
∞∑
n=1

τ(n)/n11/2

ns

=
∏
p

(
1− τ(p)/p11/2

ps
+ 1
p2s

)−1

satisfies the functional equation

ξ∆ := (2π )−sΓ (s + 11/2)L∆(s) = ξ∆(1− s),

and all of its complex zeros are expected to be on
the 1/2-line.

Another example is the L-function associated to
an elliptic curve E : y2 = x3 +Ax+ B, where A and
B are integers. The associated L-function, called the
Hasse-Weil L-function, is

LE(s) =
∞∑
n=1

a(n)/n1/2

ns

=
∏
p�N

(
1− a(p)/p1/2

ps
+ 1
p2s

)−1

×
∏
p|N

(
1− a(p)/p1/2

ps

)−1

,

where N is the conductor of the curve. The coeffi-
cients an are constructed easily from ap for prime p;
in turn the ap are given by ap = p −Np , where Np
is the number of solutions of E when considered
modulo p. The work of Wiles and others proved that

these L-functions are associated to modular forms
of weight 2. This modularity implies the functional
equation

ξE(s) := (2π/
√
N )−sΓ (s + 1/2)LE(s) = ξE(1− s).

It is believed that all of the complex zeros of LE(s)
are on the 1/2-line. A similar construction ought
to work for other sets of polynomial equations, but
so far this has not been proved.

What is the most general situation in which we
expect the Riemann Hypothesis to hold? The Lang-
lands program is an attempt to understand all
L-functions and to relate them to automorphic
forms. At the very least a Dirichlet series that is a
candidate for RH must have an Euler product and
a functional equation of the right shape. Selberg has
given a set of four precise axioms which are believed
to characterize the L-functions for which RH holds.
Examples have been given that show the necessity
of most of the conditions in his axioms.

L-Functions and Random Matrix Theory
An area of investigation which has stimulated 
much recent work is the connection between the
Riemann zeta-function and Random Matrix Theory
(RMT). This work does not seem to be leading in
the direction of a proof of RH, but it is convincing
evidence that the spectral interpretation of the
zeros sought by Hilbert and Pólya is an idea with
merit. Moreover, the connection between zeta 
theory and RMT has resulted in a very detailed
model of ζ(s) and its value distribution.
Montgomery’s Pair Correlation Conjecture
In 1972 Hugh Montgomery was investigating the
spacings between zeros of the zeta-function in an
attempt to solve the class number problem. He
formulated his Pair Correlation Conjecture based
in part on what he could prove assuming RH and
in part on RH plus conjectures for the distribution
of twin primes and other prime pairs. This con-
jecture asserts that∑

2πα
logT <γ−γ′≤

2πβ
logT

1 ∼ N(T )
∫ β
α

(
1−

(
sinπu
πu

)2)
du.

The sum on the left counts the number of pairs
0 < γ,γ′ < T of ordinates of zeros with normalized
spacing between positive numbers α < β . Mont-
gomery had stopped in Princeton on his way from
St. Louis, where he had presented this result at an
AMS symposium, to Cambridge University, where
he was a graduate student. Chowla persuaded him
to show this result to Freeman Dyson at afternoon
tea at the Institute for Advanced Study. Dyson 

immediately identified the integrand 1−
(

sinπu
πu

)2

as the pair correlation function for eigenvalues 
of large random Hermitian matrices measured 
with a Gaussian measure—the Gaussian Unitary 
Ensemble that physicists had long been studying



trix explanation for these numbers. By 1998 Gonek
and I had found a number-theoretic way to con-
jecture the answer for the eighth moment, namely
g4 = 24024. At RHII in Vienna, Keating announced
that he and Snaith had a conjecture for all of the
moments which agreed with g1 , g2 , and g3 . Keat-
ing, Snaith, and I—moments before Keating’s lec-
ture—checked (amid great excitement!) that the
Keating and Snaith conjecture also produced
g4 = 24024.

The idea of Keating and Snaith was that if the
eigenvalues of unitary matrices model zeta zeros,
then perhaps the characteristic polynomials of uni-
tary matrices model zeta values. They were able to
compute—exactly—the moments of the charac-
teristic polynomials of unitary matrices averaged
with respect to Haar measure by using Selberg’s in-
tegral, which is a formula found in the 1940s by
Selberg that vastly generalizes the integral for the
beta-function. Keating and Snaith proposed that

gk = k2!
k−1∏
j=0

j !
(j + k)!

.

Farmer and I (2000) proved that gk is always an in-
teger and found that it has an interesting prime fac-
torization.
Families
At RHI in Seattle, Sarnak gave a lecture on families
of L-functions based on work that he and Katz
were doing. They discovered a way to identify a
symmetry type (unitary, orthogonal, or symplectic)
with various families of L-functions. Their work was
based on studying families of zeta-functions over
finite fields (for which RH was already proved by
Weil for curves and by Deligne for general varieties).
For these zeta-functions, Katz and Sarnak proved
that the zeros of the family were distributed exactly

in connection with the distribution of energy lev-
els in large systems of particles. With this insight,
Montgomery went on to conjecture that perhaps
all the statistics, not just the pair correlation 
statistic, would match up for zeta-zeros and eigen-
values of Hermitian matrices. This conjecture is
called the GUE conjecture. It has the flavor of a 
spectral interpretation of the zeros, though it gives
no indication of what the particular operator is.
Odlyzko’s Calculations
In the 1980s Odlyzko began an intensive numeri-
cal study of the statistics of the zeros of ζ(s) .
Based on a new algorithm developed by Odlyzko
and Schönhage that allowed them to compute a
value of ζ(1/2+ it) in an average time of tε steps,
he computed millions of zeros at heights around
1020 and spectacularly confirmed the GUE conjec-
ture.

Moments of Zeta
More recently, RMT has led to a conjecture for mo-
ments of ζ on the critical line. Let

Ik(T ) = 1
T

∫ T
0
|ζ(1/2+ it)|2k dt.

Asymptotic formulas for I1 and I2 were found by
Hardy and Littlewood and Ingham by 1926. In 1995
Ghosh and I formulated a conjecture for I3 and set
up a notation to clarify the part missing from our
understanding of Ik. After scaling out the arithmetic
parts, we identified a factor gk which we could not
predict. The factor is g1 = 1 and g2 = 2 for the
second and fourth moments and conjecturally
g3 = 42 for the sixth moment. At RHI in Seattle, Sar-
nak proposed to Keating that he find a random ma-
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Figure 8a. The nearest neighbor spacing for
GUE (solid) and for 7.8× 107 zeros of ζ(s) near
the 1020 zero (scatterplot). Graphic by A.
Odlyzko.

Figure 8b.The pair-correlation function for GUE
(solid) and for 8× 106 zeros of ζ(s) near the
1020 zero (scatterplot). Graphic by A. Odlyzko.
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Figure 10. The second zero for L(s, χd) as com-
pared to the RMT prediction. Graphic by
M. Rubenstein.

Figure 11. The distribution of values of
|ζ(1/2+ it)| near t = 106 compared with the dis-
tribution of values of characteristic polynomials
of 12× 12 unitary matrices. Graphic by N. Snaith.

Figure 9. A comparison of the distribution of the lowest lying zero for two families of L-functions. In
each case one first needs to suitably normalize the zeros. The first figure compares the distribution
of the lowest zero of L(s, χd), Dirichlet L-functions, for several thousand d’s of size 1012 , against the
distribution of the zero closest to 1 for large unitary symplectic matrices. In the second picture we

show the same statistic, but for several thousand even quadratic twists d of size 500,000, of the
Ramanujan τ cusp form L-function. This is compared to the distribution of the zero closest to 1 for

large orthogonal matrices with even characteristic polynomial (in the latter family, one needs to
distinguish between even and odd twists). Graphics by M. Rubenstein.

as the RMT distributions of the monodromy group
associated with the family.

Katz and Sarnak stress that the proofs of Weil
and Deligne use families of zeta-functions over fi-
nite fields to prove RH for an individual zeta-
function. The modelling of families of L-functions
by ensembles of random matrix theory gives evi-
dence for a spectral interpretation of the zeros,
which may prove important if families are ulti-
mately used to prove RH. At this point, however,
we do not know what plays the role of the mon-
odromy groups in this situation.

RMT and Families
Keating and Snaith extended their conjectures to
moments of families of L-functions by computing
moments of characteristic polynomials of sym-
plectic and orthogonal matrices, each with their own
Haar measure. (It should be mentioned that the or-
thogonal and symplectic circular ensembles used
by the physicists do not use Haar measure and so
have different answers. Katz and Sarnak figured out
that Haar measure must be used to model
L-functions.)

Further works by Farmer, Keating, Rubinstein,
Snaith, and this author have led to precise conjec-
tures for all of the main terms in moments for
many families of L-functions. These results are so
precise that they lead to further conjectures about
the distribution of values of the L-functions. We can
even predict how frequently we find double zeros
at the center of the critical strip of L-functions
within certain families.
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The Conspiracy of L-Functions
There is a growing body of evidence that there is
a conspiracy among L-functions—a conspiracy
which is preventing us from solving RH!

The first clue that zeta- and L-functions even
know about each other appears perhaps in works
of Deuring and Heilbronn in their study of one of
the most intriguing problems in all of mathemat-
ics: Gauss’s class number problem. Gauss asked
whether the number of equivalence classes of bi-
nary quadratic forms of discriminant d < 0 goes
to ∞ as d goes to −∞.

The equivalence class of a quadratic form
Q(m,n) = am2 + bmn+ cn2 of discriminant
d = b2 − 4ac consists of all of the quadratic forms
obtained by a linear substitution m → αm+ βn ,
n → γm+ δn, where α,β,γ, δ are integers with
αδ− βγ = 1. The number h(d) of these equiva-
lence classes is called the class number and is
known to be finite. Equivalently, h(d) is the num-
ber of ideal classes of the imaginary quadratic field
Q(
√
d ). The history of Gauss’s problem is extremely

interesting; it has many twists and turns and is not
yet finished—we seem to be players in the middle
of a mystery novel.

Deuring and Heilbronn were trying to solve
Gauss’s problem. The main tool they were using was
the beautiful class number formula of Dirichlet,
h(d) =

√
|d|L(1, χd)/π (|d| > 4), which gives the

class number in terms of the value of the
L-function at 1, which is at the edge of the critical
strip. So the question boils down to giving a lower
bound for L(1, χd); this question, in turn, can be re-
solved by proving that there is no real zero of
L(s, χd) very near to 1.

Hecke had shown that the truth of RH for L(s, χd)
implies that h(d) →∞ . Then Deuring proved that
the falsity of RH for ζ(s) implies that h(d) > 1 for
large |d|. Finally, Heilbronn showed that the falsity
of RH for L(s, χ) for any χ implied that h(d) →∞ .
These results together proved Gauss’s conjecture
and gave a first indication of a connection between
the zeros of ζ(s) and those of L(s, χd)!

Later Landau showed that a hypothetical zero
of L(s, χd1 ) very near to 1 implies that no other
L(s, χd), d �= d1, could have such a zero, further il-
lustrating that zeros of L(s, χd) know about each
other. Siegel strengthened this approach to show
that for every ε > 0 there is a c(ε) > 0 such that no
zero β of L(s, χd) satisfies β > 1− c(ε)|d|−ε . The
problem with the arguments of Landau and Siegel
is that the constant c(ε) cannot be effectively com-
puted, and so the bound cannot be used to actu-
ally calculate the list of discriminants d with a
given class number, which presumably is what
Gauss wanted. The ineffectivity comes about from
the assumption that some L-function actually has
a real zero near 1. Such a hypothetical zero of

some L-function, which no one believes exists, is
called a Landau-Siegel zero.

In fact, one can show that if there is some d1 such
that L(s, χd1 ) has a zero at β < 1, then it follows that
h(d) > c|d|β−1/2/ log |d| for all other d, where c > 0
can be effectively computed. Thus, the closer to 1
the hypothetical zero is, the stronger the result. But
note also that any zero bigger than 1/2 would give
a result. The basic idea behind this approach is that
if there is an L(s, χd) with a zero near 1, then
χd(p) = −1 for many small primes. In other words,
χd mimics the Möbius function µ(n) for small n.
This is consistent with the fact that

∞∑
n=1

µ(n)
ns

has a zero at s = 1 (since ζ(s) has a pole at s = 1).
The Landau-Siegel Zero
Much effort has gone toward trying to eliminate the
Landau-Siegel zero described above and so find an
effective solution to Gauss’s problem. However,
the L-function conspiracy blocks every attempt ex-
actly at the point where success appears to be in
sight. We begin to suspect that the battle for RH
will not be won without getting to the bottom of
this conspiracy. Here are some tangible examples
which give a glimpse of this tangled web.

The Brun-Titchmarsh theorem. Let π (x;q, a)
denote the number of primes less than or equal
to x that lie in the arithmetic progression
a mod q . Sieve methods can show that for any
1 ≤ q < x the inequality

π (x;q, a) ≤ 2
x

φ(q) log(x/q)

holds, where φ is Euler’s phi-function. It is
believed that the same theorem should be true
with 2 replaced by any number larger than 1 and
sufficiently large x. Any lowering of the constant 2
would eliminate the Landau-Siegel zero. In
particular, Motohashi [1979] proved that if 1− δ
is a real zero of L(s, χq) , then if for x ≥ qc the
Brun-Titchmarsh theorem is valid in the form
π (x;q, a) ≤ (2−α)x/(φ(q) log(x/q)) , where α > 0
is an absolute constant, then δ ≥ c′ξ/ logq ,
where c and c′ are certain numerical constants.

The Alternative Hypothesis. This is an alternative
to the GUE model for the distribution of zeros. It
proposes the existence of a function f (T ) that goes
to 0 as T →∞ such that if any two consecutive or-
dinates γ and γ′ of zeros of ζ larger than some T0

are given, then the normalized gap
2π (γ logγ − γ′ logγ′) between γ and γ′ is within
f (T0) of half of an integer. This hypothesis is clearly
absurd! However, ruling this out would eliminate
the Landau-Siegel zero (Conrey–Iwaniec (2002)),
and so for all we know it could be true.
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L-functions is to look at elliptic curves with many
rational points.

Iwaniec’s Approach
Iwaniec, in his lecture at RHIII, proposed a way to
take advantage of the above ideas. In a nutshell, his
idea is to take a family of L-functions having a
multiple zero at 1/2 and use this family to obtain
useful approximations for the Möbius function
µ(n) as a linear combination of the coefficients of
the L-functions from the family. In this way, the
Möbius function is tamed. One example of a fam-
ily considered by Iwaniec is the family of
L-functions associated to the elliptic curves

EA,B2 : y2 = x3 +Ax+ B2,

which have a rational point (B,0) and so have rank
at least one. Considering A and B in certain
arithmetic progressions shows that the associated 
L-function must have a double zero at the center.

Iwaniec presented three conjectures which 
together would eliminate the Landau-Siegel zero.
The main two theorems needed to complete his 
program are a bound for the second moment∑

A≈X1/3, B≈X1/4

LA,B2 (1/2)2 = O(X7/12(logX)C
)

of this family together with a good estimate (square-
root cancellation uniform in M , N, and q) for the
incomplete exponential sum

∑
M<m<2M,N<n<2N

χq(mn) exp

(
2πi

m3n−4

q

)
,

the kind of estimate that for a completed expo-
nential sum follows from the RH for varieties
proved by Deligne. Iwaniec has similar, but more
complicated, constructions that would lead to a
quasi-Riemann hypothesis, producing a concrete
β < 1 such that there are no zeros to the right of
the line through β .

Iwaniec’s approach will likely reduce the ques-
tion of RH, which is ostensibly about zeros or
poles, into several subsidiary questions that have
a much different flavor, such as finding upper
bound estimates for moments and values of
L-functions. This approach offers hope of attack by
methods from analytic number theory.

Conclusion
A major difficulty in trying to construct a proof of
RH through analysis is that the zeros of L-functions
behave so much differently from zeros of many of
the special functions we are used to seeing in math-
ematics and mathematical physics. For example, it
is known that the zeta-function does not satisfy any
differential equation. The functions which do arise
as solutions of some of the classical differential
equations, such as Bessel functions, hypergeometric

If one could prove, for example, that there is a
δ > 0 such that for all sufficiently large T there is
a pair of consecutive zeros with ordinates between
T and 2T whose distance apart is less than 1/2− δ
times the average spacing, then the alternative hy-
pothesis would be violated. Random matrix theory
predicts the exact distribution of these neighbor
spacings and shows that we should expect that
about 11 percent of the time the neighbor gaps 
are smaller than 1/2 of the average. These ideas
were what led Montgomery to consider the pair-
correlation of the zeros of ζ(s) mentioned above.
He showed that there are arbitrarily large pairs 
of zeros that are as close together as 0.68 of the av-
erage spacing. Later works have gotten this bound
down to 0.5152. There are indications that using
work of Rudnick and Sarnak on higher correlations
of the zeros of ζ , one might be able to reach 0.5,
but 0.5 is definitely a limit (more like a brick wall!)
of all of the known methods.

Vanishing of modular L-functions. The most spec-
tacular example is the work of Iwaniec and Sarnak.
They showed that if one could prove that there is
a δ > 0 such that more than 1/2+ δ of the modu-
lar L-functions of a fixed weight, large level, and
even functional equation do not vanish, then the
Landau-Siegel zero could be eliminated. It is pre-
dicted that all but an infinitesimal proportion of
these values are nonzero; they just needed one-half
plus δ of them to be nonzero. They can prove that
50 percent do not vanish, but despite their best ef-
forts they cannot get that extra little tiny bit needed
to eliminate the Landau-Siegel zero.

A Clue and a Partial Victory
The only approach that has made an impact on the
Landau-Siegel zero problem is an idea of Goldfeld.
In 1974 Goldfeld, anticipated somewhat by Fried-
lander, realized that while a zero at 1/2 would barely
fail to produce a lower bound for the class number
tending to infinity, a multiple zero at 1/2 would pro-
duce a lower bound which, while not a positive
power of |d|, still goes to ∞. Moreover, it was be-
lieved—by virtue of the Birch and Swinnerton-Dyer
conjecture—that zeros of high multiplicity do exist
and the place to look for them is among L-functions
associated to elliptic curves with large rank. How-
ever, it was not until 1985 that Gross and Zagier
demonstrated conclusively that there exist L-func-
tions with triple zeros at 1/2. This led to the lower
bound that for any ε > 0 there is an effectively
computable c1(ε) > 0 such that h(d) >
c1(ε)(log |d|)1−ε . This is a long way from the ex-
pected h(d) > c

√
|d|/ log |d| ,  but it did solve

Gauss’s problem. The clue that it gave us was to
study exotic L-functions, or extremal L-functions,
which have zeros of high multiplicity at the cen-
ter. At present, our best hope for finding these 
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functions, etc., have zeros which are fairly regularly
spaced. A similar remark holds for the zeros of so-
lutions of classical differential equations regarded
as a function of a parameter in the differential
equation. For instance, in the Pólya 
theorem above comparing φ(t) with Φ(t), the zeros
are actually zeros of a Bessel function of fixed 
argument regarded as a function of the index.
Again the zeros are regularly spaced.

On the other hand, the zeros of L-functions are
much more irregularly spaced. For example, the
RMT models predict that for any ε > 0 there are in-
finitely many pairs of zeros ρ and ρ′ such that
|ρ − ρ′| < |ρ|−1/3+ε. Generally it is believed that all
zeros of all L-functions are linearly independent (in
particular, simple), except that certain L-functions
can have a zero at s = 1/2 of high multiplicity.
The conjecture of Birch and Swinnerton-Dyer
asserts that the multiplicity of the zero of the
L-function associated with a given elliptic curve is
equal to the rank of the group of rational points
on the elliptic curve. It is known that the latter can
be as large as 26, and it is generally believed to get
arbitrarily large. None of the methods from analy-
sis seem capable of dealing with such exotic phe-
nomena.

It is my belief that RH is a genuinely arithmetic
question that likely will not succumb to methods
of analysis. There is a growing body of evidence in-
dicating that one needs to consider families of
L-functions in order to make progress on this
difficult question. If so, then number theorists 
are on the right track to an eventual proof of RH,
but we are still lacking many of the tools. The in-
gredients for a proof of RH may well be moment
theorems for a new family of L-functions not yet
explored; modularity of Hasse-Weil L-functions 
for many varieties, like that proved by Wiles and
others for elliptic curves; and new estimates for 
exponential sums, which could come out of arith-
metic geometry. The study of L-functions is still in
its beginning stages. We only recently learned the
modularity of the L-functions associated to ellip-
tic curves; it would be very helpful to understand
the L-functions for more complicated curves and
generally for varieties. It would be useful to 
systematically compute many new examples of 
L-functions to get a glimpse of what is out there
waiting to be discovered. The exotic behavior of 
the multiple zeros of L-functions associated to 
elliptic curves with many rational points could be
just the beginning of the story.
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On some reasons for doubting the Riemann hypothesis,
A. Ivić (2003)

. . . I don’t believe or disbelieve the Riemann Hypothesis. I have a
certain amount of data and a certain amount of facts. These facts tell
me definitely that the thing has not been settled. Until it’s been settled
it’s a hypothesis, that’s all. I would like the Riemann Hypothesis to
be true, like any decent mathematician, because it’s a thing of beauty,
a thing of elegance, a thing that would simplify many proofs and so
forth, but that’s all [129].

Aleksandar Ivić

In this article Ivić discusses several arguments against the truth of the Rie-
mann Hypothesis. Ivić points to heuristics on the moments of zeta functions as
evidence that the Hypothesis is false. He discusses this and other conditional
disproofs of the Riemann Hypothesis. This paper questions widely-held belief
in the Riemann Hypothesis and cautions mathematicians against accepting
the Hypothesis as fact, even in light of the empirical data.
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ON SOME REASONS FOR DOUBTING THE RIEMANN HYPOTHESIS

Aleksandar Ivić

Abstract. Several arguments against the truth of the Riemann hypothesis are extensively discussed.

