THE PRIME NUMBER THEOREM
VIA THE LARGE SIEVE

ADOLF HILDEBRAND

§1. Introduction. In the last three decades there appeared a number of
elementary proofs of the prime number theorem (PNT) in the literature (see
(3] for a survey). Most of these proofs are based, at least in part, on ideas
from the original proof by Erdds [5] and Selberg [12]. In particular, one of
the main ingredients of the Erd@s-Selberg proof, Selberg’s formula

S log’p+ Y logplogg=2xlogx+ O(x) (1)
p=x pa=x
(where p and g run through primes) appears, in some form, in almost all these
proofs. '
Several authors [1, 2,8, 10] have given direct elementary proofs of the
relation (¢ being the Moebius function)

1
M(x)=— % p(n)=o0(1) (x->00), (2)
which is known to be “‘equivalent” to the PNT. With the exception of a recent
proof by Daboussi [2], these proofs are based on identities such as

M(x)logx=— Y li’f—*?M(ﬁ%ou), (3)

p=x

which are similar in structure of Selberg’s formula (1) and play the same role
in the proof of (2) as Selberg’s formula does in the direct proof of the PNT.
Daboussi’s elementary proof of (2) does not use Selberg’s formula (1) nor its
analogue (3), and constitutes in fact the first elementary proof of the PNT,
which is fundamentally different {rom the original Erdds-Selberg proof.

We shall give here a new elementary proof of (2), again without using
Selberg type formulae. Its main feature is the application of a large sieve type
inequality in order to show that M (x) varies slowly over fairly large intervals.
More precisely, we shall show in Lemma 4 below that M(x)—-M(x")-0 as
x>0, uniformly for x<x'< x'"*"* provided n(x)-0. Relation (2} is an
almost immediate consequence of this result.

The central idea of the proof, the application of the large sieve, has already
been exploited in [7] to obtain a new proof for Wirsing’s mean value theorem.
This result contains (2) as a special case, but since the proof in [7] made use
of the PNT, it did not yield a new proof of the PNT. Our main task here,
which will take up the largest part of the proof, is to eliminate the application
of the PNT and replace it by the elementary prime number estimates from
Mertens’ theory, together with a sieve upper bound for primes in short intervals.
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We remark that it is possible to prove, by the same method, a quantitative
version of (2), namely

M(x) < (loglog x)™"/? (x=3).

Since this result is relatively weak in comparison with the known elementary
error term estimates for the PNT, and in order to keep the proof more
transparent, we shall confine ourselves to the proof of the asymptotic relation

(2).

§2. Lemmas. In the first lemma, we state the mentioned large sieve type
inequality. It is due to Elliott [4, Lemma 4.7], who gave a simple and elemen-
tary proof for it via the Turan-Kubilius inequality.

LEMMA 1. There exists an absolute constant C >0 such that for all complex:
numbers a,, 1 < n=<x, the inequality i
2

1 1 1
Z - B Z a, —— Z a, = (C-— Z |an|2 :
ps:cp X n|Sx n=x n=x ;
pln

holds.

The next lemma gives an upper bound for primes in short intervals. The
result is, in a stronger form, a standard consequence of Selberg’s upper bound"
sieve, see, e.g., [6, Theorem 3.7]. It may also be deduced from Montgomery’s.
version of the large sieve [9, Corollary 3.2] or from Selberg’s formula (1).

LEMMA 2. The estimate
m(x+y) = 7(x)= (2+0(1) —=—
log y
holds, as y - co, uniformly for x =1.

CoROLLARY. The estimate

1 +
v 2P 24 0(1)) log T2

X
x<psx+y P X

holds, as y - co, uniformly for x = y.

Proof. Dividing the interval (x, x+y] into subintervals of length y/k,
where k = k(y) tends to infinity sufficiently slowly, as y = oo, the result follows
from Lemma 2. ‘

LEMMA 3. Let 0<e <1 be given. For any x'=x =2, there exists a number
A, 1< A << Ay such that the inequality '

Io

y<p=y(l+e) P
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holds both for y =Ax and for y = Ax'. Here 8 =58(g)>0 and Aoy=Ao{e)=1 are
constants depending only on &.

