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o w/4
?_]E _ 21/3(kk/)—1/s ™ P<};> (8)
T N2 (5)
T I'l —
\?
where (P is a prime) and w = 614f p = 3, w = 24f p > 3; « runs through the
P — 1

quadratic residues of p that lie between 0 and p, while 8 runs through

the remaining numbers between 0 and p.

Specializing again to the case p = 7 we obtain in the usual notation for
hypergeometric series:

1 1 .1 _ 1 F(1/7>F(Z/7)F(4/7> i/
F( 4 Y4y 1; Vo) = \/77r {F(3/7)F(5/7)F(6/7)}

5. Let Gy(s) denote the analytical continuation of the function defined
for ¢ > /4 by the series

St + 9+ dsh)

From a formula similar to (4) it is deduced that
THEOREM: T here exists a real number 04 such that

Ga(@a) =0 {d > do]

where 03 — 0 as d — o, but 0; % 0.

ON A NEW METHOD IN ELEMENTARY NUMBER THEORY
WHICH LEADS TO AN ELEMENTARY PROOF OF THE PRIME
NUMBER THEOREM

By P. ErRDOs
DEPARTMENT OF MATHEMATICS, SYRACUSE UNIVERSITY
Communicated by P. A. Smith, April 16, 1949

1. Introduction.—In the course of several important researches in
elementary number theory A. Selberg! proved some months ago the
following asymptotic formula:

> (log p)? +p2 log p log ¢ = 2x log x + O(x), (1)
q =

pEw

where p and g run over the primes. This is of course an immediate conse-
quence of the prime number theorem. The point is that Selberg’s in-
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genious proof of (1) is completely elementary. Thus (1) can be used as
a starting point for elementary proofs of various theorems in analytical
number theory, which previously seemed inaccessible by elementary
methods.

Using (1) I proved that p,1/p, — 1 as n — . In fact, I proved the
following slightly stronger result: To every ¢ there exists a positive 6(c),
so that for x sufficiently large we have

wlx(l 4+ ¢)] — 7(x) > 6(c)x/log x 2)

where 7(x) is the number at primes not exceeding x.
1 communicated this proof of (2) to Selberg, who, two days later, using
(1), (2) and the ideas of the proof of (2), deduced the prime number theorem
lim 5(96_)10g_9C = 1 or, equivalently?

T — ® X

tim %) _ 1, where 9(x) = 3 log . )

x> o X P ==z
In a few more days, Selberg simplified my proof of (2), and later we jointly
simplified the proof of the prime number theorem. The new proof no
longer required (2), but used the same ideas as in the proof of (2) and (3).
I was also able to prove the prime number theorem for arithmetic pro-
gressions. My proof of the latter was helped by discussions with Selberg
and it utilizes ideas of Selberg’s previous elementary proof of Dirichlet’s
theorem,? according to which every arithmetic progression whose first
term and difference are relatively prime contains infinitely many primes.
This proof will be given in a separate paper.

Selberg has now a more direct proof of (3), which is not yet published.
It is possible, therefore, that the present method may prove to be only of
historical interest.

I now proceed to give the proofs as they occurred in chronological order.
(It should be remarked that we never utilize the full strength of (1), indeed
an errdt term o(x log «x) is all that is used in the following proofs.)

We introduce the following notation:

A = lim sup —~* () ,a = lim nfﬂ<x)

X — T —> o X
First, we state a few elementary facts about primes which will be used
subsequently. Of these, I, IT and IV are well known in elementary prime
number theory, while III is shown to be a simple consequence of (1).

I. a> 0.

11. 101;_2 = [1 4+ o(1)]log x.

14

IA M

T
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ITI. Let x3 > x1. ‘Then
Hxe) — Hoxr) < 2(x2 — x1) + 0(x2).

Thus, in particular, if x; = 0, we obtain 4 < 2.
Putin (1) x = x2and x = x; and subtract. Then we obtain

> (log p)? £ 2w, log %2 — 2y log 1 + o(x log x2) <
2 <p =X
2(xy — x1)log x2 + ox2 log x2). (4)
We distinguish two cases: (A) x; = x2/(log x2)2.  Then clearly log x; =

(1 + o(1))log x, and III follows from (4) on dividing both sides by log x,.
(B) x1 < x2/(log x2)2. 'Then we have by (A)

Bxa) — 9(xr) < Fwa) — oo/ (log )2 + —2 log wy <
(log x2)®

2 <x2 — _‘ﬂ_.) + o(xs) = 2(x2 — x1) + 0(xs), q. e. d.
(log x)?
IV. A4 £ 1.5. This is a consequence of the known result d(x) £ 1.5x.
2. Proof of (2).—It is equivalent to prove that to every positive ¢ there
exists a positive §(¢) such that ¢#{(1 + ¢)x] — F(x) > 8(¢c)x for «x sufficiently
large.
Suppose this not true, then there exist positive constants ¢’ and corre-
sponding arbitrarily large x so that