These include the Lehmer phenomenon, the Davenport–Heilbronn zeta-function, large and mean values of

|ζ( 1
2 + it)| on the critical line, and zeros of a class of convolution functions closely related to ζ( 1

2 + it). The

first two topics are classical, and the remaining ones are connected with the author’s recent research. By

means of convolution functions a conditional disproof of the Riemann hypothesis is given.

0. Foreword (“Audiatur et altera pars”)

This is the unabridged version of the work that was presented at the Bordeaux Conference in honour

of the Prime Number Theorem Centenary, Bordeaux, January 26, 1996 and later during the 39th Taniguchi

International Symposium on Mathematics “Analytic Number Theory”, May 13-17, 1996 in Kyoto and its

forum, May 20-24, 1996. The abridged printed version, with a somewhat different title, is [62]. The mul-

tiplicities of zeros are treated in [64]. A plausible conjecture for the coefficients of the main term in the

asymptotic formula for the 2k-th moment of |ζ( 1
2 + it)| (see (4.1)–(4.2)) is given in [67].

In the years that have passed after the writing of the first version of this paper, it appears that the

subject of the Riemann Hypothesis has only gained in interest and importance. This seem particularly true in

view of the Clay Mathematical Institute prize of one million dollars for the proof of the Riemann Hypothesis,

which is called as one of the mathematical “Problems of the Millenium”. A comprehensive account is to

be found in E. Bombieri’s paper [65]. It is the author’s belief that the present work can still be of interest,

especially since the Riemann Hypothesis may be still very far from being settled. Inasmuch the Riemann

Hypothesis is commonly believed to be true, and for several valid reasons, I feel that the arguments that

disfavour it should also be pointed out.

One of the reasons that the original work had to be shortened and revised before being published is the

remark that “The Riemann hypothesis is in the process of being proved” by powerful methods from Random

matrix theory (see e.g., B. Conrey’s survey article [66]). Random matrix theory has undisputably found its

place in the theory of ζ(s) and allied functions (op. cit. [66], [67]). However, almost ten years have passed

since its advent, but the Riemann hypothesis seems as distant now as it was then.

1. Introduction

A central place in Analytic number theory is occupied by the Riemann zeta-function ζ(s), defined for

<e s > 1 by

(1.1) ζ(s) =

∞∑

n=1

n−s =
∏

p prime

(1− p−s)−1,

and otherwise by analytic continuation. It admits meromorphic continuation to the whole complex plane,

its only singularity being the simple pole s = 1 with residue 1. For general information on ζ(s) the reader

is referred to the monographs [7], [16], and [61]. From the functional equation

(1.2) ζ(s) = χ(s)ζ(1− s), χ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s),

which is valid for any complex s, it follows that ζ(s) has zeros at s = −2,−4, . . . . These zeros are traditionally

called the “trivial” zeros of ζ(s), to distinguish them from the complex zeros of ζ(s), of which the smallest
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ones (in absolute value) are 1
2 ± 14.134725 . . . i. It is well-known that all complex zeros of ζ(s) lie in the

so-called “critical strip” 0 < σ = <e s < 1, and if N(T ) denotes the number of zeros ρ = β + iγ (β, γ real)

of ζ(s) for which 0 < γ ≤ T , then

(1.3) N(T ) =
T

2π
log
( T
2π

)
− T

2π
+

7

8
+ S(T ) +O

(
1

T

)

with

(1.4) S(T ) =
1

π
arg ζ( 1

2 + iT ) = O(log T ).

This is the so-called Riemann–von Mangoldt formula.The Riemann hypothesis (henceforth RH for short) is

the conjecture, stated by B. Riemann in his epoch-making memoir [52], that very likely all complex zeros of

ζ(s) have real parts equal to 1/2. For this reason the line σ = 1/2 is called the “critical line” in the theory

of ζ(s). Notice that Riemann was rather cautious in formulating the RH, and that he used the wording

“very likely” (“sehr wahrscheinlich” in the German original) in connection with it. Riemann goes on to say

in his paper: “One would of course like to have a rigorous proof of this, but I have put aside the search

for such a proof after some fleeting vain attempts because it is not necessary for the immediate objective

of my investigation”. The RH is undoubtedly one of the most celebrated and difficult open problems

in whole Mathematics. Its proof (or disproof) would have very important consequences in multiplicative

number theory, especially in problems involving the distribution of primes. It would also very likely lead to

generalizations to many other zeta-functions (Dirichlet series) having similar properties as ζ(s).

The RH can be put into many equivalent forms. One of the classical is

(1.5) π(x) = lix+O(
√
x logx),

where π(x) is the number of primes not exceeding x (≥ 2) and

(1.6) lix =

∫ x

0

dt

log t
= lim

ε→0+

(∫ 1−ε

0

+

∫ x

1+ε

) dt

log t
=

N∑

n=1

(n− 1)!x

logn x
+O

( x

logN+1 x

)

for any fixed integer N ≥ 1. One can give a purely arithmetic equivalent of the RH without mentioning

primes. Namely we can define recursively the Möbius function µ(n) as

µ(1) = 1, µ(n) = −
∑

d|n,d<n

µ(d) (n > 1).

Then the RH is equivalent to the following assertion: For any given integer k ≥ 1 there exists an integer

N0 = N0(k) such that, for integers N ≥ N0, one has

(1.7)

( N∑

n=1

µ(n)

)2k

≤ Nk+1.

The above definition of µ(n) is elementary and avoids primes. A non-elementary definition of µ(n) is through

the series representation

(1.8)

∞∑

n=1

µ(n)n−s =
1

ζ(s)
(<e s > 1),

and an equivalent form of the RH is that (1.8) holds for σ > 1/2. The inequality (1.7) is in fact the bound

(1.9)
∑

n≤x

µ(n) �ε x
1
2+ε
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in disguise, where ε corresponds to 1/(2k), x to N , and the 2k–th power avoids absolute values. The bound

(1.9) (see [16] and [61]) is one of the classical equivalents of the RH. The sharper bound


∑

n≤x

µ(n)
 <

√
x (x > 1)

was proposed in 1897 by Mertens on the basis of numerical evidence, and later became known in the literature

as the Mertens conjecture. It was disproved in 1985 by A.M. Odlyzko and H.J.J. te Riele [47].

Instead of working with the complex zeros of ζ(s) on the critical line it is convenient to introduce the

function

(1.10) Z(t) = χ−1/2( 1
2 + it)ζ( 1

2 + it),

where χ(s) is given by (1.2). Since χ(s)χ(1 − s) = 1 and Γ(s) = Γ(s), it follows that |Z(t)| = |ζ( 1
2 + it)|,

Z(t) is even and

Z(t) = χ−1/2( 1
2 − it)ζ( 1

2 − it) = χ1/2( 1
2 − it)ζ( 1

2 + it) = Z(t).

Hence Z(t) is real if t is real, and the zeros of Z(t) correspond to the zeros of ζ(s) on the critical line. Let

us denote by 0 < γ1 ≤ γ2 ≤ . . . the positive zeros of Z(t) with multiplicities counted (all known zeros are

simple). If the RH is true, then it is known (see [61]) that

(1.11) S(T ) = O
( logT

log logT

)
,

and this seemingly small improvement over (1.4) is significant. If (1.11) holds, then from (1.3) one infers

that N(T +H) −N(T ) > 0 for H = C/ log logT , suitable C > 0 and T ≥ T0. Consequently we have the

bound, on the RH,

(1.12) γn+1 − γn �
1

log log γn

for the gap between consecutive zeros on the critical line. For some unconditional results on γn+1 − γn, see

[17], [18] and [25].

We do not know exactly what motivated Riemann to conjecture the RH. Some mathematicians, like

Felix Klein, thought that he was inspired by a sense of general beauty and symmetry in Mathematics.

Although doubtlessly the truth of the RH would provide such harmonious symmetry, we also know now

that Riemann undertook rather extensive numerical calculations concerning ζ(s) and its zeros. C.L. Siegel

[57] studied Riemann’s unpublished notes, kept in the Göttingen library. It turned out that Riemann had

computed several zeros of the zeta-function and had a deep understanding of its analytic behaviour. Siegel

provided rigorous proof of a formula that had its genesis in Riemann’s work. It came to be known later as

the Riemann–Siegel formula (see [16], [57] and [61]) and, in a weakened form, it says that

(1.13) Z(t) = 2
∑

n≤(t/2π)1/2

n−1/2 cos
(
t log

√
t/2π

n
− t

2
− π

8

)
+O(t−1/4),

where the O-term in (1.13) is actually best possible, namely it is Ω±(t−1/4). As usual f(x) = Ω±(g(x)) (for

g(x) > 0 when x ≥ x0) means that we have f(x) = Ω+(x) and f(x) = Ω−(x), namely that both

lim sup
x→∞

f(x)

g(x)
> 0, lim inf

x→∞
f(x)

g(x)
< 0

are true. The Riemann–Siegel formula is an indispensable tool in the theory of ζ(s), both for theoretical

investigations and for the numerical calculations of the zeros.
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Perhaps the most important concrete reason for believing the RH is the impressive numerical evidence in

its favour. There exists a large and rich literature on numerical calculations involving ζ(s) and its zeros (see

[38], [44], [45], [46], [51], which contain references to further work). This literature reflects the development

of Mathematics in general, and of Numerical analysis and Analytic number theory in particular. Suffice to

say that it is known that the first 1.5 billion complex zeros of ζ(s) in the upper half-plane are simple and

do have real parts equal to 1/2, as predicted by the RH. Moreover, many large blocks of zeros of much

greater height have been thoroughly investigated, and all known zeros satisfy the RH. However, one should

be very careful in relying on numerical evidence in Analytic number theory. A classical example for this is

the inequality π(x) < lix (see (1.5) and (1.6)), noticed already by Gauss, which is known to be true for all

x for which the functions in question have been actually computed. But the inequality π(x) < lix is false;

not only does π(x) − lix assume positive values for some arbitrarily large values of x, but J.E. Littlewood

[37] proved that

π(x) = lix+ Ω±

(√
x

log log log x

logx

)
.

By extending the methods of R. Sherman Lehman [56], H.J.J. te Riele [50] showed that π(x) < lix fails for

some (unspecified) x < 6.69 × 10370. For values of t which are this large we may hope that Z(t) will also

show its true asymptotic behaviour. Nevertheless, we cannot compute by today’s methods the values of Z(t)

for t this large, actually even t = 10100 seems out of reach at present. To assess why the values of t where

Z(t) will “really” exhibit its true behaviour must be “very large”, it suffices to compare (1.4) and (1.11) and

note that the corresponding bounds differ by a factor of log logT , which is a very slowly varying function.

Just as there are deep reasons for believing the RH, there are also serious grounds for doubting its

truth, although the author certainly makes no claims to possess a disproof of the RH. It is in the folklore

that several famous mathematicians, which include P. Turán and J.E. Littlewood, believed that the RH is

not true. The aim of this paper is to state and analyze some of the arguments which cast doubt on the truth

of the RH. In subsequent sections we shall deal with the Lehmer phenomenon, the Davenport-Heilbronn

zeta-function, mean value formulas on the critical line, large values on the critical line and the distribution

of zeros of a class of convolution functions. These independent topics appear to me to be among the most

salient ones which point against the truth of the RH. The first two of them, the Lehmer phenomenon and

the Davenport-Heilbronn zeta-function, are classical and fairly well known. The remaining ones are rather

new and are connected with the author’s research, and for these reasons the emphasis will be on them. A

sharp asymptotic formula for the convolution function MZ,f (t), related to Z(t), is given in Section 8. Finally

a conditional disproof of the RH, based on the use of the functions MZ,f (t), is given at the end of the paper

in Section 9. Of course, nothing short of rigorous proof or disproof will settle the truth of the RH.

Acknowledgement. I want to thank Professors M. Jutila, K. Matsumoto, Y. Motohashi and A.M.

Odlyzko for valuable remarks.

2. Lehmer’s phenomenon

The function Z(t), defined by (1.10), has a negative local maximum −0.52625 . . . at t = 2.47575 . . . .

This is the only known occurrence of a negative local maximum, while no positive local minimum is known.

Lehmer’s phenomenon (named after D.H. Lehmer, who in his works [35], [36] made significant contributions

to the subject) is the fact (see [46] for a thorough discussion) that the graph of Z(t) sometimes barely

crosses the t–axis. This means that the absolute value of the maximum or minimum of Z(t) between its

two consecutive zeros is small. For instance, A.M. Odlyzko found (in the version of [46] available to the

author, but Odlyzko kindly informed me that many more examples occur in the computations that are going

on now) 1976 values of n such that |Z( 1
2γn + 1

2γn+1)| < 0.0005 in the block that he investigated. Several

extreme examples are also given by van de Lune et al. in [38]. The Lehmer phenomenon shows the delicacy

of the RH, and the possibility that a counterexample to the RH may be found numerically. For should it
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happen that, for t ≥ t0, Z(t) attains a negative local maximum or a positive local minimum, then the RH

would be disproved. This assertion follows (see [7]) from the following

Proposition 1. If the RH is true, then the graph of Z ′(t)/Z(t) is monotonically decreasing between

the zeros of Z(t) for t ≥ t0.

Namely suppose that Z(t) has a negative local maximum or a positive local minimum between its two

consecutive zeros γn and γn+1. Then Z ′(t) would have at least two distinct zeros x1 and x2 (x1 < x2) in

(γn, γn+1), and hence so would Z ′(t)/Z(t). But we have

Z ′(x1)

Z(x1)
<
Z ′(x2)

Z(x2)
,

which is a contradiction, since Z ′(x1) = Z ′(x2) = 0.

To prove Proposition 1 consider the function

ξ(s) :=
1

2
s(s− 1)π−s/2Γ(

s

2
)ζ(s),

so that ξ(s) is an entire function of order one (see Ch. 1 of [16]), and one has unconditionally

(2.1)
ξ′(s)

ξ(s)
= B +

∑

ρ

( 1

s− ρ +
1

ρ

)

with

B = log 2 +
1

2
logπ − 1− 1

2
C0,

where ρ denotes complex zeros of ζ(s) and C0 == Γ′(1) is Euler’s constant. By (1.2) it follows that

Z(t) = χ−1/2( 1
2 + it)ζ( 1

2 + it) =
π−it/2 Γ( 1

4 + 1
2 it)ζ(

1
2 + it)

|Γ( 1
4 + 1

2 it)|
,

so that we may write

ξ( 1
2 + it) = −f(t)Z(t), f(t) := 1

2π
−1/4(t2 + 1

4 )|Γ( 1
4 + 1

2 it)|.

Consequently logarithmic differentiation gives

(2.2)
Z ′(t)

Z(t)
= − f ′(t)

f(t)
+ i

ξ′( 1
2 + it)

ξ( 1
2 + it)

.

Assume now that the RH is true. Then by using (2.1) with ρ = 1
2 + iγ, s = 1

2 + it we obtain, if t 6= γ,

( iξ′( 1
2 + it)

ξ( 1
2 + it)

)′
= −

∑

γ

1

(t− γ)2 < −C(log log t)2 (C > 0)

for t ≥ t0, since (1.12) holds. On the other hand, by using Stirling’s formula for the gamma-function and

log |z| = <e log z, it is readily found that

d

dt

(
f ′(t)

f(t)

)
� 1

t
,

so that from (2.2) it follows that (Z ′(t)/Z(t))′ < 0 if t ≥ t0, which implies Proposition 1. Actually the

value of t0 may be easily effectively determined and seen not to exceed 1000. Since Z(t) has no positive
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local minimum or negative local maximum for 3 ≤ t ≤ 1000, it follows that the RH is false if we find

(numerically) the occurrence of a single negative local maximum (besides the one at t = 2.47575 . . .) or a

positive local minimum of Z(t). It seems appropriate to quote in concluding Edwards [7], who says that

Lehmer’s phenomenon “must give pause to even the most convinced believer of the Riemann hypothesis”.

3. The Davenport-Heilbronn zeta-function

This is a zeta-function (Dirichlet series) which satisfies a functional equation similar to the classical

functional equation (1.2) for ζ(s). It has other analogies with ζ(s), like having infinitely many zeros on the

critical line σ = 1/2, but for this zeta-function the analogue of the RH does not hold. This function was

introduced by H. Davenport and H. Heilbronn [6] as

(3.1) f(s) = 5−s
(
ζ(s,

1

5
) + tan θ ζ(s,

2

5
)− tan θ ζ(s,

3

5
)− ζ(s, 4

5
)
)
,

where θ = arctan (
√

10− 2
√

5− 2)/(
√

5− 1) and, for <e s > 1,

ζ(s, a) =

∞∑

n=0

(n+ a)−s (0 < a ≤ 1)

is the familiar Hurwitz zeta-function, defined for <e s ≤ 1 by analytic continuation. With the above choice

of θ (see [6], [32] or [61]) it can be shown that f(s) satisfies the functional equation

(3.2) f(s) = X(s)f(1− s), X(s) =
2Γ(1− s) cos(πs

2 )

5s− 1
2 (2π)1−s

,

whose analogy with the functional equation (1.2) for ζ(s) is evident. Let 1/2 < σ1 < σ2 < 1. Then it can

be shown (see Ch. 6 of [32]) that f(s) has infinitely many zeros in the strip σ1 < σ = <e s < σ2, and it also

has (see Ch. 10 of [61]) an infinity of zeros in the half-plane σ > 1, while from the product representation

in (1.1) it follows that ζ(s) 6= 0 for σ > 1, so that in the half-plane σ > 1 the behaviour of zeros of ζ(s)

and f(s) is different. Actually the number of zeros of f(s) for which σ > 1 and 0 < t = =m s ≤ T is � T ,

and similarly each rectangle 0 < t ≤ T, 1/2 < σ1 < σ ≤ σ2 ≤ 1 contains at least c(σ1, σ2)T zeros of f(s).

R. Spira [58] found that 0.808517 + 85.699348i (the values are approximate) is a zero of f(s) lying in the

critical strip 0 < σ < 1, but not on the critical line σ = 1/2. On the other hand, A.A. Karatsuba [31] proved

that the number of zeros 1
2 + iγ of f(s) for which 0 < γ ≤ T is at least T (logT )1/2−ε for any given ε > 0

and T ≥ T0(ε). This bound is weaker than A. Selberg’s classical result [53] that there are � T logT zeros
1
2 + iγ of ζ(s) for which 0 < γ ≤ T . From the Riemann–von Mangoldt formula (1.3) it follows that, up to

the value of the �–constant, Selberg’s result on ζ(s) is best possible. There are certainly � T logT zeros
1
2 + iγ of f(s) for which 0 < γ ≤ T and it may be that almost all of them lie on the critical line σ = 1/2,

although this has not been proved yet. The Davenport-Heilbronn zeta-function is not the only example of a

zeta-function that exhibits the phenomena described above, and many so-called Epstein zeta-functions also

have complex zeros off their respective critical lines (see the paper of E. Bombieri and D. Hejhal [5] for some

interesting results).

What is the most important difference between ζ(s) and f(s) which is accountable for the difference of

distribution of zeros of the two functions, which occurs at least in the region σ > 1? It is most likely that

the answer is the lack of the Euler product for f(s), similar to the one in (1.1) for ζ(s). But f(s) can be

written as a linear combination of two L-functions which have Euler products (with a common factor) and

this fact plays the crucial rôle in Karatsuba’s proof of the lower bound result for the number of zeros of f(s).

In any case one can argue that it may likely happen that the influence of the Euler product for ζ(s) will not

extend all the way to the line σ = 1/2. In other words, the existence of zeta-functions such as f(s), which
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share many common properties with ζ(s), but which have infinitely many zeros off the critical line, certainly

disfavours the RH.

Perhaps one should at this point mention the Selberg zeta-function Z(s) (see [55]). This is an entire

function which enjoys several common properties with ζ(s), like the functional equation and the Euler

product. For Z(s) the corresponding analogue of the RH is true, but it should be stressed that Z(s) is not

a classical Dirichlet series. Its Euler product

Z(s) =
∏

{P0}

∞∏

k=0

(1−N(P0)
−s−k) (<e s > 1)

is not a product over the rational primes, but over norms of certain conjugacy classes of groups. Also Z(s)

is an entire function of order 2, while (s − 1)ζ(s) is an entire function of order 1. For these reasons Z(s)

cannot be compared too closely to ζ(s).

4. Mean value formulas on the critical line

For k ≥ 1 a fixed integer, let us write the 2k-th moment of |ζ( 1
2 + it)| as

(4.1)

∫ T

0

|ζ( 1
2 + it)|2k dt = T Pk2 (logT ) +Ek(T ),

where for some suitable coefficients aj,k one has

(4.2) Pk2(y) =

k2∑

j=0

aj,ky
j .

