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Preface

As healthcare systems worldwide face the challenge of delivering quality services
while maintaining control over escalating costs, there is growing support for the view
that conventional approaches to the organization of healthcare systems are failing.
The questions arising are extremely complex, and in most cases it is not acceptable
to rely on simple intuition to answer a given question. In order to develop solid,
defendable, evidence-based answers to the complex questions arising in modern
healthcare, modelling is being increasingly applied. Yet, to many healthcare policy
makers, the development, tuning, testing, validation, and eventual application of a
model is considered a foreign art.

A model is a simplified representation of a real world situation used to help
answer a specific question. The main role of a model is to help steer decisions
in the right direction. In most cases a model cannot give the “right” answer to
a problem, but it can be a useful tool in characterizing the problem and finding
ways to resolve it. In this book we provide a first look into the world of modelling,
with particular focus on modelling in healthcare. We provide this as it is our belief
that decision-makers and modellers must share a certain level of knowledge to
maintain a healthy relationship. Modellers working on healthcare problems cannot
be blind to the less mathematical issues of healthcare, and decision-makers engaging
modellers should not view models as mystical crystal balls from which answers
emerge. As the Complex Systems Modelling Group, we have worked extensively
with healthcare policy-makers, and developed expertise in developing and analyzing
of healthcare models, and in explaining models and modelling to those unfamiliar
with the subject. With this book we hope to use these expertise to help strengthen
the bonds between the worlds of modelling and healthcare.

This book is by no means a complete text on the subject of modelling in
healthcare. In fact each chapter in this book (with the exception of the introductory
chapters) could easily be extended into a complete textbook. We hope readers will
view this as a handbook of modelling in healthcare, and use it to provide themselves
with a broad overview of how modelling works and what it is capable of.

As a handbook of modelling techniques, each chapter of this book has been
written in a self-contained manner. Any given chapter can be read without having
read previous chapters. (Although we strongly recommend reading the introductory
chapters before tackling other chapters.) With the exception of the introductory
chapters, each chapter focuses on a particular style of modelling that is applicable
to healthcare. To keep the book as self contained as possible, most chapters con-
tain enough background that they are accessible to anyone with a solid high school
level of mathematics. To ease reading, each chapter is written using the same
basic template consisting of: Model Overview, Common Uses, Model or Mathemat-
ical Details, Examples, and Related Reading. Readers can quickly scan the model
overview and common uses sections to determine if a model is applicable to the
problem they are interested in, and study the mathematical details and examples
sections if more detail is desired. The related reading section points readers to
further literature of interest.

It is our hope that this book will provide a stepping stone for people interested
in the world of modelling in healthcare, while remaining an excellent reference guide
for those more familiar with the subject. As such, this book should be of use to
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anyone, academic or professional, who is interested in broadening their knowledge
regarding modelling in healthcare.
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Part 1

Modelling in Healthcare





CHAPTER 1

The Whys, Whats, and Whens of Modelling in
Healthcare

All this will not be finished in the first one hundred days. Nor
will it be finished in the first thousand days, nor in the life of this
administration, nor even perhaps in our lifetime on this planet.
But let us begin. John F. Kennedy (1917-1963)

1. Why Model in Healthcare

Formally healthcare is defined as any effort made to maintain or restore health.
Taken to the extreme, this definition encompasses almost everything we do. Breath-
ing can be viewed as an effort to provide sufficient oxygen to the lungs, maintaining
health. Eating supplies the body with nutrition to support and repair itself, restor-
ing health. In a more practical sense, healthcare refers to efforts made by trained
healthcare practitioners to maintain or restore health, and to efforts made by indi-
viduals to make contact with healthcare practitioners.

Healthcare is one of the oldest and largest professions in the world. Paintings
discovered in the Lascaux caves in France, radiocarbon dated at over 15,000 years
old, are interpreted to show the use of plants as healing agents. The Edwin Smith
papyrus, dated between 3000 and 4000 years old, describes the examination, diag-
nosis, and treatment of numerous trauma injuries. Traditional Chinese medicine
has origins dating back to the 5th century BC, and it is still in use today.

The size of the healthcare profession is also easily demonstrated. The health-
care expenditure per capita in the United States is over $5,000 per year. Health-
care expenditures total to over 15% of the United States’ Gross Domestic Product
(GDP). Although the United States are in fact the extreme end of the scale, Aus-
tralia, Canada, France, and the United Kingdom, have all reached the 10% mark
for healthcare expenditures as a portion of the GDP 1. As life expectancies increase
and population demographics shift, these numbers are expected to increase.

Aside from showing the size of the healthcare industry, the above numbers
have sparked great debate and concern over the sustainability of the healthcare
system. In 1970, the United States’ total health expenditures only measured 7%
of the GDP. Australia’s, Canada’s, France’s, and the United Kingdom’s healthcare
expenditures measured approximately 5%, 7%, 5%, and 5% (respectively). Whether
this growth is due to changing age demographics, increased cost of medical supplies,
or a surplus of disposable income, it is clear that the healthcare systems of most
modern countries are undergoing a time of change.

1All numbers based on 2003/04 fiscal year.
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To cope with the rapid changes in the field of healthcare, governments and
policy-makers worldwide must seek methods to better understand healthcare sys-
tems and the individuals who access them. The questions arising in modern health-
care are extremely complex, and it is no longer acceptable to rely on simple intuition
to answer a given question. In order to develop solid, defendable, evidence-based
answers to these complex questions, nathematical modelling is becoming increas-
ingly important. In order to understand and interpret results model results, it is
important for policy-makers to have a solid grasp of the fundamentals of modelling
in healthcare. In this book we hope to provide many of these fundamentals, to
allow policy-makers and modellers alike to quickly step into the exciting world of
mathematical modelling in healthcare.

2. What is a Model

In this book the word “model” means a simplified representation of a real
world situation used to help answer a specific question. As the focus of this book
is modelling in healthcare, the situations and questions we discuss will tend to be
those that arise in the healthcare industry.

There are two important aspects to the definition of a model. First, a model is
a simplified representation of the real situation. Consider the scientific endeavor of
modelling a collection of building designs in order to determine which design stands
up best in the event of a fire. One option would be to build the entire collection of
buildings and then burn them all down. Although this “model” would answer the
specific question, it would not save any resources in the process. Instead it would
be more reasonable to build small scale replicas of the buildings and burn them
down in more controlled environments. This would answer the question faster and
more accurately, as many more tests cases could be examined.

The second important aspect of a model is its capacity to answer a specific
question. Models tend to answer the questions they are designed to answer, and
as such, designing a model with no particular question in mind provides no insight
into the situation of interest. This may be a useful exercise for a young academic
student, but for a healthcare policy-maker the result is generally just a waste of
resources.

When simplifying the real situation for the purposes of modelling it is important
to preserve the properties of the system that are relevant to the question. For
example, a model of an airplane may take on many forms depending on the purpose
it is designed to serve. To study the aerodynamic properties of airplanes, a physical
model preserving the shape of the airplane is built. To allow passengers to select
seats on a commercial flight, a graphical seating plan may be produced by the
airline. The latter model retains entirely different characteristics of the airplane
than does the former.

This raises an interesting note on the distinction between detail and complexity
in modelling. The goal of modelling is to clarify concepts, but models attempting
to reproduce a real situation by introducing a large number of variables tend to
accomplish the opposite. Models aim to expose pertinent relationships between
variables, but unnecessary information can conceal these. As such, a good model
has as low a complexity as possible while retaining the details necessary to approach
the specific question the model is designed to examine. In general, models with a
focused question and a limited number of conditions are more likely to be useful.
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There are many different models that are applicable to solving questions in the
field of healthcare, and there is no such thing as a unique “best” model for a given
problem. In fact, in most cases, more than one model discussed in this book are
applicable in solving a single question. In these cases different modelling methods
are often complementary, with the best results obtained through an approach that
integrates multiple methods. In general, modelling is most convincing when various
different kinds of models lead to the same conclusion .

3. When to Use Modelling in Healthcare

Modelling can be a valuable tool to aid healthcare management, as long as it is
used appropriately and with awareness of its limitations. It is most useful to think
of modelling in healthcare not as a specific method, but rather as a process where
modellers combine techniques and skills in mathematics and computation with
the specialised knowledge of healthcare experts to arrive together at appropriate
approaches to problems in healthcare. However, with this said, it is prudent to
temper expectations on what modelling in healthcare can deliver. The main role
of a model is to steer decision-makers in the right direction. In most cases a
model cannot give the “right” answer to a question, but it can be a useful tool in
characterizing the problem and finding ways to resolve it. Furthermore, modellers
(and decision-makers who examine modellers’ results) must always remain aware
of the various biases influencing personal opinions and experiences. Models should
not be blindly used, but validated both mathematically and by the solicitation of
experts. A model that is contradictory to the real situation should be held in doubt
and its conclusions should be examined carefully.

Despite these limitations, modelling techniques stand to make a significant
impact in the field of healthcare. In this book we examine a number of current
modelling techniques and how they have been applied to healthcare. This book is
not a complete text on the subject of modelling in healthcare. Each chapter herein,
with the exception of the introductory chapters, could be extended into a complete
textbook in its own right. However, one might consider this a handbook of mod-
elling in healthcare. It provides an introduction to many modelling methodologies,
and references to further reading on each. It touches on many of the problems that
are currently of interest in healthcare, and provides examples of when modelling has
been used to approach these problem. For example, the book examines problems
such as,

• Predicting and adjusting the future demand for healthcare (see Examples
7, 4.3 and 4.3);

• Examining demographic factors which relate to health (see Examples 4.2,
4.2, and 4.3);

• Understanding and adjusting patient health behaviour (see Examples 4.1,
4.1, and 4.3);

• Decreasing wait times and understanding bottle-necks for healthcare ac-
cess (see Examples 4.1, 4.3, and 4.2);

• Understanding and controlling the spread of communicable diseases (see
Examples 4.2, 4.2, and 4.2);

• Optimizing healthcare delivery (see Examples 4.1, 4.3, and 4.2).
There are many more problems which could fall under the heading of modelling

in healthcare than those listed above. Some of these are covered in this book,
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others are not. Many of those which are not covered are problems which are highly
specialized in nature. (For example, the mathematical modelling employed for the
delivery of radiation therapy or analysis of MRI data.) Such problems generally
require a level of mathematics well beyond the scope of this book.

4. Related Reading

Detailed information on changes in national healthcare expenditures can be found in

reference [200].



CHAPTER 2

How to Use this Book

I can’t work without a model. I won’t say I turn my back on
nature ruthlessly in order to turn a study into a picture, arrang-
ing the colours, enlarging and simplifying; but in the matter of
form I am too afraid of departing from the possible and the true.
Vincent van Gogh (1853-1890)

Every man is wise when attacked by a mad dog; fewer when pur-
sued by a mad woman; only the wisest survive when attacked by
a mad notion. Robertson Davies (1913–)

This book can be viewed and used in a number of different ways. Primarily, it
is a handbook of modelling techniques with an emphasis on how to apply them
to current issues in healthcare. However it may also be used as an introductory
undergraduate text on the subject. An excellent undergraduate project would be
to select a chapter from this book, read it and its corresponding references, and
then perform a literature search for additional examples of the model’s application
in healthcare.

As a handbook of modelling techniques, chapters pertaining to modelling tech-
niques are written to be entirely self-contained, and focus on a specific type of
model. The chapters, not focusing on a specific style of model include:

• Chapter 1, which introduces modelling in healthcare as a whole,
• Chapter 2, which describes how to use this book,
• Chapter 3, which discusses the modelling process,
• Chapter 4, which discusses the issues around collecting data for analysis,

and
• Chapter 9, which discusses some general issues about constructing and

analyzing models.
Throughout the book

one will occasionally see

margin notes, such as

this one. The purpose

of these is to highlight

information that may be

of interest to the reader.

The remaining chapters discuss particular models that can be applied in the field
of healthcare. Each of these chapters is given an artistic title that provides some
insight as to where the models discussed might be used, and a scientific title, which
provides the standard name for the model examined in the chapter. A table of the
models considered in this book can be found in Chapter 3 (Table 1, page 11).

In order to ease reading, the layout for chapters on specific models is uniform.
Each chapter is divided into five sections, entitled: Model Overview, Common Uses,
Model Details or Mathematical Details, Examples and Related Reading. In the Model
Overview section we give a brief description of the model. These overview sections
avoid mathematical language and should be readable by anyone with a solid high
school background in science. The next section, Common Uses, provides a list of

7
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example questions that the modelling technique could be used to address. These
lists are not complete, but intend to provide an idea of what kind of problems
the type of model is capable of answering. In the Model Details or Mathematical
Details section we give a more detailed mathematical description and analysis of
the model. Wherever possible, we provide all the necessary scientific background
to read these chapters, however in some cases the models are complicated enough
that this is impossible. Sections that may require a substantial undergraduate level
of knowledge are:

• Section 3, Game Theory, which requires differentiation,
• Section 3, Network Theory, which discusses Graph Theory,
• Section 3, Markov Models, which requires matrix manipulation,
• Section 3, System Dynamics, which requires the use of differential equa-

tions, and
• Section 3, which requires differentiation and matrix manipulation.

In each of the Examples sections we provide two or three examples of how the
modelling technique is applied in practice. Often the first of these examples is an
artificially created example designed to demonstrate the model without burdening
ourselves with the complications that arise in real examples. The remaining exam-
ples are taken from actual applications of the modelling technique in healthcare.
Some of these examples demonstrate successful uses of the modelling technique in
healthcare, others demonstrate how the model can fail if it is used inappropriately.
The final section of each modelling chapter, Related Reading, provides details of
the references used in the chapter, as well as several references that provide more
detailed reading on the model discussed.Regardless of the model

discussed, the “Model

Overview” section can

be understood by a

reader with a basic

high school science

background .

This book also contains an appendix that may be of use to the reader. The
appendix lists and reviews of some of the modelling software that we have come
across during our research. This can be quite technical at times and is intended for
those who are interested in using software for producing models.

1. The Language of Modellers

There is a specialized technical language assocated with mathematical mod-
elling. Most words are defined upon their first use within a given chapter. For now
we would like to highlight several words that are frequently used throughout this
book and comment on their meaning in healthcare modelling.

Model: a simplified representation of a real world situation used to help
answer a specific question.
Quantitative Models: Models that use the language and tools of mathe-
matics to describe the behaviour of a system. Such models make numerical
predictions about how the real system is likely to behave.
Qualitative Models: Models designed to provide insight about why a
given situation exists and what its driving factors might be. Such models
do not provide numerical results pertaining to a given situation.
Disease: any negative health effect (for example, viral and bacterial in-
fections, genetic disorders, increased chances of accidents causing harm,
etc.).
Risk (Factor): any action or situation, be it beneficial or detrimental,
that affects the probability of experiencing disease.



CHAPTER 3

The Modelling Process

You must see your goals clearly and specifically before you can
set out for them. Les Brown (1945-)

Do not quench your inspiration and your imagination; do not
become the slave of your model. Vincent van Gogh (1853 - 1890)

From drawing up the optimal staff schedule for a hospital emergency room to ex-
ploring how the global airline industry impacts the spread of disease, models are
finding applications in almost every area of the healthcare industry. Yet, to many,
the development, tuning, testing, validation, and application of modelling is a mys-
terious and an overwhelming task. In this chapter we provide a very broad outline
of the modelling process, with specific emphasis on modelling in healthcare.

It is impossible to define a concise step-by-step process for selecting, designing,
tuning, and applying an appropriate model to answer a given question. However,
it is possible to outline some guiding principles that can help modelling projects
achieve good results, and to list some general steps that one should expect during
the modelling process. We begin with a quick overview of some guiding principles
in modelling.

Guiding Principles in Modelling.

The question should be clearly defined: Models intended as “multi-
purpose” tools that start without a clearly defined question generally end
up without any clear conclusions. Conversely, models designed with a
clear purpose in mind, once validated, can often be easily adapted to
other purposes.
Models should be simple and transparent: In building models, one
of the most difficult tasks is selecting the relevant details. Once the rele-
vant details are uncovered, the model design should be as simple as pos-
sible while incorporating these details.
On a related note, there are many software applications that may aid in
modelling. Although software can reduce the time involved in repetitive
tasks, the modeller must still have a thorough understanding of what the
software (and subsequently the model) actually does. Otherwise, it is easy
for errors to arise in the model.
All assumptions should be clearly stated: All models are built on a
set of assumptions, some of which are testable, and others that are not.
These assumptions must be clearly stated, and whenever possible tested.
Assumptions that are not testable should be discussed with experts from
within the field.

9
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Variables and measures should be clearly defined: A quantative
model is useless if the numeric result is uninterpretable. As such the
numerical variables and output measures should be clearly stated for each
specific model.
Use the best data available: Clearly, the quality of data imposes a
limiting factor on the quality of mathematical models and their results.
Although the model may be designed and tested with most data, final
implementation and results should always use the best quality data avail-
able.
Interpret results carefully: After a model is created and final results
are obtained, it is a common mistake to over-interpret the importance
of the results. One of the most common errors is to assume causality
where only association is present. Most statistical models are only capable
of showing correlations between two events, not explaining the causality.
(This is discussed further in Chapter 5; other common errors are discussed
as they arise within this book.)

In Figure 1 we provide our view of the modelling process. Notice that it is a long
process with many “feedback” loops. This suggests that many initial approaches
to a problem will be unsuccessful. With practice and experience the number of
unsuccessful approaches will decrease, but one should never expect the first attempt
at modelling a system to work flawlessly.

Select modelling  
approach 

Revise and improve  
the model Apply the model 

Data collection,  
processing and  

analysis 
Form a conceptual  

model 
Implement and  

validate the model 

Figure 1. The modelling process: One View of the Modelling Process

In the remainder of this chapter we elaborate on each step of the modelling
process. The chapter ends with some references where one can learn more about
the modelling process.

1. Selecting a Modelling Approach

Contrary to what is commonly taught in high-school, very few problems have a
unique solution. Indeed, in our experience, most questions (be it healthcare related
or not) can be solved in more than one manner and have more than one reasonable
solution. Likewise, for most problems, more than one modelling approach is pos-
sible, and each will have advantages and disadvantages. Therefore one of the first
concerns a modeller will have to deal with is selecting which modelling technique to
apply. This selection process will generally be driven by many factors, including the
type of data available, the nature of the situation to be modelled, and the type of
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question posed. In general, the most convincing results are obtained when multiple
modelling techniques are applied and their results support each other.

In Table 1 we list the models discussed in this book, and provide a brief expla-
nation for the main usage of each with respect to healthcare. We further split the
models into the two broad modelling categories of qualitative models and quanti-
tative models. We describe these categories below.

Model Qualitative or Main Usage Chapter
Quantitative

Descriptive
Statistics

Quantitative Summarizing data sets. 5

Regression
Analysis

Quantitative Predicting future trends based on statistical
data.

6

Epidemiological
Risk Models

Quantitative Developing relationship bewteen risk factors
and diseases, and explore the impact of inter-
ventions on population health.

7

Psychosocial
Risk Models

Qualitative Exploring how the public can be swayed into
better health behaviour.

8

The Health
Belief Model

Qualitative Providing a psychological framework to help
understand patient behaviour.

10

The Behavioral
Model for
Healthcare

Qualitative Providing a psychological framework to help
understand patient behaviour.

10

Game Theory Both Understanding rational decision making (often
to determine when healthcare clients are acting
irrationally).

11

Human Capital
Models

Qualitative Examining health decisions from an economic
perspective.

11

Network Models Both Describing social or physical interactions
within society, and how they impact health.

12

Markov Models Quantitative Exploring the properties of objects in a system
that move through a series of states (such as
patients moving through disease states).

13

Systems
Thinking

Qualitative Developing flow-box diagrams that view a sys-
tem as a whole (usually to better understand
feedback loops and interactions between vari-
ous parts).

14

System
Dynamics

Quantitative Quantifying systems thinking models. 14

Queueing
Models

Quantitative Understanding wait times and bottle necks for
objects moving through a system (such as pa-
tients waiting for surgery).

15

Table 1. Categorization of the models covered in this book, along
with locations.

1.1. Qualitative Models. Many models in healthcare are not designed to
provide specific numerical results, but instead are designed to provide insight into
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why a given situation exists and/or what its driving factors are. Such models are
generally referred to as qualitative models.

Qualitative models come in many forms. Sometimes they rely on psychological
analysis of a situation, other times these models focus on examining how various
aspects of a company interact. However, all qualitative models share a common
property; they do not attempt to produce a quantified output as a solution to
a problem. Instead, they attempt to determine the factors that impact a given
problem in order to provide guidance on how the situation might be adjusted.

Consider for example the advertising industry and its continual goal of convinc-
ing the public to spend their money. Over time some clear trends have developed.
More toy commercials appear near the Christmas holidays, and more weight loss
commercials shortly thereafter. The reasons for these trends may appear clear
(people are interested in buying gifts before Christmas, and interested in fulfilling
New Year’s resolutions of weight loss after Christmas), but some very bright minds
were involved in developing and answering the question of when people are most
susceptible to a given form of advertisement.

Similar ideas can easily be applied to the healthcare question of how to increase
attendance at blood banks, immunization clinics, and various other healthcare ser-
vices that decrease the overall burden on the healthcare budget. By developing
a qualitative model of the factors that affect an individual’s interactions with the
healthcare system, we can better understand why certain groups of people are less
likely to maintain a regular schedule of mammography for example. By building
qualitative understanding for situations, such as the above, we can develop inter-
ventions that are better designed for the given situation.

It should be noted that statistical data is usually not the starting point of
qualitative models in healthcare. For this reason it is extremely important to
validate qualitative models using scientific experiments. That is, before applying
the results implied by a qualitative models, one should always use quantitative
modelling to confirm its validity.

A list of qualitative models discussed in this book can be found in Table 1.

1.2. Quantitative (Mathematical) Models. Many of the models described
in this book use the language and tools of mathematics to describe the behaviour of
a system. In these cases the system is described by a set of variables and equations
that establish relationships between these variables. We refer to such models as
quantitative or mathematical models.

Mathematical models come in many different forms, all sharing the common
feature of quantifying something. Typically, mathematical models take an input of
data and produce an output of conclusions. Therefore, mathematical models can
only be as good as the data used.

It is instructive to consider a simple example such as an emergency room queue.
This demonstrates some interesting characteristics of models and modelling. On
one level, modelling an emergency room queue could be very simple. Patients could
be treated as a single queue of customers that are served by several physicians. The
assumption of “first come first served” could be employed and assumed “fair.” How-
ever, whether this is fair actually depends on what one seeks to accomplish. Are we
simply interested in maximizing the number of patients served, or are we interested
in efficient use of resources? Is a single queue equally fair to all patients, or should
some prioritization be employed? If all physicians are occupied with complicated
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cases that take a long time to resolve, the waiting time for those remaining in
the queue should increase substantially. The complexity of this example increases
manyfold as greater detail is brought into the model. The harmonic operation of
multiple healthcare services, all relying on the same pool of resources, for example,
can be even more complex. One task of mathematical models is to make complex
situations more manageable.

If a quantitative model is chosen, the modeller must also make several further
choices about the modelling technique to be used. For example, should the model
be

Stochastic or Deterministic: Stochastic models are models that incor-
porate random events and behaviours. For example, prescriptions for a
specific medication at a pharmacy are filled at random times, although
the average number of prescriptions may be constant over time. Useful
stochastic models allow for long term patterns and average properties to
be determined. Deterministic models are models where events proceed
in a fixed and predictable fashion. As a result, the same set of initial
conditions will result in the same outcomes every time. Despite this, de-
terministic models can exhibit extremely complicated behaviour, and are
often useful in studying how changes in one part of a system impact other
parts of the system.
Static or Dynamic: A static model is a model that provides a snapshot
of the system at a specific point in time. As such, static models do not
allow for time to effect the variables of the system. Making predictions
based on such models is usually done via basic extrapolation, and there-
fore limited in its accuracy. However, static models are often sufficient
and generally easy to construct. Static model are also well suited for de-
veloping case strategies to deal with a given situation. In contrast, in
dynamic models the states of variables change over time. Because of the
time component, dynamic models can provide a representation of the evo-
lution of the system, which generally allows for more accurate predictive
properties. However, dynamic models are more difficult to design.
Discrete or Continuous: For each variable in the model, one must de-
cide whether the variable is discrete or continuous. Discrete variables are
variables that can only take on values from a list of possible values. The
list may be finite (such as days of the week) or infinite (such as the list
of integers). Alternately, continuous variables are chosen from the real
number line, so any two values always have a third value in between them.
Continuous variables may still have upper and lower bounds (5 ≤ x < 7 for
example), or may be unbounded (x ≥ 9). In most cases what the variable
represents will provide insight as to whether it is discrete or continuous.
For example, the number of patients in a queue should be discrete, while
the arrival rate of patients into the queue should be continuous.
If a dynamic model is used, whether time is modelled discretely or con-
tinuously, has a profound impact on the model, its implementation, and
the type of mathematics required to analyze the model. It should also
be noted that all computer simulation models proceed in discrete time
due to the digital nature of computation. However, the time step may be
specified to be so small that continuity is essentially preserved.
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A list of quantitative models discussed in this book is displayed in Table 1.

2. Forming a Conceptual Model

Once a modelling approach is selected, the modeller proceeds by forming a
conceptual model of the problem. This is a cognitive process of translating external
events into internal models, similar to what humans automatically engage in more
or less every day in order to make sense of the world.

When a conceptual model is formed, it becomes a theoretical construct that
represents, often visually, the processes, relationships, and variables considered to
be important within a system. This construct should be examined by experts
and practitioners from within the system to determine a first level of validity. In
particular, if the experts and practitioners from within the system do not trust the
conceptual model it will remain unused, regardless of its quality.

The conceptual model both drives and is driven by the variables that are con-
sidered important in the system. Since the variables that are considered important
may change as data analysis is performed, one may have to reform the conceptual
model several times before the modelling process is complete. Moreover, in building
the conceptual model, it may become clear that the chosen modelling approach is
not appropriate. Thus, one may have to select a new modelling approach in order
to develop the conceptual model into a usable model.

3. Data Collection, Processing, and Analysis

Throughout the modelling process, the modeller relies on data. For qualita-
tive models, data is used to test and support the model, for quantitative models
data is used to tune the model to allow for predictions. Overall, data provides
descriptive information about the system, and suggests which variables should be
considered important within the model. Examples of possible variables include the
demographic structure of a population, the transmission rate for a communicable
disease, or the rate at which surgical procedures are completed.

Data Collection. The classic GIGO axiom of modelling stands for “Garbage
In, Garbage Out.” GIGO captures the idea that a model is only as good as the
data used to test and tune it. In some problems, the data requirements are easy
to define, and the data is easy to collect. For example, determining the future
distribution of population age groups can be easily accomplished by examining past
age distributions and extrapolating. Of course, birth rates, death rates, immigration
rates and emigration rates all have to be taken into account, but overall this data
can be easily and accurately obtained.Further discussion re-

garding the collection

and cleaning of data

can be found in Chapter

4. Discussion on Sta-

tistical Analysis can be

found in Part 2 of this

book.

In many problems in healthcare data collection is a limiting factor in model
development and analysis. This is beginning to change as computerized patient
tracking is developed and implemented, but even then confidentiality issues cause
data collection challenges. Ignoring the issue of patient confidentiality, data col-
lection in healthcare remains a resource-intensive undertaking that often requires
conducting surveys or population studies. Such surveys can be extremely expen-
sive and time consuming to complete, and even on completion the data may be
corrupted by survey bias.
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Data Processing (Cleaning). Ideally data collection is carried out with a
specific modelling problem in mind. In this way the right kind of data can be
collected to help solve the problem in question. In practice information on model
variables is often extracted from data collected for other purposes. As a result,
data may be biased and contain errors or inaccuracies. Another potential problem
in healthcare modelling is that the question may be too difficult to define initially.
In this case, the modelling process begins as an exploratory learning process, with
a conceptual model of the problem as its result. It may not be clear at the outset
what data is appropriate for describing the system. In these circumstances extensive
cleaning of the data is often necessary to improve quality. Data cleaning can involve
data entry, checking data for errors, identifying sources of bias, removing duplicate
entries, and merging or linking databases.

Statistical Analysis. Once data of adequate quality is available, it is then
possible to study the system through statistical analysis. Statistical analysis may
include the use of descriptive statistics (see Chapter 5), regression analysis (see
Chapter 6), risk analysis (see Chapters 7 and 8), or some combination thereof.
(Many other forms of statistical analysis may also be employed, but these are not
detailed in this book.)

The results of the data analysis are used to determine which variables are most
important for the problem, to test a model’s validity, and to tune a model for
making predictions. Often statistical analysis will inform the modeller that some
of their basic assumptions about the system were wrong, forcing the modeller to
take a step backwards and form a new conceptual model for the problem. This
may occur when a modeller determines that a variable assumed to be insignificant
turns out to be significant or vice versa.

4. Implementing and Validating the Model

Once a model is specified, it has to be implemented in such a way as to produce
predictions about the system under study. Model implementation may involve a
computer or may proceed using more analytical approaches.

Computer simulation is a software-based method of implementation. By simu-
lating a system, it is possible to examine how a model behaves without understand-
ing the all of the analytic details of the system. In this regard simulation is often
referred to as a black box; input and output are visible, but how the output is gener-
ated might not be fully understood. There are both advantages and disadvantages
to simulation methods. On the one hand, even highly complicated problems can
be captured in a simulated model, without detailed knowledge of the mechanics of
the system and without the requirement for mathematical expertise on the part of
the modeller. On the other hand, this lack of transparency can mask logical errors
in the model, often producing false conclusions.

A second approach to implementing a model is provided by the tools of mathe-
matical analysis. If the modeller is able to describe the system in terms of equations,
then analytic or numerical solutions may be sufficient to “solve” the model without
the need for simulation. This provides several strong advantages over simulation.
For example, analytical methods produce exact reproducible solutions without the
need for (often expensive) software. Furthermore, analytical methods often pro-
vide deep insights into the workings of a system. However, analytical solutions for
complex models are often difficult or even impossible to achieve.
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A third approach, which lies somewhat between simulation and analysis, is nu-
merical analysis. In numerical analysis, the modeller uses mathematical techniques
to develop equations to represent the model and then simplifies these equations
if possible. The modeller then turns to computers to numerically approximate
solutions to the equations. This approach retains some of the robustness of mathe-
matical analysis and is especially useful if there is no known analytical method for
solving the particular problem.

After a model is implemented it has to be tested for validity. Validation is
carried out to substantiate that the model performs with satisfactory accuracy
within the domain of its applicability. The simplest test of validity of a model is to
compare the model output with actual data about the system. However, in doing
this one must be warned that using the same data to tune and validate the model
can easily lead to false positives. That is, the resulting validation may only be
showing that the model works on this data set, because it was designed to work on
this data set. Unless the model contains strong assumptions to simplify the data
then this is not a particularly strong conclusion.

5. Applying the Model

Once a finalized model is tested, tuned, and implemented, it can be used to
explore properties of the system as described by the model. It should be reinforced
that no matter how well a model is tested, tuned, and implemented, it can only
examine the aspects of the system it is designed to study. A seating chart of an
airplane is the perfect model for allocating seats, but no matter how accurate the
model is, it can never be used to test if the airplane will actually fly.

Exploring properties of the system can take many forms. For example, models
do not usually display equal sensitivity to all input parameters. Determining which
parameters have the greatest impact on the system can be useful in determining
where to make interventions and where to focus further data collection efforts.
Parameters that make little impact on the system do not have to be quantified as
accurately as parameters which have major impacts on the system. Analysis that
focuses on determining which parameters have the greatest impact on the system
is generally called sensitivity analysis.

Another popular use of models is to determine some sort of optimal behaviour.
For example, if a healthcare ministry has a budget for only a fixed number of
physicians, they may wish to know where to locate those physicians in order achieve
optimal patient care. In general, optimization is the application of this type of
question to a model. Often the question can be written as “which selection of
parameters minimizes the cost such that the desired result occurs?” Finding the
answers to such questions has become a field in itself, and can be accomplished by a
number of different means. Chapter 16 of this book is devoted to some optimization
problems in healthcare.