Hx(l + ¢)] — Hx) = o(x). (5)

Put C = sup ¢’. It easily follows from I and the finiteness of 4 that
C< o,

First we show that C satisfies (5), in other words, that there are arbi-
trarily large values of x for which

Hx(l + O)] — dx) = o(x). (6)
Choose ¢’ > C — '/se and let x — o« through values satisfying (5).
Then by III we have
Ia(l + O)] = 8@x) = 9lx(l + O] — dfx(1 + )] + olx(l + ¢)] —
Hx) < 2(C — x + ox) < ex 4+ o(x),
which (since e can be chosen arbitrarily small) proves (6).

Now we shall show that (6) leads to a contradiction. From (1) we
obtain by subtraction

(log p)* + > log plog ¢ = 2Cx log x + o(x log x).
x<p=x(1+C) x<pg=sx(1+C)

From (6) we have for suitable x since >, (log $)% = o(x log x)
r<psx(1+0)
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St log p(# [?E(l + C)jl — @>>= 2Cx log x + o(x log x) (7)
» S 20+ X) p ,

Now we deduce the following fundamental lemma.
LemMma 1. Let x — o through values satisfying (6), then for all primes
P = x(1 4+ C), except possibly for a set of primes for which

Z‘—‘—’i—P — o(log %) ®

o[oro]- Q) eof)

Suppose the lemma is not true. Then there exist two positive constants
by and b, so that for arbitrarily large x (satisfying (6)) we have for a set of
log 7 .

we have

primes satisfying > =2 ~blogx
p=x(1+0C) 7
o[i“(] + C):| - o<§>< 2C — b~ (10)
7 r

But then from II, IIT and (10), since (9) holds at best for a set of primes
satisfying Y, logr _ (1 — b) log x we have
: 7

>, log P(ﬂ[o—c(l + C):I - z‘}(x)> < 0(2C — by)x log x +
ps20F 0 ”

2C(1 — byx log x 4+ o(x log x) = (2C — bibs)x log x + o(x log x)

But this contradicts (7), hence the lemma, is established.

The primes satisfying (9) we shall call good primes, the other primes
we shall call bad primes (of course the goodness and badness of a prime
depends on x).

We shall prove the existence of a sequence of good primes p; < pa < ... Py
satisfying the following conditions:

1091 < pr < 100p1, (1 + O)(1 + )% > pit1>

I+ Dpui=12 ..., k—1 (11)
where ¢ is a small but fixed number (small compared to C). Since
(1 + £)*< 100 it is clear that k& < k, with constant &, = k,(%).

Suppose we already established the existence of a sequence satisfying
(11). Then we prove (2) as follows: Consider the two intervals
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[ YA a4 m} [f *a g C>] (12)

Pi+1 Pz’+1 i i

If they overlap, then by (11)

X

i(1_+t)<;f< (14 0

Pit1 ¢ Pt

0<?€> - 0-( a ) = z(f - ”) + o0 <§> (13)
bi Dit1 pi Pit1 pi

since otherwise

ORI RSN
P?‘ Pi+1 D1 ﬁi+1

with ¢; > 0 and we would have from (9)

Aﬂ[i 1+ c>] - 0(;2) > @+ m[ 40— f]

P'H'l 7 it+1 i

which contradicts III.. Adding (13) and (9) with p = p; we obtain

0[f 1+ C):l — 0<-x—> =2 [f 1+ C):‘ - X 4o <ﬁ> (14)
i Dit1 pi Pit1 D

If the intervals (12) do not overlap we obtain by a simple calculation
(using (9) and the fact that ¢ is small)

[a+o]-o(5)> w0 - 5] o

Adding all the equations (14) and (15) (for ¢ = 1, 2, ..., k) we clearly

obtain
L[f 1+ c)] - 0(5) > 1.9 [—’3 1+0 - 30—] (16)
b1 P 21 i

Since p; > 10p; we obtain from (16)

Clearly

a[x. (1 + C)}> 1.6% (1 + 0. (17)
P 4

1

But (17) contradicts IV.
Thus to complete the proof of (2) it will suffice to show the existence of a

sequence of good primes satisfying (11).
Consider the intervals
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I, = (B, Br#1),r = 0,1, ..., [—I—ng ] -1,
2 log B

where B is a fixed, sufficiently large number. Clearly all the intervals
I, lie in the interval (0, x). First we show that with the exception of o
(log x) 7’s the interval I, contains good primes. From I and IV it easily
follows that for sufficiently large B we have (since #(Bx) — J(x) > cx)

> log > c(er > 0 independent of 7)
pinl,
Thus if there were ¢ log x with ¢; > 0 of the I,’s without good primes, we
would have

log > e log x

pbad P

which contradicts (8).