An extensive literature exists on Ek(T ), especially on E1(T ) ≡ E(T ) (see F.V. Atkinson’s classical paper

[2]), and the reader is referred to [20] for a comprehensive account. It is known that

P1(y) = y + 2C0 − 1− log(2π),

and P4(y) is a quartic polynomial whose leading coefficient equals 1/(2π2) (see [22] for an explicit evaluation

of its coefficients). One hopes that

(4.3) Ek(T ) = o(T ) (T →∞)

will hold for each fixed integer k ≥ 1, but so far this is known to be true only in the cases k = 1 and k = 2,

when Ek(T ) is a true error term in the asymptotic formula (4.1). In fact heretofore it has not been clear how

to define properly (even on heuristic grounds) the values of aj,k in (4.2) for k ≥ 3 (see [24] for an extensive

discussion concerning the case k = 3). The connection between Ek(T ) and the RH is indirect, namely there

is a connection with the Lindelöf hypothesis (LH for short). The LH is also a famous unsettled problem, and

it states that

(4.4) ζ( 1
2 + it) �ε tε

for any given ε > 0 and t ≥ t0 > 0 (since ζ( 1
2 + it) = ζ( 1

2 − it), t may be assumed to be positive). It is

well-known (see [61] for a proof) that the RH implies

(4.5) ζ( 1
2 + it) � exp

( A log t

log log t

)
(A > 0, t ≥ t0),
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so that obviouly the RH implies the LH. In the other direction it is unknown whether the LH (or (4.5))

implies the RH. However, it is known that the LH has considerable influence on the distribution of zeros of

ζ(s). If N(σ, T ) denotes the number of zeros ρ = β + iγ of ζ(s) for which σ ≤ β and |γ| ≤ T , then it is

known (see Ch. 11 of [16]), that the LH implies that N(σ, T ) � T 2−2σ+ε for 1/2 ≤ σ ≤ 1 (this is a form of

the density hypothesis) and N( 3
4 + δ, T )� T ε, where ε = ε(δ) may be arbitrarily small for any 0 < δ < 1

4 .

The best unconditional bound for the order of ζ(s) on the critical line, known at the time of the writing

of this text is

(4.6) ζ( 1
2 + it) �ε tc+ε

with c = 89/570 = 0.15614 . . . . This is due to M.N. Huxley [13], and represents the last in a long series of

improvements over the past 80 years. The result is obtained by intricate estimates of exponential sums of

the type
∑

N<n≤2N nit (N �
√
t), and the value c = 0.15 appears to be the limit of the method.

Estimates for Ek(T ) in (4.1) (both pointwise and in the mean sense) have many applications. From the

knowledge about the order of Ek(T ) one can deduce a bound for ζ( 1
2 + iT ) via the estimate

(4.7) ζ( 1
2 + iT ) � (log T )(k

2+1)/(2k) +
(
logT max

t∈[T−1,T+1]
|Ek(t)|

)1/(2k)
,

which is Lemma 4.2 of [20]. Thus the best known upper bound

(4.8) E(T ) ≡ E1(T ) � T 72/227(log T )679/227

of M.N. Huxley [14] yields (4.6) with c = 36/227 = 0.15859 . . . . Similarly the sharpest known bound

(4.9) E2(T )� T 2/3 logC T (C > 0)

of Y. Motohashi and the author (see [20], [26], [28]) yields (4.6) with the classical value c = 1/6 of Hardy

and Littlewood. Since the difficulties in evaluating the left-hand side of (4.1) greatly increase as k increases,

it is reasonable to expect that the best estimate for ζ( 1
2 + iT ) that one can get from (4.7) will be when k = 1.

The LH is equivalent to the bound

(4.10)

∫ T

0

|ζ( 1
2 + it)|2k dt�k,ε T

1+ε

for any k ≥ 1 and any ε > 0, which in turn is the same as

(4.11) Ek(T ) �k,ε T
1+ε.

The enormous difficulty in settling the truth of the LH, and so a fortiori of the RH, is best reflected in the

relatively modest upper bounds for the integrals in (4.10) (see Ch. 8 of [16] for sharpest known results). On

the other hand, we have Ω-results in the case k = 1, 2, which show that E1(T ) and E2(T ) cannot be always

small. Thus J.L. Hafner and the author [11], [12] proved that

(4.12) E1(T ) = Ω+

(
(T logT )

1
4 (log logT )

3+log 4
4 e−C

√
log log log T

)

and

(4.13) E1(T ) = Ω−

(
T

1
4 exp

( D(log logT )
1
4

(log log logT )
3
4

))
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for some absolute constants C,D > 0. Moreover the author [19] proved that there exist constants A,B > 0

such that, for T ≥ T0, every interval [T, T +B
√
T ] contains points t1, t2 for which

E1(t1) > At
1/4
1 , E1(t2) < −At1/4

2 .

Numerical investigations concerning E1(T ) were carried out by H.J.J. te Riele and the author [29].

The Ω–result

(4.14) E2(T ) = Ω(
√
T )

(meaning limT→∞ E2(T )T−1/2 6= 0) was proved by Y. Motohashi and the author (see [26], [28] and Ch. 5 of

[20]). The method of proof involved differences of values of the functions E2(T ), so that (4.14) was the limit

of the method. The basis of this, as well of other recent investigations involving E2(T ), is Y. Motohashi’s

fundamental explicit formula for

(4.15) (∆
√
π)−1

∫ ∞

−∞
|ζ( 1

2 + it+ iT )|4 e−(t/∆)2 dt (∆ > 0),

obtained by deep methods involving spectral theory of the non-Euclidean Laplacian (see [40], [41], [43], [63]

and Ch. 5 of [16]). On p. 310 of [20] it was pointed out that a stronger result than (4.14), namely

lim sup
T→∞

|E2(T )|T−1/2 = +∞

follows if certain quantities connected with the discrete spectrum of the non-Euclidean Laplacian are linearly

independent over the integers. Y. Motohashi [42] recently unconditionally improved (4.14) by showing that

(4.16) E2(T ) = Ω±(
√
T )

holds. Namely he proved that the function

Z2(ξ) :=

∫ ∞

1

|ζ( 1
2 + it)|4 t−ξ dt,

defined initially as a function of the complex variable ξ for <e ξ > 1, is meromorphic over the whole complex

plane. In the half-plane <e ξ > 0 it has a pole of order five at ξ = 1, infinitely many simple poles of the

form 1
2 ± κi, while the remaining poles for <e ξ > 0 are of the form ρ/2, ζ(ρ) = 0. Here κ2 + 1

4 is in the

discrete spectrum of the non-Euclidean Laplacian with respect to the full modular group. By using (4.1)

and integration by parts it follows that

(4.17) Z2(ξ) = C + ξ

∫ ∞

1

P4(log t)t−ξ dt+ ξ

∫ ∞

1

E2(t)t
−ξ−1 dt

with a suitable constant C, where the integrals are certainly absolutely convergent for <e ξ > 1 (actually the

second for <e ξ > 1/2 in view of (4.20)). Now (4.16) is an immediate consequence of (4.17) and the following

version of a classical result of E. Landau (see [1] for a proof).

Proposition 2. Let g(x) be a continuous function such that

G(ξ) :=

∫ ∞

1

g(x)x−ξ−1 dx

converges absolutely for some ξ. Let us suppose that G(ξ) admits analytic continuation to a domain including

the half-line [σ,∞), while it has a simple pole at ξ = σ + iδ (δ 6= 0), with residue γ. Then

lim sup
x→∞

g(x)x−σ ≥ |γ|, lim inf
x→∞

g(x)x−σ ≤ −|γ|.
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It should be pointed out that (4.14) shows that the well-known analogy between E1(T ) and ∆2(x) ( =

∆(x), the error term in the formula for
∑

n≤x d(n)), which is discussed e.g., in Ch. 15 of [16], cannot be

extended to general Ek(T ) and ∆k(x). The latter function denotes the error term in the asymptotic formula

for
∑

n≤x dk(n), where dk(n) is the general divisor function generated by ζk(s). The LH is equivalent to

either αk ≤ 1/2 (k ≥ 2) or βk = (k − 1)/(2k) (k ≥ 2), where αk and βk are the infima of the numbers ak

and bk for which

∆k(x) � xak ,

∫ x

1

∆2
k(y) dy � xbk

hold, respectively. We know that βk = (k − 1)/(2k) for k = 2, 3, 4, and it is generally conjectured that

αk = βk = (k − 1)/(2k) for any k. At first I thought that, analogously to the conjecture for αk and βk, the

upper bound for general Ek(T ) should be of such a form as to yield the LH when k → ∞, but in view of

(4.14) I am certain that this cannot be the case.

It may be asked then how do the Ω-results for E1(T ) and E2(T ) affect the LH, and thus indirectly the

RH? A reasonable conjecture is that these Ω-results lie fairly close to the truth, in other words that

(4.18) Ek(T ) = Ok,ε(T
k
4 + ε)

holds for k = 1, 2. This view is suggested by estimates in the mean for the functions in question. Namely

the author [15] proved that

(4.19)

∫ T

1

|E1(t)|A dt�ε T
1+ A

4 +ε (0 ≤ A ≤ 35

4
),

and the range for A for which (4.19) holds can be slightly increased by using the best known estimate (4.6)

in the course of the proof. Also Y. Motohashi and the author [27], [28] proved that

(4.20)

∫ T

0

E2(t) dt� T 3/2,

∫ T

0

E2
2(t) dt� T 2 logC T (C > 0).

The bounds (4.19) and (4.20) show indeed that, in the mean sense, the bound (4.18) does hold when k = 1, 2.

Curiously enough, it does not seem possible to show that the RH implies (4.18) for k ≤ 3. If (4.18) holds for

any k, then in view of (4.7) we would obtain (4.6) with the hitherto sharpest bound c ≤ 1/8, or equivalently

µ(1/2) ≤ 1/8, where for any real σ one defines

µ(σ) = lim sup
t→∞

log |ζ(σ + it)|
log t

,

and it will be clear from the context that no confusion can arise with the Möbius function. What can one

expect about the order of magnitude of Ek(T ) for k ≥ 3? It was already mentioned that the structure of

Ek(T ) becomes increasingly complex as k increases. Thus we should not expect a smaller exponent than

k/4 in (4.18) for k ≥ 3, as it would by (4.7) yield a result of the type µ(1/2) < 1/8, which in view of the

Ω-results is not obtainable from (4.18) when k = 1, 2. Hence by analogy with the cases k = 1, 2 one would

be led to conjecture that

(4.21) Ek(T ) = Ω(T k/4)

holds for any fixed k ≥ 1. But already for k = 5 (4.21) yields, in view of (4.1),

(4.22)

∫ T

0

|ζ( 1
2 + it)|10 dt = Ω+(T 5/4),



On some reasons for doubting the Riemann hypothesis 11

which contradicts (4.10), thereby disproving both the LH and the RH. It would be of great interest to obtain

more detailed information on Ek(T ) in the cases when k = 3 and especially when k = 4, as the latter

probably represents a turning point in the asymptotic behaviour of mean values of |ζ( 1
2 + it)|. Namely the

above phenomenon strongly suggests that either the LH fails, or the shape of the asymptotic formula for the

left-hand side of (4.1) changes (in a yet completely unknown way) when k = 4. In [24] the author proved

that E3(T )�ε T
1+ε conditionally, that is, provided that a certain conjecture involving the ternary additive

divisor problem holds. Y. Motohashi ( [40] p. 339, and [42]) proposes, on heuristic grounds based on analogy

with explicit formulas known in the cases k = 1, 2, a formula for the analogue of (4.15) for the sixth moment,

and also conjectures (4.21) for k = 3. Concerning the eighth moment, it should be mentioned that N.V.

Kuznetsov [33] had an interesting approach based on applications of spectral theory, but unfortunately his

proof of

(4.23)

∫ T

0

|ζ( 1
2 + it)|8 dt� T logC T

had several gaps (see the author’s review in Zbl. 745.11040 and the Addendum of Y. Motohashi [40]), so

that (4.23) is still a conjecture. If (4.23) is true, then one must have C ≥ 16 in (4.23), since by a result of

K. Ramachandra (see [16] and [48]) one has, for any rational number k ≥ 0,

∫ T

0

|ζ( 1
2 + it)|2k dt�k T (logT )k2

.

The LH (see [61]) is equivalent to the statement that µ(σ) = 1/2 − σ for σ < 1/2, and µ(σ) = 0 for

σ ≥ 1/2. If the LH is not true, what would then the graph of µ(σ) look like? If the LH fails, it is most likely

that µ(1/2) = 1/8 is true. Since µ(σ) is (unconditionally) a non-increasing, convex function of σ,

µ(σ) =
1

2
− σ (σ ≤ 0), µ(σ) = 0 (σ ≥ 1),

and by the functional equation one has µ(σ) = 1
2 − σ + µ(1− σ) (0 < σ < 1), perhaps one would have

(4.24) µ(σ) =





1
2 − σ σ ≤ 1

4 ,

3
8 − σ

2
1
4 ≤ σ < 3

4 ,

0 σ ≥ 3
4 ,

or the slightly weaker

(4.25) µ(σ) =





1
2 − σ σ ≤ 0,

2−3σ
4 0 < σ < 1

2 ,

(1−σ)
4

1
2 ≤ σ ≤ 1,

0 σ > 1.

A third candidate is

(4.26) µ(σ) =





1
2 − σ σ ≤ 0,

1
2 (1− σ)2 0 < σ < 1,

0 σ ≥ 1,



12 Aleksandar Ivić

which is a quadratic function of σ in the critical strip. Note that (4.26) sharpens (4.25) for 0 < σ < 1, except

when σ = 1/2, when (4.24)–(4.26) all yield µ(σ) = 1/8. So far no exact value of µ(σ) is known when σ lies

in the critical strip 0 < σ < 1.

5. Large values on the critical line

One thing that has constantly made the author skeptical about the truth of the RH is: How to draw the

graph of Z(t) when t is large? By this the following is meant. R. Balasubramanian and K. Ramachandra

(see [3], [4], [48], [49]) proved unconditionally that

(5.1) max
T≤t≤T+H

|ζ( 1
2 + it)| > exp

(3

4

( logH

log logH

)1/2)

for T ≥ T0 and log logT � H ≤ T , and probably on the RH this can be further improved (but no results

seem to exist yet). Anyway (5.1) shows that |Z(t)| assumes large values relatively often. On the other hand,

on the RH one expects that the bound in (1.11) can be also further reduced, very likely (see [46]) to

(5.2) S(T )�ε (logT )
1
2 +ε.

Namely, on the RH, H.L. Montgomery [39] proved that

S(T ) = Ω±
(( logT

log logT

)1/2)
,

which is in accord with (5.2). K.-M. Tsang [59], improving a classical result of A. Selberg [54], has shown

that one has unconditionally

S(T ) = Ω±
(( logT

log logT

)1/3)
.

Also K.-M. Tsang [60] proved that (unconditionally; ± means that the result holds both with the + and the

− sign)
(

sup
T≤t≤2T

log |ζ( 1
2 + it)|

)(
sup

T≤t≤2T
±S(t)

)
� logT

log logT
,

which shows that either |ζ( 1
2 + it)| or |S(t)| must assume large values in [T, 2T ]. It may be pointed out that

the calculations relating to the values of S(T ) (see e.g., [45], [46]) show that all known values of S(T ) are

relatively small. In other words they are not anywhere near the values predicted by the above Ω–results,

which is one more reason that supports the view that the values for which ζ(s) will exhibit its true asymptotic

behaviour must be really very large.

If on the RH (5.2) is true, then clearly (1.12) can be improved to

(5.3) γn+1 − γn �ε (log γn)ε−1/2.

This means that, as n→∞, the gap between the consecutive zeros of Z(t) tends to zero not so slowly. Now

take H = T in (5.1), and let t0 be the point in [T, 2T ] where the maximum in (5.1) is attained. This point

falls into an interval of length � (logT )ε−1/2 between two consecutive zeros, so that in the vicinity of t0
the function Z(t) must have very large oscillations, which will be carried over to Z ′(t), Z ′′(t), . . . etc. For

example, for T = 105000 we shall have

(5.4) |Z(t0)| > 2.68× 1011,

while (log T )−1/2 = 0.00932 . . . , which shows how large the oscillations of Z(t) near t0 will be. Moreover,

M. Jutila [30] unconditionally proved the following
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Proposition 3. There exist positive constants a1, a2 and a3 such that, for T ≥ 10, we have

exp(a1(log logT )1/2) ≤ |Z(t)| ≤ exp(a2(log logT )1/2)

in a subset of measure at least a3T of the interval [0, T ].

For T = 105000 one has e(log log T )1/2

= 21.28446 . . . , and Proposition 3 shows that relatively large values

of |Z(t)| are plentiful, and in the vicinity of the respective t’s again Z(t) (and its derivatives) must oscillate

a lot. The RH and (5.3) imply that, as t → ∞, the graph of Z(t) will consist of tightly packed spikes,

which will be more and more condensed as t increases, with larger and large oscillations. This I find hardly

conceivable. Of course, it could happen that the RH is true and that (5.3) is not.

6. A class of convolution functions

It does not appear easy to put the discussion of Section 5 into a quantitative form. We shall follow now

the method developed by the author in [21] and [23] and try to make a self-contained presentation, resulting

in the proof of Theorem 1 (Sec. 8) and Theorem 2 (Sec. 9). The basic idea is to connect the order of Z(t)

with the distribution of its zeros and the order of its derivatives (see (7.5)). However it turned out that if one

works directly with Z(t), then one encounters several difficulties. One is that we do not know yet whether

the zeros of Z(t) are all distinct (simple), even on the RH (which implies by (1.11) only the fairly weak

bound that the multiplicities of zeros up to height T are � logT/ log logT ). This difficulty is technical, and

we may bypass it by using a suitable form of divided differences from Numerical analysis, as will be shown a

little later in Section 7. A.A. Lavrik [34] proved the useful result that, uniformly for 0 ≤ k ≤ 1
2 log t, one has

(6.1)

Z(k)(t) = 2
∑

n≤(t/2π)1/2

n−1/2
(
log

(t/2π)1/2

n

)k
cos

(
t log

(t/2π)1/2

n
− t

2
− π

8
+
πk

2

)
+O

(
t−1/4( 3

2 log t)
k+1
)
.

The range for which (6.1) holds is large, but it is difficult to obtain good uniform bounds for Z (k)(t) from

(6.1). To overcome this obstacle the author introduced in [21] the class of convolution functions

(6.2) MZ,f (t) :=

∫ ∞

−∞
Z(t− x)fG(x) dx =

∫ ∞

−∞
Z(t+ x)f(

x

G
) dx,

where G > 0, fG(x) = f(x/G), and f(x) (≥ 0) is an even function belonging to the class of smooth (C∞)

functions f(x) called Sβ
α by Gel’fand and Shilov [9]. The functions f(x) satisfy for any real x the inequalities

(6.3) |xkf (q)(x)| ≤ CAkBqkkαqqβ (k, q = 0, 1, 2, . . .)

with suitable constants A,B,C > 0 depending on f alone. For α = 0 it follows that f(x) is of bounded

support, namely it vanishes for |x| ≥ A. For α > 0 the condition (6.3) is equivalent (see [9]) to the condition

(6.4) |f (q)(x)| ≤ CBqqqβ exp(−a|x|1/α) (a = α/(eA1/α))

for all x and q ≥ 0. We shall denote by Eβ
α the subclass of Sβ

α with α > 0 consisting of even functions f(x)

such that f(x) is not the zero-function. It is shown in [9] that Sβ
α is non-empty if β ≥ 0 and α+ β ≥ 1. If

these conditions hold then Eβ
α is also non-empty, since f(−x) ∈ Sβ

α if f(x) ∈ Sβ
α, and f(x)+ f(−x) is always

even.

One of the main properties of the convolution function MZ,f (t), which follows by k-fold integration by

parts from (6.2), is that for any integer k ≥ 0

(6.5) M
(k)
Z,f (t) = MZ(k),f (t) =

∫ ∞

−∞
Z(k)(t+ x)f(

x

G
) dx =

(−1

G

)k ∫ ∞

−∞
Z(t+ x)f (k)(

x

G
) dx.
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This relation shows that the order of M (k) depends only on the orders of Z and f (k), and the latter is

by (6.4) of exponential decay, which is very useful in dealing with convergence problems etc. The salient

point of our approach is that the difficulties inherent in the distribution of zeros of Z(t) are transposed to

the distribution of zeros of MZ,f (t), and for the latter function (6.5) provides good uniform control of its

derivatives.

Several analogies between Z(t) and MZ,f (t) are established in [21], especially in connection with mean

values and the distribution of their respective zeros. We shall retain here the notation introduced in [21],

so that NM (T ) denotes the number of zeros of MZ,f (t) in (0, T ], with multiplicities counted. If f(x) ∈ Eβ
α ,

f(x) ≥ 0 and G = δ/ log(T/(2π)) with suitable δ > 0, then Theorem 4 of [21] says that

(6.6) NM (T + V )−NM (T − V ) � V

logT
, V = T c+ε, c = 0.329021 . . . ,

for any given ε > 0. The nonnegativity of f(x) was needed in the proof of this result. For the function Z(t)

the analogous result is that

(6.7) N0(T + V )−N0(T − V ) � V logT, V = T c+ε, c = 0.329021 . . . ,

where as usual N0(T ) denotes the number of zeros of Z(t) (or of ζ( 1
2 + it)) in (0, T ], with multiplicities

counted. Thus the fundamental problem in the theory of ζ(s) is to estimate N(T )−N0(T ), and the RH may

be reformulated as N(T ) = N0(T ) for T > 0. The bound (6.7) was proved by A.A. Karatsuba (see [32] for

a detailed account). As explained in [21], the bound (6.6) probably falls short (by a factor of log2 T ) from

the expected (true) order of magnitude for the number of zeros of MZ,f (t) in [T − V, T + V ]. This is due to

the method of proof of (6.6), which is not as strong as the classical method of A. Selberg [54] (see also Ch.

10 of [61]). The function NM (T ) seems much more difficult to handle than N0(T ) or N(T ). The latter can

be conveniently expressed (see [16] or [61]) by means of a complex integral from which one infers then (1.3)

with the bound (1.4). I was unable to find an analogue of the integral representation for NM (T ). Note that

the bound on the right-hand side of (6.7) is actually of the best possible order of magnitude.

In the sequel we shall need the following technical result, which we state as

Lemma 1. If L = (logT )
1
2 +ε, P =

√
T
2π , 0 < G < 1, L� V ≤ T

1
3 , f(x) ∈ Eβ

α, then

(6.8)

T+V L∫

T−V L

|MZ,f (t)|e−(T−t)2V −2

dt ≥ GV {|f̂(
G

2π
logP )|+O(T−1/4 + V 2T−3/4L2)}.