6. Revising the Model

Here we come full circle and begin another modelling cycle. The modelling
process is not merely a search for a solution, but also a learning process. New
knowledge about the system is incorporated into new versions of the model.
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7. Example: Modelling Healthcare Demand

Predicting the future demand for healthcare is of utmost importance to many
healthcare policy-makers for the purpose of setting budgets and developing future
coping strategies. Here we use the example of modelling healthcare demand to
demonstrate that one problem can be approached by a plethora of different mod-
elling techniques.

To do this we identify four groups of targeted models for healthcare demand,
which we label: population models, behavioural models, operational models and
global models.

Population Models. Population models focus on the healthy population and
explore ways to reduce the number of individuals that become ill through disease
prevention and health promotion interventions. Thus, the output of these models is
largely used to inform policy decisions on public health interventions and prevention
strategies.

One of the major focuses of population models is the growing rates of chronic
diseases. Diseases such as cardiovascular disease, diabetes and cancer are becoming
of great concern worldwide. Data from the United States indicate that preventable
illness constitute approximately 70% of the illness burden and the associated costs.
Preventable causes, such as cigarette smoking and obesity, represent eight of the
nine leading causes of death in the United States [80]. This represents a huge
challenge in finding ways to effectively promote lifestyle modification and prevent
disease [182]. By reducing the number of people advancing from the healthy pop-
ulation to the at-risk population, the overall demand for healthcare resources may
be reduced.

Examples of population models in healthcare can be found in Examples 4.2,
4.2, 4.3, 4.1, 4.2, 4.2, and 4.2 of this book.

Behavioural Models. Behavioural models address how people interact with health-
care providers and their peers to receive both expert and lay advice for managing
their health. This is one of the main goals of the psychosocial models described
in Chapter 10. Behavioural models aim to understand the social dynamics that
contribute to fluctuations in service utilization. Thus, like population models, be-
havioural models can be used to look at how demand may be reduced before it is
generated.

Patient-doctor interactions have been studied at the individual level using game
theory [63] [68] [211] (see Chapter 11). Social network theory has also been applied
to understanding the important roles that interactions with both peers and pro-
fessionals play in determining healthcare demand [175] (see Chapter 12 Example
4.2).

Examples of behavioural models in healthcare can be found in Examples 4.1,
4.2, 4.1, 4.1, 4.2, 4.3, and 4.1 of this book.

Operational Models. Operational models are concerned with finding the most
efficient strategies for processing the prevalent level of service requests. Often these
are highly focused models studying exactly one aspect of healthcare. For example,
models of staffing schemes and resource utilization within an emergency depart-
ment. Thus, unlike population and behavioural models, operational models seek
to manage demand as it arises, instead of trying to reduce demand before it is
generated.
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Operational models are most frequently applied within hospitals, clinics and
other healthcare facilities and measure demand in terms of wait times or blocked
patients (patients who sought healthcare but could not access it). Queueing theory
(Chapter 15) and discrete event simulation (Section 4.3) have largely been the
methods of choice for such problems, since random arrivals and queueing heavily
influence the demand for service. Another method that is becoming more common
in this field is system dynamics (Chapter 14).

Examples of operational models in healthcare can be found in Examples 4.2,
4.1, 4.3, 4.2, 4.1, 4.3, and 4.2 of this book.

Global Models. Global models are complex system models that may incorporate
any of the previous three types in order to study interactions between multiple
components of a healthcare system. They focus on understanding how changing one
aspect of the global healthcare system (such as improving access to knee surgery)
may effect demand in another aspect of the system (the requests for physiotherapy).
This helps policy-makers determine whether a change in the system will have a
positive or negative global affect.

Cost-containment is perhaps the toughest problem facing the healthcare sys-
tem. Healthcare is absorbing a growing proportion of government budgets, but
demographic explanations fail to fully account for this growth. Considering the
healthcare system as a complex dynamical system is a potentially powerful means
of analysing how a large number of components interact to produce unexpected
outcomes. For example, an improvement in healthcare delivery in a specific setting
may be accomplished by pulling resources from another setting. Disruptions of this
type may result in excess demand and growing costs as a consequence of a large
number of complex interactions.

Modelling at the global level is not simple, and much work remains to be done
in this area. Recently, global models have often been implemented in terms of
system dynamics (Chapter 14) [111] [112]. Other examples of global models in
healthcare can be found in Examples 4.3, 4.2, 4.1, 4.2, 4.3, and 4.2 of this book.

8. Related Reading

For another description of the modelling process see [42]. Reference [52] discusses

the concept of mental models. References [63], [68], and [211] examine game theory

and some of its applications to healthcare. Reference [175] investigates social network

theory. Reference [13] provides a taxonomy of 77 verification and validation techniques

for conventional simulation models. References [80] and [182] develop models for use

in health resource allocation. Reference [42] provides an introduction to simulation and

modelling. References [111] and [112] look at system dynamics modelling in healthcare.
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CHAPTER 4

Issues of Data

He used statiststics as a drunken man uses lampposts; for support
rather than illumination. Andrew Lang (1844-1912)

There are two kinds of statistics, the kind you look up, and the
kind you make up. Rex Stout (1886-1975)

Data Collection and Data Errors
Regardless of what is being modelled, or what modelling technique is being applied,
at some level every model should be grounded in reality. Sometimes this grounding
comes from consultation with experts in the field, or from logical deductions of how
things work. Frequently, this grounding is established by performing some form of
experiment or data collection regarding the system of interest.

The collection, or experimental creation of good data is an extremely diffi-
cult task in healthcare. In some aspects of healthcare, such as drug testing, data
can be created in a “controlled” scientific manner, however in the vast majority
of situations, data must be collected from historical events. Even in the case of
controlled drug testing, tests can easily miss side effects which are slow in arising.
This makes data collection in healthcare an extremely difficult task, which in turn
makes grounding a healthcare model in reality a challenging task.

In this chapter we discuss possible methods for collecting data and some of the
errors that can arise. We begin with some terminology to describe different types
of data.

1. Types of Data

When dealing with the data aspect of modelling it is often useful to be able to
describe when, how, and where the data was collected in a concise manner. In this
regard, it is useful to provide some terminology on these concepts.

1.1. Data Collection Methods. The manner in which data is acquired is of
key importance in determining the quality of the data. In the field of healthcare,
there are three common methods of data collection: experiments, health records,
and surveys. Table 1 summarizes the differences between these types of data
collection, and highlights some advantages and disadvantages of each. First we
discuss each data type in more detail.

Experimental data. The least common, but most reliable, source of data is gen-
erated via scientific experiments. By scientific experiments we refer to experiments
that hold to the scientific principle of reproducibility. That is, the experiment can
be repeated in a different time and place with the same (approximate) results.

21
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Data Type Advantages Disadvantages
Experimental Data collected through blind

clinical trials.
- accurate and re-
producible

- highly expensive in
time and money
- unethical or imprac-
tical in many cases

Health Records Data collected by health-
care providers detailing when,
where, and how patients ac-
cess the healthcare system.

- accurate and
contains technical
health information

- generally does not
contain information on
personal health habits
- biased against indi-
viduals who have not
used the system

Survey Data collected by contacting
participants and requesting
that they report the answers
to certain questions.

- relatively quick
and easy to collect
- can be tailored to
answer any desired
question

- contains the highest
room for error - can
be expensive in some
cases

Table 1. Common Data Collection Methods: Three com-
mon methods for collecting data, and their advantages and disad-
vantages.

In Physics or Chemistry a reproducible experiment is often an achievable goal,
however in the field of healthcare reproducibility is extremely difficult to achieve.
The problem lies in the fact that results in healthcare often hinge around how a
single person reacts. Since no two groups of people are the same, expecting the
same outcome from different groups of people is overly optimistic. Nonetheless,
some experimental data exists. In healthcare, most experimental data is created in
the form of so-called blind clinical trails.

The idea in a blind clinical trial is to give a random group of people either a
drug or a placebo pill. The goal is to test if the drug has an effect that the placebo
does not. The subjects given the drug are termed the experimental group and the
subjects given the placebo pill are termed the control group. Blind clinical trails
may be single blind, double blind, or triple blind, as described below.Generally, if nine dou-

ble blind tests show no

correlation between a

risk factor and a dis-

ease, but one double

blind test shows a corre-

lation, only the one “in-

teresting” test will be-

come public.

single: the subjects are unaware if they are in the experimental or control
group.
double: neither the subjects nor the experiment administrators are aware
of who is in the experimental or control groups.
triple: neither the subject, the experiment administrators, not the statis-
ticians who analyze the data are aware of who is the in experimental or
control groups. Although the statisticians are told whether a subject is
group A or group B, they are not told whether A or B is the control
group.

In most drug testing situations double blind tests are considered the minimal
acceptable level of experimentation to produce accurate results. However, even
results of double blind tests can be skewed by experimental error. We discuss this
and some of its implications further in Section 2. One example of this is the fact
that only experiments which produce “interesting” results tend to get published.
For example, if nine double blind tests show no correlation between a certain drug
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and disease, but one double blind test shows a correlation, then it is quite plausible
that only the results of the test that shows a correlation will become public. This
is generally referred to as publication bias (see Subsection 2.3).

Nonetheless, experimental data is generally considered the best possible source
of data for modelling research. However, for a variety of reasons, experimental data
is seldom collected. One of the more compelling reasons for this is that often the
hypothesis is that a certain object is a risk factor to health. Ethically one cannot
intentionally submit a collection of people to something that one believes will cause
people harm. (Imagine, for example, performing a double blind test to determine
if smoking cigarettes with a filter is less harmful than smoking cigarettes without
a filter.)

Two other strong reasons for avoiding experimental data is the high cost of
performing the experiment and the time required to perform the experiment. In
healthcare, the costs of experimental data arise primarily from paying the par-
ticipants, supplying the drugs, providing the test environment, and supplying the
necessary expertise to ensure the experiment is performed safely. These costs very
quickly add up to staggering numbers. Moreover, in healthcare, the time required
to perform proper experimental tests is often highly impractical. When researching
in terms of health, time-scales are generally in terms of lifetimes, or at least years.
For example, although one could theoretically create an experiment that tests how
the consumption of a vitamin supplement pill alters the probability of participants
catching the flu, the experiment would have to be run in a controlled environment
for years before completion.

Finally, in many cases in healthcare, the factors one wishes to collect data
on cannot be altered in an experimental manner. A prime example of this is
a participants socioeconomic status. Clearly an experimenter cannot provide a
participant with a fixed income for the period of a lifetime to determine how this
impacts their health.

Health Records and Survey Data. Given the difficultly in generating experimen-
tal data, healthcare research generally relies on other sources of data from which
to draw its conclusions. Currently there are two common sources outside of exper-
imental data: health records and survey data.

Health records and survey data both work on the principle that historical trends
provide a naturally formed experiment. The difference lies in how the data has
been collected. Health record data refers to data that is maintained by healthcare
providers regarding when, how, and why individuals access given points in the
healthcare system. Survey data is data is collected by contacting participants and
requesting that they report the answers to certain questions through interviews or
questionnaires.

Since health records are collected and maintained by health professionals, the
data is often accurate and contains important health facts that the average individ-
ual cannot understand. However, health record data seldom includes information
on an individual’s personal habits, such as the frequency at which a person exer-
cises. Another difficulty with health record data is that it only involves individuals
who have actually used the healthcare system, while healthy individuals are unseen.

Survey data can get around both of these problems, as anyone can be asked to
participate and any question can be asked. However, survey data has often been
criticized as inaccurate, as participants tend to over-emphasize their “good” traits
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and under-emphasize their “bad” traits. For example, it is widely accepted that
the self-reported mass of an individual is usually lower than the actual mass of an
individual. This is enhanced as an individual’s mass increases.

Survey data can be collected in a variety of ways. Telephone surveys, mail-
in surveys, and, more recently, web-based surveys are all common practice. Each
method has advantages and disadvantages. We refer interested readers to Section
3 for references and further reading.

1.2. Time Series Data. In many cases, one wishes to examine how time is
changing certain factors in a community. In order to do this, data must be collected
at a series of points in time. Such data is called time series data or serial data.

Serial data may be collected in either a cross-sectional or longitudinal manner.
Cross-sectional data refers to when a new collection of individuals is surveyed at
each point in time1. This provides a series of “snapshots” of the population at
various points in time and therefore provides some insight as to how the population
dynamics are changing over time. Longitudinal data (sometimes called panel data)
refers to when the same collection of individuals is surveyed at each point in time.
This type of data is considerably harder to collect (as people must be recontacted
several times over many years), but provides a higher level of insight into a popu-
lation. Specifically, longitudinal data allows researchers to study how an individual
changes over time. This type of data is necessary to properly tune some models.

In time series data, one separates the participants into a collection of cohorts.
A cohort is a group of individuals from a given population that is defined by ex-
periencing a common event during a particular time span. In healthcare the most
common manner of grouping cohorts is by year of birth. However one might define
cohorts by the year a mother gave birth (to examine changes in the impact of child
birth on health) or the year of an individuals first entry into residential care (to
study changes in the expected life-span of individuals in residential care).A cohort is a group of

individuals from a given

population that is de-

fined by experiencing a

common event (typically

birth) during a particu-

lar time span.

In health record data, patients are generally given a “health number” when
they first access the system (or when they first enter the country). This allows for
longitudinal data to be extracted from health records easily.

1.3. Electronic Health Records. It is easily arguable that electronic health
records are one of the keys to modernizing the health system and improving ac-
cess and outcomes. As electronic health records are implemented, high quality
comprehensive data sets will become more readily available.

In Canada, a drive for the standardization of electronic health records is being
headed by the Canada Health Infoway. Standardized health records will automati-
cally ensure that any data originating from electronic health records will be of high
quality. This has the potential to bring tremendous benefits to studies employing
mathematical modelling and health data analyses.

2. Data Quality and Data Biases

The accuracy of data sources is often a major concern. Data errors can be
broadly grouped into two categories: sampling errors and non-sampling errors.

1Occasionally the term cross-sectional data is used to refer to data that is not serial data.
This can be thought of as the degenerate case where the series of points in time consists of only

one point.
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2.1. Sampling Errors. Sampling errors are errors that arise from estimating
a population characteristic by looking at only one portion of the population rather
than the entire population. That is, sampling errors are errors that result from a
poor selection of the representative sample. For example, suppose one is collecting
data on how reading is related to health. To do this one sets up a survey at the
local library which asks patrons to state how many books they read each month and
how they perceive their health status. On the surface this seems fine, but digging a
touch deeper one realizes that this data set would consist of a very biased sample.
The major flaw is that anyone who does not read would not go to the local library
and therefore would be ignored in the study. Moreover, people who find it difficult
to get to the library will be under represented, this would quite likely include the
portion of the population that has lower than average health status.

Even when a “good” selection of the representative sample is considered, it
usually contains sampling errors of some form or another. For example, the selection
of random phone numbers from a telephone book will result in the exclusion of the
unlisted portion of a population. Random door to door surveying will result in a
bias towards people who are home more often. And regardless of sample selection,
one will always be biased towards people who are more open and therefore more
likely to respond to surveys. This final point is side-stepped with the use of health
record data, but health record data is biased towards people who have accessed
healthcare.

To avoid representative sample bias one should always try to obtain as large a
sample as possible. One should also include demographical statistics in the data,
and use these statistics to ensure that a “good” representative sample is selected.
For example, if a data set has a significantly skewed gender ratio, then one should
be careful to normalize the data with respect to gender before using it. Fortunately
there is a large collection of literature on how to detect and deal with sampling
errors. Unfortunately, there is very little known about how to prevent them.

2.2. Non-sampling Errors. Non-sampling errors are errors that result from
reasons other than poor representative samples. These errors include poor survey
design, poor survey or experiment implementation, and poor data storage.

Survey Design Errors. Whenever a data set is created through a survey, one
runs the risk of a poorly designed survey skewing the results. Recall our exam-
ple of performing a survey to help determine if reading is related to health (from
Subsection 2.1). Such a survey might compose of any of the following questions:

• Do you read at least two books a month?
• On average how many books do you read in a month?
• How many books did you read last month?
• What books did you read last month?

All four of the above questions essentially estimate the number of books read within
one month. However, the different phrasing may lead respondents to answer in
very different manners. In the first question, a respondent may be led to believe
that reading at least two books a month is the correct answer and therefore lean
towards answering yes (even if they only read one and a half books a month). In
the second, the respondent is no longer led to believe 2 is correct, but may still
tend to answer with a higher number than true. Moreover, when respondents are
asked for answers of which they are unsure, they tend to estimate and round to
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“nice” numbers. For example a person is highly unlikely to answer 1.5 to the second
question, even though this may be closer to the actual average number of books they
read each month. The third and fourth questions are better in that respondents
will more likely answer truly, but may cause problems in sampling error as people
may read more books in July than in February. Moreover, it is unclear if you must
have started reading the book, finished reading the book, or both during the given
month for the book to count.

As complicated as this seems, it gets worse. For example it has been found
that survey results depend on the order in which the questions are asked, and that
there are differences between the way that people respond to written surveys versus
oral surveys. The reasons for this have been attributed to people “learning” about
themselves through the course of the questionnaire, and people being more candid
about sensitive questions in written surveys.

Survey and Experiment Implementation Errors. One of the strongest concerns
with survey data is that the vast majority of it is self-reported. That is, the respon-
dent is asked a question and the answer is recorded without any effort to verify that
the correct answer is given. In general, self-reported data tends to overemphasize
what society considers to be “good”. For example, self reported weight tends to be
lower than actual weight, and self reported height tends to be higher than actual
height. Similarly, people tend to under report their role in illegal activities (such
as drug use) and over report their role in charitable activities.Self-reported health sta-

tus is often considered

to be a more important

determinant of health-

care utilization than ac-

tual health status.

It should be noted that, in some cases self-reported data is more important
than scientifically accurate data. For example, self-reported health status (rather
than actual health status) is often considered to be an important determinant of
healthcare utilization.

Another challenge in implementing surveys is the characteristic low response
rate. In practice, most surveys receive response rates significantly less than 50%. To
combat this, marketing firms have developed various methods to increase response
rates to a survey. Some simple suggestions include:

• keep the survey brief,
• provide an incentive (the respondent receives cash, gifts, lottery entry, etc.

for completing the survey),
• guarantee anonymity, and
• explain to potential respondents how the survey can help society.

Many more techniques for improving survey response rates exist, but we leave those
for curious readers and marketing firms to research.

One of the greater problems resulting from low response rates in surveys is
interviewer frustration. If respondents are slow to understand or answer certain
questions, the interviewer may begin to skip these questions, or lead the respondent
to an answer. Note that this is not necessarily a sign of a corrupt interviewer, but
is often an honest interviewer just trying to be helpful.

In terms of experimentation implementation, the most common error is due to
an experimenter biasing the results as a result of not being blind to the participant’s
status. This is best avoided by performing double or triple blind experiments.

Data Storage Errors. From the above discussion it may appear that survey
data is highly unreliable and whenever possible health record data should be used.
However health record data can also have major errors in its collection. Most
common is the fact that the health record data must be recorded by a human.
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Aside from the random typographical errors that all humans are likely to produce,
there is the tendency for health record data to overemphasize the positive results
of an institute. For example, health record data on waitlists is generally computed
by the difference in the time a person entered the waitlist to the time they exited
the waitlist. Patients who do not exit the waitlist are therefore excluded from the
calculations, which skews the data.

Another problem is that much of the health record data for hospitals is often
inputed by nurses who have other duties. When hospitals are busy these other
duties take precedence, and the data is not entered. Later it may be found that
some data is lost by the time the nurse has enough free time to enter it. Thus data
accuracy is only assured if the people who input the data are given sufficient time
to do so.

2.3. Other Errors: Publication Bias and Data Interpretation. Publi-
cation bias is not truly a data error in that the accuracy of a data source in not
the reason for the error. Publication bias is the result of the natural inclination for
people to highlight the results they find most interesting.

Journals and researchers have a limited amount of resources. As such, they
naturally seek to optimize those resources by focusing on results that appear most
interesting. For journals, this means publishing papers that show a strong relation-
ship between a risk-factor and a disease. In healthcare research this often means
focusing on studies that showed strong correlations between risks and diseases.
One problem is that random sampling error means that every study is flawed to
some level or another. If ten studies are performed examining the health benefits
of eating a daily serving of cucumber, odds are at least one study will find some
relationship between eating cucumber and health status. The problem lies in the
fact that the one study that found a correlation will likely be published, while the
other nine studies that find nothing will likely be ignored.

Another source of publication bias comes from the natural desire to feel useful.
Performing a data collection study is often a long and difficult process. Researchers
wish to be rewarded for the work involved. Thus, one data collection study will
often gather information on a large variety of topics, and researchers will then
analyze the data thoroughly looking for any correlations within the results. On the
surface this appears reasonable, but the same problem as before once again occurs.
Due to data sampling errors, it is likely that at least one false positive will result
in any data set. Searching the data set for this false positive causes the publication
of results that are not truly representative of real life. We refer to such publication
bias as publication bias in situ and discuss it further in Example 4.2.

There is no easy way to detect and unravel publication bias. The world of
research has a certain professional drive to publish. Researchers who publish more
are rewarded, while researchers who don’t publish are often left behind.

2.4. A final note. In spite of the difficulties in collecting accurate data,
whether it be experimental data, health records data or survey data, it is highly
important to ground every model in reality. In general, if the data set is large, and
some care is taken to ensure that it is a representative sample of the population,
then data is an excellent way of doing this.

Finally, some researchers attempt to increase the size of their datasets by pool-
ing data from various surveys or experiments. Results of studies based on pooling
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of dataset should be examined carefully because of the difficulty in controlling for
the varying biases within the datasets.

3. Related Reading

References [1] and [26] discuss a wide variety of data collection techniques, and how
to cope with sampling errors.

There is a large collection of literature on how to detect and deal with sampling error;
unfortunately, there is very little research on how to prevent it.

References [174], [189], and [130] compare self-reported height and weight to mea-
sured height and weight, and demonstrate a natural tendency for individuals to emphasis
their positive attributes. Reference [53] looks at the reliability of self-reported health sta-
tus as a measure of health, including analysis of how survey results depended on the order
in which the questions were asked, and that there are differences between the way that
people respond to written surveys versus oral surveys. Reference [37] provides an anal-
ysis of the predictive power of self-rated health for mortality in different socio-economic
groups.

Reference [121] discusses various types of survey data, and appropriate techniques

for analyzing each type. Reference [225] examines statistical and econometric techniques

for the analysis of count data.



CHAPTER 5

The Basics

Smoking is one of the leading causes of statistics. Fletcher Knebel
(1911-1993)

Statistically speaking, the probability of any of us being here is so
small that you’d think the mere fact of existing would keep us all
in contented dazzlement of surprise. Lewis Thomas (1913-1993)

Descriptive Statistics and Distributions

1. Model Overview

The basis concepts of statistics and probability have become such everyday part
of life that most people have a natural feel for them. Listening to the daily weather
report we hear the “p.o.p.”, probability of precipitation, and decide whether to carry
an umbrella that day. The sports news provides us with statistical updates on our
favourite teams and players. Even the democratic electoral system is reported in
terms of percentage of votes received. Yet despite the commonness of statistics and
probability in everyday life, many people do not have a real understanding of these
two disciplines and many results are under-reported, misstated, and misunderstood.

Statistics can be thought of as a collection of tools to analyse, interpret, and
present data. On the other hand, probability theory is the field of mathematics
devoted to determining the likelihood of a potential event occurring. In a sense, the
fields of statistics and probability are like two sides of the same coin. Probability
uses statistics to develop numbers on which to base predictions. Statistics uses
probability theory to describe the underlying processes of potential events. The key
difference is in the direction of thought. Probability theory examines the future,
and provides tools to examine what might happen. Statistics examines the past,
and provides tools to better describe what has happened. The overlap arises from
the basic assumption that past behaviour is a good predictor of future behaviour.

After collecting or acquiring a large dataset, it is often very useful to provide
some summary information regarding the data. This summary information is what
we refer to as descriptive statistics. The goal of descriptive statistics is to provide
an easy-to-read description of how the data is clustered.

In particular, researchers are often interested in the data’s central tendency and
degree of separation. The central tendency of the data is what many people call the
average, and refers to descriptions of the data’s most likely outcomes. Often this is
reported in the form of the mean, but in some cases one might report the median
or mode of the data. Mathematical definitions of these notions appear in Section
3, but for now it suffices to say they each provide a different manner of capturing
the average.

29
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The degree of separation refers to descriptions of how close the data elements
are to the central tendency. This is an extremely important piece of information, as
it tells you how well the central tendency describes a given data set. Unfortunately,
many day-to-day sources of descriptive statistics (such as the newspaper) do not
report the degree of separation. Most commonly, degree of separation is provided in
terms of the standard deviation. A quick interpretation of the standard deviation is
that approximately 68% of the data lies within one standard deviation of the mean,
and 95% of the data lies within two standard deviations of the mean. Thus if the
standard deviation is large, the mean provides a poor description of the data.

By reporting the degree of separation, the researcher provides confidence that
the reported summary statistics are representative of the data. Another method
to do this is through the form of confidence intervals. Confidence intervals provide
an upper and lower bound for each summary statistic provided. For example, a
researcher might state “we are 95% confident that the correct mean lies between 6.4
and 8.3.” Generally, for analysis to be considered complete enough for publication,
researchers are required to report a 95% confidence interval for their results. Unfor-
tunately, outside of academic literature confidence intervals are seldom reported,
making it difficult to determine if the supplied summary statistics are useful in-
formation. Policy makers should be wary of any descriptive statistics that do not
include a report of either degree of separation or confidence intervals.

Another common approach to descriptive statistics of data is through the form
of charts or graphs. Typically these are clear and easy to interpret, but it is possible
to use graphs to display the data in a misleading manner (see Example 4.1).

Sometimes simple descriptive statistics are the goal of a research project, how-
ever in this book we assume the goal to be the development of a model to help
answer a specific question. To develop a model one must switch their viewpoint
from the past to the future, and therefore switch from statistics to probability the-
ory. This causes us to switch from talking about how data looks, to how a random
event might behave. In order to apply data to the creation of models one gener-
ally needs to determine the probability distribution of the data. The probability
distribution describes the probability of occurrence for each possible outcome to a
random event. The most famous probability distribution is the normal distribu-
tion, commonly called the bell curve. The normal distribution does a nice job of
describing the outcome of a random event that is equally as likely to be too high as
to be too low. However, many random events, such as the arrival time of the next
patient, do not follow this pattern. Indeed any random event that has an achievable
strict lower bound cannot follow a normal distribution. For example, the number of
patients in a waiting room cannot be below 0 and is at least occasional 0, therefore
cannot follow a normal distribution.

Some other distributions are discussed in Section 3.3 below. These distributions
are more complicated and less commonly used than the normal distribution, but
often very useful in developing healthcare models.

2. Common Uses

At some level statistical models are used in almost every form of modelling.
Any time a researcher collects data, they usually begin by generating and providing
descriptive statistics. Descriptive statistics are perfect for answering quick, trivia-
like questions such as:
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• What is the most common age for an individual to take up smoking?
• What percentage of the population was obese in 1975, 1985, 1995, and

2005?
• What is the average age at which a woman first contracts breast cancer?

To answer questions that are more general than these, one should turn to one of
the more advanced forms of statistics discussed in Chapters 6, 7 and 8.

3. Mathematical Details

In mathematics the fields of statistics and probability are intimately inter-
twined. We begin this section with a discussion of the standard mathematical
techniques used to summarize statistical data. In order to discuss the mathematics
of confidence intervals, we next review basic probability theory and develop the
ideas of probability distributions. We end with a discussion on confidence intervals
and statistical significance.

3.1. Descriptive statistics. In order to provide an “at-a-glance” summary
of data, most researchers will at some point rely on descriptive statistics. Often
descriptive statistics are simple, commonly understood values that give the reader
a sense of the data’s central tendency and degree of separation. In other cases,
researchers rely on charts and graphs to help describe the data.

Central tendency refers to descriptions of the data’s most likely, or most com-
monly occurring outcomes. That is, if a random data sample was chosen, what
type of value would one expect to see. The three most common measures of central
tendency are mean, median, and mode. Given a data set {x1, x2, x3, . . . , xN} the
mean of the data ( often denoted by x̄ or µ) is defined by the well known formula

µ =
(x1 + x2 + · · ·+ xN )

N
.

where N is the number of elements in the data set. Thus the mathematical word
“mean” corresponds to what is commonly referred to as “the average”. To compute
the median we begin by sorting the data: x1 ≤ x2 ≤ x3 ≤ · · · ≤ xN . If N is odd
then we define the median to be data element x(N+1)/2. If N is even then we
define the median to be the mean of data elements xN/2 and x(N/2)+1. Finally, the
mode of the data is the most commonly occurring element. If the most commonly
occurring element is not unique, the data is said to have multiple modes.

Degree of separation refers to descriptions of how close the data elements are
to the central tendency. If the central tendency of mode is employed, this is best
done by simply stating what portion of the data elements agree. If mean or median
is used, then one often provides the variance or standard deviation of the data. For
a given data set {x1, x2, x3, . . . , xN} the variance is denoted by σ2 and defined by

σ2 =
∑N
i=1(xi − µ)2

N
,

where µ is the mean of the data. The standard deviation is then denoted by σ and
is the square root of the variance.

Occasionally, some researchers will also provide a measure referred to as the
standard error of the mean. This is defined as the square root of the variance
divided by the sample size (σ/

√
N). This measure is useful for building confidence

intervals, but should not be used as a descriptive statistic.
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To interpret the standard deviation (or variance) we rely on the “Central Limit
Theorem.” Loosely the central limit theorem states that if the sample size is big
and the data is selected from a consistent random distribution, then the result is a
normal distribution. The normal distribution is formally defined in Subsection 3.3.
For now it suffices to say the consequence of the Central Limit Theorem is that,
approximately 68% of the time the random variable will lie within one standard
deviation of the mean, and 95% of the time it will lie within two standard deviations.

As mentioned before, it is also common for descriptive statistics to take the
form of charts and graphs. Typically these are clear and easy to interpret, but
occasionally a researcher will display the data in a misleading manner. (Some
examples of this are given in Subsection 4.1.) Policy-makers should be careful in
interpreting graphs, and question any conclusions that are not clearly supported.

3.2. Basic Probability. The probability of the occurrence of an event E is
denoted Pr(E). It is defined as the number of ways the event can occur divided by
the number of possible outcomes,

Pr(E) =
# of ways E occurs

# of possible outcomes
.

The probability of an event E given a known set of factors F is the number of ways
the event can occur given the factors divided by the number of possible outcomes
where the factors are present,

Pr(E|F ) =
# of ways E occurs given F is present

# of possible outcomes where F is present
.

These two definitions form the basis of probability theory in mathematics, while
the remainder of the theory is largely focused on how to determine the number of
ways events can occur with or without certain factors present.

A classical example is the rolling of a pair of 6 sided dice and then examining
the sum of the numbers produced. To simplify this discussion let us paint the first
die green and the second die red. The green die can take on any one of six possible
outcomes, the red die can do the same. As such the total number of possible
outcomes is 36. However, if we consider the sum of the two rolled dice, then the
total number of possible outcomes becomes 11: (2, 3, 4, . . . , 12). These outcomes
are listed in Table 1.

Green Die ⇒ 1 2 3 4 5 6
Red Die
⇓
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

Table 1. Possible outcomes resulting from the summing two
rolled dice
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From Table 1 we can easily count to see there are 6 ways to get a sum of 7.
Therefore the probability of totalling 7 is

Pr(total = 7) =
6
36
.

Similarly we can see the probability of totally 5, 6, or 9 to be

Pr(total = 5) =
4
36
, Pr(total = 6) =

5
36
, Pr(total = 9) =

4
36
.