Let now $” be the smallest good prime in I3 (if it exists), and suppose

that a sequence 1@, p.P, ..., p;7 satisfying (11) exists, but no p;+,?
q ! ymg

satisfying (11) can be found. Thus, all the primes in
T = [p (L4 0, p20 + 021 + O)]
are bad. We have, by the definition of C,
>3 log p > np (1 + £)2(1 + C), (n absolute constant).

pinJ @)
Thus
loﬂ’> n (18)
pinJ® P
Clearly for B > 100 we have (1 + 21 4+ C) < B¥+% Thus the
intervals J,", J;,, ... do not overlap. Hence from (18), since the
number of 7’s with p,” existing is > log ,
log B
log p S 1 log x
pbad P 4log B

which contradicts (8) and establishes (2).
3. Selberg’s deduction of the prime number theorem from (2).—Assume
a < A. First we prove the following lemmas.
LEMMA 2. a+ A = 2.
Choose x¥ — « so that ¢(x) = Ax + o(x). Then a simple computation
(as in the proof of III) shows that
Y. (log p)? = Ax log x + o(x log x).

P = x
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Thus from (1)
> (log p)ﬁ<9f> = (2 — 4A)x log x + o(x log x). (19)
4

P =
By the definition of @ and by II we obtain by a simple computation

ax Y, lgjg)_P + o(x log x) = ax log x + o(x log x)

x
X tog pya(*) 2
P =X r p=x
Thus from (19), 2 2 a + 4. We obtain ¢ + 4 = 2 similarly, by choos-
ing x so that #(x) = ax + o(x). Thus lemma 2 is proved.
Let x — o so that 9{x) = Ax + o(x). Then for any prime

v

2

LEMMA 3.
pi = x except possible for a set of primes satisfying
1
>8P — o(10g x) (20)
P
we have
8 <f> =a¥ 4o <f> 1)
V2 P P

Suppose the lemma is false. Then as in the proof of lemma 1 there
exist two positive constants b; and b, so that for arbitrarily large x, satisfy-

ing ¢(x) = Ax + o(x), and for a set of primes satisfying lm_g'P_> b log x,
P

we have
(22)

0(’-“) > (a4 by~
P P
But then we have from (22), lemma 2, (19) and II (as in the proof of

lemma 1)

ax logx + o(xlogx) = 3, (log p)ﬂ»(}c) > bi(a + by)xlogx + (1 — b)ax
P =

log x + o(x log x) = ax log x + bibxx log x + o(x log x),

an evident contradiction. This proves lemma 3.
LEMMA 4. Let Py be the smallest prime satisfying (21). Then p1 < x5,
and for all primes p,; < x/p1 except possible for a set of primes satisfying

(23)

we have
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» <_) —a4E 4, (~> (24)
bip; b1p; 2V

p1 < x° follows immediately from (20) and II. The second part of lemma
4 follows by applying the argument of lemma 3 to x/p; instead of x and
interchanging 4 and a.

Now the deduction of the prime number theorem. Let p; be any prime

satisfying (21). Assume ip < {% Then (since #(x) is non-decreasing)
175 i
from (21) and (24)
af+o€->§Ai+o(L)
D i P1p; D1p;

or p; cannot lie in the interval

)
p1 p1\a _

where § > 0 is an arbitrary fixed number. Hence all primes in I; must
be “bad,” i.e., they do not satisfy (24). But it immediately follows from
(2) that

)

g b,
pinl; P
To obtain a contradiction to (23) it suffices to construct ¢ log x disjoint
intervals I;. ‘This can be accomplished in the same way as in the end of the
proof of (2) (where the disjoint intervals J . were constructed). This
completes the first elementary proof of the prime number theorem.
4. Skeich of Selberg’s simplification of the proof of (2).—If we can find
two good primes satisfying

C
1 > 1 t)p1, _— 25
(I +o)p1>p> 0+ O C>1+t (25)

then (2) follows easily. The intervals [f, x 1+ c)], [f, —x—(l + c):l,
1 D1 2 Do

overlap. Thus (13), with ¢ = 1, holds. But then exactly as in lemma 1
there exists a prime p so that

a0+ ]-r(2) -+ (3)
D1 254 V254
But this is impossible (by the definition of C) since

X a4ox =f’_2(,1j:_£)>1+c,
pip pep P1
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Thus we only have to show that good primes satisfying (24) exist, and this

can be accomplished by using III (a contradiction with Y, log__P_g =
# good
[1 4 o(1)]log % can be established similarly as in the previous proof).

5. The joint simplified proof of the prime number theorem.—

LeMMA 5. Let xo > x1 and x1 — . Assume that 9(x;) = Axy + o(x1)
and 9(x2) = axs + o(xz), or 0(9@) = ax; + o(x1) and $(x2) = Axy + 0(xs).
Then

xo/x1 = A/a + o(1).