Proof. In (6.8) f̂(x) denotes the Fourier transform of f(x), namely

f̂(x) =

∫ ∞

−∞
f(u)e2πixu du =

∫ ∞

−∞
f(u) cos(2πxu) du+ i

∫ ∞

−∞
f(u) sin(2πxu) du =

∫ ∞

−∞
f(u) cos(2πxu) du

since f(x) is even. From the Riemann–Siegel formula (1.13) we have, if |T−t| ≤ V L and |x| ≤ logC T (C > 0),

Z(t+ x) = 2
∑

n≤P

n−1/2 cos
(
(t+ x) log

((t+ x)/(2π))1/2

n
− t+ x

2
− π

8

)
+O(T−1/4).

Simplifying the argument of the cosine by Taylor’s formula it follows that

(6.9) Z(t+ x) = 2
∑

n≤P

n−1/2 cos

(
(t+ x) log

P

n
− T

2
− π

8

)
+O(T−1/4 + V 2T−3/4L2).
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Hence from (6.2) and (6.9) we have, since

cos(α+ β) = cosα cosβ − sinα sinβ

and f(x) is even,

MZ,f (t) = 2G
∑

n≤P

n−1/2 cos(t log
P

n
− T

2
− π

8
)

∫ ∞

−∞
f(x) cos(Gx log

P

n
) dx+O(GT−1/4 +GV 2T−3/4L2)

(6.10) = 2G
∑

n≤P

n−1/2 cos(t log
P

n
− T

2
− π

8
)f̂(

G

2π
log

P

n
) +O(GT−1/4 +GV 2T−3/4L2).

Therefore we obtain from (6.10)

T+V L∫

T−V L

|MZ,f (t)|e−(T−t)2V −2

dt ≥ GI +O(GV T−1/4 +GV 3T−3/4L2),

say, where

I :=

T+V L∫

T−V L


∑

n≤P

n−1/2f̂(
G

2π
log

P

n
)
(
exp(it log

P

n
− iT

2
− iπ

8
) + exp(−it log

P

n
+
iT

2
+
iπ

8
)
)e−(T−t)2V −2

dt.

By using the fact that | exp
(
it logP − iT

2 − iπ
8

)
| = 1 and the classical integral

∫ ∞

−∞
exp(Ax−Bx2) dx =

√
π

B
exp
(A2

4B

)
(<eB > 0)

we shall obtain

I ≥ |I1 + I2|,

where

I1 =

T+V L∫

T−V L

∑

n≤P

n−1/2f̂(
G

2π
log

P

n
) exp(−it logn− (T − t)2V −2) dt

=
∑

n≤P

n−1/2f̂(
G

2π
log

P

n
) exp(−iT logn)

∫ V L

−V L

exp(−ix logn− x2V −2) dx

=
∑

n≤P

n−1/2f̂(
G

2π
log

P

n
)
{√

πV exp(−iT log n− 1

4
V 2 log2 n) +O(exp(− log1+2ε T ))

}

=
√
πV f̂(

G

2π
logP ) +O(T−C)

for any fixed C > 0. Similarly we find that

I2 =

T+V L∫

T−V L

∑

n≤P

n−1/2f̂(
G

2π
log

P

n
) exp

(
−it log(

T

2πn
) + iT +

πi

4
− (T − t)2V −2

)
dt =
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∑

n≤P

n−1/2f̂(
G

2π
log

P

n
) exp

(
−it log(

T

2πn
) + iT +

πi

4

)(√
πV exp{−1

4

(
V log(

T

2πn
)
)2
}+O{exp(− log1+2ε T )}

)

= O(T−C)

again for any fixed C > 0, since log( T
2πn ) ≥ log T

2πP = 1
2 log( T

2π ). ¿From the above estimates (6.8) follows.

7. Technical preparation

In this section we shall lay the groundwork for the investigation of the distribution of zeros of Z(t) via

the convolution functions MZ,f (t). To do this we shall first briefly outline a method based on a generalized

form of the mean value theorem from the differential calculus. This can be conveniently obtained from the

expression for the n-th divided difference associated to the function F (x), namely

[x, x1, x2, · · · , xn] :=

=
F (x)

(x− x1)(x− x2) · · · (x− xn)
+

F (x1)

(x1 − x)(x1 − x2) · · · (x1 − xn)
+ · · ·+ F (xn)

(xn − x)(xn − x1) · · · (xn − xn−1)

where xi 6= xj if i 6= j, and F (t) is a real-valued function of the real variable t. We have the representation

(7.1) [x, x1, x2, · · · , xn] =

=

∫ 1

0

∫ t1

0

· · ·
∫ tn−1

0

F (n)
(
x1 + (x2 − x1)t1 + · · ·+ (xn − xn−1)tn−1 + (x− xn)tn

)
dtn · · · dt1 =

F (n)(ξ)

n!

if F (t) ∈ Cn[I ], ξ = ξ(x, x1, · · · , xn) and I is the smallest interval containing all the points x, x1, · · · , xn.

If we suppose additionally that F (xj) = 0 for j = 1, · · · , n, then on comparing the two expressions for

[x, x1, x2, · · · , xn], it follows that

(7.2) F (x) = (x − x1)(x − x2) · · · (x − xn)
F (n)(ξ)

n!
,

where ξ = ξ(x) if we consider x1, · · · , xn as fixed and x as a variable. The underlying idea is that, if the

(distinct) zeros xj of F (x) are sufficiently close to one another, then (7.2) may lead to a contradiction if

F (x) is assumed to be large and one has good bounds for its derivatives.

To obtain the analogue of (7.2) when the points xj are not necessarily distinct, note that if F (z) is a

regular function of the complex variable z in a region which contains the distinct points x, x1, · · · , xn, then

for a suitable closed contour C containing these points one obtains by the residue theorem

[x, x1, x2, · · · , xn] =
1

2πi

∫

C

F (z)

(z − x)(z − x1) · · · (z − xn)
dz.

A comparison with (7.1) yields then

(7.3)
1

2πi

∫

C

F (z)

(z − x)(z − x1) · · · (z − xn)
dz

=

∫ 1

0

∫ t1

0

· · ·
∫ tn−1

0

F (n)
(
x1 + (x2 − x1)t1 + · · ·+ (xn − xn−1)tn−1 + (x− xn)tn

)
dtn · · · dt1.
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Now (7.3) was derived on the assumption that the points x, x1, · · · , xn are distinct. But as both sides of

(7.3) are regular functions of x, x1, · · · , xn in some region, this assumption may be dropped by analytic

continuation. Thus let the points x, x1, · · · , xn coincide with the (distinct) points zk, where the multiplicity

of zk is denoted by pk; k = 0, 1, · · · , ν; ∑ν
k=0 pk = n+ 1. If we set

z0 = x, p0 = 1, Q(z) =

ν∏

k=1

(z − zk)pk ,

then the complex integral in (7.3) may be evaluated by the residue theorem (see Ch.1 of A.O. Gel’fond [10]).

It equals

(7.4)
F (x)

Q(x)
−

ν∑

k=1

pk−1∑

m=0

F (pk−m−1)(zk)

(pk −m− 1)!

m∑

s=0

1

(m− s)!
dm−s

dzm−s

( (z − zk)pk

Q(z)

)
z=zk

· (x − xk)−s−1.

If x1, x2, · · · , xn are the zeros of F (z), then F (pk−m−1)(zk) = 0 for k = 1, · · · , ν and m = 0, · · · , pk−1, since pk

is the multiplicity of (the zero) zk. Hence if F (x) 6= 0, then on comparing (7.1), (7.3) and (7.4) one obtains

(7.5) |F (x)| ≤
n∏

k=1

|x− xk|
|F (n)(ξ)|

n!
(ξ = ξ(x)),

and of course (7.5) is trivial if F (x) = 0.

Now we shall apply (7.5) to F (t) = MZ,f (t), f(x) ∈ Eβ
α , with n replaced by k, to obtain

(7.6) |MZ,f (t)| ≤
∏

t−H≤γ≤t+H

|γ − t|
|M (k)

Z,f (τ)|
k!

,

where γ denotes the zeros of MZ,f (t) in [t − H, t + H ], τ = τ(t,H) ∈ [t − H, t + H ], |t − T | ≤ T 1/2+ε and

k = k(t,H) is the number of zeros of MZ,f (t) in [t−H, t+H ]. We shall choose

(7.7) H =
A log3 T

log2 T
(logr T = log(logr−1 T ), log1 T ≡ logT )

for a sufficiently large A > 0. One intuitively feels that, with a suitable choice (see (8.1) and (8.2)) of G

and f , the functions N(T ) and NM (T ) will not differ by much. Thus we shall suppose that the analogues of

(1.3) and (1.11) hold for NM (T ), namely that

(7.8) NM (T ) =
T

2π
log(

T

2π
)− T

2π
+ SM (T ) +O(1)

with a continuous function SM (T ) satisfying

(7.9) SM (T ) = O
( logT

log logT

)
,

although it is hard to imagine what should be the appropriate analogue for SM (T ) of the defining relation

S(T ) = 1
π arg ζ( 1

2 + iT ) in (1.4). We also suppose that

(7.10)

∫ T+U

T

(SM (t+H)− SM (t−H))2m dt � U(log(2 +H logT ))m

holds for any fixed integer m ≥ 1, T a < U ≤ T, 1/2 < a ≤ 1, 0 < H < 1. Such a result holds unconditionally

(even in the form of an asymptotic formula) if SM (T ) is replaced by S(T ), as shown in the works of A. Fujii
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[8] and K.-M. Tsang [59]. Thus it seems plausible that (7.10) will also hold. It was already mentioned that

it is reasonable to expect that S(T ) and SM (T ) will be close to one another. One feels that this “closeness”

should hold also in the mean sense, and that instead of (7.10) one could impose a condition which links

directly SM (T ) and S(T ), such as that for any fixed integer m ≥ 1 one has

(7.11)

∫ T+U

T

(SM (t)− S(t))2m dt � U(log log T )m (T a < U ≤ T, 1
2 < a ≤ 1).

If (7.8) holds, then

(7.12) k = NM (t+H)−NM (t−H) +O(1)

=
(t+H)

2π
log
( t+H

2π

)
− t+H

2π
− t−H

2π
log
( t−H

2π

)
+
t−H

2π
+ SM (t+H)− SM (t−H) +O(1)

=
H

π
log(

T

2π
) + SM (t+H)− SM (t−H) +O(1).

To bound from above the product in (7.6) we proceed as follows. First we have trivially

∏

|γ−t|≤ 1/ log2 T

|γ − t| ≤ 1.

The remaining portions of the product with t −H ≤ γ < t − 1/ log2 T and t + 1/ log2 T < γ ≤ t +H are

treated analogously, so we shall consider in detail only the latter. We have

log
( ∏

t+1/ log2 T<γ≤t+H

|γ − t|
)

=
∑

t+1/ log2 T<γ≤t+H

log(γ − t) =

t+H∫

t+1/ log2 T+0

log(u− t) dNM (u)

=
1

2π

t+H∫

t+1/ log2 T+0

log(u− t) log(
u

2π
) du+

t+H∫

t+1/ log2 T+0

log(u− t) d(SM (u) +O(1)).

By using integration by parts and (7.9) it follows that

t+H∫

t+1/ log2 T+0

log(u− t) d(SM (u) +O(1)) = O
( logT log3 T

log2 T

)
−

t+H∫

t+1/ log2 T

SM (u) +O(1)

u− t du� logT log3 T

log2 T
,

and we have

1

2π

t+H∫

t+1/ log2 T+0

log(u− t) log(
u

2π
) du =

1

2π
log(

T

2π
) · (1 +O(T ε−1/2))

t+H∫

t+1/ log2 T

log(u− t) du

=
1

2π
log(

T

2π
) ·
(
H logH −H +O

( log3 T

log2 T

))
.

By combining the above estimates we obtain

Lemma 2. Suppose that (7.8) and (7.9) hold. If γ denotes zeros of MZ,f (t), H is given by (7.7) and

|T − t| ≤ T 1/2+ε, then

(7.13)
∏

t−H ≤γ≤t+H

|γ − t| ≤ exp
{ 1

π
log(

T

2π
) ·
(
H logH −H +O

(
log3 T

log2 T

))}
.
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8. The asymptotic formula for the convolution function

In this section we shall prove a sharp asymptotic formula for MZ,f (t), which is given by Theorem 1.

This will hold if f(x) belongs to a specific subclass of functions from E0
α (α > 1 is fixed), and for such

MZ,f (t) we may hope that (7.8)–(7.11) will hold. To construct this subclass of functions first of all let let

ϕ(x) ≥ 0 (but ϕ(x) 6≡ 0) belong to Eα
0 . Such a choice is possible, since it is readily checked that f 2(x) ∈ Sβ

α

if f(x) ∈ Sβ
α , and trivially f2(x) ≥ 0. Thus ϕ(x) is of bounded support, so that ϕ(x) = 0 for |x| ≥ a for

some a > 0. We normalize ϕ(x) so that
∫∞
−∞ ϕ(x) dx = 1, and for an arbitrary constant b > max(1, a) we

put

Φ(x) :=

x+b∫

x−b

ϕ(t) dt.

Then 0 ≤ Φ(x) ≤ 1,Φ(x) is even (because ϕ(x) is even) and nonincreasing for x ≥ 0, and

Φ(x) =

{
0 if |x| ≥ b+ a,
1 if |x| ≤ b− a.

One can also check that ϕ(x) ∈ Sα
0 implies that Φ(x) ∈ Sα

0 . Namely |xkΦ(x)| ≤ (b+ a)k, and for q ≥ 1 one

uses (6.3) (with k = 0, f (q) replaced by ϕ(q−1), (α, β) = (0, α)) to obtain

|xkΦ(q)(x)| ≤ (b+ a)k|Φ(q)(x)| ≤ (b+ a)k
(
|ϕ(q−1)(x+ b)|+ |ϕ(q−1)(x− b)|

)

≤ (b+ a)k2CBq−1(q − 1)(q−1)α ≤ 2C

B
(b+ a)kBqqqα,

hence (6.3) will hold for Φ in place of f , with A = b+ a and suitable C. Let

f(x) :=

∫ ∞

−∞
Φ(u)e−2πixu du =

∫ ∞

−∞
Φ(u) cos(2πxu) du.

A fundamental property of the class Sβ
α (see [9]) is that Ŝβ

α = Sα
β , where in general Û = {f̂(x) : f(x) ∈ U}.

Thus f(x) ∈ S0
α, f(x) is even (because Φ(x) is even), and by the inverse Fourier transform we have f̂(x) =

Φ(x). The function f(x) is not necessarily nonnegative, but this property is not needed in the sequel.

Henceforth let

(8.1) G =
δ

log( T
2π )

(δ > 0).

In view of (1.3) it is seen that, on the RH, G is of the order of the average spacing between the zeros of Z(t).

If f(x) is as above, then we have

THEOREM 1. For |t− T | ≤ V L,L = log
1
2+ε T, logε T ≤ V ≤ T

1
4

log T , 0 < δ < 2π(b− a) and any fixed

N ≥ 1 we have

(8.2) MZ,f (t) = G
(
Z(t) +O(T−N )

)
.

Proof. Observe that the weak error term O(T−1/4) in (8.2) follows from (6.10) (with x = 0) and (6.10)

when we note that

f̂
( G

2π
log

P

n

)
= f̂

( δ

2π

(1

2
− logn

log( T
2π )

))
= 1
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since by construction f̂(x) = 1 for |x| < b− a, and

 δ

2π

(1

2
− logn

log( T
2π )

) ≤ δ

4π
< b− a

(
1 ≤ n ≤ P =

√
T

2π

)
.

Also the hypotheses on t in the formulation of Theorem 1 can be relaxed.

In order to prove (8.2) it will be convenient to work with the real-valued function θ(t), defined by

(8.3) Z(t) = eiθ(t)ζ( 1
2 + it) = χ−1/2( 1

2 + it)ζ( 1
2 + it).

¿From the functional equation (1.2) in the symmetric form

π−s/2Γ(
s

2
)ζ(s) = π−(1−s)/2Γ(

1− s
2

)ζ(1− s)

one obtains

χ−1/2( 1
2 + it) =

π−it/2Γ1/2( 1
4 + it

2 )

Γ1/2( 1
4 − it

2 )
,

and consequently

(8.4) θ(t) = =m log Γ( 1
4 + 1

2 it)− 1
2 t logπ.

We have the explicit representation (see Ch. 3 of [32])

(8.5) θ(t) =
t

2
log

t

2π
− t

2
− π

8
+ ∆(t)

with (ψ(x) = x− [x]− 1
2 )

(8.6) ∆(t) :=
t

4
log(1 +

1

4t2
) +

1

4
arctan

1

2t
+
t

2

∫ ∞

0

ψ(u) du

(u+ 1
4 )2 + t2

.

This formula is very useful, since it allows one to evaluate explicitly all the derivatives of θ(t). For t → ∞
it is seen that ∆(t) admits an asymptotic expansion in terms of negative powers of t, and from (8.4) and

Stirling’s formula for the gamma-function it is found that (Bk is the k-th Bernoulli number)

(8.7) ∆(t) ∼
∞∑

n=1

(22n − 1)|B2n|
22n(2n− 1)2nt2n−1

,

and the meaning of (8.7) is that, for an arbitrary integer N ≥ 1, ∆(t) equals the sum of the first N terms of

the series in (8.7), plus the error term which is ON (t−2N−1). In general we shall have, for k ≥ 0 and suitable

constants ck,n,

(8.8) ∆(k)(t) ∼
∞∑

n=1

ck,nt
1−2n−k.

For complex s not equal to the poles of the gamma-factors we have the Riemann-Siegel formula (this is

equation (56) of C.L. Siegel [57])

(8.9)

π−s/2Γ(
s

2
)ζ(s)

= π−s/2Γ(
s

2
)

∫

0↙1

eiπx2

x−s

eiπx − e−iπx
dx+ π(s−1)/2Γ(

1− s
2

)

∫

0↘1

e−iπx2

xs−1

eiπx − e−iπx
dx.
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Here 0 ↙ 1 (resp. 0 ↘ 1) denotes a straight line which starts from infinity in the upper complex half-

plane, has slope equal to 1 (resp. to -1), and cuts the real axis between 0 and 1. Setting in (8.9) s = 1
2 + it

and using the property (8.4) it follows that

Z(t) = 2<e
(
e−iθ(t)

∫

0↘1

e−iπz2

z−1/2+it

eiπz − e−iπz
dz
)
.

As <e (iw) = −=mw, this can be conveniently written as

(8.10) Z(t) = =m
(
e−iθ(t)

∫

0↘1

e−iπz2

z−1/2+it dz

sin(πz)

)
.

Since

| sin z|2 = sin2(<e z) + sinh2(=m z), z−1/2+it = |z|−1/2+ite−
i
2 arg z−t arg z,

and for z = η + ue3πi/4, u real, 0 < η < 1 we have

|e−iπz2 | = e−πu2+η
√

2πu,

it follows that the contribution of the portion of the integral in (8.10) for which |z| ≥ log t is � e− log2 t.

Hence

(8.11) Z(t) = =m
(
e−iθ(t)

∫

0↘1,|z|<log t

e−iπz2

z−1/2+it dz

sin(πz)

)
+O(e− log2 t).

¿From the decay property (6.4) it follows that

(8.12) MZ,f (t) =

∫ ∞

−∞
Z(t+ x)f

( x
G

)
dx =

log2α−1 t∫

− log2α−1 t

Z(t+ x)f
( x
G

)
dx+O(e−c log2 t),

where c denotes positive, absolute constants which may not be the same ones at each occurrence. Thus from

(8.10) and (8.12) we obtain that

(8.13) MZ,f (t) = =m
( ∫

0↘1,|z|<log t

e−iπz2

z−1/2+it

sin(πz)

log2α−1 t∫

− log2α−1 t

e−iθ(t+x)zixf
( x
G

)
dx dz

)
+O(e−c log2 t).

By using Taylor’s formula we have

(8.14) θ(t+ x) = θ(t) +
x

2
log

t

2π
+ x∆′(t) +R(t, x)

with ∆′(t) � t−2 and

R(t, x) =

∞∑

n=2

(
(−1)n

2n(n− 1)tn−1
+

∆(n)(t)

n!

)
xn.

Now we put

(8.15) e−iR(t,x) = 1 + S(t, x),
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say, and use (8.5), (8.6), (8.8) and (8.14). We obtain

(8.16) S(t, x) =

∞∑

k=1

(−i)kRk(t, x)

k!
=

∞∑

n=2

gn(t)xn,

where each gn(t) (∈ C∞(0,∞)) has an asymptotic expansion of the form

(8.17) gn(t) ∼
∞∑

k=0

dn,kt
−k−[(n+1)/2] (t→∞)

with suitable constants dn,k. From (8.13)-(8.15) we have

(8.18) MZ,f (t) = =m
(
I1 + I2

)
+O(e−c log2 t),

where

(8.19) I1 :=

∫

0↘1,|z|<log t

e−iπz2

z−1/2+it

sin(πz)

log2α−1 t∫

− log2α−1 t

e−iθ(t)− ix
2 log t

2π−ix∆′(t)zixf
( x
G

)
dx dz,

(8.20) I2 :=

∫

0↘1,|z|<log t

e−iπz2

z−1/2+it

sin(πz)

log2α−1 t∫

− log2α−1 t

e−iθ(t)− ix
2 log t

2π−ix∆′(t)zixf
( x
G

)
S(t, x) dx dz.