Notice that the probability of totalling 5 is equal to the probability of totalling 9,
this means both of these events are equally likely to occur. The study of probabil-

ity is largely attributed

to Blaise Pascal, who is

rumoured to have devel-

oped it for the purpose

of winning at games of

dice.

From the table we may also compute the probability of totalling 5 given that
the green die rolls a 4. Notice since the green die is fixed at 4 there are now 6
possible outcomes, exactly one of which is a total of 5. Thus,

Pr(total = 5|green = 4) =
1
6
.

Similarly we find

Pr(total = 7|red = 3) =
1
6
,

Pr(total = 5|green = 5) =
0
6
,

Pr(total = 12|total ≥ 9) =
1
10
.

Notice that in some cases (such as Pr(total = 5|green = 5)), the probability can
be 0. When this occurs we say the event and factors are mutually exclusive, that
is the event cannot occur given the factors listed.

In the case of rolling two dice the probabilities were simple enough to work
out by writing out the entire table of possible events. In most cases this is not
true (consider for example rolling 3 dice, 4 dice, 10 dice, etc.). Instead researchers
rely on the well developed fields of combinatorics and probability. Although the
majority of these fields are beyond the scope of this book, we do take a brief look
at probability distributions.

3.3. Probability Distributions. In the previous subsection we discussed a
simple example of a random event, rolling a pair of dice. In this example we
developed a table (Table 1) that described all possible outcomes for rolling the
dice. Using this table we were able to determine the complete list of outcomes and
their probabilities. We present this in Table 2.

x 2 3 4 5 6 7 8 9 10 11 12
Pr(total = x) 1

36
2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

Table 2. Probabilities for each outcome of the sum of two rolled dice

Table 2 represents what is called a probability distribution. If the event E takes
on a finite number of values then the function

f(x) = P (E = x)
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is the finite probability distribution for the event E. Finite probability distributions
have a number of distinctive properties. For example, since each value is a prob-
ability, we have 0 ≤ f(x) ≤ 1 for all x. And, since the sum of f(x) over all x
represents the probability of some event occurring we have

∑
x f(x) = 1.

Probability distributions allow us to compute the expected value of a random
variable. This is, as the name suggests, the value that is expected to occur on
average if the distribution is sampled from repeatedly. More mathematically, if n
random variables are selected from a given probability distribution, then the mean
of these values should approach the expected value of the distribution as n grows to
infinity. The expected value for a finite probability distribution can be computed
from the formula E(X) =

∑
x xf(x). For the example provided in Table 2 this

evaluates to

E(X) =
∑
x xf(x)

= 2 1
36 + 3 2

36 + 4 3
36 + 5 4

36 + 6 5
36 + 7 6

36 + 8 5
36 + 9 4

36 + 10 3
36 + 11 2

36 + 12 1
36

= 7.

In healthcare, the most commonly arising finite distribution is the Poisson
distribution. The Poisson distribution expresses the probability of a number of
events occurring in a fixed period of time, if these events occur with a known average
rate and are independent of the time since the last event. A perfect example is the
number of newly arriving patients into a hospital in a given hour. The function
defined by

fλ(x) =
λxe−λ

x!
x = 0, 1, 2, . . .

is the finite probability distribution for the Poisson distribution. This distribution
has one parameter λ that represents the expected number of occurrences during
one time interval. The Poisson distribution is discussed further in Subsection 3.4.

Although finite probability distributions are simple to understand, they are not
practical in many situations. For example, if we consider the random variable of
an individual’s mass, it is clear that there is not a finite number of options. (One
could make a finite number of options by restricting mass to the nearest kilogram,
but realistically an individual can be 70kg, 70.5kg, 70.00343kg, etc.). To deal with
random numbers that can take on any value, continuous distributions are used.Recall,

R a
b f(x)dx is the

integral of f(x) from a

to b, and is equal to the

area under the curve de-

fined by f(x) from x = a

to x = b.

Unlike finite distributions, continuous distributions cannot take the form of
a function. (Consider, if x can take on an infinite number of values, then the
properties f(x) ≥ 0 for all x and

∑
x f(x) = 1 will be very difficult to achieve.)

Instead we use what is referred to as a probability density function. A function f
is is a probability density function (pdf) for a continuous distribution if Pr(y0 <
E < y1) =

∫ y1
y0
f(x)dx. What this means is that the probability of event E lying

between y0 and y1 is equal to the area under the curve f(x) between y0 and y1.
Probability density functions come in many shapes and forms, but like distri-

bution functions they all satisfy two conditions. First, like distribution functions,
pdfs are always positive: f(x) ≥ 0 for all x. Second, similar to distribution func-
tions, the area under the entire pdf must be equal to 1:

∫∞
−∞ f(x)dx = 1. Beyond

this, pdfs may be as simple or as complicated as one requires to describe the event.
We can also use pdfs to compute the expected value of a distribution. The

expected value for a continuous probability distribution given by the pdf f(x) can
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be computed from the formula

E(X) =
∫ ∞
−∞

xf(x)dx.

This is the area under the curve defined by the formula xf(x) (when the curve is
below zero, the area is subtracted). If E has a finite

number of outcomes

then the function

f(x) = P (E = x) is

the finite probability

distribution for E.

If E has an infinite

number of outcomes

then the function f(x)

is a probability density

function of the distribu-

tion if

Pr(y0 < E < y1) =R y1
y0

f(x)dx.

There are many different pdfs that are studied and used in probability theory,
and it is beyond the scope of this book to go into them all in detail. However, there
are several that are of particular interest in healthcare, and we go into these now.
Multinomial distribution: The multinomial distribution results from having a
pdf that is formed from a series of steps (see the leftmost graph in Figure 1).
The use of this distribution function is simply to recreate finite distributions in the
framework of pdfs.
Empirical distributions: Related to multinomial distributions, empirical distri-
butions are created to exactly match observed data. Such distributions are useful
for testing if the type of distribution used has a significant impact on the system
being researched. However, when implementing complicated models however, using
the empirical distribution limits our implementation options.
Normal distribution: The pdf for the normal distribution is given by the classical
“bell curve:”

fµ,σ(x) =
1

σ
√

2π
e
−1
2 ( x−µσ )2

;

(see the center graph in Figure 1). This distribution has two parameters µ and
σ that correspond to the expected value of the random variable and the standard
deviation of the distribution respectively. Key aspects of the normal distribution are
that it is symmetrically distributed about the mean, and drops off as it moves away
from the mean. It follows the 68, 95, 99.7 rule, which states that 68% of results lie
within one standard deviation of the mean, 95% of results lie within two standard
deviations of the mean, and 99.7% of results lie within three standard deviation of
the mean. The normal distribution is the natural choice for any continuous random
variable that is equally likely to be above the mean as below the mean. The normal distribution

is also referred to as the

bell curve, or Gaussian

distribution

Exponential distribution: The exponential distribution is the distribution which
represents the random time between consecutive random events in a process with
no memory. This is strongly related to the Poisson distribution. The Poisson
distribution fixes a time frame and examines how many random event occur in the
time frame, the exponential distribution fixes the number of random events and
examines the random time length between occurrences. The pdf for the exponential
distribution only relies on one parameter, λ, and is defined as

fλ(x) = λe−λx x > 0.

The exponential distribution has one parameters λ that relates to both the expected
value and the standard deviation of the distribution. The mean of the exponential
distribution is equal to 1

λ , and the variance is equal to 1
λ2 . Due to its nature, the

exponential distribution is only defined for nonnegative values.

3.4. Poisson and Exponential Distributions in Healthcare. The Pois-
son and exponential distributions are a natural choice for modelling arrival rates
for several reasons. Foremost is the logical supposition that an individual visiting a
doctor or specialist is an independently occurring event that happens at a constant
average rate. That is, the event of one individual visiting a given specialist in a
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Figure 1. Various probability distributions: The probability
distribution functions for a multinomial distribution (left), various
normal distributions (middle), and various exponential distribu-
tions (right).

given month (hour, day, year, etc.) does not make a different individual more or
less likely to visit the specialist in the same month (hour, day, year, etc.).

There are some reasons, however, why the Poisson distribution may not ideally
describe healthcare utilization. For one, a restrictive feature of the Poisson distribu-
tion is that the mean and variance of a random variable following this distribution
are equal. This notion is called equidispersion. Departures from equidispersion can
occur if the variance is either greater than the mean (overdispersion) or less than
the mean (underdispersion). Overdispersion, which can be caused by a large num-
ber of zero counts in the data set, is unfortunately common in healthcare data, as
there will be some people who never utilize services.

There may also be reasons to question that events occur independently at a
constant rate. Events in health utilization data are not always independent nor is
the probability of event occurrence always constant (for example, multiple visits
to a physician by the same patient are often related). Therefore, it seems likely
that the Poisson assumptions are often violated in health utilization data. As a
result, a more flexible generalization called the negative binomial distribution has
been considered. (The pdf for the negative binomial distribution is nontrivial, and
beyond the scope of this book.) For the negative binomial distribution, the variance
and mean are unlinked, which may better model healthcare utilization counts. In
addition, the negative binomial is not sensitive to event dependency and variable
event probabilities, so it is often considered to be an attractive alternative to the
Poisson distribution for modelling healthcare utilization data.

3.5. Confidence Intervals, and Statistical Significance. Once a proba-
bility distribution is selected, the mean and variance of a data set can be used
to construct confidence intervals for the data. Determining a confidence interval
begins by selecting a desired degree of confidence 1−α. For example, if one desires
95% confidence then α = 0.05. After the degree of confidence is selected, the 1−α
confidence interval for a random value X is defined as the range of values [x0, x1]
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such that X has a (1− α)×100% chance of lying within. Mathematically this is,

Pr(x0 ≤ X ≤ x1) = 1− α.

Determining a confidence interval is not a trivial task, but fortunately most sta-
tistical software is capable of performing it for the user. Therefore, instead of
discussing how to compute confidence intervals, we discuss how to interpret the
output of common statistical software.

Most statistical software will provide a mean µ, a standard error of the mean
σ/
√
n, a z-value z, and an associated probability (either Pr(< z) or Pr(> z) de-

pending on the software). If the associated probability is given in the form Pr(< z)
then this is the value of 1 − α, if it is given in the form Pr(> z) then this is the
value of α. By combining these one can generate a 1− α confidence interval:

µ− z σ√
n
< µtrue < µ+ z

σ√
n
.

That is, there is a probability of 1 − α that the true mean of the distribution is
between µ− z σ√

n
and µ+ z σ√

n
. Depending on the software the user may be able to

input the desired α and the computer will return the appropriate z value. Clearly
the desired result is for both the standard error of the mean, the z value, and the
value of α to be small. Generally an α < 0.05 is considered statistically significant,
and an α greater than this value is considered insufficiently small to develop any
conclusions. More discussion on the relevance of confidence intervals can be found
in Example 4.2.

4. Examples

4.1. “9 out of 10 Doctors Agree” – Interpreting Descriptive Sta-
tistics. Let us pretend that a pharmaceutical company has decided to try and
convince the public that its headache medicine is “better” than its competitors’.
In order to distinguish the two, we call the first company Company A and their
four major competitors Companies B, C, D and E. Company A begins by collecting
some data on the cost and effectiveness for each product. The cost is easily obtained
by going to the local drug store and asking the price of a package of 24 tablets for
each type of headache medicine. To compare the effectiveness of each product, the
company examines the number of milligrams of pain medicine per tablet for each
medicine, and the number of tablets in a recommended dose. In addition to this,
the company performs a case study of 500 people in which it asks each person to
use a specific brand of headache medicine for one month, and then rate the medica-
tion as either “not effective (1),” “somewhat effective (3),” or “completely effective
(5).” Participants who report not requiring headache medication during the month
of the study are excluded. The findings of this research is found in Table 3.

To present their results to the public, Company A produces the pamphlet found
in Figure 2. Let us critically examine this figure. The leftmost graph in the figure
shows the mean value for the survey data they collected. At a glance it would
appear that Brand A is significantly more effective (according to this survey) than
any other brand, especially Brand E, which appears to be the least effective. Let
us do a more detailed statistical analysis of the results, in particular comparing
Brand A with Brand E. First notice that as the survey was not presented within
the pamphlet, the public is left with the question of what is meant by a value of 5,
4, 3, 2, or 1. (Note that there was actually no value for 4 or 2, something the public
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Cost for mg of tablets mg of % rating % rating % rating
Company 24 tablets medicine per medicine effect effect effect

per tablet dose per dose 1 3 5
A 8.99 175 3 525 5 25 70
B 11.99 250 2 500 5 35 60
C 10.99 225 2 450 10 20 70
D 10.49 225 2 450 20 0 80
E 14.99 400 1 400 10 30 60

Table 3. Results of Company A’s research into cost and effective-
ness for various headache medications.
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Figure 2. An example of poor descriptive statis-
tic:“Descriptive Statistics” developed by Company A.

does not know.) Next, notice the scale on the y-axis does not start at 0. Indeed the
effectiveness of Brand E may appear 4 times lower than the effectiveness of Brand
A, but the actual mean values are µA = 4.3 (for Brand A) and µE = 4.0 (for Brand
E). Moreover, the standard deviation in the data for Brand A is σA = 1.15, and for
Brand E is σE = 1.35. Since 100 people were sampled for each group, this gives a
standard error of the mean of σA/

√
100 = 0.115 for Brand A, and σE/

√
100 = 0.135

for Brand E. Looking up the z value for a normal distribution associated with a
confidence of 1 − α = 0.95 we find z = 1.645 (as can be found in most statistics
textbooks). Thus we have the confidence intervals

4.3−1.645(0.115) < µA,true < 4.3+1.645(0.115)⇒ 4.110825 < µA,true < 4.489175,

and

4.0− 1.645(0.135) < µE,true < 4.0 + 1.645(0.135)⇒ 3.777925 < µE,true < 4.222075

for Brand A and Brand E respectively. The fact that these two intervals overlap
implies that there is no statistically significant difference between the two means
at the standard 95% confidence level.

Let us now turn our attention to the two graphs on the right, “Amount of
Painkiller per dose” and “Cost for 24 Tablets.” Together these charts make it
appear that Brand A is providing significantly more painkiller per dose, and cost
significantly less. Both of these statements are false. Notice that as before, neither
chart begins at zero. Further more, the cost given is per 24 tablets, not per dose.
Since Brand A requires 3 tablets per dose, a box of 24 tablets actually only contains
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8 doses, while Brand E, which appears the most expensive, only uses one tablet per
dose.

The conclusion of this example is that one must be wary of descriptive sta-
tistics. Although there is certainly a place for descriptive statistics in research,
one should not attempt to draw any conclusions without being provided a more
detailed analysis. By providing some select descriptive statistics it is not difficult
to manipulate data to have it appear to support the conclusion(s) one desires.

4.2. Age, Health, and Confidence Intervals. The traditional definition of
“old” or “senior citizen” usually refers to individuals of 65 years of age or older. This
concept dates back to the post World War II era of 1955, when the life expectancy
of a newborn in most industrialized countries (including Canada and the USA) was
slightly over 65 years [25]. Today, a newborn American child has a life expectancy
of just under 80 years, and a newborn Canadian has a life expectancy of just over
80 years1. Clearly then, the traditional definition of “old” is no longer appropriate.
Indeed, over the past 160 years the life expectancy of the leading countries have
risen linearly by three months per year [25]. (The United States and Canada have
both followed this trend for at least the past 50 years.) Various scientists have
repeatedly forecast a levelling of this trend, but this has yet to occur [25]. This
suggests that any predictive model that involves population age distributions as a
proxy for population health status will eventually become flawed.

In order to counteract this problem, some researchers are beginning to examine
health status, and healthcare usage, in terms of distance from death, as opposed to
distance from birth. A 2003 study by Yang, Norton, and Stearns, using American
data from the Medicare Current Beneficiary Survey Cost and Use Files clearly
demonstrates this idea [230]. In this example we quickly review this experiment,
and highlight how confidence intervals play a very important role in the analysis of
how health status interacts with age.

Yang, Norton, and Stearns’ work begins by compiling the data into three dis-
tinct age groups: 65-74, 75-84, and 85+. Their results are nicely summarized by
two figures, which we reproduce in Figure 3.

On the left side of Figure 3 we see Yang, Norton, and Stearns’ figure regarding
healthcare expenditure by age. One immediately notices that these expenditures
rise with age. However, one should also notice that the 95% confidence intervals
of these expenditures expand very rapidly. Both of these trends are explained by
the pair of figures on the right side of Figure 3. This pair of figures shows that
healthcare expenditure is very strongly correlated to proximity to death, and that
the likelihood of death increases with age. In these figures we see that the error
bounds remain much steadier.

Without examining the confidence intervals, the left side of Figure 3 would
create a very convincing argument that healthcare expenditures are a function of
age alone. However when confidence intervals are considered, the certainty of that
relationship becomes less secure. A correlation still exists to be sure, but it is
evident that it is not age alone, but age as a proxy to something else (nearness
to death in this case) that carries most of the strength in the relationship. This
means that if the connection between age and nearness to death changes, (as it has

1The CIA world factbook provides USA’s life expectancy at birth in 2007 as 78.14 years,
and Canada’s life expectancy at birth in 2007 as 81.16 years. https://www.cia.gov/library/

publications/the-world-factbook/
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we call the 

 

decedent 

 

sample, included the 42,565 observa-
tions within 1 year of death (see the fifth column of Table
1). We used this sample to compute expenditures by age for
persons who are relatively close to the end of their life. The
second group, which we call the 

 

survivor

 

 sample, included
the 457,657 observations at least 1 year before death and at
least 1 year before being censored (see the last column of
Table 1). We eliminated observations within 1 year of being
censored because someone who is censored may actually be
close to death (e.g., may die early in 1999 after the survey is
over). We used the survivor sample to compute expenditures
by age for persons who are not close to death.

We computed the average monthly expenditures by payer
and service types for the decedent sample, the survivor sam-
ple, and the full sample separately. All monthly expendi-
tures were adjusted for inflation to 1998 dollars using the
Consumer Price Index (Bureau of Labor Statistics, U.S. De-
partment of Labor). We used cross-sectional weights and
adjusted for the complex survey design for the estimates of
the means and standard errors of monthly expenditures.

First, we investigated how health care expenditures
change with age when people are close to death, com-
pared with when they are not close to death. We plotted
the average monthly health care expenditures by age for
both the decedent sample and the survivor sample and
compared the shape of the graphs. Next, we investigated
how health care expenditures change when people of dif-
ferent ages are approaching death. We expanded the dece-
dent sample from within 1 year of death to within 3 years
of death, and split the expanded sample into three age
groups: age 65–74, age 75–84, and age 85 or higher.
Then, we plotted the average monthly health care expen-
ditures by time to death of these three age groups and
compared the shape of the graphs.

 

R

 

ESULTS

 

Summary Statistics

 

As shown in the first four columns of Table 1, after ad-
justment all expenditures to 1998 dollars, the average total
monthly health care expenditure per person was more than
$700. The biggest payer was Medicare, which accounts for
more than half of the total at $429. Medicare was also the
main payer of inpatient care at $214. The biggest payer of
nursing home care was Medicaid (Norton & Newhouse,
1994), which covered about 38% of the nursing home ex-
penditures in our sample. The average amount spent per
month on services was $241 for inpatient care, $198 for
nursing home care, and $38 for home health.

As shown in the last two columns of Table 1, the decedent
sample was predictably different from the survivor sample.
The decedent sample was older than the survivor sample
(average age was 79.9 vs. 74.9). There were more widowed
people in the decedent sample than the survivor sample
(49% vs. 36%). Also, the average monthly health care ex-
penditures for different payers and service types were much
higher in the decedent sample than the survivor sample.
Therefore, even at an aggregate level, the data suggest that
people die at older ages, and when they are close to death,
they have higher health care expenditures.

 

Graphical Results

 

To move beyond simple descriptive statistics and show
how health care expenditures vary by age and time to death,
we created graphs of average monthly health care expendi-
tures. Monthly health care expenditures increase with age
from $500 per month at age 65 to more than $2,000 per
month at age 97 (see Figure 1). Therefore, health care ex-
penditures per month rise by nearly fourfold as someone
ages from 65 to 97. The small dip in expenditures at the
highest ages may be because of small sample size, or to sub-
stitution of lower priced subacute care for hospital care. The
95% confidence intervals shown in the graph also increase
with age, because there are fewer observations after age 85,
and higher mean expenditures lead to higher variance. From
Figure 1 alone, one might be tempted to conclude that, be-
cause older people spend more money on health care than
younger people, the baby boom generation will cause a tre-
mendous increase in Medicare expenditures in the future.
However, that simplistic view does not consider underlying
patterns of health care expenditures by age and time to
death.

Average monthly health care expenditures start to in-
crease about 24 months before death, and increase faster in
the last 6 months of life up through the last (potentially par-
tial) calendar month of life (see Figure 2A). This finding has
been documented repeatedly in the empirical literature (e.g.,
Felder, Meier, & Schmitt, 2000; Lubitz & Riley, 1993;
McGrail et al., 2000; Zweifel et al., 1999). One reason for this
finding is that the monthly mortality rate also rises steadily
with age, as shown in Figure 2B. Therefore, because people are
more likely to die as they get older and because people spend
more when they are close to death, aging per se is not the
only reason for higher total health care expenditures for
the elderly population. Instead, health care expenditures are
higher on average at higher ages because a greater fraction
of the population is in their last year of life.

The timing of expenditures is only part of the story, be-
cause the composition of who pays for health care and what
services are purchased also shifts with age. We plotted
graphs of health care expenditures against age for different
payers and service types (see Figures 3A and 3B). Although
Medicare expenditures increase gradually with age, peaking

Figure 1. Health care expenditures by age.
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at age 97, Medicaid and out-of-pocket expenditures increase
much more noticeably after age 80 (see Figure 3A). By the
time someone reaches their mid-90s, average monthly ex-
penditures for Medicaid and out-of-pocket payments com-
bined are as high as for Medicare. Health care expenditures
by service type follow similar patterns. Figure 3B shows
that monthly inpatient expenditures do not increase much
with age, and home health care expenditures only increase
slightly with age. Monthly nursing home expenditures,
however, steadily increase after age 75. These trends reflect
the fact that the main payers of nursing home care are Med-
icaid and out-of-pocket. Therefore, as people age, they use
more nursing home and home health care, but not substan-
tially more inpatient care.

To compare the separate effects of age and time to death on
health care expenditures, we plotted expenditures by age for
those close to death and for those not close to death, and plot-
ted expenditures by time to death for different age groups (see
Figures 4–8). Average monthly expenditures have a different
pattern when plotted against age for the sample within 1 year
of death than for those more than 1 year from death. Monthly
health care expenditures in the last year of life are much
higher than monthly expenditures for people more than 1 year
before death (see Figure 4A). For people within a year of
death, monthly expenditures do not show an upward trend. In
contrast, monthly expenditures for people more than 1 year

before death increase steadily but modestly with age until age
99. Figure 4B provides a more explicit assessment of whether
end-of-life expenditures vary by age. Before 4 months to
death, people aged 85 and older constantly have slightly
higher expenditures per month than younger people, but there
is a reversal in this pattern within 4 months before death. The
three age groups have almost the same monthly expenditures
at 4 months before death, but expenditures are highest for
people aged 65–74 and lowest for people aged 85 and older
during the 2 months before death. As people approach death,
however, the rate of increase in monthly expenditures is less
for the oldest old than for the younger old.

To test the statistical significance of the differences in
total health care expenditures between age groups, we boot-
strapped 95% confidence intervals for expenditures each
month before death for each age group (see Table 2). In the
month of death, the 95% confidence interval of the oldest
group (aged 85 and older) does not overlap with the intervals
for the younger groups, which means the persons aged 65–74
and 75–84 have significantly higher expenditures than the
oldest group. In contrast, the confidence intervals for the three
age groups overlap substantially at 3 and 4 months before
death. At 24 months before death, the youngest age group
has significantly lower expenditures than the older groups
aged 75 and above. In addition, as shown in Figure 4B, from

Figure 3. (A) Health care expenditures of different payers vs. age.
(B) Health care expenditures of different service types vs. age.

Figure 2. (A) Health care expenditures by time to death. (B)
Monthly mortality rate by age.

Figure 3. Age versus proximity to death in healthcare ex-
penditures: Relating age and proximity to death to healthcare
expenditures.
Left: Healthcare expenditures by age with 95% confidence inter-
vals.
Right: (A) Healthcare expenditure by proximity to death with 95%
confidence intervals and (B) monthly mortality rate by age.
Reproduced from [230, Fig. 1] (left) and [230, Fig. 2] (right).

and will likely continue to do over long periods of time) the use of age alone to
predict costs will create an error. This demonstrates the importance of reporting
more than just basic statistics in research.

4.3. Private Accommodation Environments in British Columbia. In
British Columbia (BC), Canada, Home and Community Care (HCC) provide a
range of healthcare and support services for acute, chronic, palliative or rehabilita-
tive healthcare needs. Unlike most healthcare services in BC, HCC has a prominent
private sector. To understand the drivers of HCC demand, it is valuable to under-
stand the drivers of non-publicly funded HCC services. However, since non-publicly
funded HCC facilities lie outside of the jurisdiction of the BC Ministry of Health
Services, the Ministry knows relatively little about the quantity or quality of non-
publicly funded accommodation environments in BC. To reduce this knowledge gap,
in 2007 Dodd and Hare performed a province wide telephone survey of accommo-
dation environments in BC. In this example we outline the method and some of the
results of this survey.

The survey began by seeking names, telephone numbers, and addresses for non-
publicly funded accommodation environments in BC. Facilities were cross listed
with a list of publicly funded facilities provided by the BC Ministry of Health
to determine which facilities received some public funding. Facilities that were
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receiving no funding from the BC Ministry of Health were labelled Type 1 facilities.
Facilities that were receiving some funding from the BC Ministry of Health were
labelled Type 2 facilities. A telephone survey of all facilities was then conducted.

Each Type 1 facility was telephoned and asked a series of questions, including:

• How many people can your facility support?
• Is there a wait-list to enter your facility?

If yes: How long do people usually have to wait?
If no: How many more people could you accept into your facility?

As it is possible for a publicly funded facility to have some non-publicly funded beds,
Type 2 facilities were also contacted. For these facilities the above list of questions
was prefaced with the question: “Do you have any non-publicly funded beds in your
facility?” If the answer was yes, the facility was asked the same questions as Type
1 facilities, but requested to answer only in regards to their non-publicly funded
beds.

Analysis of the survey data began by determining if a facility was a reasonable
approximation of a BC accommodation environment. To be considered a reasonable
approximation, facilities had to provide residents with a bed, full meal service and
a 24 hour emergency medical response system. Type 2 facilities that answered
“no” to the preface question (“Do you have any non-publicly funded beds in your
facility?”) did not fulfill the requirements. A basic break down of facility numbers
and bed counts is provided in Table 4.

Type 1 Type 2 Total
Potential Facilities 368 419 773
Successful Contacts 212 199 411
Fulfill Requirements 133 46 179

Number of Counted Beds 9590 1963 11553
Table 4. Survey of Non-publicly funded Accommodation
Environments in BC: Type 1 facilities receive no funding from
the BC Ministry of Health Services, Type 2 facilities receive some
funding from the BC Ministry of Health Services. Successfully con-
tacted facilities represent facilities that were reached via telephone
and agreed to participate in the survey. To “Fulfill Requirements”
means that the facility provides a minimum of a bed, full meal
service and a 24 hour emergency response system, and the facility
receives some private funding.

As one can see from Table 4, there are at least 11,553 accommodation envi-
ronment beds in BC that are not publicly funded. However, we also see that of
the potential 773 facilities, approximately half (411) were successfully contacted.
(A facility is considered successfully contacted if it was reached via telephone and
agreed to participate in the survey.) Given the large number of facilities that were
not successfully contacted, 11,553 is likely to be much lower than the actual bed
count. A quick, realistic, expected bed count for the number of non-publicly funded
accommodation environments in BC can be computed as follows. Since 133 of the
212 successfully contacted Type 1 facilities fulfilled the requirements, we estimate
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that 133/212 = 62.7% of the uncontacted Type 1 facilities will fulfill the require-
ments. As the average number of beds in successfully contacted Type 1 facilities
that fulfilled the requirements is 9590/133, we estimate the total number of Type
1 facility beds in BC to be

(1) 9590 + 156× 133
212
× 9590

133
≈ 16647.

Similarly, we estimate the total number of Type 2 facility beds in BC to be

1963 + 220× 46
199
× 1963

46
≈ 4133.

This provides a total estimate of 20,780 beds.
Of course these estimates are very basic. In particular, they do not take into

account that facilities in more urban areas are larger than facilities outside of urban
centers. This can easily be addressed by breaking down our examination of beds
into geographic areas. BC is separated into 5 Health Authorities (HA) and 16
Health Service Delivery Areas (HSDA). In order to gain a greater understanding
of non-publicly funded accommodation environments in BC, Dodd and Hare break
down the survey results into HSDA level estimates by performing the same basic
estimate technique:

(2)
known beds + uncontacted facilities ×

likelihood of fulfilling requirements ×
average bed count.

Now however, likelihood of fulfilling requirements is defined by

likelihood of fulfilling requirements =
# fulfilling requirements in HA

# potential facilities in HA
.

Similarly, average bed count is now defined by

average bed count =
# known beds in HA

# fulfilling requirements in HA
.

Table 5 reports the results of this technique.
It should be noted that, although estimated bed count is given at the HSDA

level, the likelihood of fulfilling requirements and average bed count used in equa-
tion (2) are still calculated at the HA level. This is done, as several HSDAs lack a
sufficent number of successfully contacted facilities to provide reasonable estimates
values. For example, in the Northeast HSDA only one Type 1 facility was suc-
cessfully contacted, and it did not fulfill the requirements. Therefore, if the HSDA
values were used for the Northeast HSDA, we would return an estimate of 0 Type
1 facility beds. (This may be correct, but it seems less likely than the 12 reported
in Table 5.)

Summing the Type 1 and Type 2 facility bed counts estimated in Table 5 we
estimate that there are 21,220 non-publicly funded accommodation environment
beds currently in BC. Considering that in March of 2007 the Ministry of Health
Services funded 27,967 assisted living and residential care beds, we can see that
non-publicly funded beds are filling a significant portion of total province wide
services.

There are several potential sources of error with these preliminary results. First,
telephone numbers were obtained via internet and phonebook searches. It is likely
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HSDA name Estimated Type 1 Estimated Type 2
Bed Count Bed Count

East Kootenay 163 549
Kootenay Boundary 64 329

Okanagan 4062 419
Thompson Cariboo Shuswap 1238 330

Fraser Valley 1124 75
Simon Fraser 1818 468
South Fraser 1768 683

Richmond 174 131
Vancouver 1516 409

North Shore/Coast Garibaldi 713 211
South Vancouver Island 2287 447

Central Vancouver Island 1249 123
North Vancouver Island 347 38

Northwest 37 32
Northern Interior 238 134

Northeast 12 32
Total BC 16809 4411

Table 5. Non-publicly funded Accommodation Environ-
ments in BC by HSDA: Type 1 facilities receive no funding
from the BC Ministry of Health Services, Type 2 facilities receive
some funding from the BC Ministry of Health Services.

that some non-publicly funded facilities were missed during this information gath-
ering stage. Second, data was only obtained for less than half of the facilities.
Therefore we have a survey bias towards facilities that are more likely to have a full
time secretarial staff. As it would seem likely that larger facilities would be more
likely to have full time secretarial staff, this may have lead to an over-estimation of
the number of beds.

Nonetheless, these results give a clearer picture of non-publicly funded accom-
modation environments in BC by providing a snapshot of the current private sector.
The research of Dodd and Hare continued by analyzing the data using common de-
mographic factors and linear regression (see Chapter 7). Further information can
be found in reference [101]. Of note in this example, is that although the sur-
vey and statistics generated from the survey were simple descriptive statistics, the
numbers provide a much clearer picture of non-publicly funded HCC services in
BC. When developing models of healthcare demand, it is often useful to begin with
straightforward surveys such as the one listed here, in order to gain an intuitive
understanding of the issues involved.