Since #(x) is non-decreasing we have in the first case
axs + o(x) £ Axy + o(x1) or x2/x1 = A/a + o('l)

In the second case we have by ITI &#(x2) — $Hx1) = 2(xy — x1) + 0o(x2)
axy + 2(xs — x1) = Axs + 0(xz) or (2 — A)xa = (2 — a)x1 + 0(x9).
Hence by lemma 2, axs £ Ax; + o(xs). Thus again xe/x1 = 4A/a + o(1).

q.e.d.

A . . . .
Put 1 + D = =~ + 6 where § is sufficiently small, and will be determined
e :
later. Next we prove the following result.
LeMMmA 6.
log p

y=p= 1+ Dy

> 7(n independent of y).

First we show that

log p > (1 + D)y. (26)

y=p =0+ Dy

If (26) is false then for a suitable sequence of y’s we have #[(1 + D)yl —
#(y) = o(y). But then for these y’s

[ + D)yl _ #@) +o(y) o Ay + o(y)

= < a — G,
(1 + D)y (1 + D)y (1 + D)y
which contradicts the definition of . Thus (26) holds and lemma 6 follows
immediately.

Choose now x so that #(x) = Ax 4+ o(x). Then by lemmas 3 and 4
we obtain (p, p; and p; having the same meaning as in lemmas 3 and 4)

0<vx-> -4 4+ <Jc> § <x> =a¥ + o<f>
Dip; b1p; p1p; 2 P Pi

From lemma 5 we obtain that for any fixed e and sufficiently large x (satis-
fying 9(x) = Ax + o(x))
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either x > <{1 - e)—x* or ad < (ﬁ+ e>—gc~—
i a b1p; Pq A j2v2

Hence p; cannot lie in the interval

G-

Now if 6 is small enough then 1 + D = <4 — e>/<% + e>. Hence by
a

k3

lemma 6

y et
pinli P »
But by what has been said before all the primes in I; are bad (i.e., they do
not satisfy (24)). Thus to arrive at a contradiction with (23) it will
suffice as in the proof of (2) to construct ¢ log x disjoint intervals I;. This
can be accomplished as in the proof of (2), which completes the proof of the
prime number theorem.
6. Perhaps this last step can be carried out slightly more easily as
follows: Put

pi pinls P

where p,; runs through the primes satisfying (21). As stated before all
the primes in I; are bad (i.e., they do not satisfy (24)). Thus we have
from (27)

S>nzloif.pi>glogx (28)

T

1
since by II and (20) 2 3%& > 1/, log x for large x.

1
On the other hand by interchanging the order of summation we obtain

log p log
S = .2 o It
Z P ?E:JP bi

where p runs through all the primes of all the intervals I; (each p is, of
course, counted only once) and p; runs through the primes satisfying (21)

of the interval
A —1 —1
se[m-) me) ]
a A
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We evidently have from 4 < o

1 y
log i .
piinJp f)i

Hence

ZIOg P > S/c
p
or from (27)
logp
28 5 1 hg
> PR

which contradicts (22) and completes the proof.

1 Selberg’s proof of (1) is not yet published.

2 See, for example, Landau, E., Handbuch der Lehre von der Verteilung der Primzahlen,
§ 19, or Ingham, A. E., The Dustribution of Prime Numbers, p. 13.

3 An analogous result is used in Selberg’s proof of Dirichlet’s theorem.

4 See, for example, Landau, E., op. cit., §§18 and 26, or Ingham, A. E., op. cit., pp.
14, 15 and 22.

ON THE STRUCTURE OF LOCALLY COMPACT GROUPS

By ANDREW M. GLEASON
Society oF FELLOWS, HARVARD UNIVERSITY
Communicated by Hassler Whitney, May 7, 1949

1. Introduction—Locally compact groups have attracted a great deal
of study in the years since the introduction of invariant integration by
Haar.! It has been shown that their structure is closely related to that
of Lie groups in certain important cases (compact,? abelian® and solvable*
groups), and it is widely conjectured that similar results are valid in general.
We shall state here certain theorems which strengthen this conjecture
and reduce its verification to the study of simple groups.

2. The Extension Theorem for Lie Groups—THEOREM 1. Let G be
a topological group. Suppose that G has a closed normal subgroup N such
that both N and G/N are Lie groups. Then G is itself a Lie group.

In case N is abelian, Kuranishi® has proved this theorem under the
additional hypothesis that there is a local cross-section for the cosets of
N, that is, a closed set having exactly one point in common with each
coset of N near the identity. The author has shown® that such a cross-
section set always exists for abelian Lie groups. Hence our theorem is
true for the special case that N is abelian.