In I1 we write z = ei arg z|z|, which gives

I1 :=

∫

0↘1,|z|<log t

e−θ(t) e
−iπz2

z−1/2+it

sin(πz)
h(z) dz +O(e−c log2 t),

where

h(z) :=

∫ ∞

−∞
e−x arg zf

( x
G

)
exp

(
ix log

|z|e−∆′(t)

√
t/2π

)
dx

= G

∫ ∞

−∞
e−Gy arg zf(y) exp

(
iyG log

|z|e−∆′(t)

√
t/2π

)
dy

= G

∞∑

n=0

(−G arg z)n

n!

∫ ∞

−∞
ynf(y) exp

(
2iπy · G

2π
log

|z|e−∆′(t)

√
t/2π

)
dy.

Change of summation and integration is justified by absolute convergence, since |z| < log t, G = δ/ log(T/2π),

∆′(t) � t−2, t ∼ T , and f(x) satisfies (6.4). But

∫ ∞

−∞
f(y) exp

(
2iπy · G

2π
log

|z|e−∆′(t)

√
t/2π

)
dy = f̂

(
G

2π
log

|z|e−∆′(t)

√
t/2π

)
= 1

for δ < 2π(b− a), since

 G
2π

log
|z|e−∆′(t)

√
t/2π

 =
δ

2π log
(

T
2π

)
(
log

√
t

2π
− log |z|+ ∆′(t)

)
= (

δ

4π
+ o(1)) <

δ

2π
< b− a,
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and f̂(x) = 1 for |x| < b− a. Moreover for n ≥ 1 and |x| < b− a we have

f̂ (n)(x) = (2πi)n

∫ ∞

−∞
yne2πixyf(y) dy = 0,

hence it follows that

∫ ∞

−∞
ynf(y) exp

(
2iπy · G

2π
log

|z|e−∆′(t)

√
t/2π

)
dy = 0 (n ≥ 1, 1 < 2π(b− a)).

Thus we obtain

(8.21) I1 = G

∫

0↘1

e−θ(t)e−iπz2

z−1/2+it

sin(πz)
dz +O(e−c log2 t).

Similarly from (8.16) and (8.20) we have

I2 =

∫

0↘1,|z|<log t

e−iπz2

z−1/2+it

sin(πz)

log2α−1 t∫

− log2α−1 t

e−iθ(t)− ix
2 log t

2π−ix∆′(t)zixf
( x
G

) ∞∑

n=2

xngn(t) dx dz

=

∫

0↘1,|z|<log t

e−iπz2

z−1/2+it

sin(πz)

log2α−1 t∫

− log2α−1 t

( N∑

n=1

Pn(x)

tn
+O

(1 + xN+2

tN+1

))
e−iθ(t)− ix

2 log t
2π−ix∆′(t)zixf

( x
G

)
dx dz

=

N∑

n=1

e−iθ(t)t−n

∫

0↘1,|z|<log t

e−iπz2

z−1/2+it

sin(πz)

log2α−1 t∫

− log2α−1 t

Pn(x)e−
ix
2 log t

2π−ix∆′(t)zixf
( x
G

)
dx dz

+ O

(
1

tN+1

log2α−1 t∫

− log2α−1 t

(1 + xN+2)|f
( x
G

)
|

∫

0↘1

e−iπz2

z−1/2+it+ix

sin(πz)
dz
dx

)
+O(e−c log2 t),

where each Pn(x) is a polynomial in x of degree n(≥ 2). The integral over z in the error term is similar to

the one in (8.10). Hence by the residue theorem we have (Q = [
√
t/2π ])

∫

0↘1

e−iπz2

z−1/2+it+ix

sin(πz)
dz = 2πi

Q∑

n=1

Res
z=n

e−iπz2

z−1/2+it+ix

sin(πz)
+

∫

Q↘Q+1

e−iπz2

z−1/2+it+ix

sin(πz)
dz,

similarly as in the derivation of the Riemann-Siegel formula. It follows that


∫

0↘1

e−iπz2

z−1/2+it+ix

sin(πz)
dz
 � t1/4.

Thus analogously as in the case of I1 we find that, for n ≥ 1,

log2α−1 t∫

− log2α−1 t

Pn(x)e−iθ(t)− ix
2 log t

2π−ix∆′(t)zixf
( x
G

)
dx =

∫ ∞

−∞
Pn(x) · · · dx+O(e−c log2 t) = O(e−c log2 t).
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Hence it follows that, for any fixed integer N ≥ 1,

(8.22) I2 �N T−N .

Theorem 1 now follows from (8.10) and (8.18)-(8.22), since clearly it suffices to assume that N is an integer.

One can generalize Theorem 1 to derivatives of MZ,f (t).

Theorem 1 shows that Z(t) and MZ,f (t)/G differ only by O(T−N ), for any fixed N ≥ 0, which is a very

small quantity. This certainly supports the belief that, for this particular subclass of functions f(x), (7.8)–

(7.11) will be true, but proving it may be very hard. On the other hand, nothing precludes the possibility

that the error term in Theorem 1, although it is quite small, represents a function possessing many small

“spikes” (like t−N sin(tN+2), say). These spikes could introduce many new zeros, thus violating (7.8)–(7.11).

Therefore it remains an open question to investigate the distribution of zeros of MZ,f (t) of Theorem 1, and

to see to whether there is a possibility that Theorem 1 can be used in settling the truth of the RH.

9. Convolution functions and the RH

In this section we shall discuss the possibility to use convolution functions to disprove the RH, of course

assuming that it is false. Let us denote by T β
α the subclass of Sβ

α with α > 1 consisting of functions f(x),

which are not identically equal to zero, and which satisfy
∫∞
−∞ f(x) dx > 0. It is clear that T β

α is non-empty.

Our choice for G will be the same one as in (8.1), so that for suitable δ we shall have

(9.1) f̂
( G

4π
log
( T
2π

))
= f̂

( δ
4π

)
� 1.

In fact by continuity (9.1) will hold for |δ| ≤ C1, where C1 > 0 is a suitable constant depending only on f ,

since if f(x) ∈ T β
α , then we have

(9.2) f̂(0) =

∫ ∞

−∞
f(x) dx > 0.

Moreover if f(x) ∈ S0
α, then f̂(x) ∈ Sα

0 and thus it is of bounded support, and consequently G � 1/ logT

must hold if the bound in (9.1) is to be satisfied. This choice of f(x) turns out to be better suited for our

purposes than the choice made in Section 8, which perhaps would seem more natural in view of Theorem 1.

The reason for this is that, if f(x) ∈ Sβ
α with parameters A and B, then f̂(x) ∈ Sα

β with parameters B + ε

and A + ε, respectively (see [9]). But for f(x) as in Section 8 we have A = a + b, thus for f̂(x) we would

have (in [9] f̂ is defined without the factor 2π, which would only change the scaling factors) B = a+ b+ ε,

and this value of B would eventually turn out to be too large for our applications. In the present approach

we have more flexibility, since only (9.2) is needed. Note that f(x) is not necessarily nonnegative.

Now observe that if we replace f(x) by f1(x) := f(Dx) for a given D > 0, then obviously f1(x) ∈ S0
α,

and moreover uniformly for q ≥ 0 we have

f
(q)
1 (x) = Dqf (q)(Dx) � (BD)q exp(−aD1/α|x|1/α).

In other words the constant B in (6.3) or (6.4) is replaced by BD. Take now D = η/B, where η > 0 is an

arbitrary, but fixed number, and write f for Df1. If the RH holds, then from (4.5), (6.4) and (6.5) and we

have, for k given by (7.12),

(9.3) M
(k)
Z,f (t) �

( η
G

)k

exp
(B1 log t

log log t

)

with a suitable constant B1 > 0.
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We shall assume now that the RH holds and that (7.8), (7.11) hold for some f(x) ∈ T 0
α (for which (9.3)

holds, which is implied by the RH), and we shall obtain a contradiction. To this end let U := T 1/2+ε , so

that we may apply (7.10) or (7.11), V = T 1/4/ logT, L = log1/2+ε T . We shall consider the mean value of

|MZ,f (t)| over [T − U, T + U ] in order to show that, on the average, |MZ,f (t)| is not too small. We have

(9.4)

I :=

T+U∫

T−U

|MZ,f (t)| dt ≥
N∑

n=1

Tn+V L∫

Tn−V L

|MZ,f (t)| dt

≥
N∑

n=1

Tn+V L∫

Tn−V L

|MZ,f (t)| exp
(
−(Tn − t)2V −2

)
dt,

where Tn = T − U + (2n − 1)V L, and N is the largest integer for which TN + V L ≤ T + U , hence

N � UV −1L−1. We use Lemma 1 to bound from below each integral over [Tn − V L, Tn + V L] . It follows

that

(9.5) I � GV

N∑

n=1

(f̂
( G
4π

log
(Tn

2π

))+O(T−1/4)
)
� GV (N +O(NT−1/4)) � GUL−1

for sufficiently small δ, since (9.1) holds and

f̂
( G

4π
log
(Tn

2π

))
= f̂

( δ

4π
· log

(
Tn

2π

)

log
(

T
2π

)
)

= f̂
( δ

4π
+O

(U
T

))
.

We have assumed that (7.11) holds, but this implies that (7.10) holds also. Namely it holds uncondi-

tionally with S(t) in place of SM (t). Thus for any fixed integer m ≥ 1 we have

∫ T+U

T

(
SM (t+H)− SM (t−H)

)2m
dt

�
∫ T+H+U

T+H

(
SM (t)− S(t)

)2m
dt+

∫ T+U

T

(
S(t+H)− S(t−H)

)2m
dt+

∫ T−H+U

T−H

(
S(t)− SM (t)

)2m
dt

� U(log logT )m (T a < U ≤ T,
1

2
< a ≤ 1).

Let D be the subset of [T − U, T + U ] where

(9.6) |SM (t+H)− SM (t−H)| ≤ log1/2 T

fails. The bound (7.10) implies that

(9.7) m(D) � U log−C T

for any fixed C > 0. If we take C = 10 in (9.7) and use the Cauchy-Schwarz inequality for integrals we shall

have

(9.8)

∫

D
|MZ,f (t)| dt ≤ (m(D))1/2

(∫ T+U

T−U

M2
Z,f (t) dt

)1/2

� GU log−4 T,
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since ∫ T+U

T−U

M2
Z,f (t) dt ≤

∫ T+U

T−U

∫ ∞

−∞
Z2(t+ x)|f(

x

G
)| dx

∫ ∞

−∞
|f(

y

G
)| dy dt

� G

∫ T+U

T−U

G log2α−1 T∫

−G log2α−1 T

|ζ( 1
2 + it+ ix)|2|f(

x

G
)| dx dt+G

� G

G log2α−1 T∫

−G log2α−1 T

( T+2U∫

T−2U

|ζ( 1
2 + iu)|2 du

)
|f(

x

G
)| dx+G� G2U logT.

The last bound easily follows from mean square results on |ζ( 1
2 + it)| (see [16]) with the choice U = T

1
2+ε.

Therefore (9.4) and (9.8) yield

(9.9) GUL−1 �
∫

D′

|MZ,f (t)| dt,

where D′ = [T −U, T +U ] \ D, hence in (9.9) integration is over t for which (9.6) holds. If t ∈ D′, γ denotes

the zeros of MZ,f (t), then from (7.7) and (7.12) we obtain (recall that logr t = log(logr−1 t))

(9.10) k = k(t, T ) =
H

π
log(

T

2π
) · {1 +O((log T )ε− 1

2 )}, log k = logH − logπ + log2(
T

2π
) +O((log T )ε−1/2)

for any given ε > 0. To bound MZ,f (t) we use (7.6), with k given by (9.10), τ = τ(t, k), (9.3) and

k! = exp(k log k − k +O(log k)).

We obtain, denoting by Bj positive absolute constants,

(9.11) GUL−1 �
∫

D′

∏

|γ−t|≤H

|γ − t|
|M (k)

Z,f (τ)|
k!

dt

� exp
(B2 log T

log2 T

)∫

D′
exp{k(log

η

G
− log k + 1)}

∏

|γ−t|≤H

|γ − t| dt

� exp
(B3 logT

log2 T
+
H

π
log(

T

2π
) ·
(
log

η

δ
+ log2(

T

2π
)− logH + logπ − log2(

T

2π
) + 1

)) ∫

D′

∏

|γ−t|≤H

|γ − t| dt.

It was in evaluating k log k that we needed (9.10), since only the bound (7.9) would not suffice (one would

actually need the bound SM (T ) � logT/(log2 T )2). If the product under the last integral is bounded by

(7.13), we obtain

GUL−1 � U exp
(H
π

log(
T

2π
) · (log

η

δ
+B4)

)
,

and thus for T ≥ T0

(9.12) 1 ≤ exp
(H
π

log(
T

2π
) · (log

η

δ
+B5)

)
.

Now we choose e.g.,

η = δ2, δ = min (C1, e−2B5),
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where C1 is the constant for which (9.1) holds if |δ| ≤ C1, so that (9.12) gives

1 ≤ exp
(−B5H

π
log(

T

2π
)
)
,

which is a contradiction for T ≥ T1. Thus we have proved the following

THEOREM 2. If (7.8) and (7.11) hold for suitable f(x) ∈ T 0
α with G given by (8.1), then the Riemann

hypothesis is false.

Theorem 2 is similar to the result proved also in [23]. Actually the method of proof of Theorem 2 gives

more than the assertion of the theorem. Namely it shows that, under the above hypotheses, (4.5) cannot

hold for any fixed A > 0. Perhaps it should be mentioned that (7.11) is not the only condition which would

lead to the disproof of the RH. It would be enough to assume, under the RH, that one had (7.8)–(7.10) for

a suitable f(x), or

(9.18) NM (t) = N(t) +O
( logT

(log logT )2

)

for t ∈ [T −U, T +U ] with a suitable U(= T 1/2+ε, but smaller values are possible), to derive a contradiction.

The main drawback of this approach is the necessity to impose conditions like (7.8)–(7.10) which can be, for

all we know, equally difficult to settle as the assertions which we originaly set out to prove (or disprove). For

this reason our results can only be conditional. Even if the RH is false it appears plausible that, as T →∞,

N0(T ) = (1 + o(1))N(T ). In other words, regardless of the truth of the RH, almost all complex zeros of

ζ(s) should lie on the critical line. This is the conjecture that the author certainly believes in. No plausible

conjectures seem to exist (if the RH is false) regarding the order of N(T )−N0(T ).
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12

The Experts Speak For Themselves

To appreciate the living spirit rather than the dry bones of mathe-
matics, it is necessary to inspect the work of a master at first hand.
Textbooks and treatises are an unavoidable evil . . .The very crudities
of the first attack on a significant problem by a master are more illu-
minating than all the pretty elegance of the standard texts which has
been won at the cost of perhaps centuries of finicky polishing.

Eric Temple Bell

This chapter contains several original papers. These give the most essen-
tial sampling of the enormous body of material on the Riemann zeta function,
the Riemann Hypothesis and related theory. They give a chronology of mile-
stones in the development of the theory contained in previous chapters. We
begin with Chebyshev’s ground-breaking work on π(x), continue through Rie-
mann’s proposition of the Riemann Hypothesis, and end with an ingenious
algorithm for primality testing. These papers place the material into histor-
ical context and illustrate the motivations for research on and around the
Riemann Hypothesis. Each paper is preceeded by a short biographical note
on the author(s) and a short review of the material they present.
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12.1

Sur la fonction qui détermine la totalité des nombres
premiers inférieurs à une limite donnée, P. L. Cheby-
shev (1852)

Pafnuty Lvovich Chebyshev was born in Okatovo, Russia, on May 16th,
1821. Chebyshev’s mother, Agrafena Ivanova Pozniakova, acted as his teacher
and taught him basic language skills. His cousin tutored him in French and
arithmetic. Chebyshev was schooled at home by various tutors until he entered
Moscow University in 1837. In 1847 he was appointed to the University of St.
Petersburg. During his career he contributed to several fields of mathematics.
Specifically, in the theory of prime numbers he proved Bertrand’s postulate
in 1850, and came very close to proving the Prime Number Theorem. He was
recognized internationally as a pre-eminent mathematician. He was elected to
academies in Russia, France, Germany, Italy, England, Belgium and Sweden.
He was also given honourary positions at every Russian university. Chebyshev
died in St. Petersburg in 1894. [111]

This paper is considered the first substantial result towards the Prime
Number Theorem. The Prime Number Theorem is the statement that π(x) ∼

x
log x . Legendre had worked on the Prime Number Theorem and had attempted
to give accurate approximations to π(x). Chebyshev shows that if any ap-
proximation to π(x) is within order x

logN x
, for any fixed large N ∈ Z, then

the approximation is Li(x). Chebyshev considers the expression π(x) log x
x , and

proves that if limx→∞
π(x) log x

x exists, then the limit is 1.
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12.2

Ueber die Anzahl der Primzahlen unter einer gegebenen
Grösse, B. Riemann (1859)

Bernhard Riemann was born in 1826 in what is now Germany. The son
of a Lutheran minister, Riemann excelled in Hebrew and theology, but had
a keen interest in mathematics. He entered the Univeristy of Göttingen in
1846 as a student of theology. However, with the permission of his father, he
began to study mathematics under Stern and Gauss. In 1847 Riemann moved
to Berlin to study under Steiner, Jacobi, Dirichlet and Eisenstein. In 1851
he submitted his celebrated doctoral thesis on Riemann surfaces to Gauss.
In turn Gauss recommended Riemann for a post at Göttingen. The name
Riemann is ubiquitous in modern mathematics. Riemann’s work is full of
brilliant insight, and mathematicians struggle to this day with the questions
he raised. Riemann died in Italy in 1866. [106]

In 1859 Riemann was appointed to the Berlin Academy of Sciences. New
members of the academy were required to report on their research, and in
complying with this convention Riemann presented his report Ueber die An-
zahl der Primzahlen unter einer gegebenen Grösse (On the number of primes
less than a given magnitude). In this paper, Riemann considers the properties
of the Riemann zeta function. His results are stated concisely, and motivated
future researchers to supply rigourous proofs. This paper contains the original
statement of the Riemann Hypothesis.

We have included a digitization of Riemann’s original hand-written mem-
oir. It is followed by a translation into English, due to David R. Wilkins.
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On the Number of Prime Numbers less than a
Given Quantity.

(Ueber die Anzahl der Primzahlen unter einer
gegebenen Grösse.)

Bernhard Riemann
Translated by David R. Wilkins

Preliminary Version: December 1998

[Monatsberichte der Berliner Akademie, November 1859.]
Translation c© D. R. Wilkins 1998.

I believe that I can best convey my thanks for the honour which the
Academy has to some degree conferred on me, through my admission as one
of its correspondents, if I speedily make use of the permission thereby received
to communicate an investigation into the accumulation of the prime numbers;
a topic which perhaps seems not wholly unworthy of such a communication,
given the interest which Gauss and Dirichlet have themselves shown in it
over a lengthy period.

For this investigation my point of departure is provided by the observation
of Euler that the product ∏ 1

1− 1

ps

=
∑ 1

ns
,

if one substitutes for p all prime numbers, and for n all whole numbers.
The function of the complex variable s which is represented by these two
expressions, wherever they converge, I denote by ζ(s). Both expressions
converge only when the real part of s is greater than 1; at the same time an
expression for the function can easily be found which always remains valid.
On making use of the equation

∞∫
0

e−nxxs−1 dx =
Π(s− 1)

ns

1



one first sees that

Π(s− 1)ζ(s) =

∞∫
0

xs−1 dx

ex − 1
.

If one now considers the integral∫ (−x)s−1 dx

ex − 1

from +∞ to +∞ taken in a positive sense around a domain which includes
the value 0 but no other point of discontinuity of the integrand in its interior,
then this is easily seen to be equal to

(e−πsi − eπsi)

∞∫
0

xs−1 dx

ex − 1
,

provided that, in the many-valued function (−x)s−1 = e(s−1) log(−x), the log-
arithm of −x is determined so as to be real when x is negative. Hence

2 sin πs Π(s− 1)ζ(s) = i

∞∫
∞

(−x)s−1 dx

ex − 1
,

where the integral has the meaning just specified.
This equation now gives the value of the function ζ(s) for all complex

numbers s and shows that this function is one-valued and finite for all finite
values of s with the exception of 1, and also that it is zero if s is equal to a
negative even integer.

If the real part of s is negative, then, instead of being taken in a pos-
itive sense around the specified domain, this integral can also be taken in
a negative sense around that domain containing all the remaining complex
quantities, since the integral taken though values of infinitely large modulus
is then infinitely small. However, in the interior of this domain, the inte-
grand has discontinuities only where x becomes equal to a whole multiple of
±2πi, and the integral is thus equal to the sum of the integrals taken in a
negative sense around these values. But the integral around the value n2πi
is = (−n2πi)s−1(−2πi), one obtains from this

2 sin πs Π(s− 1)ζ(s) = (2π)s∑ns−1((−i)s−1 + is−1),

thus a relation between ζ(s) and ζ(1− s), which, through the use of known
properties of the function Π, may be expressed as follows:

Π
(

s

2
− 1

)
π−

s
2 ζ(s)

2



remains unchanged when s is replaced by 1− s.
This property of the function induced me to introduce, in place of Π(s−1),

the integral Π
(

s

2
− 1

)
into the general term of the series

∑ 1

ns
, whereby one

obtains a very convenient expression for the function ζ(s). In fact

1

ns
Π

(
s

2
− 1

)
π−

s
2 =

∞∫
0

e−nnπxx
s
2−1 dx,

thus, if one sets
∞∑
1

e−nnπx = ψ(x)

then

Π
(

s

2
− 1

)
π−

s
2 ζ(s) =

∞∫
0

ψ(x)x
s
2−1 dx,

or since

2ψ(x) + 1 = x−
1
2

(
2ψ

(
1

x

)
+ 1

)
, (Jacobi, Fund. S. 184)

Π
(

s

2
− 1

)
π−

s
2 ζ(s) =

∞∫
1

ψ(x)x
s
2−1 dx +

∞∫
1

ψ
(

1

x

)
x

s−3
2 dx

+1
2

1∫
0

(
x

s−3
2 − x

s
2−1

)
dx

=
1

s(s− 1)
+

∞∫
1

ψ(x)
(
x

s
2−1 + x−

1+s
2

)
dx.