5. Related Reading

Descriptive statistics are the basis of Regression Analysis (Chapter 6), as well as
Epidemiology (Chapter 7). At some level all quantitative models should be based in
reality. This is often done by comparing model output to Descriptive Statistics.
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Reference [230] provides details for example 4.2. Reference [148] provides further
evidence that proximity to death is a better estimator of healthcare expenditures than
age.

Reference [64] discusses methods of statistically analyzing utilization data in health-

care. Reference [41] develops a microeconometric model of the demand for health in-

surance. Reference [40] discusses regression analysis. Reference [116] reviews some of

the misuses of statistics as well as some of the techniques employed to distort results.

References [176] and [177] discuss potential publication biases and data analysis errors,

including publication bias in situ.



CHAPTER 6

Predictions and Responses

I don’t try to describe the future. I try to prevent it. Ray Brad-
bury (1920-)

When men speak of the future, the gods laugh. Ancient Chinese
proverb

Regression Analysis

1. Model Overview

In 2003, researchers from the University of California, Berkley, completed a
four year study of how much data existed in the world1. The results showed that
from 1999 to 2002 the amount of stored data in the world approximately doubled.
This corresponds to a growth rate of approximately 25% per year (consider that
the population of the earth is growing at a mere 1.14% per year2). Approximately
one quarter of this data is in the form of electronically stored statistics. With this
in mind, policy makers worldwide are left with the increasingly daunting task of
sifting through this data in an attempt to make better decisions.

Fortunately for policy makers, the recent past has also seen great growth in
statistical analysis techniques and software. For policy makers in healthcare, the
interest in data analysis often lies in developing a quantitative relationship between
a set of variables and a possible outcome. For this, researchers often turn to the
field of regression analysis. The word model in sta-

tistical literature usually

refers to an equation to

which one tries to fit

data via regression anal-

ysis.

In mathematics, regression analysis refers to modelling techniques designed to
uncover relationships between a dependent variable and one or more independent
variables. When data is collected, one of the variables measured is often consid-
ered to be a response or outcome of interest. The other variables measured are
explanatory or predictor variables. In healthcare, researchers generally attempt to
develop a formula or equation that relates the predictor variables to the response
variable. In literature the words model, model function, or statistical model are of-
ten used to refer to the formula that relates these two types of variables. When the
model functions are based in economic theory, literature often refers to the results
as Econometrics (meaning economic measurement). However, other approaches of
developing model functions exist.

It should be noted that the terms explanatory variable and predictor variable
are used interchangeably. We favour the term predictor variable to emphasize that

1“How Much Information? 2003” www2.sims.berkeley.edu/research/projects/

how-much-info-2003/
2CIA world factbook: www.cia.gov/cia/publications/factbook/
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when choosing them, it is important that these variables be measurable before the
response variable is known. For example, suppose we are interested in determin-
ing an equation that will help provide an estimated cost for a patient undergoing
chemotherapy to treat cancer. The response variable is the “cost of treatment.”
Explanatory variables might include the initial size of the cancer discovered, the
age of the patient, and the number of chemotherapy sessions the patient uses. The
first two of these variables are predictive, in the sense that they can be determined
before treatment is complete. The last of these, the number of chemotherapy ses-
sions, is not predictive as it cannot be determined until treatment is complete. Of
course, at this point the total cost of chemotherapy is already known, so in a prac-
tical sense the third variable is not particularly useful for developing healthcare
policies.Three possible ex-

planatory variables

for determining the

response variable “time

required to recover

from hip replacement

surgery” could be:

1. Age of patient.

2. Body Mass Index of

patient.

3. Number of post-

surgery physiotherapy

sessions.

Although the third pro-

vides a very high degree

of explanation, it is not

particularly useful as it

cannot be determined

until the response vari-

able is already known.

Therefore it is not a

good predictor variable.

Once the response variable and predictor variables have been determined, sta-
tistical techniques can be used to understand and predict how the value of the
response variable will change for different values of the predictor variables. This
process begins with the creation of a hypothetical model under which the data is
likely to fit. After creating a hypothetical model, a statistical tool called regression
analysis is used to fit the data to the model. If a good fit can be created then this
helps validate the model, if no fit can be found then the model is rejected and the
process begun again.

The creation of the hypothetical model is essentially the creation of a mathe-
matical equation which one feels describes the “shape” of the data. For example,
we might expect the cost of running a hospital would increase in direct proportion
with square footage of the hospital, so the model linking the two would be a straight
line. Alternately, we generally expect body mass to increase with the square of a
person’s height, so the model linking these would be in the form of a quadratic.
Other more complicated interactions (such as prevalence of HIV/AIDS in relation
to a country’s GNP, literacy rate, and prevalent religion) are likely to require more
complicated models.

The next step is to associate a probability distribution function with the data.
To explain, consider that even if two individuals have the exact same predictor
variables, we would not expect the response variable to be exactly the same. Thus
we assume that the response variable contains some degree of randomness. In
associating a probability distribution with the data, we are quantifying how to
predict the behaviour of this randomness. The choice of probability distribution
function will depend on the nature of the data collected. Questions such as, “is the
measured response discrete or continuous?” and “do we expect a skewing of the
probabilities or that the measured responses will be evenly distributed about its
average?” should be considered in the decision of which probability distribution to
use.Information on various

probability distributions

can be found in Chapter

5, Subsection 3.3.

Once the model and probability distribution have been created, the model is fit
to data. This involves using information from the data to estimate any unknown
parameters in the mathematical equation. If a collection of parameters can be
found that create a good fit of the equation to the data, then the model is accepted
and can be used to make predictions. Otherwise the researcher should return to
the beginning, and create a different model to try to fit the data.
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2. Common Uses

Regression is the collection of statistical tools that can be used to relate pre-
dictor variables to response variables. In healthcare, many of the questions ap-
proached by these techniques involve trying to understand what influence (positive
or negative) various predictor variables have on long-term health. As such, these
techniques are very useful in answering questions regarding the cost of healthcare
and healthcare demand, such as:

• How does age impact the expected cost of cancer treatment?
• What is the role of health insurance on the demand for health services?
• How does the physician to population ratio affect public access to health-

care?

Often, the ultimate goal of regression analysis when applied to healthcare is to
characterize the incentive structures underlying observed patterns, test the effects
of incentive-altering policy, and to estimate future demand. Regression analysis
can be used to help develop an equation that relates the risk factors to the outcome
of interest. In these equations the input variables should be known (or testable)
properties of the patient (e.g. gender, age, etc.) and the output variables should
be the expected value of the health outcome. For example we might try to create
equations relating:

• Number of cigarettes smoked per week to likelihood of contracting cancer,
• Age and education to likelihood of attending an immunization clinic, or
• Initial sense of pain and age to recovery rates after knee surgery.

3. Mathematical Details

Suppose that an experiment (or series of experiments) has been performed and
a collection of data has been developed. From the raw data we seek to develop
formulae which can be used to predict what impact a change in the information
will have on the probability of an event. (From this point on we will call the
outcome we are seeking to predict the response variable, and information which we
are using to make the prediction the predictor variables.) The response variable is

the outcome we are try-

ing to predict. The pre-

dictor variables are the

information we are us-

ing to make the predic-

tion.

Analysis begins by creating a model function under which we feel the data
is likely to fit. When the models are based in economic theory, literature often
refers to the results as Econometrics (meaning economic measurement). However,
other approaches of developing model functions exist. After creating a hypothetical
model, we use the statistical tool of regression analysis to fit the data to the model.
If a good fit can be created then this helps validate the model, if no fit can be found
then the model is rejected and the process begun again.

Let us consider the question of how to select a model function to attempt to fit
the data to. If the data is simple enough, one of the best ways to begin this process
is to plot the data points on a graph. To see this, let us examine a simple example.

A young student wishes to know how much her car is costing her to drive. In
order to develop an answer to this, she records her mileage car related expenses
(gas, insurance, maintenance, etc.) for several months. This hypothetical data is
shown in Table 1. Examining Table 1 it is clear that the further she drives, the
more car related expenses she incurs. Plotting the four data points on a graph
she notices they look roughly like a straight line. With a little bit of playing she
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month Jan. Feb. Mar. Apr. May
car expenses ($) 230 210 220 250 250

mileage (km) 345 304 309 430 450
Table 1. Car related costs and mileage by month.

determines that the formula

cost/month = 140 +mileage× 0.25

gives a reasonable approximation of these numbers (see Figure 1).
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Car mileage and costs for four months

Figure 1. Linear regression example: Car related costs and
mileage for four months. The dots are data points and the dashed
line is the approximated linear regression.

Of course in most cases we cannot expect the relationship between two variables
to be linear. For example, it is commonly accepted that the relationship between
height and weight is nonlinear as weight increases with the square of an individual’s
height.

If the data is more complicated, or in particular if more than two variables
are being considered, then it is likely that graphing the data to help guess at the
relationship is impossible. In these cases, we can rely on economic theory to help
select which style of equation might be best suited for the model. A complete
survey of all possible model types is well beyond the scope of this book. Instead we
present three important styles that are well suited to analysis in healthcare: normal
linear regression, logistic regression, and generalized linear regression.
Normal Linear Regression: In normal linear regression we assume the relation-
ship between the data is polynomial and that any errors in the data are distributed
in a normal manner (i.e. along a bell curve). This is well suited for many physi-
cal phenomena such as the relationship of height to weight, or the relationship of
the cost of maintenance to the size of a hospital. More details on normal linear
regression are given in Subsection 3.1.
Logistic Regression: In logistic regression we assume that the relationship fol-
lows an ‘S’ shaped curve called the logistic curve. This implies that the response
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variable is impacted less by changes in the predictor variables when the predictor
variables are near the extreme ends of their range. This style of curve is well suited
to many health related issues such as the relationship between recovered health and
time since surgery. Also, whenever the data has a response variable that can only
take on one of two possible values, the common consensus among statisticians is to
use logistic regression. For example, logistic regression should be used if you are
considering the relationship between age and the risk of a heart attack (since in
the data each individual has either had a heart attack or has not). More details on
logistic regression are given in Subsection 3.2.
Generalized Linear Regression: Generalized linear regression is a general style
of regression analysis that includes both linear and logistic regression. The mathe-
matics behind generalized linear regression is quite deep, so only a cursory overview
of the subject is provided (Subsection 3.3).

3.1. Normal Linear Regression and Least Squares. In normal linear
regression, the response variable is assumed to be a polynomial function of the set
of predictor variables. That is, the relationship can be written as

(3) Y = β0 + β1X1 + β2X2 + · · ·+ βnXn

where Xi are the predictor variables, Y is the response variable, and βi (i =
1, 2, . . . , n) are fixed coefficients used to describe the linear relationship between
Xi and Y . Despite appearances, it is important to note here that the term linear
regression refers to the linearity in the coefficients βi and not in the predictor vari-
ables Xi (i = 1, 2, . . . , n). Indeed in many cases we do not wish to assume a linear
relationship between the response variable and the predictor variables. (Recall for
example, mass is generally considered proportional to the square of an individual’s
height.) How to deal with nonlinearity in the predictor variables is easily explained
by an example. Suppose the response variable Y depends on predictor variables
X1 and X2 in a relationship of the form

Y = β0 + β1X1 + β2X2 + β3X
2
1 + β4X1/X

2
2 .

Defining two new variables as X3 = X2
1 and X4 = X1/X

2
2 , the above formula

becomes
Y = β0 + β1X1 + β2X2 + β3X3 + β4X4,

which is linear in its predictor variables. One way to remember this is to remember
that height, mass, and body mass index (BMI = mass/height2 = kg/m2) can all
be predictor variables. The word “linear” in

linear regression refers

to the coefficients βi and

not to the predictor vari-

ables Xi. A regression

of the form

Y = β0 + β1X1 + β2X2
1 ,

can easily be made lin-

ear in X1 by writing

Y = β0 + β1X1 + β2X2,

where X2 = X2
1 .

In the above example, the response variable was the cost of driving the car for a
given month, and the predictor variable was the distance the car was driven in that
month. In healthcare, the response variable may be the cost of treating a patient,
the likelihood of an individual experiencing a given disease, the likelihood of an
individual using the healthcare system, or any number of other things. Explanatory
variables may include things like an individual’s sex, race, body mass index, etc.

The difficultly in developing a linear regression largely reduces to how to deter-
mine the coefficients βi (i = 1, 2, . . . , n). To do this we begin by making multiple
independent observations of the response variable. If the predictor variables are
something we can control, this can be done in the form of experiments that ensure
good distributions of the predictor variables and high accuracy in the response vari-
able. However, in healthcare it is not common to have control over the predictor
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variables, and so observations are often made via surveys which may not give a good
distribution of the predictor variables or high accuracy in the response variable.

Suppose N surveys have been performed that provide us with N independent
observations of the response variable and N distributions of the predictor variables:

Survey 1 response = Y1 predictor variables = (X1,1, X2,1, . . . , Xn,1)
Survey 2 response = Y2 predictor variables = (X1,2, X2,2, . . . , Xn,2)

...
...

...
Survey N response = YN predictor variables = (X1,N , X2,N , . . . , Xn,N ).

Since data collected naturally contains some randomness, we do not expect to be
able to find coefficients βi (i = 1, 2, . . . , n) such that

Yj = β0 + β1X1,j + β2X2,j + · · ·+ βnXn,j for all j = 1, 2, . . . , N.

Instead we view each Yj as a realization of a random variable Y that dependsThe normal distribution

(also known as the

Gaussian distribution)

is the distribution asso-

ciated with the classical

“bell curve”. Some of

its key characteristics

include, a symmetric

unbounded distribution

about its mean with

a higher likelihood of

being near the mean.

on the predictor variables (X1, X2, . . . , Xn) and a random factor ε. Our equation
becomes

Yj = β0 + β1X1,j + β2X2,j + · · ·+ βnXn,j + εj for all j = 1, 2, . . . , N.

and we attempt to find the coefficients βi (i = 1, 2, . . . , n) that provide the best
fit to the observed data (that is the smallest values for εj). For normal linear
regression, we assume that the random variable Y takes on a normal distribution
and then use ordinary least squares.

In the ordinary least squares estimation procedure, the unknown β coefficients
are estimated by minimizing the sum of the squared differences between the ob-
served responses Yi and the potential linear approximation:

min
β̂1,β̂2,...,β̂n


N∑
j=1

(
Yj − [β̂1X1,j + β̂2X2,j + · · ·+ β̂nXn,j ]

)2


= min
β̂1,β̂2,...,β̂n

N∑
j=1

ε2j .

Taking squares of the differences between observed and fitted responses prevents
positive and negative deviations from the line cancelling each other when summing
the errors. An example of normal linear regression and least squares will be given
in Subsection 4.1The central limit theo-

rem states that that the

sum of the random vari-

ables with finite vari-

ance tends towards a

normal distribution as

the random variables go

to infinity.

At this point it is worth noting an important result from statistical theory:
the Gauss-Markov theorem. The Gauss-Markov theorem states that if the random
variable is normally distributed then the best linear unbiased estimator for the
coefficients is found via ordinary least-squares. That is, if a researcher is going to
assume that the data fits a normal linear regression scheme, then ordinary least
squares should be used to determine the coefficients βi (i = 1, 2, . . . , n).

On a final note, the ordinary least square problem is a quadratic optimiza-
tion problem (see Chapter 16). It, along with normal linear regression, can be
accomplished by a number of optimization and statistical software packages (see
Appendix A).
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3.2. Logistic Regression. In logistic regression, the response variable is as-
sumed to follow what is called the logistic curve. This curve is defined as

(4) Y =
eβ0+β1X1+β2X2+···+βnXn

1 + eβ0+β1X1+β2X2+···+βnXn

where, as before, Xi are the predictor variables, Y is the response variable, and
βi (i = 1, 2, . . . , n) are fixed coefficients used to describe the linear relationship
between Xi and Y . As in linear regression, it is important to note that we can
easily incorporate non-linearity in the predictor variables (Xi) in this model. For
example, if we desire the predictor variable X1 to be cubed in the exponent, we can
easily create a new variable X2 = X3

1 :

i.e. Y =
eβ0+β1X1+β2X

3
1

1 + eβ0+β1X1+β2X3
1

=
eβ0+β1X1+β2X2

1 + eβ0+β1X1+β2X2
.

In order to compute the coefficients βi (i = 1, 2, . . . , n) for the logistic regression,
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Figure 2. Examples of logistic curves: Logistic curves can
take the shape of an ‘S’ (top left), the shape of an ‘inverted S’
(bottom left), or a portion of one of these shapes (right)

we begin by considering the function

P (x) =
ex

1 + ex
.

Notice that
P (x)

1− P (x)
=

(
ex

1 + ex

)
÷
(

1− ex

1 + ex

)

=
(

ex

1 + ex

)
÷
(

1 + ex

1 + ex
− ex

1 + ex

)

=
(

ex

1 + ex

)
÷
(

1
1 + ex

)
= ex.
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Therefore log
(

P (x)
1−P (x)

)
= x, and in particular, equation (4) tells us

log
(

Y

1− Y

)
= β0 + β1X1 + β2X2 + · · ·+ βnXn.

At this point it appears that, if we replace the response variable Y with a new
response variable Ŷ = log

(
Y

1−Y

)
then we have effectively reduced the logistic

regression to a linear regression. Unfortunately, this replacement ruins any chance
we had of the error terms being normally distributed, and therefore we cannot
apply ordinary least squares to determine the coefficients. Instead, something called
maximum likelihood estimation must be used. The good news is most statistical
software packages are capable of performing this estimation.

3.3. Generalized Linear Regression. In both the normal linear regression
and logistic regression discussed above we make several assumptions on the rela-
tionship between the predictor variables and the response variable that may not be
valid. Most importantly, in normal linear regression we assumed that errors in the
data collected for the response variable are normally distributed. In many cases
this assumption is unreasonable.

For example, suppose we are trying to predict people’s family planning choices,
specifically how many children families will have, as a function of income and various
other socioeconomic indicators. The response variable (number of children) cannot
be normally distributed, since it is bounded below (a family can never have less than
0 children) and there is a skewed likelihood towards a smaller number of children.
In this case, it would be more reasonable to assume that the dependent variable
follows a Poisson distribution (see Chapter 5, Subsection 3.3).

In order to deal with regression analysis for non-normal distributions, we usu-
ally turn to generalized linear models. The full mathematics of generalized linear
models is beyond the scope of this book, but it is worth noting some of its features.

Most importantly, generalized linear models can be used when response vari-
ables follow distributions other than the normal distribution. More specifically,
generalized linear models allow for regression analysis of response variables that
follow any probability distribution in the exponential family of distributions. These
include (but are not limited to) the normal, binomial, Poisson, and gamma distri-
butions (see Chapter 5, Subsection 3.3).More detailed informa-

tion on various probabil-

ity distributions can be

found in Chapter 5.

In generalized linear models we replace equation (3) with

(5) f(Y ) = β0 + β1X1 + β2X2 + · · ·+ βnXn.

Notice the only change is the replacement of the response variable Y with a function
of the response variable f(Y ). This function (called the link function) is what allows
for the great diversity in applying generalized linear models.

With the relaxation of the assumptions of a normally distributed response
and homogeneous variance, the ordinary least squares estimation procedure is no
longer appropriate. Instead, the maximum likelihood estimation as mentioned in the
previous subsection, must be used. Most statistical software packages can perform
this estimation.

An interesting final note is that if the link function f is the identity function
(that is f(Y ) = Y ) then the generalized linear model reduces to normal linear
regression, while if f is the logit function (i.e. f(Y ) = logit(Y ) = log (Y/(1− Y )))
then the generalized linear model reduces to logistic regression.
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4. Examples

4.1. An Artificial Regression between Work Environment and Toe
Stubbing. For the sake of example let us suppose that a researcher has developed
a hypothesis that the number of stairs in an office has an impact on the frequency
of office workers stubbing their toe3. In order to test this hypothesis he contacts
618 office workers and asks the employees to fill out a simple two question survey:

(1) How many stairs do you walk up/down to get to your office? (not stair-
cases, but total stair count)

(2) Did you stub your toe last month?

He collects the data in Table 2.

# of stairs category 0 1-3 4-6 7-9 10-12 13-15 16+
# of people in category 193 85 72 113 71 63 21
# of toes stubbed in category 1 1 2 6 5 5 2
% of toes stubbed in category 0.52 1.18 2.78 5.31 7.04 7.93 9.52

Table 2. Artificial Data of Toes Stubbed in the Office.

Examining his table, he feels that the hypothesis was correct. In order to
confirm this, and to apply his research, he decides to develop a model that would
predict at what point (in regards to toe stubbing) an office should invest in an
elevator.

He begins by plotting the midpoints of the number of stairs, against the percent-
age of toes stubbed, i.e. the points [0, 0.52], [2, 1.18], [5, 2.78], [8, 5.31], [11, 7.04],
and [14, 7.93] on a graph (see Figure 3). Notice he omits the data regarding people
with more than 15 stairs on their way to work. This is due to low data size, and
the fact the interval is unbounded so no midpoint can be selected.

Figure 3. Toes stubbed by number of stairs: Percentage of
toes stubbed by number of stairs to get to the office.

3All numbers for this example are made up. To the best of our knowledge no study has every
compared work environment to toe stubbing.
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Examining Figure 3 he hypothesizes that a good fit might be found via linear
regression. Therefore he applies a linear regression model and proposes the line

(6) y = β0 + β1x

where y is the response variable representing the number of toes stubbed, x is
the predictor variable of the number stairs, and β0, β1 are unknown coefficients.
From here, he asks his favourite statistics software package to fit the coefficients
of equation (6) to the points [0, 1.04], [2, 1.18], [5, 2.78], [8, 5.31], [11, 7.04], and
[14, 7.93]. The software package tells him that the β0 = 0.3 and β1 = 0.6. Thus he
uses the line

y = 0.3 + 0.6x

to provide a goodness of fit to his data (see Figure 4).

Figure 4. Linear fit to toes stubbed by number of stairs:
Number of toes stubbed by number of stairs to get to the office fit
with a line.

On further observation he notes that first, a linear regression is unlikely, as any
linear regression would result in a 100% toe stubbing rate once the number of stairs
became sufficiently high; second, the measured response variable (“Did you stub
your toe”) is binary in that it can only take one of two values. This means that
applying a normal distribution function to the outcome is illogical.

Then the researcher proposes the logistic curve

(7) P = A
eβ0+β1x

1 + eβ0+β1x
%

where P is the response variable representing the probability of stubbing your toe, x
is the predictor variable of the number stairs, and β0, β1 are unknown coefficients.
The coefficient A represents the maximal proportion of the population that will
stub their toe in any given month. He asks his statistics software package to fit
the coefficients of equation (7) to the data and gets A = 9, β0 = −3 and β1 = 0.4.
These values provide a goodness of fit of over 90%, which pleases him immensely
(details of goodness of fit are discussed in Chapter 5). He may now use the equation

P = 9
e−3+0.4x

1 + e−3+0.4x
%
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to predict the probability that an individual will stub their toe in a given month,
given that the individual climbs/descends x stairs on the way to work. In particular
his results suggest that there is never more than a 9% chance of stubbing your toe
in any given month, regardless of the number of stairs in the office.

Figure 5. Logistic fit to toes stubbed by number of stairs:
Percentage of toes stubbed by number of stairs to get to the office
fit with a logistic curve.

4.2. Work, Wages, and Men’s Health. The correlations between work-
time, wages and health have been repeatedly addressed in literature. One example
is due to Haveman, Wolfe, Kreider and Stone in 1994 [103]. In this example we
review this study and discuss the results therein.

The data for the study was taken from the Michigan Panel Study of Income
Dynamics, which consisted of following 613 white males from 1976 to 1983 and
recording annually their job, income, number of hours they work each week, and
various personal characteristics. In addition to this the participants were asked a
series of questions regarding their health status. Specifically, each respondent was
first asked, “Do you have a physical or nervous condition that limits the type of
work or the amount of work you can do?” If the answer was “yes”, then a followup
question was asked: “Does it limit your work a lot, somewhat, or just a little.”
Based on these questions a score of 0 (for no condition) to 3 (for a condition which
limits a lot) was given to each respondent for each year.

This data was fit to the system of linear equations jointly indexed in individual
(i) and time (t) below (equations (8)).

(8)

Hit = β0 + β1Wit + β2P
H
it + β3O

H
it + eit

Wit = α0 + α1Hit−1 + α2Rit + α3P
W
it + α4O

W
it + uit

Rit = π0 + π1Hit−1 + π2Wit−1 + π3P
R
it + vit,

In these equations H is health status, W is hours worked, R is wages, PH is
personal characteristics that determine health, PW is personal characteristics con-
tributing to work time, and PR is personal characteristics contributing to wages.
OH is job characteristics that determine health and OW is job characteristics that
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determine hours worked. Additionally, e, u, and v are error terms related to ob-
served factors.

To fit the equations, a method called the generalized method of moments was
used. This method is similar to ordinary least squares, but adjusts for having a
system of equations where the error terms (e, u, and v) may have some correlation.
This allows correlations between the quantities in the model to be estimated without
introducing biases. (See [100] for more details.)

The conclusions of the study support the hypothesis that health limitations and
age are positively correlated, while health limitations and education are negatively
correlated. However, an expected positive correlation between prior work-time (that
is, total number of years working) and health limitations was found to be absent.
This is surprising, as the authors predicted that extended time in a hazardous work
environment would lead to a greater risk of poor health. The study suggests that
it is not how long you work in a given job, but the nature of the job that correlates
with perceived health status.

4.3. Recovery Curves for Post Surgery Physiotherapy. As the popula-
tion of Canada continues to age, Canada will see a growing demand for total hip
arthroplasty (THA) and total knee arthroplasty (TKA). This will result in a growth
in post-operation rehabilitation services. In order to meet this growth, it will be
beneficial for Occupational Therapists and Physical Therapists to have an under-
standing of a patient’s expected post-surgery recovery rate. Once developed these
rates can be used to benchmark individual patient improvement, help estimate ex-
pected costs and lengths of therapy, and possibly help design optimal treatment
session scheduling.

Recovery rates can be modelled as a function inputing days since surgery and
outputting expected recovery status. The graph of such a function provide a visual
explanation of recovery rates that can be used to discuss individual patient’s recov-
ery. We shall refer to such a graph as a recovery curve. In [125] [126] and [102], we
find research discussing the form of recovery curves, and statistical analysis fitting
the recovery curve form to real recovery data collected from various locations within
Canada. This research provides a solid platform for research on recovery curves,
and most importantly demonstrates that a hierarchical linear model can be used
as a framework to develop recovery curves for post-THA and post-TKA patients.
It is likely that such a model would fit recovery curves for other types of surgery.
In this example we discuss this model, and analyze how regression analysis can be
used to fit data to the model.

Research on patient recovery rates has suggested that recovery curves are most
likely to take the form of a standard logistic curve,

(9) E(d) =
exp(α+ βd)

1 + exp(α+ βd)

where E(d) represents the expected level of recovery d days after the surgery was
performed and the coefficients α and β differ from patient to patient (as usual exp
represent the exponential function exp(x) = ex ≈ (2.71)x). The coefficient α rep-
resents the intercept (or starting point) of the recovery curve, while the coefficient
β represents the growth rate of the recovery curve.

The Hierarchical portion of the model follows next. Since recovery rate varies
from patient to patient, we hope to predict the coefficients α and β via a collection
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of patient demographics. For example the coefficient α may be dependent on the
patient’s gender, age, and weight category. We shall let x represent a vector of
patient demographics factors, and apply the assumption that α and β depend
linearly on the vector x. That is

(10)

α = α0 +
N∑
i=1

αixi

β = β0 +
N∑
i=1

βixi,

where xi (i = 1, 2, . . . , N) are the predictive variables. This provides a two-level
model for recovery, as E(d) depends on d (level 1: post-surgery days), and on x
(level 2: patient demographic factors).

Notice that under this model, the xi predictive variables are all treated in the
same manner. In particular, if a predictive variable is doubled in value, the effect
on the model is doubled. For many predictive variables, such as age, this is not a
concern. Basically, it enforces the assumption that as age increases, the impact of
age on recovery time increases. However, for predictive variables which are categor-
ical in nature, such as “type of walking aid used”, this is a problem. For example,
suppose we have three types of walking aids: no aid, walking cane, and wheel chair.
If a single numerical variable is used to represent all three types of walking aids,
then we would have to give each category a numerical representation. However, this
introduces bias into the model, as such a numerical representation automatically
assumes that one type of walking aid has a greater effect than another.

There are two common ways to correct this problem. The more mathematical
method is to create a predictive variable for each category. For example, given our
three types of walking aids, we create three predictive variables, say x1, x2 and x3,
representing

x1 = 1⇒ no walking aid used,
x2 = 1⇒ walking cane used, and
x3 = 1⇒ wheel chair used.

Clearly, for any one patient exactly one of these variables is equal to 1 while the
remaining two would be equal to 0.

The second, and somewhat easier method, is to use a statistical software pack-
age that allows the user to define categorical variables. Categorical variables are
variables that have no intrinsic ordering between different variable values. Such
variables are treated differently, with the software automatically applying the math-
ematical method above. If such software is available, then modellers should be
careful to define variable types correctly.

The model created by equations (9) and (10) is what is referred to as a hier-
archical linear model, or multi-level model. In this case the model consists of two
levels, the first being the logistic regression curve for E(d), and the second being
the linear regression of α and β. In order to determine the best coefficients for this
model we proceed by reducing it to a single-level model. To do this we construct
N new predictive variables defined as yi = xi × d (i = 1, 2, . . . , N). Equation (9)
can now be reduced to a single logistic regression defined by

(11) E(d) =
exp(α0 + β0d+

∑N
i=1 αixi +

∑N
i=1 βiyi)

1 + exp(α0 + β0d+
∑N
i=1 αixi +

∑N
i=1 βiyi)

.
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Thus the final logistic regression has up to 2N + 2 undetermined coefficient. Stan-
dard statistical software can now be used to determine goodness-of-fit information
for the single-level model, and determine which demographics factors are most im-
portant in patient recovery.

For the case of TKA and THA, specific data analysis can be found in [125] [126]
and [102]. In particular, it was found that the single largest determining factor of
recovery was time past surgery and the type of surgery performed. Gender and the
availability of at-home physiotherapy played a small role in certain surgery types,
but was not significant for most measures of recovery. In Figure 6 we display two
sets of sample recovery curves. These examine the expected loss in post-surgery
knee extension by post-operation date (POD). The dashed line (at 2 degree) is the
aimed for level of recovery.
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Figure 6. Post-Surgery Knee Extension Recovery Curves:
The expected loss in post-surgery knee extension by post-operation
date (POD). Notice that the expected recovery rate for males is
slightly slower than females. However, the statistical significance
of this result is minor.
Reproduced from [102].

5. Related Reading

Regression analysis has close connections to Descriptive Statistics (Chapter 5) as well
as Epidemiological Risk Modelling (Chapter 7). Like most fields of statistics, regression
analysis is useful in almost all forms of quantitative modelling.

Reference [69] discusses the generalized utility function, the indifference curve, and
the contract curve; all of which are now used in economic theory. Reference [32] provides
an overview of economic analysis, while reference [66] overviews applications of economet-
rics to healthcare. Reference [207] introduces single-equation linear regression analysis
with an emphasis on real-world examples. References [122] and [223] examine the range
of applied econometric work in the field of healthcare. References [121] and [225] provide
an introduction to econometric techniques for use with different types of survey and count
data.

Reference [100] studies estimators that make sample analogues of populations’ or-
thogonality conditions close to zero. Reference [105] looks at minimizing the impact of
assumptions in econometric models. Reference [115] presents some of the currently avail-
able and easily used methods for assessing the adequacy of a fitted logistic regression
model.
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Reference [19] examines a method of using econometrics to provide a unified frame-

work for understanding human behaviour. Reference [223] provides a survey of British

applied econometric work in the field of healthcare. Reference [20] uses econometrics to

analyze social issues. Reference [103] investigates the complex relationships between work-

time, wages and health using econometrics. Reference [212] reviews Australian research

pertaining to socioeconomic health inequalities as well as Australia’s research capacity for

socioeconomic health inequalities and policies, along with interventions that have been

suggested. Reference [132] provides an econometric analysis of veterans’ healthcare uti-

lization. Reference [193] provides an econometric analysis of healthcare utilization in

Canada.