Remark. In the course of his proof of the PNT, Erdés [5] established (4)
(in an equivalent form) for all sufficiently large y. His proof relied on Selberg’s
formula (1). We need however only the weaker result stated in the lemma,
the proof of which is simpler and does not require Seiberg’s formula.

Proof. Given 0<<e=<1and x=2, put &, =¢/3 and
xi=x(1+g)  (i=0).

Fix a number 6 >0 and let I be the set of indices i =0, for which

X< PEXig P

holds. Moreover, put
I={i=0: iel or i+lel}.
Since
X <X <X =(1+e)x<s(1+e)x,  (i=0),

we see that, for every ie I, (4) holds with y =Xx;. We shall show that if & is
sufficiently small in terms of &, then for some i, depending only on &, T
contains more than iy/2 indices i < i,. From this assertion it follows that any
two sets I and I, defined as before with respect to given numbers x'= x =2,
have a common element, say i, in the interval [0, i;), and in view of the
above remark we obtain the conclusion of the lemma with A =(1+¢,)" and
Ao=(1+¢g,)".

To prove our claim, let i;= 1 be for the moment unspecified and denote
by N and N the cardinalities of I N[0, iy) and T n[0, i) respectively. From
Mertens’ formula

‘ lo
5 gp

psy

=logy+0O(1) (y=2)
and the Corollary to Lemma 2 we get

log (1+&,)°+0(1) = Y I_‘H= 5 5 I_CEB

x<psx(1+.~:l)i° D ‘ O=i<iy x;;<p=sx;y, P
< 2N log (1+&,) + 0(is) + (io — NS,

whence

o o) 1
NB'°(§+"(”_2log(1+sl)+o(iolog(1+sl)))' )

(Here the “0” -notation refers to the limiting behaviour as i, > %, and is uniform
with respect to x=2). For 8<¢/10 and sufficiently large i, the right-hand
side of (6) becomes positive, and we now fix such an index iy=iy(e). Thus
the interval [0, iy) contains an element of I, and replacing x = x, by x;, i=1,
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we see that every interval on the positive real axis of length i, contains ap
element of I
Next, let i3> 6i, and define N'and N', as before with respect to 5. If now

]
N'-N'==2,

3,

then there are at most (ip/3iy)+1 “blocks” of consecutive indices i =< i} not
belonging to L Since by the above remark each of these blocks has length
<1, it follows that ]

N'z= N’z i)-Yil—iy>ih/2.
But if

. i
N’ — Nﬁ>___?_,

lo
then we have by (5) (with i; and N’ in place of i and N)

} i 5 1 1
N'zN'+—=ij| 3+ 0(1 —~—-—-—+-+O( ))
3i0 0(2 ( ) 210g(1+81) 310 l610g(1+51) ?

and choosing 6 = 6(¢) sufficiently small and i; sufficiently large, we get again
N'> /2.
This proves our initial claim and hence the lemma.

§3. Proof of the estimate (2). The proof is based on the following lemma.

Lemma 4. Let n(x) be a non-negative function tending to zero as x tends
to infinity. Then the relation

M(x)=M(x)+o0(1)

holds, as x - o, uniformly for x < x'<x!77®™),

The estimate (2) is an almost immediate consequence of this result. In

fact, with 7 = 7(x) = (log x) /%, the lemma yields, as x > o,
1 M(x'
M(x)= J ) gt o(1)
n log x X

- 3 u(n>(—1-—)-—x"“")+o(1)

max (n, x

— y 2,

\/log X x<n=x'"" N

and in view of the well-known elementary estimate

y EM_om) =

nsy

(2) follows. ' i
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Proof of Lemma 4. Fix 0 <& =<1. We shall show that if n > 0 is sufficiently
small in terms of g, then we have

IM(x)-M(x)|<e (6)

uniformly for all sufficiently large x and x <x'<x'"", By letting £ -0, this
implies the assertion of the lemma.