I now set s = 1
2 + ti and

Π
(

s

2

)
(s− 1)π−

s
2 ζ(s) = ξ(t),

so that

ξ(t) = 1
2 − (tt + 1

4)

∞∫
1

ψ(x)x−
3
4 cos(1

2t log x) dx

or, in addition,

ξ(t) = 4

∞∫
1

d(x
3
2 ψ′(x))

dx
x−

1
4 cos(1

2t log x) dx.

3



This function is finite for all finite values of t, and allows itself to be
developed in powers of tt as a very rapidly converging series. Since, for
a value of s whose real part is greater than 1, log ζ(s) = −∑

log(1 − p−s)
remains finite, and since the same holds for the logarithms of the other factors
of ξ(t), it follows that the function ξ(t) can only vanish if the imaginary part
of t lies between 1

2 i and −1
2 i. The number of roots of ξ(t) = 0, whose real

parts lie between 0 and T is approximately

=
T

2π
log

T

2π
− T

2π
;

because the integral
∫

d log ξ(t), taken in a positive sense around the region
consisting of the values of t whose imaginary parts lie between 1

2 i and −1
2 i

and whose real parts lie between 0 and T , is (up to a fraction of the order

of magnitude of the quantity 1
T ) equal to

(
T log

T

2π
− T

)
i; this integral

however is equal to the number of roots of ξ(t) = 0 lying within in this
region, multiplied by 2πi. One now finds indeed approximately this number
of real roots within these limits, and it is very probable that all roots are
real. Certainly one would wish for a stricter proof here; I have meanwhile
temporarily put aside the search for this after some fleeting futile attempts,
as it appears unnecessary for the next objective of my investigation.

If one denotes by α all the roots of the equation ξ(α) = 0, one can express
log ξ(t) as ∑

log
(
1− tt

αα

)
+ log ξ(0);

for, since the density of the roots of the quantity t grows with t only as

log
t

2π
, it follows that this expression converges and becomes for an infinite t

only infinite as t log t; thus it differs from log ξ(t) by a function of tt, that
for a finite t remains continuous and finite and, when divided by tt, becomes
infinitely small for infinite t. This difference is consequently a constant, whose
value can be determined through setting t = 0.

With the assistance of these methods, the number of prime numbers that
are smaller than x can now be determined.

Let F (x) be equal to this number when x is not exactly equal to a prime
number; but let it be greater by 1

2 when x is a prime number, so that, for
any x at which there is a jump in the value in F (x),

F (x) =
F (x + 0) + F (x− 0)

2
.

If in the identity

log ζ(s) = −∑
log(1− p−s) =

∑
p−s + 1

2

∑
p−2s + 1

3

∑
p−3s + · · ·

4



one now replaces

p−s by s

∞∫
p

x−s−1 ds, p−2s by s

∞∫
p2

x−s−1 ds, . . . ,

one obtains
log ζ(s)

s
=

∞∫
1

f(x)x−s−1 dx,

if one denotes
F (x) + 1

2F (x
1
2 ) + 1

3F (x
1
3 ) + · · ·

by f(x).
This equation is valid for each complex value a + bi of s for which a > 1.

If, though, the equation

g(s) =

∞∫
0

h(x)x−s d log x

holds within this range, then, by making use of Fourier ’s theorem, one can
express the function h in terms of the function g. The equation decomposes,
if h(x) is real and

g(a + bi) = g1(b) + ig2(b),

into the two following:

g1(b) =

∞∫
0

h(x)x−a cos(b log x) d log x,

ig2(b) = −i

∞∫
0

h(x)x−a sin(b log x) d log x.

If one multiplies both equations with

(cos(b log y) + i sin(b log y)) db

and integrates them from −∞ to +∞, then one obtains πh(y)y−α on the
right hand side in both, on account of Fourier ’s theorems; thus, if one adds
both equations and multiplies them by iyα, one obtains

2πih(y) =

a+∞i∫
a−∞i

g(s)ys ds,

5



where the integration is carried out so that the real part of s remains constant.
For a value of y at which there is a jump in the value of h(y), the integral

takes on the mean of the values of the function h on either side of the jump.
From the manner in which the function f was defined, we see that it has the
same property, and hence in full generality

f(y) =
1

2πi

a+∞i∫
a−∞i

log ζ(s)

s
ys ds.

One can substitute for log ζ the expression

s

2
log π − log(s− 1)− log Π

(
s

2

)
+

∑α log

(
1 +

(s− 1
2)

2

αα

)
+ log ξ(0)

found earlier; however the integrals of the individual terms of this expression
do not converge, when extended to infinity, for which reason it is appropriate
to convert the previous equation by means of integration by parts into

f(x) = − 1

2πi

1

log x

a+∞i∫
a−∞i

d
log ζ(s)

s
ds

xs ds

Since

− log Π
(

s

2

)
= lim

(
n=m∑
n=1

log
(
1 +

s

2n

)
− s

2
log m

)
,

for m =∞ and therefore

−
d
1

s
log Π

(
s

2

)
ds

=
∞∑
1

d
1

s
log

(
1 +

s

2n

)
ds

,

it then follows that all the terms of the expression for f(x), with the exception
of

1

2πi

1

log x

a+∞i∫
a−∞i

1

ss
log ξ(0)xs ds = log ξ(0),

take the form

± 1

2πi

1

log x

a+∞i∫
a−∞i

d

(
1

s
log

(
1− s

β

))
ds

xs ds.
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But now

d

(
1

s
log

(
1− s

β

))
dβ

=
1

(β − s)β
,

and, if the real part of s is larger than the real part of β,

− 1

2πi

a+∞i∫
a−∞i

xs ds

(β − s)β
=

xβ

β
=

x∫
∞

xβ−1 dx,

or

=

x∫
0

xβ−1 dx,

depending on whether the real part of β is negative or positive. One has as
a result

1

2πi

1

log x

a+∞i∫
a−∞i

d

(
1

s
log

(
1− s

β

))
ds

xs ds

= − 1

2πi

a+∞i∫
a−∞i

1

s
log

(
1− s

β

)
xs ds

=

x∫
∞

xβ−1

log x
dx + const.

in the first, and

=

x∫
0

xβ−1

log x
dx + const.

in the second case.
In the first case the constant of integration is determined if one lets the

real part of β become infinitely negative; in the second case the integral from 0
to x takes on values separated by 2πi, depending on whether the integration
is taken through complex values with positive or negative argument, and
becomes infinitely small, for the former path, when the coefficient of i in the
value of β becomes infinitely positive, but for the latter, when this coefficient
becomes infinitely negative. From this it is seen how on the left hand side

log

(
1− s

β

)
is to be determined in order that the constants of integration

disappear.
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Through the insertion of these values in the expression for f(x) one ob-
tains

f(x) = Li(x)−∑α
(
Li

(
x

1
2+αi

)
+ Li

(
x

1
2−αi

))
+

∞∫
x

1

x2 − 1

dx

x log x
+ log ξ(0),

if in
∑α one substitutes for α all positive roots (or roots having a positive

real part) of the equation ξ(α) = 0, ordered by their magnitude. It may
easily be shown, by means of a more thorough discussion of the function ξ,
that with this ordering of terms the value of the series∑ (

Li
(
x

1
2+αi

)
+ Li

(
x

1
2−αi

))
log x

agrees with the limiting value to which

1

2πi

a+bi∫
a−bi

d
1

s

∑
log

(
1 +

(s− 1
2)

2

αα

)
ds

xs ds

converges as the quantity b increases without bound; however when re-
ordered it can take on any arbitrary real value.

From f(x) one obtains F (x) by inversion of the relation

f(x) =
∑ 1

n
F

(
x

1
n

)
,

to obtain the equation

F (x) =
∑

(−1)µ 1

m
f

(
x

1
m

)
,

in which one substitutes for m the series consisting of those natural numbers
that are not divisible by any square other than 1, and in which µ denotes
the number of prime factors of m.

If one restricts
∑α to a finite number of terms, then the derivative of the

expression for f(x) or, up to a part diminishing very rapidly with growing x,

1

log x
− 2

∑α cos(α log x)x−
1
2

log x

gives an approximating expression for the density of the prime number +
half the density of the squares of the prime numbers + a third of the density
of the cubes of the prime numbers etc. at the magnitude x.
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The known approximating expression F (x) = Li(x) is therefore valid up
to quantities of the order x

1
2 and gives somewhat too large a value; because

the non-periodic terms in the expression for F (x) are, apart from quantities
that do not grow infinite with x:

Li(x)− 1
2Li(x

1
2 )− 1

3Li(x
1
3 )− 1

5Li(x
1
5 ) + 1

6Li(x
1
6 )− 1

7Li(x
1
7 ) + · · ·

Indeed, in the comparison of Li(x) with the number of prime numbers
less than x, undertaken by Gauss and Goldschmidt and carried through up
to x = three million, this number has shown itself out to be, in the first
hundred thousand, always less than Li(x); in fact the difference grows, with
many fluctuations, gradually with x. But also the increase and decrease in
the density of the primes from place to place that is dependent on the periodic
terms has already excited attention, without however any law governing this
behaviour having been observed. In any future count it would be interesting
to keep track of the influence of the individual periodic terms in the expression
for the density of the prime numbers. A more regular behaviour than that
of F (x) would be exhibited by the function f(x), which already in the first
hundred is seen very distinctly to agree on average with Li(x) + log ξ(0).

9
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12.3

Sur la distribution des zéros de la fonction ζ(s) et ses
conséquences arithmétiques, J. Hadamard (1896)

Jacques Hadamard was born in France in 1865. Both of his parents were
teachers, and Hadamard excelled in all subjects. He entered the École Normale
Supérieure in 1884. Under his professors, which included Hermite and Goursat,
he began to consider research problems in mathematics. In 1892 Hadamard
received his doctorate for his thesis on functions defined by Taylor series.
He won several prizes for research in the fields of physics and mathematics.
Hadamard was elected the president of the French Mathematical Society in
1906. His Leçons sur le calcul des variations of 1910 laid the foundations
for functional analysis, and introduced the term ‘functional’. In 1912 he was
elected to the Academy of Sciences. Throughout his life Hadamard was active
politically, and campaigned for peace following the second world war. His
output as a researcher encompasses over 300 papers and books. Hadamard
died in Paris in 1963. [109]

This paper gives Hadamard’s proof of the Prime Number Theorem. The
statement π(x) ∼ Li(x) is proven indirectly, by considering the zeros of ζ(s).
Hadamard increases the zero-free region of the Riemann zeta function by
proving that ζ(σ+ it) = 0 implies that σ 6= 1. This is sometimes referred to as
the Hadamard-Vallée Poussin Theorem, and from it the desired result follows.
An exposition of Hadamard’s method in English can be found in Chapter 3
of [147]. This paper, in conjuction with 12.4, gives the most important result
in the theory of prime numbers since Chebyshev’s 1852 result (see 12.1).



210 12 The Experts Speak For Themselves















































12.4 233

12.4

Sur la fonction ζ(s) de Riemann et le nombre des nom-
bres premiers inférieurs a une limite donnée, C. de la
Vallée Poussin (1899)

Charles de la Vallée Poussin was born in 1866 in Belgium. Though he
came from a family of diverse intellectual background, he was originally in-
terested in becoming a Jesuit priest. He attended the Jesuit College at Mons,
but eventually found the experience unappealing. He changed the course of
his studies and obtained a diploma in engineering. While at the University of
Louvain, de la Vallée Poussin became inspired to study mathematics under
Louis-Philippe Gilbert. In 1891 he was appointed Gilbert’s assistant. Follow-
ing Gilbert’s death one year later, de la Vallée Poussin was elected to his chair
at Louvain. De la Vallée Poussin’s early work focused on analysis; however, his
most famous result was in the theory of prime numbers. In 1896 he proved the
long-standing Prime Number Theorem independently of Jacques Hadamard.
His only other works in number theory are two papers on the Riemann zeta
function, published in 1916. His major work was his Cours d’Analyse . Written
in two volumes it provides a comprehensive introduction to analysis both for
the beginner and the specialist. De la Vallée Poussin was elected to academies
in Belgium, Spain, Italy, America and France. In 1928 the King of Belgium
conferred on de la Vallée Poussin the title of Baron. He died in Louvain,
Belgium, in 1962. [107]

This paper details de la Vallée Poussin’s historic proof of the Prime Num-
ber Theorem. The author proves that π(x) ∼ Li(x) by considering the zeros
of ζ(σ+ it). The paper contains a proof of the fact that ζ(σ+ it) = 0 implies
σ 6= 1. From this fact, sometimes referred to as the Hadamard-Vallée Poussin
Theorem, the desired result is deduced. The basics of de la Vallée Poussin’s
approach are explained in English in Chapter 3 of [147].
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12.5

Sur les zéros de la fonction ζ(s) de Riemann, G. H.
Hardy (1914)

Godfrey Harold Hardy was born in England in 1877 to Isaac and Sophia.
He performed exceptionally in school but did not develop a passion for mathe-
matics during his youth. Instead he was drawn to the subject as a way to assert
his intellectual superiority over his peers. He won scholarships to Winchester
College in 1889 and to Trinity College, Cambridge, in 1896. He was elected
fellow of Trinity in 1900. Hardy was an excellent collaborator and much of his
best work was done with Littlewood and Ramanujan. He also worked with
Titchmarsh, Ingham, Landau and Pólya. He died in Cambridgeshire, England
in 1947 [108].

In this paper Hardy proves that there are infinitely many zeros of ζ(s) on
the critical line. This is the first appearance of such a result. It gives a valuable
piece of heuristic evidence and is requisite to the truth of the Hypothesis.
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12.6

Prime numbers, G. H. Hardy (1915)

The Theory of Numbers has always been regarded as one of the most
obviously useless branches of Pure Mathematics. The accusation is
one against which there is no valid defence; and it is never more just
than when directed against the parts of the theory which are more
particularly concerned with primes. A science is said to be useful if
its development tends to accentuate the existing inequalities in the
distribution of wealth, or more directly promotes the destruction of
human life. The theory of prime numbers satisfies no such criteria.
Those who pursue it will, if they are wise, make no attempt to justify
their interest in a subject so trivial and so remote, and will console
themselves with the thought that the greatest mathematicians of all
ages have found in it a mysterious attraction impossible to resist.

G. H. Hardy

Hardy’s abilities as a mathematician were complemented by his literary
abilities. He is respected not only for his research, but for his ability to commu-
nicate mathematics clearly and beautifully. His “A Mathematician’s Apology”
is considered one of the best accounts of the life of a creative artist.

In this paper, Hardy gives a brief exposition on the Prime Number The-
orem. He begins by presenting a brief history of results in the field of prime
number theory. The bulk of the paper discusses the application of analysis to
number theory and in particular to the asymptotic distribution of the prime
numbers. Hardy gives Chebychev’s results which appear in section 12.1. He
then proceeds chronologically to give Riemann’s innovations, which appear in
section 12.2. Finally Hardy gives an outline of the proofs given by Hadamard
and de la Vallée Poussin, which appear in sections 12.3 and 12.4 respectively.
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12.7

New proofs of the prime-number theorem and similar
theorems, G. H. Hardy and J. E. Littlewood (1915)

I believe this to be false. There is no evidence whatever for it (un-
less one counts that it is always nice when any function has only real
roots). One should not believe things for which there is no evidence.
In the spirit of this anthology I should also record my feeling that there
is no imaginable reason why it should be true. Titchmarsh devised a
method, of considerable theoretical interest, for calculating the zeros.
The method reveals that for a zero to be off the critical line a remark-
able number of ‘coincidences’ have to happen. I have discussed the
matter with several people who know the problem in relation to elec-
tronic calculation; they are all agreed that the chance of finding a zero
off the line in a lifetime’s calculation is millions to one against. It
looks then as if we may never know.
It is true that the existence of an infinity of L-functions raising the
same problems creates a remarkable situation. Nonetheless life would
be more comfortable if one could believe firmly that the hypothesis is
false [93].

John E. Littlewood

John Edensor Littlewood was born in England in 1885 to Edward and
Sylvia. When Littlewood was seven he and his family moved to South Africa
so his father could take a position as the headmaster of a new school. His fa-
ther, a mathematician by trade, recognized his son’s talents and their failure
to be realized in Africa. Littlewood was sent back to England at the age of
fifteen to study at St. Paul’s school in London. In 1902 he won a scholarship
to Cambridge and entered Trinity College in 1903. In 1906 he began to re-
search under the direction of E. W. Barnes. After solving the first problem
assigned him by Barnes, Littlewood was assigned the Riemann Hypothesis.
His legendary 35 year collaboration with G. H. Hardy started in 1911 and its
products include the following paper [110]. For biographical information on
G. H. Hardy see 12.6 or 12.5.

In this paper Hardy and Littlewood develop new analytic methods to prove
the Prime Number Theorem. The tools they develop are general and concern
Dirichlet series. To apply these methods to the Prime Number Theorem one
can consider any of

M(x) = o(x),
∑
n≤x

Λ(n) ∼ x,

∞∑
n=1

µ(n)
n

= 0.

Each of these statements can be shown to be equivalent to the Prime Number
Theorem without employing the theory of functions of a complex variable.
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12.8

On the Riemann Hypothesis in function fields, A. Weil (1941)

André Weil was born in France in 1906. He became interested in mathe-
matics at a very young age and studied at the École Normale Supérieure in
Paris. Weil received his doctorate degree from the University of Paris under
the supervision of Hadamard. His thesis developed ideas on the theory of al-
gebraic curves. Life during the second world war was difficult for Weil, who
was a conscientious objector. After the war he moved to the United States
where he became a member of the Institute for Advanced Study at Princeton.
he retired from the Institute in 1976 and became a Professor Emeritus.

Weil’s research focused on the areas of number theory, algebraic geometry
and group theory. He laid the foundations for abstract algebraic geometry as
well as the theory of abelian varieties. His work led to two Field’s Medals
(Deligne in 1978 for solving the Weil conjectures, and Yau in 1982 for work in
three dimensional algebraic geometry). Weil was an honourary member of the
London Mathematical Society, a fellow of the Royal Society of London, and a
member of both the Academy of Sciences in Paris and the National Academy
of Sciences in the United States [105]. In this paper Weil gives a proof of the
Riemann Hypothesis for function fields. This proof builds on Weil’s earlier
work, presented in [161].
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invariant subgroup of order 1 + 3k. Since sls2 is of order 3 we have
(sls2)3 = (slS2'- sls2)3 = 1. It is easy to prove that s1s2s1 generates a cyclic
group whose generators are commutative with their conjugates under s,
and under s2. That is, if a group contains a maximal subgroup of order 3
it contains an invariant abelian subgroup of index 3 which is either cyclic
or of type 1m. The groups which contain maximal subgroups of order 2
or of order 3 may therefore be regarded as determined, but those which
contain maximal subgroups of order 2 are naturally considerably simpler
than those which contain maximal subgroups of order 3.

1 Cf. these PROCEEDINGS 27, 212-216 (1941).

ON THE RIEMANN HYPOTHESIS IN FUNCTION-FIELDS
By ANDRA WEIL

NEW SCHOOL FOR SOCIAL RESEARCH

Communicated June 11, 1941

A year ago' I sketched the outline of a new theory of algebraic functions
of one variable over a finite field of constants, which may suitably be
described as transcendental, in view of its close analogy with that portion
of the classical theory of algebraic curves which depends upon the use of
Abelian integrals of the first kind and of Jacobi's inversion theorem; and
I indicated how this led to the solution of two outstanding problems,
viz., the proof of the Riemann hypothesis for such fields, and the proof
that Artin's non-abelian L-functions on such fields are polynomials. I
have now found that my proof of the two last-mentioned results is inde-
pendent of this "transcendental" theory, and depends only upon the
algebraic theory of correspondences on algebraic curves, as due to Severi.2
r being a non-singular projective model of an algebraic curve over an

algebraically closed field of constants, the variety of ordered couples
(P, Q) of points on r has the non-singular model r X r (in a bi-projective
space); correspondences are divisors on this model, additively written;
they form a module X on the ring Z of rational integers. Let rA, rB',
A, respectively, be the loci of points (P, A), (B, P) and (P, P), on r X r,
A and B being fixed on r and P a generic point of r (in the precise sense
defined by van der Waerden3). The intersection number (C, D) of C
and D being defined by standard processes4 for irreducible, non-coinciding
correspondences C, D, will be defined for any C and D which have no
irreducible component in common, by the condition of being linear both
in C and in D. The degrees r(C), s(C), and the coincidence number f(C)
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of C are defined as its intersection numbers with a generic rA, with a
generic rB' and with A, respectively. Transformation (P, Q) -+ (Q, P),
which is a birational, one-to-one involution of r x r into itself, transforms
a correspondence C into a correspondence which will be denoted by C'.
To every rational function p on r X r is attached a divisor (the divisor
of its curves of zeros and poles), i.e., a corresponding C,; and (Ce,, D) = 0
whenever it is defined. Let go be the module of all correspondences of the
form C4, + ZairAi + ZbjrBj': if Ce ato, thenf(C) = r(C) + s(C) (whenever
f(C) is defined), since this is true for C = Ci, (both sides then being 0)
and for C = rA, C = rB'. Put R = X - go; an element yin E is a co-
set in Xt modulo ao, and it can be shown that there always is a C in this
co-set for whichf(C), r(C), s(C) are defined, so that, putting a(y) = r(C) +
s(C) - f(C), a(y) is defined as a linear function over t. If 70 in It corre-
sponds to A in at, a(7yo) = 2g, where g is the genus of r. If C e (co, we have
C' e go, and so the reciprocal relation (C 4± C') in t induces a similar
relation (,y w± y') in iB; and a(y') = (oy).
The product of correspondences now being defined essentially as in

Severi, O becomes a ring, with A as unit-element; go is two-sided ideal
in X, so that a also can be defined as ring, with unit-element 70: we write
7o = 1. It is found that the degrees of C-D are r(C).r(D), s(C).s(D);
and that (C, D) is the same as (C.D', A) = f(C-D'), and hence is equal
to r(C) . s(D) + r(D) . s(C) - a(y .5') if y, 5 are the elements of !t which
correspond to C, D. It follows that a({y) = a(5y). From a(n. 1) = 2ng
it follows that ring it has characteristic 0.