CHAPTER 7

Evaluating Detrimental Behaviour

The policy of being too cautious is the greatest risk of all. J.
Nehru (1889 - 1964)

Life is a sexually transmitted disease and the mortality rate is
one hundred percent. R. D. Laing (1927-1989)

Epidemiological Risk Modelling

1. Model Overview

A recent study by Hakes and Viscusi showed that the general public has a
serious problem in evaluating risky behaviour. The study consisted of asking 493
adults a series of questions of the form “how many people do you think died in the
U.S. due to in 1991?” The results were staggering. On average people believed that
roughly the same number of deaths resulted from the measles as from accidental
poisoning1. The authors suggested that the public’s difficulty in distinguishing
between differing magnitudes of risks has led to a similar spending for reducing
each risk. The result is a gross misdistribution of healthcare budgets.

A similar effect results when examining the factors that create each risk. Every
day healthcare policy makers must make decisions such as whether money would
be better spent researching anticancer drugs or supporting antismoking campaigns.
To make these decisions, policy makers rely heavily on the statistical methods
of epidemiological risk modelling. (Before continuing we note that, epidemiology
in general encompasses any research that examines factors affecting health. This
includes many research directions outside the scope of this book. For example,
biological studies of disease dynamics are considered epidemiological research.)

In epidemiological risk modelling one uses statistical methods to attempt to
determine associations between a given factor (or factors) and a health outcome.
Although the factor is generally referred to as a risk factor, it should not necessarily
be viewed as negative. For example, the risk factor of “hand-washing” has been
shown to reduce the spread of disease in hospitals. On the other hand, numerous
studies have linked the risk factor of “smoking” to an increased chance of contracting
lung cancer2. In the same manner it should be noted that, with a little creativity,
we always phrase a given health outcome as either a positive or a negative outcome.
For example, instead of examining what factors impact the chance of a wide spread
bubonic plague (poor sewers, rat infestations, etc.), we could study what factors

1In 1991, the measles resulted in 5 deaths, while 5200 people died from accidental poisoning

in the U.S.
2Perhaps the most famous study linking smoking to lung cancer is the 1964, the US Surgeon

General report “Smoking and Health.”
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impact the chance of avoiding a wide spread bubonic plague (clean sewers, effective
pest control, etc.). In general this confuses the issue with a large collection of
double negatives, therefore, in order to make discussion easier, we shall always
assume that the health outcome is the undesirable outcome. As such, we will refer
to the health outcome as a disease, and call a risk factor beneficial if it reduces the
likelihood of a given health outcome and harmful if it increases the likelihood of
the outcome. It should be noted now that the word disease is used in the sense
of a “harmful development,” and therefore may be used to represent any negative
health outcome. For example, under this terminology, we may view exercise as a
beneficial risk factor for the disease of obesity.In epidemiological risk

modelling the term dis-

ease is used to refer to

any negative health. For

example, drinking and

driving can be viewed as

a harmful risk factor for

the “disease” of auto-

mobile accidents.

To develop an epidemiological risk model, we begin collecting data regarding
the risk factors and diseases to be examined.We then use the data to determine
various statistical values that associate the risk factors to the disease. Some of
the most popular of these values are the relative risk, attributable risk, prevented
fraction, and potential impact fraction.

Before discussing these values, we will briefly turn our attention to another
popular value called the odds ratio. We single out this popular value as a warning
to policy makers. The odds ratio tells you the change in the odds of having a
specified disease given that one has the risk factor. This is extremely similar to
the relative risk (below) but very misleading in its implementation. The problem
is, without knowing the original odds of having the disease, the change in odds is
useless information. For example, telling someone that moving to Saskatchewan
will triple their chance of being killed by a lightning strike3 may sound impressive;
however, since one’s chance of being killed by lightning is less than 1 in 10,000,000
per year and the population of Saskatchewan is about 1,000,000, it still seems like
a fairly safe place to live. As a general rule, anytime a researcher reports on odds
ratio instead of one of the more standard measures of risk, the results should be
strongly questioned.

Loosely speaking, the relative risk tells you the change in the probability of
having the specified disease given that one has the risk factor. More specifically,
relative risk provides the multiplicative factor relating the disease status of those
with the risk factor to those without. For example, if the relative risk is 3, then an
individual with the risk factor is three times more likely to experience the disease
than an individual without the risk factor. Alternately, if the relative risk is 0.25
then an individual with the risk factor is four times less likely to experience the
given disease than an individual without the risk factor. Thus, if the relative risk
is greater than 1 then the risk factor is harmful, while if the relative risk is less
than 1 then the risk factor is beneficial. Like the odds ratio, relative risk does not
provide a base level of risk, so small changes to a low risk activity will result in the
same relative risk as large changes in a high risk activity.In some epidemiological

literature relative risk is

called the Risk Ratio.

However, the term risk

ratio is more commonly

used in a generic sense

to refer to either relative

risk or odds ratio.

If the relative risk is greater than 1, one may wish to examine the attributable
risk. Whenever the relative risk is greater than 1, the attributable risk lies some-
where between 0 and 1 and represents the proportion the given disease that could
be (theoretically) reduced if the given risk factor were eliminated. For example, an
attributable risk of 0.28 means that if the risk factor could be eliminated from the
population, the prevalence of the disease would (theoretically) be reduced by 28%.

3This statement is made up for the sake of example, there is no statistical evidence that
Saskatchewanites are in any greater danger of death by lightning.
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Conversely, if the relative risk is less than 1, then we may wish to examine the
prevented fraction. Whenever the relative risk is less than 1, the preventive fraction
lies somewhere between 0 and 1 and represents the proportion the disease that could
be (theoretically) reduced among the individuals that do not have the risk factor.
For example, a prevented fraction of 0.37 means that 37% of individuals that do
not currently have the risk factor would benefit from obtaining the risk factor.How
to calculate these values will be explained in Section 3.

Regardless of whether the risk factor is beneficial or harmful, we may wish to
examine the potential impact fraction. In the potential impact fraction, we assume
that we are able to make an intervention that somehow changes the prevalence of
the risk factor in the population. (If the risk factor is beneficial we attempt to
increase its existence, if it is harmful we attempt to decrease it.) The potential
impact fraction then measures the reduction that would result from a given change
in prevalence. This is a considerably more complicated concept than that of relative
risk, attributable risk, and prevented fraction, so we leave further discussion to
Section 3 and refer the reader to Example 4.1 for a detailed example on these
concepts.

On a final note, in simple risk models, the various statistical values that as-
sociate the risk factors to the disease may be computed analytically. In general,
however, the risk factors and the impacts of intervention hold complicated interre-
lationships that make analytic calculations difficult. In these cases we often resort
to computer based simulation to approximate the value of objects such as the po-
tential impact fraction. An example of this is provided in Subsection 4.3 and more
details on computer simulation can be found in Chapter 9.

2. Common Uses

The goal of epidemiological risk modelling in healthcare is to develop models of
the relationship between risk factors and diseases, accidents or mortality. Therefore,
in general, epidemiological risk modelling answers the question of “what (if any)
is the relationship between risk factor X and health outcome Y ?” For example,
epidemiological risk modelling may be used to approach questions such as:

• What is the relationship between smoking and lung cancer?
• What is the relationship between obesity and the likelihood of experiencing

a heart attack?
• What is the relationship between childhood exercise programs and obesity?

More advanced techniques in epidemiological risk modelling are also capable of
theoretically examining the effect of interventions on the health of the population.
This allows epidemiological risk modelling to approach questions such as:

• What effect would a tax increase on tobacco products have on the amount
of lung cancer in the population?

• Would a policy enforcing exercise programs in high-school have a signifi-
cant impact on the number of heart attacks in young adults?

3. Model Details

3.1. Relative Risk, Attributable Risk and the Prevented Fraction.
We begin with the precise definitions of relative risk, attributable risk, and prevented
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fraction. To do this, recall that the probability of an event E occurring is

Pr(E) =
# of ways E occurs

# of possible outcomes
.

We use the notation Pr(E|F ) to represent the probablity that an event E occurs
given factor F is present:

Pr(E|F ) =
# of ways E occurs given F is present

# of possible outcomes where F is present
=
|E ∩ F |
|F |

.

where |F | is the number of elements contained in set F , and |E ∩F | is the number
of elements in both E and F .Orally Pr(E|F ) is read

as: “the probability

of E given F ,” while

Pr(E|F c) is read as:

“the probability of E

given F complement.”

We use the notation F c to represent the option that the factor F is not present
(the c stands for complement, which is the mathematical word for “that which
completes the set”).

For example, suppose you at a party consisting of 40 males and 60 females.
Suppose that 30 of the males are drinking beer, while 20 of the females are drinking
beer. Then the probability that a randomly selected person is drinking beer is

Pr(Beer) =
# of beer drinkers

# of people
=

30 + 20
40 + 60

= 0.5,

the probability of a randomly selected male drinking beer is

Pr(Beer|Male) =
|Beer ∩Male|
|Male|

=
# of male beer drinkers

# of males
=

30
40

= 0.75,

and the probability of a randomly selected female drinking beer is

Pr(Beer|Malec) =
|Beer ∩Malec|
|Malec|

=
# of not male beer drinkers

# of not males
=

20
60
≈ 0.33.

We now formally define relative risk. The relative risk is the ratio of the
probability of having the specified disease given the risk factor is present to the
probability of having the specified disease without the risk factor. Mathematically
we denote relative risk by RR and define it asWe usually denote the

Disease by D and the

risk Factor by F . (12) RR =
Pr(Disease|Risk Factor)
Pr(Disease|Risk Factorc)

=
Pr(D|F )
Pr(D|F c)

.

Since the probability of an event is always between 0 and 1, the relative risk is can
be any number greater than zero. (If Pr(D|F ) = 1 i.e., Pr(D|F c) = 0, this means
that the disease always occurs. If Pr(D|F ) = 0 then we never get the disease.
Neither of these cases need modelling to be understood, so we assume that neither
Pr(D|F ) nor Pr(D|F c) is 0).To simplify discussion

we assume that the

researched health out-

come is undesirable,

and therefore refer to it

as a disease. As such,

harmful risk factors

increase the chance

of the disease, and

beneficial risk factors

reduce the chance of the

disease.

It is not difficult to see that the risk factors of interest are those that result
in a relative risk that is noticeably greater than or noticeably less than 1. If the
relative risk is greater than 1 then the probability of the disease is increased in the
presence of the risk factor, and therefore the risk factor is harmful. Conversely, if
the relative risk is less than 1, then the probability of the disease is decreased in
the presence of the risk factor, and therefore the risk factor is beneficial. As such,
the relative risk provides a reference for the potential benefit or harm of a given
risk factor. This helps dictate how future epidemiological risk modelling should
proceed.

If the risk factor is harmful (i.e., RR > 1) then one would like to proceed by ex-
amining the proportion of the disease that is (theoretically) attributable to the risk
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factor. This is generally done by calculating the attributable risk. Mathematically
the attributable risk is denoted AR and defined by

(13) AR =
Pr(D)− Pr(D|F c)

Pr(D)
.

A public health interpretation of attributable risk is that it is a measure of the In literature, relative

risk is sometimes also

referred to as the likeli-

hood ratio.

extent that a disease is preventable, if the risk factor could be eliminated or reduced.
As such, attributable risk should be thought of as a population based risk measure,
whereas relative risk is more individual based. That is, attributable risk describes
how the risk factor impacts the population as a whole, while relative risk describes
how the risk factor alters an individuals chance of the given disease.

If the risk factor is beneficial (i.e., RR < 1) then one would like to examine
the proportion the disease that could be (theoretically) reduced if the risk fac-
tor were universally present. This is done by calculating the prevented fraction.
Mathematically the prevented fraction is denoted PF and defined by

(14) PF =
Pr(D|F c)− Pr(D)

Pr(D|F c)
Like attributable risk, the prevented fraction should be thought of as a population
based risk measure, instead of an individual based measure. Other terms used for

attributable risk in-

clude: excess risk, risk

difference, etiological

fraction, etiological

proportion, attributable

fraction (or proportion),

and preventable fraction

(or proportion).

To compare the attributable risk and prevented fraction notice that

(15) 1−AR = Pr(D|F c)
Pr(D) and 1− PF = Pr(D)

Pr(D|F c) ,

provided Pr(D|F c) 6= 0. (Note that if Pr(D|F c) 6= 0 then Pr(D) cannot be 0, so
Pr(D|F c)

Pr(D) is well defined.) Therefore the attributable risk and prevented fraction are
related by the equation

(16) (1−AR)(1− PF ) = 1 whenever Pr(D|F c) 6= 0.

This formula has several ramifications. To begin, it provides a means for statistical
estimates of AR to be used to estimate PF , and vice versa. Secondly, since AR
and PF are always less than one, it demonstrates that exactly one of these values
will be between 0 and 1 while the other value will be negative. Reexamining the
definitions of AR and PF we can see that if the relative risk is greater than 1 then
0 < AR < 1 while if the relative risk is less than 1 then 0 < PF < 1.

To explain this, let us consider the case where the relative risk is greater than
1. From the definition of relative risk, this implies that Pr(D|F ) > Pr(D|F c). Also
Pr(D) must lie between these two values: Pr(D|F ) > Pr(D) > Pr(D|F c). By
subtracting Pr(D|F c) from the rightmost inequality we see

Pr(D)− Pr(D|F c) > 0.

But since Pr(D|F c) > 0 we have that

Pr(D) > Pr(D)− Pr(D|F c).
Therefore we can combine these two inequalities to see that

Pr(D) > Pr(D)− Pr(D|F c) > 0.

Dividing through by Pr(D) gives 0 < AR < 1. Conversely, if the relative risk is
less than 1 then Pr(D|F c) > Pr(D|F ), and again Pr(D) must lie between these two
values. A similar logic demonstrates

Pr(D|F c) > Pr(D|F c)− Pr(D) > 0,
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and therefore 0 < PF < 1.
Relating the attributed risk to relative risk is more complicated, but also pos-

sible. Some classical formulae include

AR =
Pr(F )(RR− 1)

1 + Pr(F )(RR− 1)
and AR =

Pr(F |D)(RR− 1)
RR

.

Notice that these formulae for AR require not just knowledge of the relative risk,
but also the probability of the risk factor occurring, Pr(F ), or the probability of the
risk factor occurring given that the health outcome occurred, Pr(F |D). Relating
the prevented fraction to the relative risk can now be done via equation (16).

From the presentation given above it may appear that the calculation of relative
risk, attributable risk, and the prevented fraction is straightforward. If the risk
model developed only concerns itself with a single risk factor which is either present
or not present, then estimating the key values Pr(D), Pr(D|F ) and Pr(D|F c) is a
fairly straightforward task. However, in this case there is a high chance that there
exists confounding risk factors, that is risk factors that are not accounted for in the
model. On the other hand, if multiple risk factors are considered or the risk factor
can take one of several levels then it becomes necessary to select a statistical model
to estimate the key values Pr(D), Pr(D|F ) and Pr(D|F c). The choice of which
statistical model to use is usually based on the type of data collected, and can
result in biases in the end analysis. We refer readers to Chapter 5 for information
on dealing with these issues.

3.2. The Potential Impact Fraction of an Intervention. Regardless of
whether a risk factor is beneficial or harmful, one might be interested in what sort
of impact various interventions might have on the disease. To provide a numeric
comparison between various intervention strategies, the potential impact fraction
for each intervention is often calculated. To do this, one assumes that the prevalence
of the risk factor in the population is altered in some manner. This could result
in either an increase or decrease in the prevalence of the risk factor, which further
results in either an increase or decrease in the disease incidence. The potential
impact fraction is then the change in the disease probability relative to the current
disease probability. Mathematically the potential impact fraction is denoted by
PIF and defined:

(17) PIF =
(Pr(D)− Pr∗(D))

Pr(D)

where Pr∗(D) is the probability of the disease under the modified distribution of
the risk factor. (The division by Pr(D) gives a sense in the size of the change
relative to the how likely the event is to begin with.)Another term used

for the potential im-

pact fraction is the

generalized impact

fraction.

Although the mathematical statement of the potential impact fraction may be
simple, its calculation is not trivial. The main difficulty lies in the computation of
Pr∗(D). Unlike Pr(D), the value Pr∗(D) is a prediction of how the change in the
risk factor will effect the overall probability of the disease. To develop a practical
manner of computing the PIF consider the assumption

(18) Pr(D|F ) = Pr∗(D|F ) and Pr(D|F c) = Pr∗(D|F c).

In words, assumption (18) states that the probability of experiencing the dis-
ease given that an individual has the risk factor, and the probability of expe-
riencing the disease given that an individual lacks the risk factor are constant
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regardless of the prevalence of the risk factor in the population. Noting that
Pr(D) = Pr(F ) Pr(D|F ) + Pr(F c) Pr(D|F c) and applying Assumption 18) we find

PIF = Pr(D)−Pr∗(D)
Pr(D)

= Pr(F ) Pr(D|F )+Pr(F c) Pr(D|F c)
Pr(D) − Pr∗(F ) Pr∗(D|F )+Pr∗(F c) Pr∗(D|F c)

Pr(D)

= Pr(F ) Pr(D|F )+Pr(F c) Pr(D|F c)
Pr(D) − Pr∗(F ) Pr(D|F )+Pr∗(F c) Pr(D|F c)

Pr(D)

= Pr(D|F )
Pr(D) (Pr(F )− Pr∗(F )) + Pr(D|F c)

Pr(D) (Pr(F c)− Pr∗(F c))

= Pr(D|F c)
Pr(D|F c)

Pr(D|F )
Pr(D) (Pr(F )− Pr∗(F )) + Pr(D|F c)

Pr(D) (Pr(F c)− Pr∗(F c)) .

In the last step we multiplied the first term by Pr(D|F c)/Pr(D|F c) = 1, which did
not alter the expression. Next we recall that the definition of relative risk (equation
(12)) and the fact that Pr(F c) = 1− Pr(F ) to simplify this to

PIF = RR Pr(D|F c)
Pr(D) (Pr(F )− Pr∗(F )) + Pr(D|F c)

Pr(D) ((1− Pr(F ))− (1− Pr∗(F )))

= RR Pr(D|F c)
Pr(D) (Pr(F )− Pr∗(F )) + Pr(D|F c)

Pr(D) (Pr∗(F )− Pr(F ))

= RR Pr(D|F c)
Pr(D) (Pr(F )− Pr∗(F ))− Pr(D|F c)

Pr(D) (Pr(F )− Pr∗(F ))

= (RR− 1) Pr(D|F c)
Pr(D) (Pr(F )− Pr∗(F )) .

Finally, applying Equation (15) we conclude (under Assumption (18))

(19) PIF = (RR− 1)(1−AR) (Pr(F )− Pr∗(F )) .

A similar approach can be done to relate PIF to the prevented fraction, yielding
the final equation

(20) PIF = (1−RR)
(

1
1−PF

)
(Pr∗(F )− Pr(F )).

On the surface Assumption (18) may seem very reasonable. After all, why
would the prevalence of the risk factor in the population alter how the risk factor
impacts the given disease. However, consider the risk factor of smoking and the
health outcome of lung cancer. Should the impact of smoking on your chance of
developing lung cancer change based on how much of the population smokes? On
the surface the answer appears to be no, but if we look deeper we see that the
answer is yes. The reason lies in the concept of secondhand smoke.

Consider a hypothetical town where 90% of the inhabitants smoke. Suppose
now that an intervention is performed that (somewhat miraculously) changes the
town dynamics so only 10% of the population smokes. Let Pr(L|S) be the probabil-
ity before the intervention of an individual contracting lung cancer given that the
individual smokes and Pr∗(L|S) be the same after the intervention. The question
of whether Pr(L|Sc) = Pr∗(L|Sc) is therefore:

Does a nonsmoker in a town of 90% smokers have the same
probability of contracting lung cancer as an individual in a town
of 10% smokers?

Given this extreme example, the answer is clearly no: the non-smoker in a town of
90% smokers is assaulted with nine times the amount of secondhand smoke as the
individual in a town of 10% smokers.

Our example here of smoking and lung cancer may seem a little contrived.
However, the truth is that, in general, the risk factors and the impacts of interven-
tion hold complicated interrelationships that make Assumption (18) false. In these
cases it is often easiest to resort to computer based simulations to approximate the
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value of Pr∗ under given interventions. An example of this is given in Example 4.3
and more information on computer simulations can be found in Chapter 9.

4. Examples

4.1. An Artificial Comparison between Chocolate Consumption and
Chickenpox. For the sake of example let us suppose that a researcher has devel-
oped a hypothesis that the consumption of chocolate helps speed recovery from the
chickenpox4. To test this she successfully contacts 3429 parents of children who
had the chickenpox within the last year. Each of these parents fills out a survey
stating how many days their child took to recover from the disease, and whether
their child ate any chocolate during that time. Letting D represent the “disease”
of spending 4 or more days sick from the chickenpox and F represent the factor of
eating chocolate, she compiles the following table:

Consumed Chocolate

Days spent
sick

yes (F ) no (F c)
≥ 4 days (D) 749 463
< 4 days (Dc) 1515 702

Table 1. Artificial data table relating chocolate consumption to
chickenpox recovery time.

The above data suggests that

Pr(D) = 749+463
3429 ≈ 0.3535,

Pr(D|F ) = 749
749+1515 ≈ 0.3308, and

Pr(D|F c) = 463
463+702 ≈ 0.3974.

Dividing Pr(D|F c) by Pr(D|F ) we see that the relative risk is RR = 0.8324 which
is less than 1, therefore Chocolate appears to be a beneficial risk factor. Since the
risk factor is beneficial we also compute the prevented fraction:

PF =
Pr(D|F c)− Pr(D)

Pr(D|F c)
≈ 0.3974− 0.3535

0.3974
≈ 0.1106.

This suggests that 11% of the non-chocolate-eaters would benefit from eating choco-
late. To see where this number relates, consider the 1165 children who did not
consume chocolate during their sickness. The survey stated that 463 of these chil-
dren took four or more days to recover. If they had all consumed chocolate, we
would expect only 33.08% of the above 1165 children to take four or more days to
recover, this corresponds to 385 children. Thus, 463−385 = 78 children would have
benefitted from eating chocolate; this is an improvement of 78

702100% = 11.1%.
Finally, the researcher explores the potential impact of making chocolate freely

available to any child with the chickenpox. To do this she notes that currently
only 749+1515

3429 100% = 66.03% of children consumed chocolate while they had the
chickenpox. If chocolate were freely available for children with the chickenpox,

4All numbers for this example are made up. To the best of our knowledge no study has ever
compared chocolate consumption and chickenpox recovery rates.



4. EXAMPLES 69

she feels this would increase to 98%. Thus the potential impact fraction for this
intervention would be

PIF = (1−RR)
(

1
1−PF

)
(Pr∗(F )− Pr(F ))

≈ (1− 0.8324)
(

1
1−0.1105

)
(0.9800− 0.6603) ≈ 0.0602.

This suggests that if chocolate were freely available to children with the chickenpox,
the number of children who require four or more recovery days would decrease by
approximately 6%. Considering our example, if 98% of the 3429 children ate choco-
late during their illness, our new data set would have (0.98)3429 = 3360 children
who ate chocolate during their illness and 69 who did not. Assuming Pr(D|F ) and
Pr(D|F c) do not change this would result in 3360 Pr(D|F ) + 69 Pr(D|F c) = 1139
children taking four or more days to recover and 2290 children recovering in less
than 4 days. Previously we had 1212 require four or more days to recover, thus we
see a decrease of 1212−1139

1212 100% = 6.0%.
Of course, the above study is too naive to be persuasive. For example, the

confounding factor of family income is ignored (a higher family income is likely
to impact both recovery time and the amount of chocolate consumed). Also, the
analysis appears to arbitrarily select 4 days as the cutpoint for recovery time. This
suggests some level of data analysis bias has been employed in the creation of the
results (see Example 4.2). It would be much more logical to group people into more
than two categories with regards to chocolate consumption, and consider recovery
time as a continuous variable. Finally, the data is completely fabricated, so no
results are valid anyways. Nonetheless, the above example does provide a simple
demonstration of the prevented fraction, the potential impact factor, and their
interpretations.

4.2. Publication Bias In Situ, and Overfitting the Model. Recent work
of Phillips suggests that in reporting the statistic results of data collection and the
probabilities they imply, healthcare research suffers from a variety of problems that
are not understood by policy makers, individuals trying to make health decisions,
or in some cases epidemiological researchers [176] [177]. Two examples of this are
publication bias and publication bias in situ. Publication bias is a well-understood
concept that usually refers to the fact that studies that produce “interesting” results
(i.e. show a greater association, are statistically significant, and are in the “right”
direction) are more likely to generate journal articles, while those that do not are
more likely to end up in a file drawer. Publication bias in situ is a less understood
concept, that results from researchers allowing the data to unduly influence the
model design [177]. In this example we discuss publication bias in situ, and provide
a small demonstration of how easy it is for a researcher to fall into the trap of
allowing data to unduly influence the model design.

Given that every study and data set is a bit different, there is no standard way
to analyze epidemiologic data, and therefore there are many choices to be made
about the statistical model. In this example, we suppose that a data set has been
constructed that consists of a collection of patients, a level of exposure to some
risk factor, and a disease outcome (the patient either tests positive for the disease
or negative for the disease). One method to analyze such a data set would be to
dichotomize the exposure variable. That is, select a cutpoint such that everyone
whose exposure level is above the cutpoint is considered “exposed” and everyone
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whose exposure level is below the cutpoint is considered “unexposed”. The choice of
the cutpoint will clearly influence the estimated effects of exposure that are reported
as the result of the study. For example, the cutpoint for an exposure might be far
lower than the exposure level that actually affects health, so the exposed category
actually includes a lot of people who have no elevated risk, reducing the apparent
risk. Similarly, a cutpoint that is set too high will include many people in the
unexposed category who are experiencing the effects of the exposure, elevating the
baseline risk and thus reducing the apparent relative risk.

This suggests that a modeller might allow the data to select the cutpoint,
by locating the cutpoint which provides the highest apparent risk from the data
set. Although this may seem benign, it runs the risk that it will exaggerate what
the data actually shows. This practice is sometimes known by the technical term
overfitting the model.

Suppose that a data sample consisting of N participants has been collected.
We label these participants 1, 2, . . . , i, . . . , N . Further suppose that for each par-
ticipant the data consists of a level of exposure to a given risk factor ei ∈ (0, 1)
(i = 1, 2, . . . , N), and a marker indicating whether the patient tested positive for
a specific disease di ∈ {0, 1} (i = 1, 2, . . . , N). Immediately we categorize each
patient i into two bins

D = {i : di = 1} and Dc = {i : di = 0}
which categorize whether the patient tested positive for the disease. Next, for a
given cutpoint k we separate the population into two other bins: exposed and un-
exposed. Specifically, we shall say participant i is exposed if ei > k, and unexposed
otherwise, which creates the two sets:

E = {i : ei > k} and Ec = {i : ei ≤ k}.
Our interest now lies in how these four bins interact. Specifically notice that we
have created four categories of people:
• E ∩D: Exposed to the risk and contracted the Disease (ei > k, di = 1),
• Ec ∩D: Not Exposed to the risk and contracted the Disease (ei ≤ k, di = 1),
• E ∩Dc: Exposed to the risk and did not contract the Disease (ei > k, di = 0),
• Ec∩Dc: Not Exposed to the risk and did not contract theDisease (ei ≤ k, di = 0).
By determining the number of individuals in each category we can calculate the
risk ratio associated with the risk factor and disease. Specifically, we define the risk
ratio via

RR =
Pr(D|E)
Pr(D|Ec)

=
|E ∩D|/|E|
|Ec ∩D|/|Ec|

where Pr(X|Y ) is the probability of X given Y , and |X| is the number of elements
contained in set X.

Examining the definitions above, it should be clear that RR is not a fixed
number, but is in fact a function dependent on the cutpoint k. Above we argued
that the “logical” course of action was to select k to maximize RR, so as to best
demonstrate the relationship between the risk factor and the disease. To show the
error in this logic, we perform a simple experiment.

We begin by creating a series of fake data sets with a known exposure-risk
relationships. Specifically, we generate data that follows the rule: participants with
exposure level below 0.7 have 0.1 chance of acquiring the disease, while those with
exposure level above 0.7 experience 0.15 chance of acquiring the disease. This is
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accomplished by a two stage subroutine: for each patient we first randomly generate
an exposure level between 0 and 1, then we randomly generate whether the patient
has the disease (using the probability based on their exposure level). For such a
data set the “correct” risk ratio should be 1.5 and should arise when the cut-point
k = 0.7 is selected.

Having generated 100 such data sets, each with 1000 elements, we next analyze
each data set to determine RRmax the maximum value of RR by computing RR
values using all cutpoints between 0.1 and 0.9 (we avoid the cutpoints too close to
0 or 1 as they are likely to be criticized in published literature). Since, for this data
set, the correct risk ratio should arise when the cut-point k = 0.7 is selected, we
also compute RR for this point, labeling it RR0.7. The results are summarized in
Table 2.

RRmax value occurrences RRmax value occurrences
RRmax < 1 0 times RR0.7 < 1 3 times

1 ≤ RRmax < 1.3 0 times 1 ≤ RR0.7 < 1.3 15 times
1.3 ≤ RRmax < 1.8 58 times 1.3 ≤ RR0.7 < 1.8 71 times
1.8 ≤ RRmax < 2.0 17 times 1.8 ≤ RR0.7 < 2.0 7 times
2.0 ≤ RRmax 25 times 2.0 ≤ RR0.7 4 times
Table 2. Demonstration of Publication Bias In Situ: Max-
imal RR occurring by testing cutpoints k between 0.1 and 0.9 and
RR occurring at k = 0.7 on 100 randomly generated data sets.
Correct RR is 1.5 and should occur at k = 0.7.

Table 2 is divided into five categories, RR < 1, 1 ≤ RR < 1.3, 1.3 ≤ RR <
1.8, 1.8 ≤ RR < 2, and 2 ≤ RR. These could be though of as “RR very low
(unpublished)”, “RR low (probably unpublished)”, “RR correct (published)”, and
“RR high (published)”, and “RR very high (published)” respectively. It is clear
from Table 2 that RRmax has a much higher tendency to exaggerate the risk ratio
than RR0.7.

A more extreme example can be made by generating random data sets where
exposure has no influence on disease prevalence. That is, for each patient we ran-
domly generate an exposure level, then we randomly generate whether the patient
has the disease using the fixed probability of 0.1. The result of the such an experi-
ment are summarized in Table 3.

RRmax value occurrences RRmax value occurrences
RRmax < 1 6 times RR0.7 < 1 53 times

1 ≤ RRmax < 1.3 22 times 1 ≤ RR0.7 < 1.3 37 times
1.3 ≤ RRmax < 1.8 57 times 1.3 ≤ RR0.7 < 1.8 10 times
1.8 ≤ RRmax < 2.0 7 times 1.8 ≤ RR0.7 < 2.0 0 times
2.0 ≤ RRmax 8 times 2.0 ≤ RR0.7 0 times
Table 3. 2nd Demonstration of Publication Bias In Situ:
Maximal RR occurring by testing cutpoints k between 0.1 and 0.9
and RR occurring at k = 0.7 on 100 randomly generated data sets.
Correct RR is 1.
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On a final note, it should be mentioned that we are not suggesting that picking
RRmax is standard practice. The above example should be simply considered an
example demonstrating that allowing data an undue amount of influence on model
selection can lead to extreme biases in the results.