Let now 0<n<j and fix 2<x<x'<x'"". We apply Lemma 1 with
a, = u(n). Noting that, for all p< x,

By wm=Luem ¥ M(n)+0(%)=—M(§)+O(l),

n<x n=x/p P P
pln ptn
we obtain
2
<£1].

y 1 M(x)+M(§)

pP=x

By the Cauchy-Schwarz inequality it follows that, for any set ? of primes <x,

(5 i)me=- g M2 o( 5 L M(x)+M(f)[)
peg’P peP p peg’p p
1/2
s Mo 1)) o)
peP 4 pe? P

An analogous identity, (7)' say, holds with x' instead of x and an arbitrary
set P’ of primes <x’. We shall show that, with an appropriate choice of the
sets ? and %', the right-hand sides of (7) and (7) nearly cancel each other,
and ? and 2’ have approximately the same (large) sum of reciprocals. This
will lead to the desired estimate (6).

Put

xo=x‘/;, xh=xo(x'/ %).
By a repeated application of Lemma 3 we obtain a sequence (x;);,, satisfying
x(1+€)<x, <Aex;(1+¢) (j=0),

such that (4) holds for y = x;and y = x} = x;(x'/x) and all j = 1, where Ao = A¢(&)
and 8 = 8(¢) are the constants of Lemma 3. Define j, by X, < x <Xx;,+1; note
that j,=2, if x is sufficiently large, as we may assume. Put

L= (x;,x(1+¢)], I =(x},x;(1+¢€)].
By construction, the intervals I;, 1 < j <j,, and I, 1 <j < j,, are pairwise disjoint
and contained in (x,, x] and (xg, x'], respectively. Now choose sets of primes

Pc |J L and P'c<c U I

1=j<Jo 1=<i
such that, for 1=sj <j,

¢ m_aisw, ®)

pePAIL P xj
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and

z

peP' NI P

: (8)’

X

logp 6’ slog xj(l-i-s)‘

Since (4) holds with y = x; and y = xj, this can be achieved by discarding from
each I; or I] a suitable number of primes.
Let

1 1 1
s=(1+o( )) 5 y 2BF
log xo/ / 1<j<j, 08 X; pepnr, P

1 s
=[14+0 .
( (5 log xo)) KJZ% log x;

1 )
S'=(1+o( )) y 2
8 log xo/ / 1<j<j, lOg X]

Since

<10g x;~log X _ log (x'/ x) _nlogx

O —
log x; log x; log x,

b

it follows that

szs'(1+0(~/§)fo(6101g xo)) | (9)

and, in particular,

S<S' <8, (9)

if » is sufficiently small and x sufficiently large, as we may assume. Moreover,
we have

1
§>S>, ¥
1=j<jo 108 X;

1 log x 1

= >, log

— >, =log—.
1=j<jo log {xo{Ao(1+ &)Y} log x, \/;

(10)

We now subtract the identity (7)’ from (7). Using (8), (8)', (9)" and the
trivial bound

z+1

IM(y+2)-M(y)|<



PRIME NUMBER THEQOREM 29

we obtain

SM(x)-S'M(x")=- 3} { Y Mix/p)_ >

1=j<jo Lpe@nl; P pe@'nI;

————M(x,/p)} +0(/S)
p

M(x/x) logp _ logp
> wer_ y L
1<j <o IOg X; pe@PnIl, P pe®'nI; P

+O(SS+ i
log x,

+J§)

= O(J—G+SS+ S +J§),
Xo log x,
whence, by (9),
— 1 ] 1
|M (x)~ M(x")| < e+Jn+ +L
dlogx, x5 Vs

In view of (10) and the definitions of x, and j,, the right-hand side is of order
O(e), provided x is sufficiently large and » sufficiently small. This proves (6)
and hence the lemma.