Defining the complementary correspondence to C as in Severi,6 it is
found that the generic complementary correspondence to C is irreducible
and has degrees (g, m), where 2m = a('yy'): it follows that a(yy') ) 0,
and that a(yy') = 0 only if y .= 0.
Now, let k (as in my note') be the Galois field with q elements; kn its

algebraic extension of degree n; k its algebraic closure. Let K = k(x, y)
be a separable algebraic extension of k(x); Kn = k.(x, y); R = i(x, y).
Then (x, y) -* (x2, y0) defines a correspondence I, of degrees 1, q, on a non-
singular model r of field K; In is the correspondence, of degrees 1, qf,
defined by (x, y) -+ (x2", yq); and I-I' = q- A (more generally, any
correspondence C, such that r(C) = 1, satisfies C- C' = s(C)- A). Let L be
the element of It which corresponds to I; we have tl l' = q. The inter-
sections of I" with A, which are all found to be of multiplicity 1, are those
points of A which have coordinates in kn, so that the number vn of such
points (i.e., of points on r with co6rdinates in k") isf(I#) = 1 + ql _a(-).
But the numerator of the zeta-function Ws(S) of K is6 a polynomial P(u) =

g- (1 + q- v,)U2 - 1 + .. of degree 2g, in u = q3; and, putting
P(u) = II (u - ), the numerator of the zeta-function of Kn is
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p (u) r.l(un - ajn) - u2ng - (1 + qn - v g-u +

so that we find that z2ajt = 1 + qn - Vn = a(L").
Now, let F(x) = 2a,x be any polynomial with coefficients in Z; apply

a(-y -y') 0 to y = F(L); using t* ' = q, a(1) = 2g, and o-'t) = u(L") =
;ai, we find

Ea,A2.2g + 2 E a,aI,qOa -E i 0.
I' IS<I i

The functional equation of WK(S) implies that to every root ai of P(u)
there is a root aj' = q/ai, so that our inequality can be written as
2F(aj)F(aj') 00. The left-hand side of this is a quadratic form in the co-
efficients of F, which is ) 0 for all integral values, and therefore also for
all real values, of these coefficients. If al is such that alal = a,l q, i.e.,
al' $ al, suppose, first, that a,' $ a,; put a2 = a,'; a polynomial F(x)
can be found, with real-valued coefficients, which vanishes for all roots of
P(u) except a,, a2, al, a2, and takes prescribed values zl, z2 at a,, a2: then
2F(aj)F(aj') = Z1Z2 + -ZZ2, which becomes < 0 for suitable z1, Z2: this
contradicts our previous inequality. We reason similarly if a,' = a,.
Thus all roots of P(u) must satisfy Iai 2 = q, which is the Riemann
hypothesis for tK-
A detailed account of this theory, including the application to Artin's

L-functions, and of the "transcendental" theory as outlined in my previous
note, is being prepared for publication.

1 Sur les fonctions algebriques . corps de constantes fini, C.R.t. 210 (1940), p. 592.
2 F. Severi, Trattato di Geometria algebrica, vol. 1, pt. 1, Bologna, Zanichelli 1926,

chapter VI. It should be observed that Severi's treatment, although undoubtedly
containing all the essential elements for the solution of the problems it purports to solve,
is meant to cover only the classical case where the field of constants is that of complex
numbers, and doubts may be raised as to its applicability to more general cases, es-
pecially to characteristic p 5- 0. A rewriting of the whole theory, covering such cases,
is therefore a necessary preliminary to the applications we have in view.

3 A generic point of an irreducible variety of dimension n is a point, the coordinates
of which satisfy the equations of the variety and generate a field of degree of tran-
scendency n over the field of constants. Cf. B. L. van der Waerden, Einfiihrung in die
algebraische Geometrie, Berlin, Springer 1939, chap. IV, § 29.

4B. L. van der Waerden, "Zur algebraischen Geometrie XIII," Math. Ann., 115,
359, and XIV, Ibid. 619.

6 Loc. cit.,2 chap. VI, No. 75 (pp. 228-229) and No. 84 (pp. 259-267). Severi's treat-
ment can be somewhat clarified and simplified at this point, as will be shown elsewhere.

6 H. Hasse, "Uber die Kongruenzzetafunktionen," Sitz.-ber. d. Preuss. Akad. d.
Wiss. 1934, 250.
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12.9

On some approximative Dirichlet-polynomials in the the-
ory of the zeta-function of Riemann, P. Turán (1948)

Paul Turán was born in 1910 in Hungary. He demonstrated a talent for
mathematics early in his schooling. Turán attended Pázmány Péter Univer-
sity in Budapest where he met Paul Erdős, with whom he would collaborate
extensively. He completed his Ph.D. under Fejér in 1935 and published his
thesis On the number of prime divisors of integers. Turán found it extremely
difficult to find employment owing to the widespread anti-semitism of the pe-
riod. He spent the war in forced labour camps which not only saved his life,
but according to Turán, gave him time to develop his mathematical ideas.
During his lifetime he published approximately 150 papers in several mathe-
matical disciplines. Among his several honours are the Kossuth Prize from the
Hungarian government (which he won on two occasions), the Szele Prize from
the János Bolyai Mathematical Society and membership in the Hungarian
Academy of Sciences [113].

In this paper Turán considers partial sums of the Riemann zeta function,∑n
k=1 k

−s. Turán proves the condition that if there is an n0 such that for
n > n0 the partial sums do not vanish in the half plane <(s) > 1 then
the Riemann Hypothesis follows. Hugh Montgomery later proved that this
condition cannot lead to a proof of the Hypothesis as the partial sums of the
zeta function have zeros in the region indicated.
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12.10

An elementary proof of the prime number theorem, A.
Selberg (1949)

In this paper Selberg presents an elementary proof of the Prime Number
Theorem. Together with the proof of Erdős (see Section 12.11) this is the first
elementary proof of the PNT. Selberg proves that∑

p≤x

log2 p+
∑
pq≤x

log p log q = 2x log x+O(x)

where p and q are primes. He then uses the statement (due to Erdős) that for
any λ > 1 the number of primes in (x, λx) is at least Kx/ log x for x > x0

(here K and x0 are constants dependent on λ) to derive the Prime Number
Theorem without appealing to the theory of functions of a complex variable.
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12.11

On a new method in elementary number theory which
leads to an elementary proof of the prime number theo-
rem, P. Erdős (1949)

Paul Erdős is one of the most famous and brilliant mathematicians of the
20th century. He was born in Hungary in 1913. His early years were chaotic
owing to the political situation at the time, as Erdős was of Jewish descent. Af-
ter completing his doctoral studies at Pázmány Péter University in Budapest
in 1934 Erdős moved to Manchester. At the start of the second world war
he moved to the United States and took up a fellowship at Princeton. Erdős’
tenure at Princeton was short lived due to his mannerisms and work habits;
throughout his life he would move frequently from university to university.
Erdős spent his career posing and solving difficult mathematical problems in
several disciplines. He believed strongly in collaboration and few of his pub-
lications bear his name alone. His many accomplishments and eccentricities
are compiled in several biographies [112].

In this paper Erdős presents an elementary proof of the Prime Number
Theorem. Together with the proof of Selberg (see Section 12.10) this is the
first elementary proof of the PNT. Erdős states that,∑

p≤x

log2 p+
∑
pq≤x

log p log q = 2x log x+O(x)

citing the paper of Selberg as proof. He then goes on to prove that for any
λ > 1 the number of primes in (x, λx) is at least Kx/ log x for x > x0 (here
K and x0 are constants dependent on λ). From there he gives an account of
Selberg’s proof of the PNT and a simplification deduced by both himself and
Selberg.
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12.12

On the difference π(x)− Li(x) (II), S. Skewes (1955)

Skewes completed his Ph.D. at Cambridge in 1938 under the supervision
of J. E. Littlewood. His dissertation was titled On the difference π(x)−Li(x).
This paper is a continuation of his paper On the difference π(x) − Li(x) (I),
published in 1933. In that paper Skewes proved that π(x)−Li(x) > 0 for some
x satisfying 2 ≤ x < X where an explicit bound X is given. In this paper
Skewes gives a better bound X under the assumption of Hypothesis H.

Hypothesis H. Every complex zero s = σ+ it of the Riemann zeta function
satisfies

σ − 1
2
≤ X−3 log−2(X)

provided that |t| < X3.

Skewes shows that under the assumption of Hypothesis H, the inequality
π(x) − Li(x) > 0 holds for some 2 ≤ x < X = exp exp exp(7.703). He also
shows that under the negation of Hypothesis H, the inequality holds for some

2 ≤ x < X = 10101010
3

.
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12.13

A disproof of a conjecture of Pólya, C. B. Haselgrove (1958)

In this paper Haselgrove disproves a conjecture of Pólya intricately con-
nected to the Riemann Hypothesis. The conjecture is as follows.

Conjecture 12.1 (Pólya’s Conjecture). The quantity, L(x) :=
∑

n≤x λ(n)
satisfies L(x) ≤ 0 for x ≥ 2, where λ(n) is Liouville’s function.

This conjecture had been verified for all x ≤ 800000. The conjecture implies
the Riemann Hypothesis, so in his disproof Haselgrove assumes the Hypothe-
sis. The proof is based on the result of Ingham that if the Riemann Hypothesis
is true, then

A∗T (u) ≤ lim supA∗T (u) ≤ lim supA(u).

Here the functions A(u) and A∗T (u) are defined as

A(u) := e−
u
2 L(eu),

A∗T (u) := α0 + 2<
{∑(

1− γn

T

)
αne

iuγn

}
where the sum ranges over the values of n for which 0 < γn < T and γn is the
imaginary part of the nth non-trivial zero, ρn, of the Riemann zeta function.
Furthermore,

α0 :=
1

ζ
(

1
2

) , and αn :=
ζ(2ρn)
ρnζ ′(ρn)

.

So, if there are T and u that give A∗T (u) > 0 then the conjecture of Pólya is
false. Haselgrove finds T = 1000 and u = 831.847 for which A∗T (u) = 0.00495
and so disproves the conjecture. This finding is based on the calculation of
the first 1500 values of ρn.
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12.14

The pair correlation of zeros of the zeta function, H.
Montgomery (1973)

In a certain standard terminology the Conjecture may be formulated
as the assertion that 1−((sinπu)/πu)2 is the pair correlation function
of the zeros of the zeta function. F. J. Dyson has drawn my attention
to the fact that the eigenvalues of a random complex Hermitian or
unitary matrix of large order have precisely the same pair correlation
function. This means that the Conjecture fits well with the view that
there is a linear operator (not yet discovered) whose eigenvalues char-
acterize the zeros of the zeta function. The eigenvalues of a random
real symmetric matrix of large order have a different pair correlation,
and the eigenvalues of a random symplectic matrix of large order have
yet another pair correlation. In fact the “form factors” Fr(α), Fs(α)
of these latter pair correlations are nonlinear for 0 < α < 1, so our
Theorem enables us to distinguish the behaviour of the zeros of ζ(s)
from the eigenvalues of such matrices. Hence, if there is a linear op-
erator whose eigenvalues characterize the zeros of the zeta function,
we might expect that it is complex Hermitian or unitary.

H. Montgomery

In this paper Montgomery assumes the Riemann Hypothesis and considers
the differences between the imaginary parts of the non-trivial zeros. To this
end Montgomery defines,

F (α) = F (α, T ) :=
((

T

2π

)
log T

)−1 ∑
0<γ≤T ; 0<γ′≤T

T iα(γ−γ′)w(γ − γ′),

where α and T ≥ 2 are real, w(u) := 4
4+u2 , and γ and γ′ are the imaginary

parts of non-trivial zeros of the zeta function. Montgomery proves that F (α) =
F (−α) is real, F (α) ≥ −ε for all α whenever T > T0(ε) and that for fixed
α ∈ [0, 1), F (α) = (1+o(1))T−2α log T+α+o(1) uniformly for 0 ≤ α ≤ 1−ε as
T →∞. Montgomery also makes some further conjectures on the differences
γ − γ′ and suggests a connection with the eigenvalues of a random complex
Hermitian or unitary matrix of large order.
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12.15

Simple analytic proof of the prime number theorem, D.
J. Newman (1980)

This paper endeavours to give a simple, but not elementary, proof of the
Prime Number Theorem. Newman offers two proofs of the Prime Number
Theorem. In the first he proves the following result, due to Ingham, in a novel
way.

Theorem 12.2. Suppose |an| ≤ 1 and form the series
∑
ann

−z which clearly
converges to an analytic function F (z) for <z > 1. If, in fact, F (z) is analytic
throughout <z ≥ 1, then

∑
ann

−z converges throughout <z ≥ 1.

The novelty of the proof lies in the cleverly chosen contour integral,∫
Γ

f(z)Nz

(
1
z

+
z

R2

)
dz,

where Γ is a specific finite contour. From this result the convergence of∑
µ(n)/n follows directly (here µ(n) is the Möbius function). This result is

equivalent to the Prime Number Theorem as shown by Landau. In his second
proof of the Prime Number Theorem, Newman applies the theorem to show
that

∑
p<n

log p
p

− log n

converges to a limit. This result is also equivalent to the Prime Number The-
orem.
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12.16

On Newman’s quick way to the prime number theorem,
J. Korevaar (1982)

In this paper Korevaar presents Newman’s simple proof of the Prime Num-
ber Theorem (see Section 12.15). Korevaar’s paper is expository in nature
and he presents Newman’s method in greater detail. He starts with a brief
historical note on the Prime Number Theorem and presents some elementary
properties of the zeta function that Newman takes as given. Korevaar pro-
ceeds to prove the Prime Number Theorem applying Newman’s method to
Laplace integrals as opposed to Dirichlet series, and replacing the Ikehara-
Wiener Tauberian theorem by a “poor man’s” version. Korevaar’s presenta-
tion is clear and detailed, and is an excellent starting point for studying proofs
of the Prime Number Theorem.
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12.17

Sur le théorème des nombres premiers, H. Daboussi (1984)

In this paper Daboussi gives another elementary proof of the Prime Num-
ber Theorem (for other elementary proofs see Sections 12.10 and 12.11). This
elementary proof differs from those of Selberg and Erdős in that it makes no
use of the formula∑

p≤x

log2 p+
∑
pq≤x

log p log q = 2x log x+O(x)

where p and q are primes. Daboussi uses the identity log n =
∑

m|n Λ(m) of
Chebyshev and a sieving technique. He does not prove the classical form of the
Prime Number Theorem directly, however he proves an equivalent statement,
M(x)/x → 0 as x → ∞ where M(x) =

∑
n≤x µ(n) and µ(n) is the Möbius

function.
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12.18

The prime number theorem via the large sieve, A. Hilde-
brand (1986)

In this paper Hildebrand gives an elementary proof of the Prime Number
Thoerem (for other elementary proofs see Sections 12.10, 12.11 and 12.17).
Hildebrand proves the following statement which is equivalent to the Prime
Number Theorem, M(x) = o(1) where M(x) =

∑
n≤x µ(n) and µ(n) is the

Möbius function. His proof, in common with the proof of Daboussi, does not
use Selberg’s formula∑

p≤x

log2 p+
∑
pq≤x

log p log q = 2x log x+O(x)

where p and q are primes. Hildebrand’s proof makes use of a large sieve
inequality to show that M(x) − M(x′) → 0 as x → ∞, uniformly for
x ≤ x′ ≤ x1+η(x) where η(x) → 0. From this statement he deduces the Prime
Number Thoerem in the abovementioned form.
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12.19

Pair correlation of zeros and primes in short intervals
D. Goldston and H. Montgomery (1987)

In this paper the authors prove two main results. First they prove that, if
the Riemann Hypothesis is true, then∫ X

1

(ψ(x+ δx)− ψ(x)− δx)2x−2dx� δ(logX)
(

log
(

2
δ

))
is valid for 0 < δ ≤ 1, X ≥ 2. Here the function ψ(x) is defined as

ψ(x) :=
∑

pm≤x

log p.

This extends a result of Selberg from 1943. The second result builds on the
work of Montgomery presented in Section 12.14. On the Riemann Hypothesis
and the hypothesis that

F (X,T ) =
∑

0<γ,γ′≤T

Xi(γ−γ′)w(γ − γ′) ∼ T

2π
log T

holds uniformly forX−B1(logX)−3 ≤ T ≤ XB2(logX)3, where w(u) = 4/(4+
u2) and γ, γ′ are the imaginary parts of non-trivial zeros of ζ(s), the authors
show that ∫ X

1

(ψ(x+ δx)− ψ(x)− δx)2dx ∼ 1
2
δX2 log

(
1
δ

)
holds uniformly for X−B2 ≤ δ ≤ X−B1 .
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12.20

PRIMES is in P, M. Agrawal, N. Kayal and N. Sax-
ena (2004)

The majority of the papers presented so far are focused on the Prime
Number Theorem. This theorem gives an approximation to the distribution
of prime numbers. However, it does not give any information as to whether or
not a specific number is prime. This question is practical, as prime numbers
(or determining which numbers are prime) are essential in terms of gathering
computational evidence for some of the conjectures we have presented, and
more modernly, in terms of cryptography and internet security. More specif-
ically, the algorithm presented in this paper removes the Extended Riemann
Hypothesis as a condition to performing primality testing in deterministic
polynomial time.

In this paper, the authors present an algorithm for primality testing that
runs in deterministic polynomial time without assuming the Riemann Hy-
pothesis. The algorithm returns “PRIME” or “COMPOSITE” on input n
in O(log15/2 n) operations. The authors present a rigourous proof, and dis-
cuss further improvements to the running time of the algorithm. Particularly
striking is the simplicity of both the algorithm and its proof.
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PRIMES is in P

By Manindra Agrawal, Neeraj Kayal, and Nitin Saxena*

Abstract

We present an unconditional deterministic polynomial-time algorithm that
determines whether an input number is prime or composite.

1. Introduction

Prime numbers are of fundamental importance in mathematics in general,
and number theory in particular. So it is of great interest to study different
properties of prime numbers. Of special interest are those properties that
allow one to determine efficiently if a number is prime. Such efficient tests are
also useful in practice: a number of cryptographic protocols need large prime
numbers.

Let PRIMES denote the set of all prime numbers. The definition of prime
numbers already gives a way of determining if a number n is in PRIMES: try
dividing n by every number m ≤ √

n—if any m divides n then it is compos-
ite, otherwise it is prime. This test was known since the time of the ancient
Greeks—it is a specialization of the Sieve of Eratosthenes (ca. 240 BC) that
generates all primes less than n. The test, however, is inefficient: it takes
Ω(
√

n) steps to determine if n is prime. An efficient test should need only a
polynomial (in the size of the input = �log n�) number of steps. A property
that almost gives an efficient test is Fermat’s Little Theorem: for any prime
number p, and any number a not divisible by p, ap−1 = 1 (mod p). Given an
a and n it can be efficiently checked if an−1 = 1 (mod n) by using repeated
squaring to compute the (n− 1)th power of a. However, it is not a correct
test since many composites n also satisfy it for some a’s (all a’s in case of
Carmichael numbers [Car]). Nevertheless, Fermat’s Little Theorem became
the basis for many efficient primality tests.

Since the beginning of complexity theory in the 1960s—when the notions
of complexity were formalized and various complexity classes were defined—

*The last two authors were partially supported by MHRD grant MHRD-CSE-20010018.
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this problem (referred to as the primality testing problem) has been investi-
gated intensively. It is trivial to see that the problem is in the class co-NP: if n

is not prime it has an easily verifiable short certificate, viz., a nontrivial factor
of n. In 1974, Pratt observed that the problem is in the class NP too [Pra]
(thus putting it in NP ∩ co-NP).

In 1975, Miller [Mil] used a property based on Fermat’s Little Theorem to
obtain a deterministic polynomial-time algorithm for primality testing assum-
ing the Extended Riemann Hypothesis (ERH). Soon afterwards, his test was
modified by Rabin [Rab] to yield an unconditional but randomized polynomial-
time algorithm. Independently, Solovay and Strassen [SS] obtained, in 1974,
a different randomized polynomial-time algorithm using the property that for
a prime n,

(
a
n

)
= a

n−1
2 (mod n) for every a (

( )
is the Jacobi symbol). Their

algorithm can also be made deterministic under ERH. Since then, a number
of randomized polynomial-time algorithms have been proposed for primality
testing, based on many different properties.

In 1983, Adleman, Pomerance, and Rumely achieved a major break-
through by giving a deterministic algorithm for primality that runs in
(log n)O(log log log n) time (all the previous deterministic algorithms required ex-
ponential time). Their algorithm was (in a sense) a generalization of Miller’s
idea and used higher reciprocity laws. In 1986, Goldwasser and Kilian [GK]
proposed a randomized algorithm based on elliptic curves running in expected
polynomial-time, on almost all inputs (all inputs under a widely believed hy-
pothesis), that produces an easily verifiable short certificate for primality (un-
til then, all randomized algorithms produced certificates for compositeness
only). Based on their ideas, a similar algorithm was developed by Atkin [Atk].
Adleman and Huang [AH] modified the Goldwasser-Kilian algorithm to obtain
a randomized algorithm that runs in expected polynomial-time on all inputs.