4.3. PREVENT Model: A Computer Simulation for Computing Po-
tential Impact Fractions. In many cases the risk factors and impact of inter-
vention hold complicated interrelationships that make it difficult (or impossible) to
compute the potential impact fraction of an intervention. In these cases, one often
resorts to developing a computer simulation in order to estimate the potential im-
pact fraction. One such simulation is the PREVENT model developed in the late
1980s [95]. In this example we attempt to provide a broad stroke outline of the
PREVENT model.

The PREVENT model is an epidemiological approach to predicting the effect
on mortality resulting from a health condition after an intervention on known risk
factors. In order to capture realistic disease dynamics in a population, it extends
the usual epidemiological methodologies to take into account two important facts:

(1) The relationship between risk factors and diseases typically involves many
risk factors and many diseases. A single risk factor may play a role in mul-
tiple diseases and a single disease may involve multiple risk factors. These
two phenomena occur simultaneously, leading to a complicated dynamical
relationship between risk factors and diseases.

(2) There may be considerable latency between exposure to a risk factor and
the incidence of a disease. These time lags must be incorporated into a
dynamical risk model.

In the PREVENT model, the potential impact fraction is time-dependent and
defined by

PIFt =
Prt(D)− Pr∗t (D)

Prt(D)
,

where Prt(D) is the time-dependent probability of disease in the reference popu-
lation and Pr∗t (D) is the time-dependent probability of disease in the intervention
population. The model also introduces a new quantity, the trend impact fraction,
which is defined by

TIFt =
Pr0(D)− Prt(D)

Pr0(D)
.

This measures the number of disease cases in the reference population that are
prevented (or caused) by a time evolution of the risk factor prevalence. In Figure
1 we see how these values interrelate.

In 1989, Gunning and Schepers evaluated the PREVENT model on Dutch
population health data collected from a variety of sources [95]. The risk factors
examined included cigarette smoking, hypertension, hyperlipidemia, occupational
hazards, obesity, diet, and alcohol use. The diseases examined included Ischaemic
heart disease, cerebrovascular disease, lung cancer, breast cancer, colon cancer, and
stomach cancer. They also examined the link between traffic accidents and risk
factors such as years of driving experience, alcohol use, and preventive regulations.
This resulted in extremely complicated interrelationships between their risk factors
and their health outcomes. Ultimately the PREVENT model was successfully used
to study the impact of various interventions on these diseases.
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Figure 1. Simulation flow in the PREVENT Model: This
flow represents one time interval of a simplified version of the
PREVENT algorithm. Two demographic classes, A and B, are
considered with different risk ratios. The superscripts 0 and 1 de-
note the reference and the intervention populations, respectively.
PIFt is the time-dependent potential impact function, TIFt is the
time-dependent trend impact function. The mortality rates in the
reference and intervention populations are M0

t and M1
t , respec-

tively. The time-dependent outcome states of the reference and
intervention populations are POP 0

t and POP 1
t , respectively. The

difference between these two states is the health benefit of the in-
tervention.

In 2006, Bronnum and Hansen evaluated the accuracy of the PREVENT model
by applying it to synthetic population data generated by simulation [35]. They
concluded that the model is generally quite accurate, but it does tend to slightly
overestimate the health benefits of the intervention. Nonetheless, in realistic scenar-
ios this error would be minor and estimates obtained from the model are accurate
enough for use in health policy planning.

In summary, PREVENT is a sophisticated risk simulation model with the abil-
ity to use population health data to handle complex disease dynamics. The basic
concepts are also flexible and a variety of extensions to the model are possible. Fur-
thermore, the model has considerable scope for applications to healthcare policy
development and evaluation.

5. Related Reading

Epidemiological Modelling has close associations with Descriptive Statistics (Chapter
5) and Regression Analysis.The question of how to explain epidemiological results to the
public is discussed in Chapter 8.

Reference [96] examines public biases in risk beliefs, and is discussed in the opening
paragraph of this chapter. Reference [224] uses an epidemiological approach to examine
the benefits and drawbacks of replacing soap hand washing with an alcohol hand rub in
hospitals.
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Reference [152] discusses the epidemiological parameter of the “etiologic fraction” in
comparison to the “preventable fraction.” Reference [185] gives a commentary on the
computational and conceptual issues faced by epidemiologists when dealing with popula-
tion attributable fraction estimations.

References [95], [123], and [35], are examples of implementation of the PREVENT

model.



CHAPTER 8

Adjusting Risky Behaviour

The best cure for hypochondria is to forget about your own body
and get interested in someone else’s. Goodman Ace (1899-1992)

The best way to stop smoking is to carry wet matches. Anony-
mous

Psychosocial Risk Modelling

1. Model Overview

Chapter 7 was concerned with the question of how to measure the link between
a risk factor and a disease. This provides a measure of healthcare demand based on
disease prevalence in the population and a methodology for modelling the impact of
public health interventions. In this chapter, we turn our attention to the question The term disease refers

to any negative health

outcome.

of how to develop an intervention strategy. That is, the psychological and social
aspects of applying risk modelling: Psychosocial Risk Modelling.

In many cases, once a link between a negative health outcome and a risk factor
is found, policy makers attempt to change the prevalence of the risk factor in
society by altering the policies governing society. Perhaps the best example of
this is the effect of the US Surgeon General’s 1964 announcement that smoking
causes lung cancer. In Chapter 4 of the US Surgeon General’s report “Smoking
and Health,” it states “Cigarette smoking is causally related to lung cancer in men
. . . The data for women, though less extensive, point in the same direction” (page Risk factors can be ben-

eficial, if they decrease

the likelihood of a dis-

ease, or harmful, if they

increase the likelihood of

a disease. (see Chapter

7 for more details)

37). Almost immediately the United States enacted the “Federal Cigarette Labeling
and Advertising Act”, which compelled cigarette companies to issue warnings on
all cigarette packs. Shortly thereafter, Britain banned television advertisements
for cigarettes, and in 1970 the United States followed suit. Since then, most first
world countries have enacted laws regarding warning labels on cigarette packages,
restricting (or eliminating) the advertisement of cigarettes, and creating smoke-
free zones in many public places. Recently, in July of 2007, England has banned
smoking in all enclosed public places; this includes every pub, club and bar, and
some outside shelters.

An attempt to adjust the prevalence of a risk factor in society via a new law or
policy is a policy-based intervention. The word policy is used instead of law since
policy-based approaches include examples such as the distribution of free condoms
and clean needles in areas with a high prevalence of HIV.

75
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Policy-based interventions can have a profound impact on the prevalence of
a risk factor in a population, as in the case with smoking1. However, in other
circumstances enacting new policies is not effective or not practical. For example,
clear links have been uncovered between unprotected sex with multiple partners and
the spread of HIV/AIDS. However, enacting anti-adultery laws is ineffective, and
policies regarding condom usage can infringe upon religious ideals. Other problems
arise when considering more complicated risk factors, such as the recent research
linking the consumption of moderate amounts of red wine and individual health.
These results suggest that moderate amounts of red wine increase overall health,
while large amounts decrease overall health. Clearly, enacting a policy enforcing
adults to drink the appropriate amount would be nearly impossible.

When dealing with issues where policy-based approaches are ineffective, many
researchers often focus on the idea of improving the individual’s knowledge of the
matter at hand. In this regard, psychosocial risk modelling attempts to adjust the
individual’s perceived risk and perceived efficacy regarding the risk factor and the
particular disease. We refer to these approaches as education-based interventions.When researching psy-

chosocial models of risk

it is important to re-

member that it is not

the actual risk nor the

individual’s actual effi-

cacy, but the individ-

ual’s perceived risk and

perceived efficacy that

affect how they behave.

In psychosocial modelling the phrase perceived risk is used to refer to an in-
dividual’s belief on how detrimental (or beneficial) a given course of action is to
their health. In this context, perceived risk can be thought of as a balancing of
the answers to “what is the worst that could happen?” and “how likely is that to
happen?” In adjusting the public’s perceived risk, one tries to help them gain a
better grasp of the correct answers to these two questions.

The phrase perceived efficacy refers to an individual’s belief on how much control
they have over a given situation. With regards to healthcare, perceived efficacy is
not just an individual’s knowledge about what actions they can take, but also their
knowledge on their ability to perform these actions. For example, a drug user may
know that sharing needles is dangerous and increases the risk of HIV, but unless the
same drug user knows where to obtain clean needles, they will probably disregard
this knowledge. In many cases altering an individual’s perceived efficacy involves
breaking down certain cultural barriers and beliefs the individual has developed.
For example, in many cultures women do not feel they have the right to demand
that their sexual partners wear a condom, changing this belief can have very positive
effects on the control of spread of sexually transmitted diseases.

As with policy-based interventions, education-based interventions are not al-
ways effective in combating risky behaviour. For example, many people choose to
take up smoking despite being aware of the health risks and nicotine’s addictive
properties. Moreover, there is no clear cut answer to the question of when to use
a policy-based approach and when to use an education-based approach to adjust
risky behaviour. Even in hindsight it is often unclear which intervention has made
the larger impact. It could be argued that the decrease in the prevalence of smok-
ing in the United States is not due to policy changes but instead due to spreading
the knowledge that smoking is hazardous to one’s health. Alternately, we could
point out that, despite this knowledge, every year over one million teenagers take

1According to the National Center for Chronic Disease Prevention and Health Promotion the
adult smoking rate in the United States dropped from 42.4% in 1965 to 22.5% in 2002.
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up smoking2, and argue that without laws restricting the purchase of cigarettes to
minors this number would be even higher.

2. Common Uses

The goal of psychosocial risk modelling in healthcare is to develop models
explaining how the general public may be swayed into better health behaviour.
In general, this question can be reduced to “how can we increase/decrease the
prevalence of the risk factor X in the population?” For example:

• How can we increase the use of clean needles among drug users?
• How can we decrease the prevalence of smoking in the population?
• How can we improve the eating habits of the general population?

Psychosocial risk modelling often approaches these questions through educa-
tion. This alters the question to “how can we better educate the public on the
dangers/benefits of X?” For example:

• How can we better educate drug users on the importance of using clean
needles?

• How can we better educate the public on the importance of a healthy diet?
In other cases, psychosocial risk modelling approaches these questions through so-
cial policy making or stricter laws. For example:

• Should smoking be banned from public places?
• Should flu-shots be mandatory for certain professions?
• Should public school cafeterias adopt a policy of no longer serving high fat

food?

3. Model Details

The two most common approaches to adjusting risky behaviour lie in educ-
tion and policy making. In education-based interventions, we attempt to increase
the public’s awareness of the risk factor and what they can do to reduce it. In
policy-based interventions, we attempt to adjust the prevalence of the risk factor
by developing laws or policies that reduce harmful risky behaviour or reinforce ben-
eficial risk factors. Regardless of which approach one selects, in order to alter the
health behaviour of an individual it is imperative to understand the underlying
factors that impact health behaviour. Many models have been proposed to explain
human behaviour, several of which are discussed in other chapters of this book. For
now we satisfy ourselves with a brief overview of two of the most important factors
in health behaviour: the concepts of perceived risk and perceived efficacy. (Further
descriptions of models that explain human behaviour can be found in Chapters 11
and 10.)

3.1. Perceived Risk and Perceived Efficacy. Perceived risk refers to an
individual’s perception of the harm or benefit of a given course of action. For
example, consider the action of maintaining a healthy diet. An individual who sees
little benefit in eating healthy would have a low perceived risk while an individual
who sees harm in poor eating habits would have a high perceived risk. For this
example, an education-based approach to changing an individual’s perceived risk

2Data according to the National Center For Chronic Disease Prevention and Health
Promotion.
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might be to educate them on the negative side effects of unhealthy eating habits.
Alternately, a more policy-based intervention might involve enacting laws forcing
restaurants to provide nutritional information about each menu option.

The term perceived efficacy refers to an individual’s perception of whether they
can achieve a given course of action, and how much effort it would require. Again
consider the example of maintaining a healthy diet. Even people with a high per-
ceived risk may eat poorly based on a low perceived efficacy. For example, some-
body in a corporate sales position may feel that their job requires them to dine
out a lot with clients, which lowers their ability to maintain a healthy diet. One
may attempt to change an individual’s perceived efficacy by educating them on
how to take better control over a given course of action or developing policies that
make a given course of action more achievable. In the example of a healthy diet,
this might be achieved by teaching people how to select healthy affordable choices
from restaurant menus or developing corporate policies that encourage eating at
healthier restaurants.

It is worth emphasizing here that when researching approaches to altering
health behaviour, it is not the actual risk and actual efficacy, but the perceived
risk and perceived efficacy, that drive an individual’s actions. In many cases an
individual’s perception of risk and efficacy are very different than their actual risk
and efficacy.

3.2. Education-based versus Policy-based interventions. Unfortunately
there is often no clear cut answer regarding when one should use an education-based
intervention and when one should use a policy-based intervention. In fact, in many
cases it is unclear whether a given intervention is education-based or policy-based.
Consider for example the “Health Canada: Challenge to Youth Media Contest.”
This contest was organized and funded by Health Canada, and asked youth from
across Canada to create a 20 second anti-smoking commercial. The winning entries
(the top 20 out of over 10,000 entries received nationwide) were given the oppor-
tunity to see their advertisements produced by a professional agency and aired in
cinemas across Canada. As a government organized and funded contest, it could be
argued that this represents a policy-based intervention. However, the result of the
contest was 20 anti-smoking advertisements and the chance for schools nationwide
to educate their students on the dangers of smoking. Thus, the contest could very
easily be seen as an education-based intervention.

Although there are no strict rules to determining what intervention will be most
effective in a given situation, there are some ways to guide our thought process.
To begin, it is always a good idea to examine previous interventions. If a past
intervention was particularly effective, repeat it or refine it; if a past intervention
was a failure, learn from its mistakes.

Another good question to ask is how good is the public’s knowledge of the given
risk factor and how can they control it (i.e. what is the public’s perceived risk
and perceived efficacy)? If public knowledge is high, then further education-based
interventions may not be effective, while if public knowledge is low, education-
based interventions are more likely to have an impact. If public efficacy is low then
interventions designed to increase the public ability to act in a positive manner will
probably be effective, while if public efficacy is high then such interventions will
probably not have an impact. Information regarding public knowledge and efficacy
levels can often be obtained via public surveys and forums.
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A final question to consider is what are the current policies and laws regarding
the risk factor? In some cases, such as drug abuse, the current laws are extremely
strict, and creating further laws might not be effective. In these cases more creative
interventions are needed.

There are many arguments for implementing both policy-based and education-
based interventions to adjust health behaviour. For policy-based interventions the
arguments are often along the lines of: without intervention, perceived risk and
perceived efficacy are too low. New policies can increase perceived risk by enforc-
ing extra penalties for poor health behaviour (for example, laws governing the use
of seat-belts in automobiles) and increase perceived efficacy by forcing health op-
tions to be available (for example, providing free clean needles to drug users). The
arguments for education-based interventions generally reduce to: inaccurate per-
ceptions of risk and perceptions of efficacy lead to incorrect decisions regarding risky
behaviour. Therefore, when developing an education-based intervention strategy, it
is important to consider how to accurately communicate information about risks to
the public. Measures such as risk ratio and attributable risk (see Chapter 7) may
be useful to policy-makers, but for the general public these measures are confusing
and difficult to interpret. (Indeed, even trained epidemiologists make errors when
interpreting these measures; we discuss this further in Example 4.2.) Similarly,
journals such as the American Journal of Epidemiology are excellent sources of in-
formation for healthcare professionals, but are seldom read by the general public.
The lessons from these examples are simple; information should be communicated
to the public in a manner they can comprehend and in a location they frequently
access. However, effective implementation of these lessons is surprisingly difficult.

4. Examples

4.1. Tanzanian soap-operas and HIV: a success story. The country of
Tanzania and its 37 million citizens lies on the East coast of Africa. It is a poor
country, with 3 television stations, 150,000 telephones lines, and 1.6 million people
living with HIV/AIDS3. This HIV infection rate is among the highest in the world.

It has been found that the epidemic is maintained primarily through extra-
marital sex, with about 97% of cases occurring through heterosexual intercourse.
Thus, modification of sexual behavior appears an important means of controlling
the epidemic. In 2000, the results of a 4 year education-based intervention study
were published [173]. In this example we outline the study, and highlight some of
its successes. A soap opera is an ongo-

ing, episodic work of fic-

tion, usually broadcast

on television or radio.

They are characterized

by their open ended plots

and complicated inter-

character relationships.

The study began with the proposal of an educational soap opera entitled
“Twende na Wakati” (Let’s Go with the Times) designed to adjust the levels of
perceived risk and perceived efficacy regarding HIV/AIDS. Although it is widely
accepted that entertainment-education programs are effective in influencing audi-
ence behaviour in various communities, this is the first case of a national-level
intervention using entertainment-education as a tool to combat the HIV epidemic.

Much of the theory underlying the entertainment-education asserts that social-
cognitive dimensions have a greater impact in effecting behavioural change than
merely providing information. That is, providing the information on HIV/AIDS
is necessary, but without impacting social beliefs the intervention is unlikely to be

3Data from the 2007 CIA world fact book: https://www.cia.gov/cia/publications/

factbook
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effective. As such, Twende na wakati transmitted its message by using characters
in the show as negative, transitional and positive role models. Each broadcast was
also followed by a 30 minute educational epilogue providing more direct education
on HIV/AIDS.

Twende na wakati was broadcast via radio in Swahili twice a week for 30 min-
utes each. The choice of radio as an intervention media was highly appropriate,
as radio is the most popular form of electronic entertainment in Tanzania and
an important source of information on HIV/AIDS. Since the intervention strategy
aimed at reducing the number of sexual partners and increasing condom use in the
broadcast area, the soap opera focused on sharing the following ideas:

• all STDs should be medically treated,
• condoms are effective in preventing HIV infection,
• AIDS is an incurable disease spread by sexual contact, and
• various rumors about HIV/AIDS are false. 4

In order to assess the impact of the intervention, one region of the country was
denoted a control region, and the radio show was not broadcast in this region for
the first two years (1993-1995). Due to the positiveness of the preliminary results,
from 1995 to 1997 the soap opera was broadcast nationwide.

Data was collected through personal interview surveys that were carried out
five times at 1 year intervals, starting just prior to the first broadcast. Males (aged
15 to 60) and females (aged 15 to 49), selected on a sampling grid, were asked
to provide information on personal characteristics, exposure to Twende na wakati,
other sources of information on HIV/AIDS, and personal attitudes and preventive
behaviour practices regarding HIV/AIDS.Statistical analyses of

the Twende na wakati

project used ANOVA

and logit loglinear

models to compare the

control and treatment

areas. Possible geo-

graphic effects were also

tested by stepwise mul-

tiple linear regression

models. (See Chapter 6

for descriptions of these

models.)

During the first two years of the study, exposure to Twende na wakati was only
2% in the comparison area and 47% in the treatment area. When broadcasting was
extended nationwide, listenership increased to about 60% and 75% in the treatment
and comparison areas, respectively.

In the treatment area (the non-control region before 1995, and nationwide after
1995), survey respondents showed a modest but significant increase in knowledge
regarding HIV/AIDS. This increase was not present in the control region, suggest-
ing that the soap opera was directly responsible. Although no significant change in
attitude toward having sexual partners prior to marriage was seen, personal percep-
tion of risk among respondents has increased and significant changes in preventive
behaviour was found. Specifically, survey respondents showed a significant increases
in condom use and decline in the total number of sexual partners. This behaviour
was shown to be influenced through several intervening variables. Most notably,
respondents showed an increased perception of risk of contracting HIV/AIDS, an
increased self-efficacy with respect to preventing HIV/AIDS, and an identification
with the primary characters in the soap opera.

In conclusion, this study is an excellent example of the indirect nature of cog-
nitive processes involved in assimilating information and producing behavioural
change. It represents an empirical test of cognitive theories of behaviour change,
and shows that entertainment-education can be a highly effective intervention im-
pacting both perceived risk and perceived efficacy.

4Some common, and false, rumors about HIV/AIDS in Tanzania include: condom lubricant
contains HIV, you can visually identify if people are infected with HIV, and it is harder for fat

people to contract AIDS.
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4.2. Help the Public Interpret AR and RR. The issue of communicating
information in a form the general public can make sense of has been addressed by
various researchers ([178] and citations therein). As mentioned, there is a common
consensus that measures such as risk ratio and attributable risk are difficult to
interpret for the general public. In Chapter 7 the con-

cepts of relative risk

(RR) and attributable

risk (AR) are developed.

Relative risk is a mea-

sure of the change in

the probability of hav-

ing the specified disease

given that one has the

risk factor. Attributable

risk represents the pro-

portion of the given dis-

ease that could be (the-

oretically) reduced if the

given risk factor were

eliminated. Relative

risk is defined in equa-

tion (12) as

RR =
Pr(D|F )
Pr(D|Fc) ,

while attributable risk is

defined in equation (13)

as

AR =
Pr(D)−Pr(D|Fc)

Pr(D)
,

where Pr(D|F (c)) is the

probability of experienc-

ing disease D given risk

factor F is present (c -

not present).

To help avoid public misunderstanding of risk, some researchers have suggested
other forms of risk measures to help the public digest what level of risk various ac-
tivities entail. For example, the impact of risky behaviour could be communicated
to the public in terms of “average number of life years lost/saved” [178]. Measures
such as these are much easier to understand, and allow the public to better gauge
what level of risk each risk factor represents. However, the cost of this commu-
nication is that it is often difficult to estimate these values from epidemiological
quantities such the attributable risk. One possible manner of estimating these val-
ues is to resort to a computer simulation involving the risk factors and diseases of
interest.

For the case of the impact of moderate alcohol consumption on coronary heart
disease, Phillips and Zeckhauser [178] developed a simulation model using mor-
tality data from the Framingham Heart Study. Their simulation predicts that the
potential life years gained from moderate alcohol consumption5 would be 0.75 years
for men and 0.63 years for females. A number of approximations were made in the
simulation, which may call into question the accuracy of their results. Nonetheless,
the research of [178] provides an excellent example of how combining risk analy-
sis with simulation provides a useful tool for generating information about health
choices in a form that may be easily communicated to the public.

4.3. Potential Effects of a Slow Reduction of Sodium in the Cana-
dian Diet. The World Health Organization suggests that the average adult should
consume a maximum of 2000 mg per day of sodium (or lower, depending on the
country) [172], and a recent report by the American Academy of Science recom-
mends that 1200 mg/day to 1500 mg/day is an adequate intake for optimal health
[170]. However, the average Canadian consumes approximately 3500 mg sodium
per day. Dietary research suggests that reducing the national sodium intake of
Canada would have profound effects on the overall health of the country. For ex-
ample, researchers have found links between high sodium consumption, increased
blood pressure, increased risk of cardiovascular diseases, congestive heart failure,
stroke and myocardial infarctions [104]. The projected health benefits of reducing
the average sodium intake to 1800 mg per day include, a 30.3% reduction in the
prevalence of hypertension, resulting in a potential direct savings of $430,000,000
to the Canadian healthcare system [157].

Despite the clear health benefits, motivated individuals find it difficult to reduce
sodium intake reasonably because roughly 80% of daily intake of sodium comes from
processed and restaurant foods in most of the Western world. Moreover, much of
the processed food industry is reluctant to reduce the sodium in their products,
fearing loss of sales due to a sudden reduction in flavour. As it is not economically
defensible to advocate for a sudden dramatic reduction in sodium intake, Joffres
and Alimadad have begun research into the effect of a slow annual reduction in
sodium levels in processed food [120].

53 to 12 drinks per week, spread out evenly over the course of a week
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Since experiments with taste-tasters have shown that most recipes do not begin
to show a change in flavour until about a 10% reduction in sodium levels, analysis
considers estimates of reductions in cardiovascular diseases in Canada following a
5% and 10% yearly reduction in sodium intake at the population level, and potential
savings in hospital costs. In their model, sodium intake begins at 3600 mg per day,
and decreases annually. A 5% annual reduction will require 22 years to reduce
sodium intake levels to 1226 mg per day, while a 10% annual reduction will require
11 years to reduce sodium intake levels to 1250 mg per day. Nonetheless, the impact
of such a reduction would be noticed almost immediately in the healthcare system.
In Table 1 we see the predicted number of avoided ischemic heart disease (IHD),
stroke and congestive heart failure (CHF) events each year for the 5% and 10%
reduction scenarios, along with the expected savings to the healthcare system.

Scenario I: 10% Annual Sodium Intake Reduction
Year IHD Stroke CHF Hospital savings ($1,000,000s)

1 2238 928 1645 $ 45
2 1968 815 1445 $ 39
3 1726 714 1265 $ 34
4 1508 623 1102 $ 30
5 1311 541 956 $ 26
10 587 238 419 $ 11
11 483 195 341 $ 9

Total 13465 5549 9810 $271

Scenario II: 5% Annual Sodium Intake Reduction
Year IHD Stroke CHF Hospital savings ($1,000,000s)

1 1262 518 913 $ 25
2 1195 490 865 $ 24
3 1132 464 819 $ 22
4 1071 439 775 $ 21
5 1014 416 734 $ 20
10 767 315 556 $ 15
15 576 237 419 $ 11
20 428 177 313 $ 8
22 379 157 277 $7

Total 16423 6749 11918 $330
Table 1. Potential Effect of a Slow Reduction in Sodium
Intake: Predicted number of avoided ischemic heart disease
(IHD), stroke and congestive heart failure (CHF) events each year,
along with expected healthcare savings, resulting from an annual
5% or 10% decrease in sodium intake.

Overall the research argues that a small steady sodium reduction plan would
increase the level of acceptance by industry and the general population, yet still
provide significant improvement to overall Canadian health status. The total pre-
dicted hospital cost savings would be about $270 million over 11 years in the 10%
model, and $330 million over 22 years in the 5% model.
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It should be noted that the model uses the unlikely generalization that all
Canadians consume 3600 mg per day of sodium intake in the initial year. This
assumption is useful for generating initial estimates, but limits the accuracy of the
model. In particular, individuals with very high sodium intake will have signifi-
cantly better health gains from a 5% reduction in sodium than individuals with
low sodium intakes. This may result in even higher savings than those predicted
in Table 1. Future work of the researchers would be to find more realistic ways to
model the national population.

5. Related Reading

Psychosocial Risk Modelling has close connections with Epidemiological Risk Mod-
elling (Chapter 7). Psychosocial models in general examine individual’s behaviour and
how it can be altered. Other forms of psychosocial modelling are discussed in Chapter 10
(Psychosocial Modelling), Chapter 11 (Game Theory and Human Capital Models), and
Chapter 12 (Network Models and Graph Theory).

A complete copy of the US Surgeon General’s report “Smoking and Health” can
be found online at http://www.cdc.gov/tobacco/sgr/sgr_1964/sgr64.htm. Reference
[118] uses survey data from 1974 to 1985 to project the smoking prevalence rate in 2000.
Information on the Health Canada: Challenge to Youth Media Contest can be found
at http://www.schoolfile.com/cash/HealthCanadaYouth.htm. Reference [96] looks at
how biases in risk beliefs vary across a population.

Reference [173] examines the effect of an entertainment-education radio soap opera
on HIV prevention behaviours in Tanzania, and is discussed in Example 4.1.

Reference [178] examines effective ways to communicate information to patients re-

garding moderate alcohol consumption and the reduction in heart attacks, and is discussed

in Example 4.2. Reference [185] provides a commentary on conceptual and computational

issues faced by epidemiologists when dealing with attributable fraction estimations. Refer-

ence [79] is an ongoing comprehensive study looking at the general causes of heart disease

and stroke.
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CHAPTER 9

Issues in Mathematical Modelling

It’s tough to make predictions, especially about the future. Yogi
Berra (1925-)

We have a lot of people revolutionizing the world because they’ve
never had to present a working model. Charles F. Kettering
(1876-1958)

Model Selection, Development, and Implementation

1. Overview

In many cases, the problems and issues arising in healthcare can be answered
(at least as a first approximation) via the statistical techniques discussed in Part
2 of this book. For example, if one wishes to measure whether a particular drug
is effective in combating a particular illness, then a double blind test followed by
the epidemiology techniques discussed in Chapter 7 is perfectly satisfactory. Al-
ternately, if one wishes examine the basic relationships between various societal
factors and health, then the descriptive statistics of Chapter 5, and the regression
analysis and econometrics of Chapter 6 provide most of the tools necessary for the
project.

However, in many cases, statistical techniques are not sufficient to determine
how one factor impacts another. In such cases, one often builds a model of the
system and uses it to determine what equation is likely to describe the relationships.
In other cases, researchers and policy-makers are more interested in “what-if’s”
than what is. That is, policy-makers are happy to see that a drug is effective, but
are actually interested in questions such as “if we made this drug freely available
to the public, how would the global prevalence of the illness change?” To answer
questions such as this, more advanced models must be employed. Part 3 of this
book describes some of the modelling techniques that have been used to answer
these harder problems. Regardless of the mod-

elling technique used,

at some level all mod-

els must be grounded

in reality. Often this

means the model must

be tuned using real data

and statistical analyses

(discussed in Part 2 of

this book).

Before turning our attention to these techniques it is prudent to lay down a key
observation to keep in mind while using these models. Namely, it must be strongly
noted that, just because these techniques use mathematics other than statistical
analysis, this does not mean statistical analysis is no longer useful. Indeed, regard-
less of the modelling technique we use, at some level the model should be rooted in
real life, which often means tuning the model using real statistical data. Although,
the ideas and mathematics discussed in Part 2 of this book are not necessary to
understand how various types of models are constructed, at some point in the mod-
elling process it usually becomes necessary to apply some of the statistical methods
presented in Part 2.

87
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With this in mind, we note that the remainder of Part 3 will largely ignore
the statistical analysis required to tune models. Instead we focus on providing the
reader with a high level understanding of what each modelling technique is and
what it may be able to accomplish. Our collection of modelling techniques is in no
way exhaustive, but hopefully provides a broad background for any researcher or
policy-maker interested in modelling in healthcare.

In the remainder of this chapter we discuss some of the issues that arise in se-
lecting a modelling technique, developing the model, and implementing the results.

2. Selecting a Modelling Technique

Unlike what is commonly taught in grade school, for most problems (especially
mathematics problems) there is more than one way to arrive at a solution. This
is particularly evident in modelling, as any given question can be approached by
several different modelling techniques. This makes selecting the “best” technique
for the job a nearly impossible task. In fact, the “best” technique might be to
approach the question via several different modelling techniques and compare the
answer each model provides.Selecting a modelling

technique to employ is

largely a matter of expe-

rience and luck. When

in doubt, the best course

of action is probably to

use multiple techniques

and compare the results

from each.

Broadly speaking, models fall into two categories: qualitative and quantitative.
These categories are discussed in some detail in Chapter 3, Section 1, so we do not
rewrite these details here. Instead, we simply remind the reader that qualitative
models are models which avoid the use of numbers. Instead qualitative models are
designed to provide insight about why a given situation exists and what its driving
factors are. Conversely, quantitative models are models that use mathematical
variables and equations to describe the behaviour of a system. Such models are
designed to make numerical predictions about how a system will evolve over time
and how interventions will impact this evolution.

Quantitative models can be sub-divided further into the categories: stochastic
or deterministic, static or dynamic, and discrete or continuous. These are discussed
in Chapter 3 Section 1, so we say no more here. Instead we turn our attention to
the idea of a feedback loop, which is an important concept in both qualitative and
quantitative modelling.

2.1. Feedback Loops. A feedback loop occurs when the state of one variable
in the model impacts how the state of that same variable progresses over time. The
classic example is impact of population size on population size. Consider Figure 1
(this figure reappears in Figure 1 of Chapter 10).

Population Size Births per year

Figure 1. A simple feedback loop.

In Figure 1 we see a diagram representing how population size and the number
of births per year interact. The first arrow, pointing from “population” to “births,”
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represents the fact that the population has an impact on the number of births per
year. The second arrow, pointing from “births” to “population,” represents the
fact that the number of births has an impact on the population. Simply put, the
first arrow states that the more people there are the more babies are born, while
the second arrow states that the more babies are born the more people there are.
Therefore, the more people there are the faster the population will increase.