§4. Concluding remarks. It is interesting to compare the identity (7), on
which our proof is based, with the identity (3), which has been used in previous
proofs of (2). In both instances, M (x) is expressed as a certain average over
values —M{x/p), plus an error term. The essential difference between (3) and
(7) lies in the fact that in (3} this average is extended over all primes p < x,
while in (7) the average is taken over primes belonging to an arbitrary set 2.
The possibility of choosing this set freely was crucial for our proof. It enabled
us to treat the sum on the right-hand side of (7) effectively without using the
prime number theorem and thus avoid the problems arising from the “quad-
ratic” terms in identities like (1) and (3). '

We deduced (7) from the large sieve inequality given by Lemma 1. Elliott
established this inequality by showing that it is the “dual” of the Turdn-
Kubilius inequality. This approach is probably the most elementary and at
the same time one of the simplest proofs of a large sieve inequality. A slightly
weaker inequality than that of Lemma 1, namely with the sum being extended
over the smaller range p < x'/? (which would be sufficient for our purposes),
follows from the standard version of the large sieve, viz.

2

1 1
2,2— ) L a-— Y a| <C=- I al (11)
p<x1 pr 11X nsx nsex n=x
n=rmodp

However, the proof of (11), as given for example in [9, Chapter 3], involves
exponential sums and can hardly be called elementary. Renyi [11] proved
(11) with the exponent § instead of % and only for the case a, =0 or 1. His
proofis fairly simple and elementary. It can be generalized to arbitrary complex
coefficients @, and thus provides an alternative elementary access to the large
sieve inequality of Lemma 1 (with the summation extended over p < x'/?).



As has been pointed out to the author by G. Haldsz, it is also possible to !
deduce (7) using the Turdn~Kubilius inequality itself instead of its dual, the |
large sieve inequality of Lemma 1. The argument, which is essentially due to

¥
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|
I. Z. Ruzsa, runs as follows: It is easily checked that, in the notation of (7), ;

M(x) T =+ ¥ = M(x/p)=-= Y p«(n)(w.@(n)- ) l)+0( ) %)

pe? P pep D X n=x pe® pe? P
where
wp(n)= 3 L
pin
peP

By the Cauchy-Schwarz inequality and the Turdn-Kubilius inequality
[4, Lemma 4.5], the last expression is, in absolute value,

<(2 3 (ontm- 1 l)z)w+ s Le( s 1)”2,

n=x pe® D pe® D pc? P

and (7) follows.

References -

1. K. Corradi. A remark on the theory of multiplicative functions. Acta Sci. Math. (Szeged}, 28
(1967), 83-92.

2. H. Daboussi. Sur le Théoréme des Nombres Premiers. C. R. Acad. Sc. Paris, Série I, 298
(1984}, 161-164.

3. H. Diamond. Elementary methods in the study of the distribution of prime numbers. BulL

Amer. Math. Soc., 7 (1982), 553-589. /
. P. D. T. A. Elliott. Probabilistic Number Theory I (Springer, New York, 1979). :
. P. Erdé&s. On a new method, which leads to an elementary proof of the prime number theorem
Proc. Nat. Acad, Sci. U.S.A., 35 (1949), 374-384, !

6. H. Halberstam and H.-E. Richert. Sieve Methods (Academic Press, London, 1974),

7. A. Hildebrand. On Wirsing’s mean value theorem for multiplicative functions. Bull. London:
Math. Soc., 18 (1986), 147-152. '

8. M. Kalecki. A simple elementary proof of M(x)=7% _ u(n)=o(x). Acta Arith, 13 (1967),
1-7.

9. H. L. Montgomery. Topics in Multiplicative Number Theory. Lecture Notes in Mathematzcs
Vol. 227 (Springer, Berlin, 1971).

10. A. G. Postnikov and N. P. Romanov. A simplilcation of Selberg’s elementary proof of the
asymptotic law of distribution of primes. Uspehi Mat. Nauk, 10 (1955), 75-87. :

11. A. Renyi. On the large sieve of Ju. V. Linnik. Compositio Math., 8 (1950), 68-75.

12. A, Selberg. An elementary proof of the prime number theorem. Ann Math., 50 (1949), 305- 313

Prof. A. Hildebrand, 10H15: NUMBER THEORY; Multiplicative'
Department of Mathematics, theory; Distribution of primes. :
University of 1llinois, '

1409 West Green Street,

Urbana, Illinois 61801,

U.S.A. Received on the 11th of September, 1985.



	
	
	
	
	
	
	
	
	