The ultimate goal of this line of research has been, of course, to obtain an
unconditional deterministic polynomial-time algorithm for primality testing.
Despite the impressive progress made so far, this goal has remained elusive.
In this paper, we achieve this. We give a deterministic, O∼(log15/2 n) time
algorithm for testing if a number is prime. Heuristically, our algorithm does
better: under a widely believed conjecture on the density of Sophie Germain
primes (primes p such that 2p + 1 is also prime), the algorithm takes only
O∼(log6 n) steps. Our algorithm is based on a generalization of Fermat’s Little
Theorem to polynomial rings over finite fields. Notably, the correctness proof
of our algorithm requires only simple tools of algebra (except for appealing
to a sieve theory result on the density of primes p with p − 1 having a large
prime factor—and even this is not needed for proving a weaker time bound of
O∼(log21/2 n) for the algorithm). In contrast, the correctness proofs of earlier
algorithms producing a certificate for primality [APR], [GK], [Atk] are much
more complex.
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In Section 2, we summarize the basic idea behind our algorithm. In Sec-
tion 3, we fix the notation used. In Section 4, we state the algorithm and
present its proof of correctness. In Section 5, we obtain bounds on the running
time of the algorithm. Section 6 discusses some ways of improving the time
complexity of the algorithm.

2. The idea

Our test is based on the following identity for prime numbers which is a
generalization of Fermat’s Little Theorem. This identity was the basis for a
randomized polynomial-time algorithm in [AB]:

Lemma 2.1. Let a ∈ Z, n ∈ N , n ≥ 2, and (a, n) = 1. Then n is prime
if and only if

(X + a)n = Xn + a (mod n).(1)

Proof. For 0 < i < n, the coefficient of xi in ((X + a)n − (Xn + a)) is(
n
i

)
an−i.
Suppose n is prime. Then

(
n
i

)
= 0 (mod n) and hence all the coefficients

are zero.
Suppose n is composite. Consider a prime q that is a factor of n and

let qk||n. Then qk does not divide
(
n
q

)
and is coprime to an−q and hence the

coefficient of Xq is not zero (mod n). Thus ((X + a)n − (Xn + a)) is not
identically zero over Zn.

The above identity suggests a simple test for primality: given an input n,
choose an a and test whether the congruence (1) is satisfied. However, this
takes time Ω(n) because we need to evaluate n coefficients in the LHS in the
worst case. A simple way to reduce the number of coefficients is to evaluate
both sides of (1) modulo a polynomial of the form Xr − 1 for an appropriately
chosen small r. In other words, test if the following equation is satisfied:

(X + a)n = Xn + a (mod Xr − 1, n).(2)

From Lemma 2.1 it is immediate that all primes n satisfy the equation (2) for all
values of a and r. The problem now is that some composites n may also satisfy
the equation for a few values of a and r (and indeed they do). However, we
can almost restore the characterization: we show that for appropriately chosen
r if the equation (2) is satisfied for several a’s then n must be a prime power.
The number of a’s and the appropriate r are both bounded by a polynomial
in log n and therefore, we get a deterministic polynomial time algorithm for
testing primality.
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3. Notation and preliminaries

The class P is the class of sets accepted by deterministic polynomial-time
Turing machines [Lee]; see [Lee] for the definitions of classes NP, co-NP, etc.

Zn denotes the ring of numbers modulo n and Fp denotes the finite field
with p elements, where p is prime. Recall that if p is prime and h(X) is a
polynomial of degree d and irreducible in Fp, then Fp[X]/(h(X)) is a finite
field of order pd. We will use the notation f(X) = g(X) (mod h(X), n) to
represent the equation f(X) = g(X) in the ring Zn[X]/(h(X)).

We use the symbol O∼(t(n)) for O(t(n) · poly(log t(n)), where t(n) is
any function of n. For example, O∼(logk n) = O(logk n · poly(log log n)) =
O(logk+ε n) for any ε > 0. We use log for base 2 logarithms, and ln for natural
logarithms.

N and Z denote the set of natural numbers and integers respectively.
Given r ∈ N , a ∈ Z with (a, r) = 1, the order of a modulo r is the smallest
number k such that ak = 1 (mod r). It is denoted as or(a). For r ∈ N , φ(r)
is Euler ’s totient function giving the number of numbers less than r that are
relatively prime to r. It is easy to see that or(a) | φ(r) for any a, (a, r) = 1.

We will need the following simple fact about the lcm of the first m numbers
(see, e.g., [Nai] for a proof).

Lemma 3.1. Let LCM(m) denote the lcm of the first m numbers. For
m ≥ 7:

LCM(m) ≥ 2m.

4. The algorithm and its correctness

Input: integer n > 1.

1. If (n = ab for a ∈ N and b > 1), output COMPOSITE.

2. Find the smallest r such that or(n) > log2 n.

3. If 1 < (a, n) < n for some a ≤ r, output COMPOSITE.

4. If n ≤ r, output PRIME.1

5. For a = 1 to �
√

φ(r) log n	 do

if ((X + a)n 
= Xn + a (mod Xr − 1, n)), output COMPOSITE;

6. Output PRIME.

Algorithm for Primality Testing
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Theorem 4.1. The algorithm above returns PRIME if and only if n is
prime.

In the remainder of the section, we establish this theorem through a se-
quence of lemmas. The following is trivial:

Lemma 4.2. If n is prime, the algorithm returns PRIME.

Proof. If n is prime then steps 1 and 3 can never return COMPOSITE.
By Lemma 2.1, the for loop also cannot return COMPOSITE. Therefore the
algorithm will identify n as PRIME either in step 4 or in step 6.

The converse of the above lemma requires a little more work. If the
algorithm returns PRIME in step 4 then n must be prime since otherwise
step 3 would have found a nontrivial factor of n. So the only remaining case is
when the algorithm returns PRIME in step 6. For the purpose of subsequent
analysis we assume this to be the case.

The algorithm has two main steps (2 and 5): step 2 finds an appropriate
r and step 5 verifies the equation (2) for a number of a’s. We first bound the
magnitude of the appropriate r.

Lemma 4.3. There exists an r ≤ max{3, �log5 n�} such that or(n) >

log2 n.

Proof. This is trivially true when n = 2; r = 3 satisfies all conditions. So
assume that n > 2. Then �log5 n� > 10 and Lemma 3.1 applies. Let r1, r2,
. . . , rt be all numbers such that either ori

(n) ≤ log2 n or ri divides n. Each of
these numbers must divide the product

n ·
�log2 n�∏

i=1

(ni − 1) < nlog4 n ≤ 2log5 n.

By Lemma 3.1, the lcm of the first �log5 n� numbers is at least 2�log
5 n� and

therefore there must exist a number s ≤ �log5 n� such that s 
∈ {r1, r2, . . . , rt}.
If (s, n) = 1 then os(n) > log2 n and we are done. If (s, n) > 1, then since s

does not divide n and (s, n) ∈ {r1, r2, . . . , rt}, r = s
(s,n) 
∈ {r1, r2, . . . , rt} and

so or(n) > log2 n.

Since or(n) > 1, there must exist a prime divisor p of n such that or(p) > 1.
We have p > r since otherwise either step 3 or step 4 would decide about the
primality of n. Since (n, r) = 1 (otherwise either step 3 or step 4 will correctly
identify n), p, n ∈ Z∗

r . Numbers p and r will be fixed in the remainder of this
section. Also, let � = �

√
φ(r) log n	.

1Lemma 4.3 shows that r ≤ �log5 n�, so that Step 4 is relevant only when n ≤ 5, 690, 034.
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Step 5 of the algorithm verifies � equations. Since the algorithm does not
output COMPOSITE in this step, we have:

(X + a)n = Xn + a (mod Xr − 1, n)

for every a, 0 ≤ a ≤ � (the equation for a = 0 is trivially satisfied). This
implies:

(X + a)n = Xn + a (mod Xr − 1, p)(3)

for 0 ≤ a ≤ �. By Lemma 2.1, we have:

(X + a)p = Xp + a (mod Xr − 1, p)(4)

for 0 ≤ a ≤ �. From equations 3 and 4 it follows that:

(X + a)
n

p = X
n

p + a (mod Xr − 1, p)(5)

for 0 ≤ a ≤ �. Thus both n and n
p behave like prime p in the above equation.

We give a name to this property:

Definition 4.4. For polynomial f(X) and number m ∈ N , we say that m

is introspective for f(X) if

[f(X)]m = f(Xm) (mod Xr − 1, p).

It is clear from equations (5) and (4) that both n
p and p are introspective

for X + a when 0 ≤ a ≤ �.
The following lemma shows that introspective numbers are closed under

multiplication:

Lemma 4.5. If m and m′ are introspective numbers for f(X) then so is
m ·m′.

Proof. Since m is introspective for f(X) we have:

[f(X)]m·m′
= [f(Xm)]m

′
(mod Xr − 1, p).

Also, since m′ is introspective for f(X), we have (after replacing X by Xm in
the introspection equation for m′):

[f(Xm)]m
′
= f(Xm·m′

) (mod Xm·r − 1, p)

= f(Xm·m′
) (mod Xr − 1, p) (since Xr − 1 divides Xm·r − 1).

Putting together the above two equations we get:

[f(X)]m·m′
= f(Xm·m′

) (mod Xr − 1, p).

For a number m, the set of polynomials for which m is introspective is
also closed under multiplication:
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Lemma 4.6. If m is introspective for f(X) and g(X) then it is also
introspective for f(X) · g(X).

Proof. We have:

[f(X) · g(X)]m = [f(X)]m · [g(X)]m

= f(Xm) · g(Xm) (mod Xr − 1, p).

The above two lemmas together imply that every number in the set
I = {(n

p )i · pj | i, j ≥ 0} is introspective for every polynomial in the set

P = {
∏�

a=0(X + a)ea | ea ≥ 0}. We now define two groups based on these sets
that will play a crucial role in the proof.

The first group is the set of all residues of numbers in I modulo r. This
is a subgroup of Z∗

r since, as already observed, (n, r) = (p, r) = 1. Let G

be this group and |G| = t. G is generated by n and p modulo r and since
or(n) > log2 n, t > log2 n.

To define the second group, we need some basic facts about cyclotomic
polynomials over finite fields. Let Qr(X) be the rth cyclotomic polynomial
over Fp. Polynomial Qr(X) divides Xr − 1 and factors into irreducible factors
of degree or(p) [LN]. Let h(X) be one such irreducible factor. Since or(p) > 1,
the degree of h(X) is greater than one. The second group is the set of all
residues of polynomials in P modulo h(X) and p. Let G be this group which is
generated by elements X, X+1, X+2, . . . , X+� in the field F = Fp[X]/(h(X))
and is a subgroup of the multiplicative group of F .

The following lemma proves a lower bound on the size of the group G. It
is a slight improvement on a bound shown by Hendrik Lenstra Jr. [Len], which,
in turn, improved a bound shown in an earlier version of our paper [AKS].2

Lemma 4.7 (Hendrik Lenstra Jr.). |G| ≥
(

t+�
t−1

)
.

Proof. First note that since h(X) is a factor of the cyclotomic polynomial
Qr(X), X is a primitive rth root of unity in F .

We now show that any two distinct polynomials of degree less than t

in P will map to different elements in G. Let f(X) and g(X) be two such
polynomials in P . Suppose f(X) = g(X) in the field F . Let m ∈ I. We also
have [f(X)]m = [g(X)]m in F . Since m is introspective for both f and g, and
h(X) divides Xr − 1, we get:

f(Xm) = g(Xm)

in F . This implies that Xm is a root of the polynomial Q(Y ) = f(Y )− g(Y )
for every m ∈ G. Since (m, r) = 1 (G is a subgroup of Z∗

r ), each such Xm is a

2Macaj [Mac] also proved this lemma independently.
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primitive rth root of unity. Hence there will be |G| = t distinct roots of Q(Y )
in F . However, the degree of Q(Y ) is less than t by the choice of f and g. This
is a contradiction and therefore, f(X) 
= g(X) in F .

Note that i 
= j in Fp for 1 ≤ i 
= j ≤ � since � = �
√

φ(r) log n	 <√
r log n < r and p > r. So the elements X, X + 1, X + 2, . . . , X + � are all

distinct in F . Also, since the degree of h is greater than one, X + a 
= 0 in
F for every a, 0 ≤ a ≤ �. So there exist at least � + 1 distinct polynomials of
degree one in G. Therefore, there exist at least

(
t+�
t−1

)
distinct polynomials of

degree < t in G.

In case n is not a power of p, the size of G can also be upper bounded:

Lemma 4.8. If n is not a power of p then |G| ≤ n
√

t.

Proof. Consider the following subset of I:

Î = {(n
p
)i · pj | 0 ≤ i, j ≤ �

√
t	}.

If n is not a power of p then the set Î has (�
√

t	 + 1)2 > t distinct numbers.
Since |G| = t, at least two numbers in Î must be equal modulo r. Let these be
m1 and m2 with m1 > m2. So we have:

Xm1 = Xm2 (mod Xr − 1).

Let f(X) ∈ P . Then,

[f(X)]m1 = f(Xm1) (mod Xr − 1, p)

= f(Xm2) (mod Xr − 1, p)

= [f(X)]m2 (mod Xr − 1, p).

This implies

[f(X)]m1 = [f(X)]m2

in the field F . Therefore, f(X) ∈ G is a root of the polynomial Q′(Y ) =
Y m1−Y m2 in the field F .3 As f(X) is an arbitrary element of G, the polynomial
Q′(Y ) has at least |G| distinct roots in F . The degree of Q′(Y ) is m1 ≤
(n

p · p)�
√

t� ≤ n
√

t. This shows |G| ≤ n
√

t.

Armed with these estimates on the size of G, we are now ready to prove
the correctness of the algorithm:

Lemma 4.9. If the algorithm returns PRIME then n is prime.

3This formulation of the argument is by Adam Kalai, Amit Sahai, and Madhu Sudan
[KSS].
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Proof. Suppose that the algorithm returns PRIME. Lemma 4.7 implies
that for t = |G| and � = �

√
φ(r) log n	:

|G| ≥
(

t + �

t− 1

)

≥
(

� + 1 + �
√

t log n	
�
√

t log n	

)
(since t >

√
t log n)

≥
(

2�
√

t log n	+ 1
�
√

t log n	

)
(since � = �

√
φ(r) log n	 ≥ �

√
t log n	)

> 2�
√

t log n�+1 (since �
√

t log n	 > �log2 n	 ≥ 1)

≥ n
√

t.

By Lemma 4.8, |G| ≤ n
√

t if n is not a power of p. Therefore, n = pk for
some k > 0. If k > 1 then the algorithm will return COMPOSITE in step 1.
Therefore, n = p.

This completes the proof of Theorem 4.1.

5. Time complexity analysis and improvements

It is straightforward to calculate the time complexity of the algorithm. In
these calculations we use the fact that addition, multiplication, and division op-
erations between two m bits numbers can be performed in time O∼(m) [vzGG].
Similarly, these operations on two degree d polynomials with coefficients at
most m bits in size can be done in time O∼(d ·m) steps [vzGG].

Theorem 5.1. The asymptotic time complexity of the algorithm is
O∼(log21/2 n).

Proof. The first step of the algorithm takes asymptotic time O∼(log3 n)
[vzGG].

In step 2, we find an r with or(n) > log2 n. This can be done by trying
out successive values of r and testing if nk 
= 1 (mod r) for every k ≤ log2 n.
For a particular r, this will involve at most O(log2 n) multiplications modulo
r and so will take time O∼(log2 n log r). By Lemma 4.3 we know that only
O(log5 n) different r’s need to be tried. Thus the total time complexity of
step 2 is O∼(log7 n).

The third step involves computing the gcd of r numbers. Each gcd compu-
tation takes time O(log n) [vzGG], and therefore, the time complexity of this
step is O(r log n) = O(log6 n). The time complexity of step 4 is just O(log n).

In step 5, we need to verify �
√

φ(r) log n	 equations. Each equation re-
quires O(log n) multiplications of degree r polynomials with coefficients of
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size O(log n). So each equation can be verified in time O∼(r log2 n) steps.
Thus the time complexity of step 5 is O∼(r

√
φ(r) log3 n) = O∼(r

3
2 log3 n) =

O∼(log21/2 n). This time dominates all the others and is therefore the time
complexity of the algorithm.

The time complexity of the algorithm can be improved by improving the
estimate for r (done in Lemma 4.3). Of course the best possible scenario would
be when r = O(log2 n) and in that case the time complexity of the algorithm
would be O∼(log6 n). In fact, there are two conjectures that support the
possibility of such an r (below ln is the natural logarithm):

Artin’s Conjecture. Given any number n ∈ N that is not a perfect
square, the number of primes q ≤ m for which oq(n) = q − 1 is asymptotically
A(n) · m

ln m where A(n) is Artin’s constant with A(n) > 0.35.

Sophie-Germain Prime Density Conjecture. The number of primes
q ≤ m such that 2q + 1 is also a prime is asymptotically 2C2m

ln2 m
where C2 is

the twin prime constant (estimated to be approximately 0.66). Primes q with
this property are called Sophie-Germain primes.

Artin’s conjecture—if it becomes effective for m = O(log2 n)—immediately
shows that there is an r = O(log2 n) with the required properties. There has
been some progress towards proving Artin’s conjecture [GM], [GMM], [HB],
and it is also known that this conjecture holds under the Generalized Riemann
Hypothesis.

If the second conjecture holds, we can conclude that r = O∼(log2 n):

By the density of Sophie-Germain primes, there must exist at least
log2 n such primes between 8 log2 n and c log2 n(log log n)2 for a
suitable constant c. For any such prime q, either oq(n) ≤ 2 or
oq(n) ≥ q−1

2 . Any q for which oq(n) ≤ 2 must divide n2 − 1 and
so the number of such q is bounded by O(log n). This implies that
there must exist a prime r = O∼(log2 n) such that or(n) > log2 n.
Such an r will yield an algorithm with time complexity O∼(log6 n).

There has been progress towards proving this conjecture as well. Let P (m)
denote the greatest prime divisor of number m. Goldfeld [Gol] showed that
primes q with P (q− 1) > q

1
2
+c, c ≈ 1

12 , occur with positive density. Improving
upon this, Fouvry has shown:

Lemma 5.2 ([Fou]). There exist constants c > 0 and n0 such that, for
all x ≥ n0:

|{q | q is prime, q ≤ x and P (q − 1) > q
2
3 }| ≥ c

x

lnx
.
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The above lemma is now known to hold for exponents up to 0.6683 [BH].
Using the above lemma, we can improve the analysis of our algorithm:

Theorem 5.3. The asymptotic time complexity of the algorithm is
O∼(log15/2 n).

Proof. As argued above, a high density of primes q with P (q − 1) > q
2
3

implies that step 2 of the algorithm will find an r = O(log3 n) with or(n) >

log2 n. This brings the complexity of the algorithm down to O∼(log15/2 n).

Recently, Hendrik Lenstra and Carl Pomerance [LP1] have come up with a
modified version of our algorithm whose time complexity is provably O∼(log6 n).

6. Future work

In our algorithm, the loop in step 5 needs to run for �
√

φ(r) log n	 times to
ensure that the size of the group G is large enough. The number of iterations of
the loop could be reduced if we could show that a still smaller set of (X + a)’s
generates a group of the required size. This seems very likely.

One can further improve the complexity to O∼(log3 n) if the following
conjecture—given in [BP] and verified for r ≤ 100 and n ≤ 1010 in [KS]—is
proved:

Conjecture 6.1. If r is a prime number that does not divide n and if

(X − 1)n = Xn − 1 (mod Xr − 1, n),(6)

then either n is prime or n2 = 1 (mod r).

If this conjecture is true, we can modify the algorithm slightly to search
first for an r which does not divide n2−1. Such an r can assuredly be found in
the range [2, 4 log n]. This is because the product of prime numbers less than
x is at least ex (see [Apo]). Thereafter we can test whether the congruence (6)
holds or not. Verifying the congruence takes time O∼(r log2 n). This gives a
time complexity of O∼(log3 n).

Recently, Hendrik Lenstra and Carl Pomerance [LP2] have given a heuris-
tic argument which suggests that the above conjecture is false. However, some
variant of the conjecture may still be true (for example, if we force r > log n).
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[Fou] E. Fouvry, Théorème de Brun-Titchmarsh; application au théorème de Fermat,
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Real Acad. Ci. Exact. F́ıs.-Qúım. Nat. Zaragoza, 26, Acad. Cienc. Exact. F́ıs.
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Sci. Paris 210 (1940), 592–594.

162. , On the Riemann Hypothesis in function fields, Proc. Nat. Acad. Sci.
U. S. A. 27 (1941), 345–347.

163. , Basic Number Theory, Springer, New York, 1973.



Collected References from Original Papers

[AB03] M. Agrawal and S. Biswas, Primality and identity testing via Chinese
remaindering, J. ACM 50 (2003), no. 4, 429–443 (electronic).

[AH92] L. M. Adleman and M.-D. Huang, Primality Testing and Abelian Va-
rieties over Finite Fields, Lecture Notes in Mathematics, vol. 1512,
Springer-Verlag, Berlin, 1992.

[AKS04] M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Ann. of Math.
(2) 160 (2004), no. 2, 781–793.

[Apo76] T. M. Apostol, Introduction to Analytic Number Theory, Springer-
Verlag, New York, 1976, Undergraduate Texts in Mathematics.

[APR83] L. M. Adleman, C. Pomerance, and R. S. Rumely, On distinguishing
prime numbers from composite numbers, Ann. of Math. (2) 117 (1983),
no. 1, 173–206.
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