From this simple example it may appear that feedback loops are trivial in their
construction and interpretation. However, as models become more complicated,
feedback loops can become very difficult to analyze. In fact, in many cases the
state of a variable may both positively and negatively impact how that variable
changes over time.

Most advanced models in healthcare will contain at least one feedback loop.
This reflects real life where, for example, the current health of an individual impacts
their future health, the current efficiency of a hospital impacts the future efficiency
of the same hospital, and the current length of a surgical waitlist impacts how
quickly that waitlist will grow. Feedback loops are often so important and so
complicated that sometimes the entire goal of a qualitative model is simply to
describe the feedback loops in a system.

When selecting a modelling technique to employ, we should ask if the problem
in question has feedback loops, and if so, how important it is to the model to
understand them.

3. Developing the Model

After a modelling technique is selected, the next stage a researcher proceeds
through is the development of the model. Since this is discussed in some detail in
Chapter 3 we do not elaborate here. Instead we focus on some traps that modellers
may fall into during the development process.

The model does not answer the stated question: One of the most
common problems in a researcher/policy-maker relationship is communi-
cation. As a result, a researcher will sometimes spend months developing
a brilliant model which in no way tells the policy-maker what they want
to know. To reduce the likelihood of this occurring, it is important that
the policy-maker clearly state the exact question they wish answered, and
that the researcher clearly state how the model will help answer that ques-
tion. This process should be repeated at regular intervals to reduce the
likelihood of losing focus partway through the project.
The theoretical model is incomprehensible: One of the guiding
principles of modelling is transparency. Models that are too confusing
to understand may be correct, but are seldom employed in the long run.
With transparency comes the ability for experts in the field to examine
the model and determine if they believe the underlying assumptions are
correct.
The model is not believable: It is important to seek out experts in the
field we wish to model and include them in the process of model design.
Note that experts in the field of study does not mean experts at modelling
the field of study. For example, if one is to model disease spread through
a hospital, one should discuss the model with doctors who have seen how
the hospital system works and how diseases can be spread within that
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environment. If the model is clear and believed by them, then there is a
significantly higher chance that the model will be successful in the long
run.
The model does not fit the data: After developing a model, it is
important to test the model against real data. If the model does not fit real
data, then it is best to assume that the model is wrong. It should be noted
that this is not a total loss, the modeller can now learn something new
about the system by examining the model’s assumptions and determining
which ones are flawed.

In all of the above problems, there is one major trap that modellers often fall
into. Specifically, if the model is not working, modellers will often attempt to tweak
the model in some manner in order to fix the problem. In some cases this works,
especially if the margin of error for the model is small. In other cases, this can lead
to a long series of “model corrections” that result in an incomprehensible model
that works only for the very specific situation for which it was designed, or that is
riddled with untestable assumptions. In the end, the tweaked model will probably
be discarded, and instead of losing months of work the researcher ends up losing
years of work. To avoid this, modellers (and researchers in general) must be willing
to admit that the method they have attempted did not work, and to restart the
process beginning with a different modelling technique. This is extremely easy to
say, and very difficult to achieve.

4. Implementation of Models

Supposing that a question has been specified, a model has been proposed and
designed, data has been collected and the model has been tuned to the data, it is
now the task of the modeller to “solve” the model. That is, the model must be
examined in a manner which allows the user to answer the questions which were
specified. In many cases this means developing equations which describe the state
of the model at a given time, given a certain initial state. This is referred to as
implementing the model, and in general can be accomplished in three manners:
mathematical analysis, numerical analysis, and simulation. No single one of these
techniques is better than the rest. In fact, like the rest of the modelling process,
results are most convincing when multiple techniques are employed. We now discuss
each technique in turn.

4.1. Mathematical Analysis. The oldest and most robust manner of imple-
menting a model is through the careful use of a pen and paper. After developing
and tuning the model, the modeller may be able to describe the model as a col-
lection of equations. Sometimes these equations can be studied without the aid of
a computer, and many properties of the model can be determined. For example,
finding equilibrium points for the model involves examining for which initial con-
ditions the model does not evolve over time. Answers to questions such as these
may provide insight into the model and the system modelled that computer aided
techniques do not.

The tools used for mathematical analysis of a model vary from model to model,
and a comprehensive review of analytical methods in mathematical modelling is far
beyond the scope of this book (in fact it would essentially amount to a survey of
the entire field of mathematics). Instead, we will give a brief introduction to a few
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of the branches of mathematics that are most often applied to modelling. In each of
the remaining chapters of Part 3 we will discuss the tools needed to analyze specific
models.

Statistical Analysis: Statistics is the mathematics beyond the collec-
tion, analysis, interpretation, and presentation of data. It is a huge field
of study and most schools require at least a first or second year statistics
course in order to complete a Bachelor of Science degree. As mentioned
above, and illustrated in Part 2 of this book, the field of statistics plays a
pivotal role in the development of models.
Calculus: Calculus is the study of mathematics enhanced by the concept
of a limit. Like statistics it is a huge field of study and most schools re-
quire at least a first year calculus course in order to complete a Bachelor
of Science degree. From a modelling perspective the most important con-
cepts from calculus are the derivative and integral of a function. In this
book we denote these by d

dtf(t) and
∫ b
a
f(t)dt respectively. In the world

of modelling the derivative of a function most commonly represents the
rate of change of that function with respect to time (it some cases it may
be with respect to another variable). The integral of a function plays the
role of an anti-derivative. In modelling the integral often represent a sort
of continuous version of the sum.
Linear Algebra: Linear algebra is the branch of mathematics concerned
with the study of vectors, and their operators. Most schools teach lin-
ear algebra as a first or second year course and make it mandatory for
a large variety of degrees. The most common appearance of linear alge-
bra in modelling is in the form of matrix multiplication and eigenvalue
analysis. Matrix multiplication generalizes the notion of a linear function
(y = mx+ b) to multi-dimensional spaces. Eigenvalue analysis is used to
determine fixed points of such functions, and to understand how “stable”
the functions are with respect to errors in the data.
Multivariate Calculus: Calculus in more than one dimension is usu-
ally referred to as multivariate calculus. Most schools teach multivariate
calculus as a second or third year course and only make it mandatory for
certain degrees. Although the principles of the subject are the same, many
of the definitions must be reworked to make sense in a multi-dimensional
light. In particular, derivatives become gradients ( d

dtf becomes ∇f) and
integrals are taken over sets instead of intervals (

∫ b
a
f becomes

∫
S
f). In

modelling, multivariate calculus arises when the model has multiple inter-
acting variables.
Differential and Integral Equations: A system of differential equa-
tions is a set of equations that describe the infinitesimal interaction be-
tween different components of the system. They are characterized by
equations that involve both the function and its derivative (or its inte-
gral). Most schools teach differential equations as a third or fourth year
course and only make it mandatory for certain degrees. Differential equa-
tions arise often in modelling, particularly when the model evolves over
time in a continuous manner. If the model contains feedback loops then
the differential equations become more complicated and more difficult to
solve analytically.
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Two important concepts in differential equations are attractors and equi-
librium states. An attractor is a state towards which the system evolves
over time, regardless of initial conditions (or at least for a wide variety of
initial conditions). Equilibrium states occur when differential equations
attain states from which they do not leave. All attractors are equilibrium
states, but not all equilibriums states are attractors. Understanding how
differential equations behave near equilibrium states is useful in under-
standing the model as a whole.
Graph Theory: Graph theory is the study of mathematical structures
representing connections between objects. Graph theory is an advanced
subject in mathematics and many schools do not teach it at an undergrad-
uate level. In modelling, graph theory is most strongly applicable when
examining network models. Such models are discussed in Chapter 12.
Optimization: Optimization is the study of minimizing or maximizing
a function. Basic optimization is touched on in most first year calculus
classes, but advanced optimization is not often taught at an undergraduate
level. In modelling, optimization is usually applied at an end stage when
policy-makers are interested in what policy changes might improve the
systems behaviour. In order to be effective, optimization requires a clearly
defined objective function. That is, questions like “how can a hospital
be run best?” cannot be approached through optimization as they are
too vague. However, specific questions such as “what nursing schedule
minimizes the number of staff hours while maintaining a given level of
service?” can be approached through optimization.

4.2. Numerical Analysis. As models become larger and more complicated,
it becomes increasingly difficult to solve them via analytic means. Fortunately,
many of the mathematical tools of analysis have been automated to various degrees
in mathematical programming languages. Some, but far from all, of these languages
are outlined in Appendix A of this text. Here we discuss in general terms what
these languages are capable of.

If the complication in implementing the model is a result of model size (as op-
posed to model complexity), it can often be difficult to solve simply because there
is so much room for error when using a pen and paper. A prime example of this
is statistical analysis for large data sets. In this case, several of the mathematical
programming languages are capable of solving complicated systems of equations (or
differential equations) in a symbolic manner. The final equation may be compli-
cated, but computer aid can be further enlisted to produce graphs of the equation.
By changing parameters, resolving, and regraphing, researchers can often gain a
good deal of understanding about a model in very little time. As an added bonus,
computers do not tend to get upset about tedious grunt work.

If the complication in implementing the model is a result of model complexity,
mathematical programming languages can be used to produce numeric (approx-
imate) solutions to the equations of the model. Good examples of this are the
solving of large systems of equations via fix point methods, or the solving of dif-
ficult differential equations via Euler’s method or the higher order Runge-Kutta
method. Numerical methods are also extremely useful for solving difficult opti-
mization problems.
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Fortunately, it is not necessary for the user to fully understand how a method
works in order to use it. However, it is best if the user has a decent understanding
of the methods employed so that they know whether these methods are appropriate
in their situation. As an analogy, consider that we do not need to know how the
combustion engine works to drive a car, but every good driver should know that
the tires should be properly inflated before going anywhere.

4.3. Simulation. Sometimes a model is complicated enough that even writing
down the equations that represent the model becomes challenging. In cases such as
this, simulation software is often used to try and create a fully computerized version
of the model. Due to the ease of understanding simulations, simulation software
has become extremely popular in recent years. In Appendix A we list some of the
simulation software packages currently available. Here we discuss in general terms
what simulation is, and what it is capable of.

As a simulation is a method of implementing a model, it is not surprising that
it can be stochastic or deterministic. In a stochastic simulation, events are triggered
according to a probability distribution. For example, patients may arrive at the
emergency room according to a Poisson process, with a given expected arrival rate.
Clearly, this is more realistic than a deterministic simulation in which it is assumed
that patients arrive at a specified fixed interval. Whether the additional complexity
and computational overhead of a stochastic model are necessary depends on the
level of detail of the problem that the model is addressing.

In the past, simulations have been termed either discrete event simulation or
continuous simulations, however current practice has put discrete event simulations
at the forefront. In discrete event simulation, the time flow follows a sequence of
discrete steps, whereas in continuous simulation the time flow is continuous. His-
torically, continuous simulations were done using analogue computers, essentially
electrical circuits custom built to emulate the system to be modelled. Although
analogue computers are still used in a few highly specialized modelling problems,
the majority of simulations now use digital computers. By necessity, all simula-
tions on a digital computer must use discrete time steps, thus the term continuous
simulation has largely fallen out of practical use. When using the term simulation,
we shall always be referring to discrete event simulation.

In discrete event simulation, the model progresses through a series of events
as defined by the simulation algorithm. For example, a patient entering a hospital
emergency department might follow the following sequence of events:

(1) enter emergency
(2) initial assessment
(3) treatment
(4) release

The simulation algorithm is based on an understanding of the processes being mod-
elled. In general, the simulation would not consist of a simple sequence of events
as above, but would include conditional branching and iterations.

Since static models do not need to be simulated, all simulations are dynamic.
Choosing the correct time steps for the simulation is crucial to its success. The time
steps in a simulation correspond to a time scale in the physical system. For example,
in a simulation of an emergency department, each iteration of the simulation may
correspond to an hour of time in the physical system, or if the model is intended
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to focus on more detailed dynamical behaviour it may correspond to a minute of
physical time. The model is then run through the required number of iterations
which correspond to the desired physical time span.

It is often the case that during the simulation we may wish to vary the input
statistical distribution or model parameters over time. For example the rate of
patient arrivals to an emergency department will typically depend on the time of
day. It is well known that the emergency department is busier during the afternoon
and evening than in the early hours of the morning. In this case, we may use a
moving Poisson process, in which the expected arrival rate varies slowly with time.

Typically, discrete event simulations must be run for a “warm up” period,
before they realistically model the physical system. Consider again our example of
a hospital emergency department. When the simulation starts, there are no patients
in the system. However, this is certainly not the case with the actual emergency
department. It has existed, serving patients, since the hospital was constructed.

The level of detail within the simulation algorithm is critical. There is no
simple rule about the degree of detail to incorporate. Like all models, simulations
must tread a fine line between being detailed enough to solve the problem for which
they are designed and simple enough to allow it to be clearly understood. Aspects
that are extraneous to the question being investigated should be excluded from the
model. It is best to begin with a simple model using aggregated data and add
complexity only where needed, validating at each step.

5. Related Reading

Reference [9] examines how the operation of the healthcare industry differs from

typical manufacturing industrie. Reference [13] presents guidelines for the verification,

validation, and accreditation of simulation models. Reference [3] discusses the need for

interdisciplinary research teams when modelling in healthcare. Reference [222] discusses

the many applications of modelling in healthcare, including some useful advice on collab-

oration between modellers and policy-makers. Reference [8] looks at the potential uses

of complexity theory and chaos theory in the understanding of healthcare organizations.

Reference [65] discusses multilevel analysis and reviews the rationale for using it in public

health research. Reference [144] describes and compares the development of strategies to

manage demand in healthcare in the U.K. and the U.S. Reference [12] describes a method-

ology for carrying out a sensitivity analysis in healthcare models. Reference [62] gives a

description of the area and role of Agent Based Social Simulation. Reference [14] presents

a method for assessing the quality of large-scale complex modelling and simulation appli-

cations. Reference [61] reviews the location set covering model, maximal covering model

and P-median model that form the core of the location planning in healthcare. Refer-

ence [145] illustrates the utility of models in assisting managers in optimizing healthcare

delivery in military medical centers. Reference [153] looks at the background of system

dynamics modelling and its uses in modelling public health.



CHAPTER 10

Explaining Irrational Behaviour

Man is a rational animal. Aristotle (384–322 BC)

Man is a rational animal who always loses his temper when he
is called upon to act in accordance with the dictates of reason.
Oscar Wilde (1854–1900)

Psychosocial Modelling

1. Model Overview

For modelling purposes, it would be considerably easier if everybody acted in
an isolated and rational manner. However, a brief examination of almost anyone’s
life shows that this untrue. Indeed, if rationality was the norm, the fifty five billion
dollar casino gambling industry would be in serious jeopardy1, attendance at local
vaccination clinics would be considerably higher2, and over 150,000 psychologists
would suddenly be out of work3. Therefore, whenever one attempts to develop
models of human behaviour, it is important to examine the role irrationality plays
in this behaviour.

On an individual level, modelling irrational behaviour is, of course, impossible.
However, on a group level, it is possible to examine how social conditions affect the
general behaviour of group members. To this end, the field of psychosocial mod-
elling has been developed to examine the impact of social conditions on behaviour.
In healthcare, psychosocial models develop psychological frameworks that examine
how social conditions affect how people make decisions about their health. Psychosocial: relating

social conditions to

mental health.

So far, psychosocial modelling in healthcare has enjoyed a fairly long and suc-
cessful history. In the early 1950s, the Health Belief Model began the examination
of why individuals were reluctant to accept disease preventive measures, such as
vaccination and screening tests. In the 1960s, the Behavioural Model of Healthcare
was developed to study the more general question of when and why families access
healthcare. Both of these models have blossomed into large fields of research, which
include examinations of how our use of the healthcare system is impacted by our
social circle. More recently, advances in computers and mathematical data analysis
have allowed these theoretical models to be examined and verified.

1The 2006-07 Indian Gaming Industry Report totals 2005 casino gambling revenue in the
USA as $55.3 billion.

2A 2003 survey of 1330 Canadian adults showed that 79.4% of subjects held positive views
towards vaccines, but only 45.4% of subjects had or intended to have an influenza vaccine (Rivto,

et. al., Journal of Immune Based Therapies, 1:3).
3According to the US Bureau of Labor Statistics there were approximately 179,000 psychol-

ogists employed in the USA in 2005.
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The Health Belief Model is based upon the psychological theory that humanThe Health Belief

Model suggests that

six elements affect an

individual’s decision

to access healthcare:

the perceived benefits,

perceived susceptibility,

perceived severity, per-

ceived barriers, cues to

action, and self-efficacy.

behaviour depends on the value placed by the individual upon a particular goal
and the individual’s estimation of the likelihood of achieving that goal. Essentially
the health belief model suggests that an individual’s decision to access healthcare
is affected by six elements: the perceived benefits of accessing healthcare, perceived
susceptibility to requiring the benefits, perceived severity of not acquiring the bene-
fits, perceived barriers of accessing healthcare, cues to action, and self-efficacy (see
Table 1, page 98). The goal in researching the Health Belief Model is to determine
how these elements interrelate and what factors affect them. This is described in
some detail in Subsection 3.1.

The Behavioural Model of Healthcare is based on the concept that an individ-
ual’s behaviour is not only a product of their environment, but also a contributing
factor to the development of that environment. For example, if a particular area
is lacking in trained medical personnel , people in that area may seek alternate
forms of healthcare, thus reducing the need for medical resources in the area. SuchThe Behavioural Model

of Healthcare considers

that an individual’s be-

haviour is not only af-

fected by their envi-

ronment, but also con-

tributes to the develop-

ment of their environ-

ment (see Figure 2).

an effect is called a feedback loop and a system that describes these feedback loops
is called a demand-access-utilization chain or influence diagram. The goal in re-
searching the Behavioural Model of Healthcare is to examine the interrelationships
between the physical environment, social environment, health behaviour, and health
outcome. Details of this are discussed in Subsection 3.2, and the influence diagram
of the Behavioural Model for Healthcare is given in Figure 2.

2. Common Uses

It should be noted immediately that the goal of psychosocial models is to pro-
vide a psychological framework to help understand patient behaviour, not to pro-
duce numerical predictions of future patient behaviour. Nonetheless, psychosocial
models can help answer many questions posed in the healthcare industry.

Perhaps the most common use is the examination of when and why people make
use of healthcare. In this regard , psychosocial models are used to approach the
general question: “what prompts people to visit a trained medical practitioner?”
More practically one might use psychosocial modelling to answer questions such as:

• How can we improve attendance at immunization clinics?
• How can we improve patient compliance to medical instruction (such as

proper use of antibiotics)?
• How can we increase the usage of mammography examinations to diagnose

breast cancer?

Of course this is far from the only use of psychosocial models in healthcare.
In fact, it is reasonable to say that anytime we attempt to model general patient
behaviour on a group level, we should incorporate Psychosocial models to some
degree. For example, psychosocial models should be included when approaching
questions such as:

• How can we improve the lunch time eating habits of high school students?
• What factors impact smoking rates in teenage girls?
• Who should we educate to reduce unwanted pregnancies?
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3. Model Details

Two of the most popular psychosocial models in healthcare are the Health Belief
Model and Behaviour Model of Healthcare. We will approach each of these in turn.
However, before doing this, it is worth noting that psychosocial models are qualita- Qualitative versus quan-

titative modelling is dis-

cussed in Chapters 1

and 9.

tive models, and not quantitative models. That is, the goal of psychosocial models
is to provide a psychological framework to help understand patient behaviour, not
to produce numerical predictions of future patient behaviour.

3.1. The Health Belief Model. The Health Belief Model (henceforth re-
ferred to as HBM) is a conceptual framework developed in the early 1950s by
psychologists attempting to understand the widespread failure of people to accept The original HBM of

the 1950s only con-

sidered the elements

of perceived benefits,

perceived susceptibility,

perceived severity, and

perceived barriers. The

elements of cues to

action and self-efficacy

were not added until the

late 1970s.

preventative measures in healthcare (such as vaccinations and screening tests). The
model is based on the psychological theory that human behaviour is largely driven
by the perceived value of a given goal, and the perceived likelihood of achieving
that goal. In the field of healthcare, the model states that an individual’s likeli-
hood of accessing healthcare is based on six elements: perceived benefits, perceived
susceptibility, perceived severity, perceived barriers, cues to action, and self-efficacy
(see summary in Table 1).

The element of perceived benefits captures the positive outcomes that an indi-
vidual feels may occur by accessing healthcare. Generally this captures an improve-
ment in life quality or life span. For example, one might visit a doctor in the hope
of relieving a persistent cough, take an influenza vaccine in the hope of avoiding a
nasty flu bout, or begin chemotherapy in the hope of prolonging one’s life.

The element of perceived susceptibility captures the individual’s feeling on whether
or not the perceived benefits will be required. For example, a teacher may feel
highly susceptible to catching a nasty flu during the course of a year, and therefore
be likely to take an influenza vaccine. Conversely, a young university student may
feel they are the epitome of health and therefore not perceive themselves susceptible
to influenza. Similarly, a 25 year old woman will perceive a lower susceptibility to
breast cancer than a woman of 55 years old, and therefore be less likely to have a
mammogram. Sometimes the elements

of perceived susceptibil-

ity and perceived sever-

ity are combined into

one element: perceived

threat.

The element of perceived severity captures how an individual feels about the
result of requiring the benefits but not acquiring them. For example, an individual
educated on the effects of cancer may perceive a higher severity in the illness than
someone who has not been educated. Perceived severity also captures possible social
consequences such as how a disease may affect an individual’s work or family life.
For example, influenza may be perceived as more severe to someone who cannot
abide the possibility of missing work and HIV/AIDS may be perceived as a greater
stigma to devout individuals.

The element of perceived barriers captures the potential difficulties in access-
ing the particular aspect of healthcare in question. For example, the distance to
the local clinic and the difficulty of getting the necessary time off work would be
perceived barriers to getting regular mammograms. Perceived barriers also include
any potential negative aspects of accessing healthcare. For example, chemotherapy
generally has a negative impact on quality of life, and many vaccines are given via
a potentially painful needle.

The element of cues to action captures both bodily and environment events
that motivate individuals to act. For example, a disease that causes a constant
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Element Summary Examples
Perceived Perceived positive outcomes of • Relief from pain
Benefits accessing healthcare. • Reduced likelihood of getting sick

• Increase in life span
Perceived Perceived likelihood of requiring the • Vaccination and profession
Susceptibility perceived benefits. • Age and cancer screening

Perceived Perceived seriousness of requiring but • Education and cancer screening
Severity not receiving the perceived benefits. • Sickness and loss of work

Perceived Potential difficulties and negative • Distance required to travel
Barriers aspects of accessing healthcare. • Loss of time (personal or work)

• Pain of receiving treatment
Cues to Bodily and environmental • Current symptoms
Action motivation to seek healthcare. • Media coverage

Self- An individual’s confidence in their • Positive or negative
Efficacy ability to overcome the perceived reinforcement

barriers to accessing healthcare.
Table 1. Elements in the Health Belief Model: Elements
affecting an individual’s access to healthcare according to the
HBM.

ache is more likely to prompt an individual to seek help than a disease that does
not . Another major contributor to action is media coverage.Efficacy: the power to

produce an effect. The element of self-efficacy or perceived efficacy captures the individual’s be-
lief in their own personal ability to overcome the perceived barriers to accessing
healthcare. This element differs from perceived barriers in that it is focused more
on the individual confidence than the individual perception of potential difficulties.
For example, an individual’s self-efficacy can be greatly influenced by the positive
and negative reinforcement they receive in the various social circles in their life.

Since its inception, the HBM has undergone considerable scrutiny and analysis.
As a purely qualitative model, the vast majority of the research on the HBM has
been in the form of psychological experiments. Interviews and survey data has been
collected to examine the plausibility of the HBM in practice. Not surprisingly, the
HBM model has been largely supported by the published data.

As a psychosocial model, the HBM is primarily designed to explain patient
behaviour in a psychological framework. As such, one of the primary goals in
researching the HBM is to determine strategies to alter each element of the HBM.
Most of these strategies can be summarized under the heading “improving patient
education.”

Another goal of research in the HBM is to determine which element has the
greatest impact on a given problem. For example, if we want to improve atten-
dance at an immunization clinic, we would like to know whether to increase the
population’s perceived susceptibility (perhaps through media coverage), decrease
the population’s perceived barriers (perhaps by providing free public transit to and
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from the clinic), or provide a cue to action (perhaps through flyers reminding peo-
ple of the clinic date and time). One example of this type of research is given in
Example 4.1.

Previous research in the HBM has left it with several drawbacks. First and
foremost, as a Psychosocial model it is incapable of forming predictions on the
effect of a given policy change. Second, past research using the HBM has only
focused on a single element of the model, and therefore the usefulness of the model
as a whole has never been confirmed. And finally, attempting to change an element
in the HBM model, even for a given individual, is seldom as easy as it appears.
Nonetheless, the HBM provides an important and potentially powerful model for
understanding individual behaviour towards healthcare.

3.2. The Behavioural Model of Healthcare. The Behavioural Model of
Healthcare first emerged in the late 1960s as an approach to understanding when
and why families access professional healthcare. The primary premise of the model
is that an individual’s behaviour is not only a product of their environment, but also
a contributing factor to the development of that environment. Such a relationship
is called a feedback loop since changes in the system “feedback” into the system,
causing further changes in the system.

Before discussing the case of healthcare, consider a simple example of popu-
lation change. In 1900, there were approximately 76 million people living in the
United States of America4. By 1950, this number had increased to approximately
151 million, an increase of 75 million. By 2000, the population had increased by
another 145 million to approximately 296 million. The reason for this increase in
population growth can be simply explained: more babies were born from 1950 to
2000 than from 1900 to 1950, because there were more people to have babies. Di-
agrammatically we capture this idea in what is called a demand-access-utilization
chain or influence diagram. The influence diagram for this example can be found
in Figure 1.

Population Size Births per year

Figure 1. Feedback loops in a simple influence diagram.

Figure 1 is an influence diagram with just two boxes and two arrows. The
first arrow, pointing from “population” to “births,” represents the fact that the
population has an impact on the number of births per year. The second arrow,
pointing from “births” to “population,” represents the fact that the number of
births has an impact on the population.

Returning to healthcare, the Behavioural Model of Healthcare can be captured
in a similar influence diagram. In Figure 2, we provide a version of the influence
diagram typically used in the Behavioural Model of Healthcare . As before, each

4All statistics from the US census bureau.
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arrow represents that the box from which it leaves has an impact on the box to
which it points.

Environmental

Available resources

Cost of Access

Health Behaviour

Personal Health Practices

Use of Health Services

Historical

Perceived Health 
Status

Perceived Health Service 
Effectiveness

Consumer Satisfaction

Societal

Community Beliefs

Personal Characteristics
Perceived Need

Figure 2. Feedback loops for the Behavioural Model for Healthcare.

The Behavioural Model of Healthcare considers three main classifications of
factors that impact the use of health services: environmental, societal, and histori-
cal. The environmental factors largely consist of the availability of health services,
and the cost of accessing these services. The societal factors include personal, fam-
ily, and community beliefs about healthcare. These beliefs are weighted against the
perceived need for healthcare. The historical factors include consumer satisfaction
and the perceived effectiveness of previous uses of health services.The category titles given

in Figure 2 differ in

various research papers.

Some common alterna-

tives include “popula-

tion characteristics” in-

stead of societal factors

and “past outcomes” in-

stead of historical fac-

tors.

In the Behavioural Model of Healthcare , the decision to access or not access
healthcare is contained in the health behaviour of the individual. The health be-
haviour also includes personal health practices (such as eating habits) that are not
directly involved with the use of health services.

In Figure 2, we see that (according to the Behavioural Model of Healthcare
Utilization) health behaviour is impacted by all three of these factors. We also see
that health behaviour has an impact on historical factors, which in turn have an
impact on the societal factors and health behaviour.

Displayed in Figure 2 we have shown one version of the Behavioural Model of
Healthcare. Figure 2 is actually a fairly simple version, as more modern versions
include a variety of other factors. For example, research has suggested that factors
such as age, gender, personal values, knowledge on healthcare, physician to pop-
ulation ratios, and health insurance may also influence the use of health services.
Other research has evolved to consider the importance of perceived need for care
and the perceived health status as a function of socioeconomic status. These ideas
can be incorporated into the influence diagram either by adding new boxes, or by
splitting previous boxes into various parts.
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Like the Health Belief Model (Subsection 3.1) the Behavioural Model of Health-
care has several drawbacks. As with the Health Belief Model, the Behavioural
Model of Healthcare is a psychosocial model. As such, it is incapable of forming
predictions on the effect of a given policy change. In fact, due to the inherent
feedback loops , one conclusion of the Behavioural Model of Healthcare is that a
single policy change will cause changes at all levels of the system. The strength of
this model lies in understanding why these feedbacks occur, and how to use them
to our advantage.

4. Examples

4.1. The Impact of Self-Efficacy. In 2004, Albert Bandura published a
work focused on health promotion and disease prevention using a variant of the
Health Belief Model (HBM)[15]. His variant proposed that health behaviour was
based on the following core determinants:

(1) personal health goals,
(2) personal outcome expectations,
(3) personal knowledge of health risks and benefits,
(4) perceived self-efficacy,
(5) perceived facilitators, and
(6) perceived social and structural impediments to the health goal sought.

Let us begin by examining each of these with regard to the HBM.
Items 1 and 2, personal health goals and personal outcome expectations, can

easily be seen as perceived benefit of action. Item 3, personal knowledge of health
risks and benefits, is a regrouping of perceived susceptibility, perceived severity and
perceived benefits of the HBM. Item 4, perceived self-efficacy, clearly falls into the
self-efficacy element of the HBM. Items 5 and 6, perceived facilitators and perceived
social and structural impediments to the health goal sought, can be viewed as a
regrouping of cues to action and perceived barriers of the HBM. Thus, Bandura’s
model can be simply seen as a new categorization of the HBM. As the concept of self-

efficacy was first intro-

duced in 1977 by Ban-

dura, it is no surprise he

believes it to be a focal

determinant in health

behaviour.

Bandura’s research led him to believe that an individual’s quality of health is
heavily influenced by that individual’s lifestyle habits. As such, people are able to
exercise some control over their health by managing their lifestyle habits. It is his
belief that “self-efficacy is a focal determinant because it affects health behaviour
both directly and by its influence on the other determinants”[15]. In order to
support this claim he discusses the impact of self-efficacy on several previous studies
into health behaviour.

For example, in 1987 Meyerowitz and Chaiken [149] tested which style of pam-
phlet would have the greatest effect on breast self-examination. They exposed
several groups of college-aged females to four different pamphlets regarding breast
cancer. The first group was shown a pamphlet focused on providing information on
breast cancer. The second group received a pamphlet designed to raise the perceived
severity of breast cancer. The third pamphlet was designed to raise one’s perceived
susceptibility, and the fourth to raise one’s self-efficacy in regards to breast can-
cer. A final control group was not provided with any information on breast cancer.
Meyerowitz and Chaiken interviewed the participants both immediately after the
intervention and four months later. The results of the study conclude that only
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measures of perceived self-efficacy were differentially affected by the various pam-
phlets. That is, any change in behaviour was due more to a change in self-efficacy
than any other tested element of the HBM.

Bandura’s work provides several other examples along these lines. 5 In total,
Bandura’s examples lend solid support to his claim that self-efficacy is a strong
determinant in health behaviour. As such, Bandura suggests that future attempts
to regulate health behaviour should include practices that are designed to raise an
individual’s self-efficacy.

4.2. Assessing Factors Influencing Mammography Visits. Breast can-
cer is the second most common type of cancer and it is among the top five causes
of cancer mortality [171]. Like other forms of cancer, many lifestyle factors in-
crease the risk of breast cancer. For example, diet, physical activity and alcohol
consumption are considered important risk factors with respect to breast cancer
[81]. Also like other forms of cancer, early detection is often crucial in improving
the chances of successful treatment and recovery. For breast cancer, mammography
is considered to be the most reliable method for detecting breast cancer, and test-
ing frequency can be viewed as a modifiable lifestyle factor that can impact cancer
risk. In one direct assessment of screening programs in two counties in Sweden, a
63% reduction in mortality was observed among women who underwent screening
when compared with women who did not [208]. Yet, utilization of mammography
services routinely falls short of targets set out by leading health agencies. This
problem is even more pronounced among African-American women, who are less
likely to get breast cancer but more likely to die from it due to later diagnosis. In
1991, Stein, Fox, and Murata found that health beliefs were an important factor in
mammography compliance in general [202]. Therefore, the disparity seen between
African-American and Caucasian women raised the question whether differences in
mammography utilization may be explained by health belief differences.

In 2004, Vadaparampil et al. published a study of women accessing mam-
mography services that used the Health Belief Model to examine differences in
frequency of visits between African-American and Caucasian women [216]. This
cross-sectional study conducted in the USA, assessed the Health Belief Model us-
ing a modelling approach known as structural equation modelling (SEM) [216]. In
this example we overview SEM, and outline the insights it provided regarding the
Health Belief Model and mammography test frequency.

SEM is a statistical method for testing the causal structure of the relationships
among a group of variables. The causal structure is usually constructed as a con-
ceptual model based on qualitative data in the form of path diagrams (see Figure
3 for example). Hypotheses are tested by examining the variances and covariances
of the variables.

A key task in path analysis is the formulation of the conceptual model, which
is depicted as a flow chart. Equations are represented by boxes and ovals, with
arrows pointing from independent to dependent variables, also referred to as ex-
ogenous and endogenous variables. Exogenous variables are not explained by the
model and may include factors such as age or socioeconomic class. Fluctuations
in endogenous variables are explained by the model as variables influencing them

5Some of Bandura’s more interesting examples include: the effects of serial dramas on AIDS

prevention in Tanzania, a role-playing video game for diabetic children, and a self-management
program for pain control in arthritis.
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are specified in the model. SEM can include both observed and latent variables.
Latent variables represent theoretical constructs about phenomena that cannot be
observed directly. Self-concept, self-efficacy, perceived benefit, fear or motivation
are examples of latent variables. Latent variables are operationalized in terms of
observed variables using a measurement instrument. For example, questionnaires
may be administered using a defined scale for self-efficacy. Scores on this scale
represent values for the observed variable which in turn imply the latent variable
of self-efficacy [38].

The main steps in structural equation modelling include: model specification,
parameter estimation, assessment of fit, modification of the model, and interpreta-
tion of the results. Model specification refers to the formulation of the conceptual
model using a path diagram. Parameter estimation and assessment of fit, uses
statistical methods to determine the most likely correlations within the model.
Modification of the model is used to improve fit through changing the model struc-
ture. Finally interpretation of the model involves communication of results implied
by the model of best fit.

SEM has become popular in recent years in testing the Health Belief Model.
This approach has provided a means of exploring the role of health belief parameters
in choices made to prevent disease or promote health. SEM opened the possibility to
study complex phenomenon that cannot be evaluated experimentally. Nonetheless,
this method has some major weaknesses. Relationships among variables are not
likely to be linear. Furthermore, a model that fits the observed data well does
not imply a specific causal model. There may be alternative models that may also
explain the data just as well. With multiple variables, the complexity may quickly
become overwhelming and may cloud basic underlying phenomena. With these
limitations in mind, SEM can be used effectively to evaluate potential directions
and relationships, and exclude unlikely options.

Returning to our mammography example, the question to be examined was
whether health beliefs contributed to African-American women accessing mam-
mography services less often than Caucasian women did. The study began by
interviewing 1045 African-American and Caucasian women over 50 years of age
in Indiana and Missouri. Participants had no history of breast cancer and had
no mammograms in the previous 15 months. Measurement instruments for breast
health, mammography and cancer in general were applied to assess perceived sus-
ceptibility, perceived benefits, perceived bariers, self-efficacy, fear and fatalism. Lo-
cal demographic information and data on mammography testing was also collected.
The conceptual model for relationships among health belief variables is shown in
Figure 3.

Structural equation modelling was carried out using the LISREL software and
tested African-American and Caucasian women separately to examine differences
between the groups. A number of differences were found. The Health Belief Model
explained 13% of the variance for Caucasian women but only 9% for African-
American women. Perceived benefits, perceived barriers, and self-efficacy were
important variables for Caucasian women, while income, perceived benefits, per-
ceived barriers, and fear were significant for African-American women. These re-
sults led the authors to conclude that while health beliefs are a good starting point
in addressing inequitable use of mammography services, other differences such as
socioeconomic issues must also be taken into consideration.
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COMPLY 

FATALISM 

FEAR 

SELFEFF 

BENEFITS 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Figure 3. Examining the Health Belief Model with re-
spect to mammography visits: A conceptual structural equa-
tion model (SEM) for relationships among health belief variables
for evaluating differences between African-American and Cau-
casian women with respect to frequency of mammography visits.
Based on the work of [216].

4.3. Healthcare Utilization Among HIV+ Injection Drug Users. HIV
infection among injection drug users (IDU) is a huge health concern on a global
scale [213]. Nearly a fifth of all diagnoses of new HIV infections are attributed
to IDU in Canada [168], and 25% of all people diagnosed with AIDS in the USA
have been among IDU [73]. Moreover, IDU populations are often marginalized, and
burdened with multiple economic, social and health problems that generate barriers
to optimal healthcare utilization. Late diagnoses of infection, use of emergency
rooms as the primary source of health services, and other similar factors lead to
elevated healthcare costs related to HIV infection among IDU.

In 2006, Mizuno et al. used Andersen’s Behavioural Model of Healthcare to an-
alyze baseline data collected in a large US-based multi-site behavioural intervention
study with the goal of identifying barriers and facilitators of healthcare utilization
by IDU [154]. IN this example we review some of their findings.

Based on the Behavioural Model of Healthcare conceptual framework, Mizuno
et al. examined predisposing, enabling and need factors that were specific to
HIV positive IDU. For example, receiving case management and participating in
methadone maintenance treatment were included as enabling factors. Other less
specific enabling factors, such as social support and perception of the quality of
engagement with care providers were also included. Need factors included self-
percieved health status and having depressive symptoms. Also included were need
factors specific to the study group, including CD4 cell count (a clinical measure
indicative of the stage of HIV infection) and intensity of injection drug use.

The goal of the investigation was to identify associations between healthcare
utilization measures and variables quantifying each of the three domains defined
in the Behavioral Model of Healthcare. Interview data from 1161 HIV positive
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injection drug users who participated in the Intervention for Seropositive Injec-
tors - Research and Evaluation (INSPIRE) study was analyzed. Poor healthcare
utilization was assessed in terms of two outcome measures: (1) reporting fewer
than 2 outpatient visits in the past six months and (2) reported to the ER as the
usual place of care. Variables with statistically significant associations to healthcare
utilization were then included in multivariate logistic regression models predicting
poor healthcare utilization.

The investigators found that enabling factors were more important predictors
of healthcare utilization among injection drug users than predisposing and need
factors. In general, enabling factors are considered more modifiable and better
targets for interventions. In this study, having health insurance, having seen a case
manager and better engagement with healthcare providers emerged as the most
important enabling factors. Of these factors, provisions of health insurance and case
management services were identified as the most important potential intervention
targets, because these rendered non-signifcant, other, hard-to-modify factors, such
as lower education and unstable housing, as barriers to healthcare utilization.

5. Related Reading

Psychosocial models have close connections to Psychosocial Risk Modelling (Chapter
8) and Systems Thinking (Chapter 14). Much of the quantitative side of Psychosocial
Modelling is captured in the Human Capital (Chapter 11) and Network Models (Chapter
12).

Reference [135] uses multiple regression analyses to assess the ability of the Health
Belief Model to account for observed variation in various preventative health behaviours.
References [119] provides a review of 46 Health Belief Model studies and their findings
published up until 1984. Reference [149] reviews an experiment that tested which style
of pamphlet is most persuasive in increasing the number of breast self-examinations in
college-age females. Reference [167] investigates some of the ways that economists can
incorporate recent research insights in combining psychology and economics to understand
risky behaviour by adolescents. Reference [179] examines effective ways to communicate
information about moderate alcohol consumption and reduction in myocardial infarction
risk to patients and physicians. Reference [204] investigates the possible role of lifestyles,
knowledge about health, emotional well-being and perceptions of control and their effect
on health in Europe. Reference [15] examines health promotion and disease prevention
from the perspective of the Health Belief Model.

Reference [5] is one of the first papers developing the Behavioural Model of Healthcare.
Reference [6] discusses the Behavioural Model of Healthcare, and contains another version
of the influence diagram for the Behavioural Model of Healthcare. Reference [70] investi-
gates the behavioural response of individuals to changes in costs of healthcare. Reference
[124] contains an empirical study that investigates the correlation between schooling and
good health. Reference [216] contains further details regarding Example 4.2. References
[38] and [201] provide more information on structural equation modelling.

Reference [154] contains further details related to Example 4.3.





CHAPTER 11

Modelling Optimal Behaviour

Economics is haunted by more fallacies than any other study
known to man. This is no accident. The inherent difficulties of
the subject would be great enough in any case, but they are mul-
tiplied a thousandfold by a factor that is insignificant in, say,
physics, mathematics, or medicine – the special pleading of self-
ish interests. Henry Hazlitt (1894-1993)

Insanity in individuals is something rare – but in groups, parties,
nations and epochs, it is the rule. Friedrich Nietzsche (1844 -
1900)

Game Theory and Human Capital Models

1. Model Overview

The question of why people behave as they do is one of the oldest and hardest
questions to answer worldwide. Usually this question is examined by psychologists
via a battery of creative psychological experiments. Recently, however, mathe-
maticians have begun their own assault on the question of human behaviour via
logic and optimization. In order to approach the question of human behaviour in
a tractable manner, mathematicians ask the question “how would people behave
if each decision was made logically and focused on maximizing personal gain?”In
such models each player’s decision impacts the gain of the other players in the
game. (Here players refer to the individuals being modelled.) Therefore players
seek to maximize their personal gain, subject to the worst possible (or most likely)
decisions of the other players. These ideas are the basis of the rapidly expanding
field of game theory and the development of human capital models. In game theory, de-

cisions are associated

with payoff functions

(also called utility

functions), and indi-

viduals are modelled to

make decisions based

on maximizing their

individual payoff.

In order to quantify personal gain, each decision is associated with a payoff
function. Of course, quantifying the idea of personal gain in a payoff function is
more difficult in some fields than others. If personal gain is measured in terms of
monetary gain these concepts become easy to define, so it is not surprising that
much of the early development of game theory was based in economics. However
more recently, researchers have considered short term and long term health as
quantifiable factors, and used these to develop what is referred to as the human
capital model.

Before discussing human capital, it is prudent to discuss the Nash equilibrium.
Introduced by John Nash in his Ph.D. thesis, the Nash equilibrium captures the
idea that (in a multi-player strategic game) the optimal action for any given player
depends on the actions of the other players. The Nash equilibrium is based on the
assumption that each player will select their strategy based on their assessment
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of the action to be taken by the other players. All players are assumed to follow
this logic, and to correctly assess the strategy of other players. Equilibrium occurs
when no player has anything to gain by changing only their strategy, thus all future
rounds of the game will result in the same collection of decisions.In the human capital

model, long-term health

is considered a stock

that can be bought or

sold for other assets.

Returning to healthcare, game theory has a clear use when examining how
policy changes regarding financial incentives will affect doctor and patient decisions.
To move beyond this limited usage we must examine more creative payoff functions.
In particular, payoff functions in healthcare will often consider health as an asset
that can be bought into or traded off for other gains. In such cases, the payoff
functions are often renamed utility functions. Such functions are the keystone of
human capital models. The main idea in human capital models is that people may
increase their “value” through investing in education, training, or health.

Although human capital models are not generally considered game theory mod-
els, much of the theory is the same. Like in game theory, players (in this case people
and their employers) make decisions regarding their training and health. These de-
cisions are based on their assessment of how improving these factors will increase
their value at the cost of time and/or money. Also, like in game theory, decisions
are complicated by a player’s perception of how the other players will react to a
given decision. For example, will providing training to employees encourage them
to seek better paying jobs? These ideas are further complicated by concepts such
as quality of life, trust, and other random factors.

Both game theory and the human capital model have been criticized by various
quarters. Opponents of game theory generally argue that decisions are seldom made
in the purely logical manner that game theory uses. Proponents of game theory
respond to this by stating that one of the strongest uses of game theory is to
determine where humans are irrational thereby providing focus for future study.

The critics of human capital models generally run along the same lines. Critics
state that most human capital models are too simplistic, and human capital models
that are not overly simplified are impossible to work with. Furthermore, human
capital models are founded on the representative agent approximation for economic
systems. For many simple economic systems, the representative agent approxima-
tion has been shown to be valid. However, this is not true in general. In particular,
in economic models in which consumers have limited information and economic
models in which there are interactions between agents, the representative agent
approximation has been shown to be flawed. This is the case in healthcare where
the information asymmetry between patients and providers is typically significant,
and patients interact with other patients to determine trust factors for given physi-
cians. Nonetheless, human capital models may still be useful for understanding
some components of healthcare demand and other health behaviour.

2. Common Uses

Game theory is a branch of applied mathematics that studies strategic situa-
tions where players choose different actions in an attempt to maximize their returns.
The theory provides models of rational decision-making in strategic interactions.
As such, it may be used to understand how people interact with the healthcare
system, addressing questions such as:

• How does trust affect doctor-patient cooperation and quality of care?
• How do incentive structures affect physician decisions?
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• How might user fees affect patient waiting times?
Human capital models seek to understand decisions regarding health from an

economics perspective. Like game theory, the human capital model creates a payoff
function that captures the idea that health is a stock that can be bought or sold for
other commodities. These ideas make human capital models useful for examining
questions such as,

• How do user fees and insurance impact the demand for healthcare?
• What is the role of family in the demand for healthcare?
• How can we better understand drug addiction?

3. Mathematical Details

Fortunately many game theory models often do not require advanced math-
ematics to understand. Unfortunately, they often require a long and carefully
thought-out series of logical steps that can be difficult to validate. As such, it
is probably easiest to approach the mathematics of game theory via an example.
We begin with the classic Prisoner’s Dilemma.

3.1. The Prisoner’s Dilemma, an Introduction to Game Theory. Pos-
sibly the most famous example of a strategic game in mathematics is the Prisoner’s
Dilemma. The game considers the following situation:

Two partners in crime are arrested by the police. Although
the police have sufficient evidence for a minor charge, they have
insufficient evidence for a major conviction, so they separate the
prisoners and ask them to testify against the other. In return
the police offer the following deal,
(1) if neither partner testifies then they will both receive one

year sentences on the minor charge,
(2) if one testifies against the other and the other does not

testify, the one who testifies will receive a full pardon but
the one who does not testify will receive a 10 year sentence,

(3) if they both testify then they will both receive 6 year sen-
tences.

Given that neither prisoner knows how the other will behave,
how should the prisoners act?

Each prisoner has a choice of two strategies: testify or not testify. Let us
denote these strategies by T (for testify) and N (for not testify). The result of
each prisoner’s choice is usually called the payoff and captured in a payoff table.
To demonstrate, in Table 1 we provide the payoff table for each combination of
strategies. The table represents the jail time each prisoner will incur given their
own and their partner’s strategy.

Next we consider the Nash equilibrium for the Prisoner’s Dilemma. The Nash
equilibrium is defined as a combination of strategies in which no player has anything
to gain by changing only his or her own strategy unilaterally. From the table it
is clear that the minimum total jail time occurs if neither prisoner testifies, and
the maximum total jail time occurs when both prisoners testify. Therefore one
might conclude that the best strategy is for neither prisoner to testify. However,
if prisoner 1 does not testify, then it is in prisoner 2’s best interest to testify,
while if prisoner 1 does testify it is still in prisoner 2’s best interest to testify.
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Prisoner 1

Prisoner 2
N T

n (1 year, 1 year) (10 years, 0 years)
t (0 years, 10 years) (6 years, 6 years)

Table 1. The payoff table for the Prisoner’s Dilemma
problem. The bracket value is the amount of jail time prisoner 1
and 2 will receive, respectively. For example, if prisoner 1 choses
strategy t and prisoner 2 choses strategy N then prisoner 1 will
receive no jail time and prisoner 2 will receive 10 years jail time.

Therefore it is always in prisoner 2’s best interest to testify. Reversing 1 and 2,
the same argument shows prisoner 1’s best course of action is also to testify. As a
result the Nash equilibrium is for both prisoners to testify. Hence, without some
extra determinants of behaviour (such as partner loyalty) both prisoners will testify,
resulting in the maximum total jail time.

Although the Prisoner’s Dilemma may appear contrived, it provides a math-
ematical example of why people may not always work towards the greatest good.
In particular, the Prisoner’s Dilemma demonstrates how a lack of trust can re-
sult in the overall worst solution instead of the overall best solution. Interestingly,
the Prisoner’s Dilemma has been used to model many “irrational” behaviours in
real world situations and healthcare. For example, the logic behind the Prisoner’s
Dilemma can be easily transformed into an explanation of the stock piling of nuclear
weapons (“if they have them and we don’t...”), the lack of concern over pollution
(“if we slow production but they don’t...”), and road congestion (“if I drive well,
but he doesn’t...”). In healthcare the Prisoner’s Dilemma has been used to model
doctor-patient cooperation, the demand for pharmaceuticals, and the rising cost of
hospital nursing staff. In all of these cases the overall optimal solution is offset by
the fact that an individual can gain (or at least not lose as much) by not playing to
the communal good. Example 4.1 provides details on how the prisoner’s dilemma
can model doctor-patient cooperation.

In this book, the hori-

zontal rows in the payoff

table will represent the

strategies for player 1,

and the vertical columns

represent the strategies

for player 2.

3.2. Zero-sum Games and the Mini-max Criterion Solution. In the
Prisoner’s Dilemma, the participants of the game were called prisoner 1 and prisoner
2. Since game theory is easier discussed in a general form, we will use the word
players to refer to the participants of a game. If a game is played once then the
players must each select a strategy and the payoff table is consulted to determine
the outcome. In this book, the horizontal rows in the payoff table will represent the
strategies for player 1, and the vertical columns represent the strategies for player
2. If a game is played multiple times, we refer to each playing of the game as a
round. In this subsection we will discuss more advanced notions in game theory, in
particular zero-sum games.An alternate definition

of a zero-sum game is

a game in which wealth

is never created or de-

stroyed.

A zero-sum game is a game in which the sum of the gains and losses between
all players (with losses taken as negatives) is zero. In particular, in two player zero-
sum games, whenever one player wins the other must lose. In zero-sum games with
more than two players there may be multiple winners, but each value won must be
lost elsewhere. Hence in zero-sum games, whenever there is a winner, there is a
loser.
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It is easy to provide examples of zero-sum games, as most forms of sports and
gambling are zero-sum games. Simple zero-sum games, such as baseball or chess,
result in each player either winning or losing. More complicated zero-sum games,
such as poker, may have different levels of victory depending on how the game plays
out. (It is worth remarking that, when poker is played in a casino it is no longer a
zero-sum game as wealth is destroyed by the casino taking a cut of each pot.)

Solving zero-sum games (that is, finding the strategy that rational players
should follow) can be accomplished by a series of techniques. The two most common
are dominance and the mini-max criterion.

The idea of dominance is based on eliminating strategies that are dominated
by other strategies. More precisely, if strategy x always provides a better payoff
that strategy y, regardless of the other players action, then one should never select
strategy y, so it can be removed from the payoff table. An example of a game
successfully solved by dominance is provided in Table 2.

A B C
x (5, -5) (10, -10) (10, -10)
y (0, 0) (-25, 25) (-10, 10)

⇓
A B C

x (5, -5) (10, -10) (10, -10)

⇓
A

x (5, -5)
Table 2. A payoff table solved by dominance. (player 1 pay-
off, player 2 payoff) Player 1 may select either strategy x or y, and
player 2 may select strategy A, B, or C. Regardless of player 2’s
action, player 1 will always reap the most profit if strategy x is
played, therefore player 1 should always select strategy x. In the
resulting table, strategy A dominates player 2’s payoff, so player 2
should always select strategy A. The end result is player 1 gaining
5 per round, while player 2 loses the same amount.

Dominance solutions rely on the payoff table containing strategies that are
clearly superior for certain players. This is seldom the case, after all who would
agree to play such a game? In cases where dominance does not result in a complete
solution, one turns to the mini-max criterion (a.k.a. maxi-min criterion) for further
guidance. For a two-person zero-sum game it is rational for each player to choose
strategies that maximize the minimal expected payoff. However, a player must be
careful not to be predictable or the other player will use this to their advantage.

To illustrate consider the following payoff table

A B
x (5, -5) (-20, 20)
y (-10, 10) (15,-15)

Player 1 may look at the table and see larger gains by playing strategy y (15
instead of 5) and smaller losses (-10 instead of -20) therefore lean towards using
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that strategy. However, player 2 will probably notice this, especially if player 1
uses strategy y every time, and therefore lean towards using strategy A. This leads
player 1 to use strategy x, which causes player 2 to use strategy B and so on.
To break free from this tailspin of circular logic, game theory proposes that both
players select their strategies randomly with some probability distributions.The terms mini-max

and maxi-min are

used interchangeably

in mathematics. This

is not surprising as

the first is short for

minimize-maximize

the second is short for

maximize-minimize.

Let px be the probability that player 1 selects strategy x, py be the probability
that player 1 selects strategy y, qA be the probability that player 2 selects strategy
A, and qB be the probability that player 2 selects strategy B. In order to make
sure everybody plays exactly one strategy per round we must have

px + py = 1, px ≥ 0, py ≥ 0 and qA + qB = 1, qA ≥ 0, qB ≥ 0.

We can therefore reduce our variables to p = px and q = qA, and solve py = 1− p
and qB = 1 − q later. Given these probabilities the expected value for player 1 in
any given round is

E(p, q) = 5pq − 20p(1− q)− 10(1− p)q + 15(1− p)(1− q).

For this example, the expected value for player 2 is the negative of this value. Player
1 seeks to maximize this value and controls p, while player 2 seeks to minimize this
value and controls q. Therefore we have the optimization problem

min
q

max
p
{5pq − 20p(1− q)− 10(1− p)q + 15(1− p)(1− q) : 0 ≤ p ≤ 1, 0 ≤ q ≤ 1}.

Notice that if one fixes q then this is a linear problem in p, and if one fixes p then
this is a linear problem in q. Such problems are called Linear Mini-max Problems.
In 1944, von Neumann showed that the linear mini-max problems that arise from
two-person zero-sum games are always solvable. Moreover, he provided a technique
for finding the solution. Simply put, he noticed that at the solution the expected
function must be flat and therefore has a gradient of zero 1. In our case this yields,Recall that the gradient

function is the multi-

dimensional version of

the derivative; it mea-

sures the slope of a

multi-dimensional func-

tion.

∇f = [ d
dx1

f, ... d
dxN

f ].

0 = ∇E(p, q)
=

(
d
dpE(p, q), ddqE(p, q)

)
= (5q − 20(1− q) + 10q − 15(1− q), 5p+ 20p− 10(1− p)− 15(1− p))
= (50q − 35, 50p− 25) .

Which implies

p = 0.5, and q = 0.7.

Therefore player 1 should use strategy x 50% of the time and strategy y 50%
of the time, while player 2 should use strategy A 70% of the time and strategy
B 30% of the time. The expected payoff following such strategies is 5(0.5)(0.7) −
20(0.5)(0.3)−10(0.5)(0.7)+15(0.5)(0.3) = −2.5. On average, in each round, player
1 should expect to lose 2.5, while player 2 should expect to win this amount.
(Therefore, player 1 should refuse to play this game.)

1Proving this observation, and proving that a solution will always occur, is considerably more
difficult that stating it. All of these things were done in [156].
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3.3. Human Capital Models. Although the human capital model was not
developed under the guise of game theory, the ideas within bear a close resemblance
with game theory. In particular, the human capital model is based on using long
term health as a type of payoff function and modelling individuals as players who
seek to maximize this payoff. In the human capital model the payoff function is
usually referred to as a utility function. The term human cap-

ital comes from eco-

nomic literature, where

human capital refers to

the stock of produc-

tive skills and techni-

cal knowledge embodied

in labor. The term be-

came popular due to the

economist Arthur Cecil

Pigou who stated “There

is such a thing as invest-

ment in human capital

as well as investment in

material capital.”

Like game theory, human capital models in healthcare are largely based on
logic and optimization techniques. To see this, let us begin by letting Ht represent
the health stock of an individual at time t. That is, Ht represents a quantification
of an individual’s perceived health at a given time. Human capital theory supposes
an individual will seek to maximize this stock over time.

The health stock at time t+ 1 is related to the health stock at time t by

(21) Ht+1 = Ht + It − δtHt

where It is the gross investment in health and δt is the depreciation rate of health.
Human capital models suggest various methods to maximize this stock at various
points in time subject to various wealth constraints. Wealth constraints state that
a person’s wealth can never become negative in order to buy more health stock.

One example of a wealth constraint is the full wealth constraint:
n∑
t=0

PtMt +QtXt +Wt(Ω− τ)
(1 + r)t

=
n∑
t=0

WtΩ
(1 + r)t

+A0.

In the full wealth constraint n is the total number of time intervals t, Ω is the
total amount of time available, τ is the time spent working, Wt is the wage rate (at
time interval t), Mt is a vector representing all goods purchased that contribute to
health (at time interval t), Pt is the price vector for goods contributing to health
(at time interval t), Xt is the vector of other goods purchased (at time interval t),
Qt is the price vector for these other goods (at time interval t), r is the market
rate of interest, and A0 an individual’s initial wealth. Essentially, the full wealth
constraint states that the amount of money earned over a life time will exactly equal
the amount spent. This may seem unrealistic unless one considers any money left
over at the end of life as money spent on providing inheritance.

Most applications of human capital theory use a relatively simple form for
the dependence of the utility function on the variables in the model. For such
models, various well studied methods in mathematical optimization can be applied
to determine maximal solutions to the model. For example, in many cases the
model can be solved via the method of Lagrange multipliers . More realistic forms
for the payoff function are likely to have numerous local maximums and therefore
more complicated global analysis techniques are required to study them. In either
case, the mathematics behind the optimization of human capital models are beyond
the scope of this book.

4. Examples

4.1. Doctor-Patient Relationships as a Prisoner’s Dilemma. Although,
it is a highly simplistic view of the doctor-patient relationship, the Prisoner’s
Dilemma may be formulated in a medical context. In a medical consultation, it is
possible for the physician either to recommend treatment that is in the patient’s



114 11. MODELLING OPTIMAL BEHAVIOUR

best interest or (whether through error, misjudgement, lack of skills, or conflict-
ing goals) to recommend treatment that is not in the best interest of the patient.
In any given consultation, the patient has to decide whether to follow the physi-
cian’s prescribed course of treatment or ignore the doctors advice and seek another
physician. Let us label these “strategies” as follows:

The Doctor (Player 1) The Patient (Player 2)
• Strategy G – provide Good advice • Strategy F – Follow the advice
• Strategy B – provide Bad advice • Strategy I – Ignore the advice

There are four possible outcomes:
(G,F ): physician provides good advice; patient follows the treatment plan,
(G, I): physician provides good advice; patient does not follow the treatment

plan,
(B,F ): physician provides poor advice; patient follows the treatment plan, and
(B, I): physician provides poor advice; patient does not follow the treatment plan.

To create a payoff table for these options consider the following arguments. First,
from the physician’s perspective producing bad advice requires no effort, and there-
fore we set the physician’s payoff for bad advice to 0. Next, producing good advice
costs the physician some effort, but is rewarded if it is followed; therefore we set
the physician’s payoff for good advice as +1 if it is followed and -1 if it is not.
From the patient’s point of view, following good advice is rewarding (payoff = +1)
but following bad advice is detrimental (payoff = -1). Finally, from the patient’s
perspective, ignoring the physician’s advice causes no change in health status, so
we set the payoff to 0. This produces the following payoff table: This table has two

Player 1

F I
Player 2 G (+1, +1) (-1, 0)

B (0, -1) (0, 0)

Nash equilibriums, (G,F ) and (B, I). Note, neither player benefits from departing
from these strategies. However, the (G,F ) equilibrium is unstable in the sense that
if one player changes their strategy the other player stands to lose. Conversely, the
(B, I) equilibrium is stable in the sense that if one player changes their strategy
then only that player stands to lose. Therefore, game theory would argue that the
(B, I) outcome is the rational outcome for this game. Thankfully, in the real world
this is not the usual case.

The missing ingredient in this Prisoner’s Dilemma model of the doctor-patient
interaction is that the doctor-patient encounter is not an isolated event, but is a
series of interactions over which a sense of trust develops. Therefore, this should be
modelled as a repeated game that allows some concept of trust and communication.
Once these elements are added to the game the (G,F ) equilibrium becomes stable.

4.2. Incoporating Family and Health Decline into Human Capital
Models. Two criticisms of using human capital models to describe health are that
they do not take into account the role of relationships in health and they do not
explain why people sometimes give up on their health. Works by Bolin, Jacobson,
and Lindgren [30] and by Gjerde, Grepperud, and Kverndokk [85] have discussed
these two issues and developed distinct models to examine them.



4. EXAMPLES 115

In 2002, Bolin, Jacobson, and Lindgren developed a human capital model based
on the Grossman Model and game theory that incorporates the role of family into
the health decision process. In this extended model, a family consists of a husband,
a wife, and a single child. Spouses interact strategically both in the production of
their own health and in the production of health in other family members.

The strategic aspect of health investment is that the more the wife invests in
the health of her husband, even as he also invests in his own health, the more likely
he will be to invest in her health. Conversely, the more the wife invests in her
own health, even while the husband also invests in her health, the less likely he
will be to invest further in the her health. The same strategic rules also hold with
the husband and wife interchanged. With this in mind, situations are considered in
which none of the individuals can be sure that the other individual will honour a co-
operative agreement concerning how to allocate joint resources. Also, the incentives
for husband and wife to invest in their child’s health may be altered by changes in
government policies and regulation (such as child allowance and custody rules).

One possible application of this model is that it may be used to understand
the health effects of divorce. The model predicts that members of families that are
divorced are less healthy than other individuals. However, as noted in [30], this
prediction is not entirely borne out by the empirical evidence (although some recent
studies do support this conclusion). It is possible that this discrepancy reflects the
somewhat simplistic form of family dynamics in the model.

Another interesting aspect of health is that people tend to adapt to their state
of health over time. For example, if someone has had a long illness or a history
of chronic disease, then after an improvement they might rate their health status
as good, even though their absolute health might be lower than someone who
is normally healthy. This phenomenon is addressed in [131] and [85] where the
Grossman Model is modified to incorporate adaptation.

One method to incorporate adaptation into a human capital model is to as-
sume that the payoff function depends not on the objective health status, but on a
definition of subjective health status. This could be done by defining the objective
health function as

(22) K(t) =
H0

1 + β
+ (1 + β)

∫ t

0

e−β(t−s)H ′(s) ds,

where H0 > 0 is the initial health endowment, H ′ is the derivative of the objective
health status, and the parameter β ≥ 0 determines the importance associated with
present health status as opposed to past health status. The extent to which the
subjective health takes into account changes in the health status in the past is
determined by the parameter β. The larger β is, the more the individual focuses
only on recent changes in health. If β is smaller, then the individual takes into
account a greater time period when determining their subjective health status.

In their model, Gjerde, Grepperud, and Kverndokk, treat lifetime as an en-
dogenous uncertain variable by using a probabilistic hazard function to model the
occurrence of death [85]. This allows them to calculate an expected lifetime utility
function, without assuming a fixed lifetime. The model is then solved by optimizing
the expected lifetime utility.

The primary conclusion from this model is that adaptation leads to a lower
optimal health stock over time as the individuals adapt to declining health with
age. Furthermore, the rate of return to health services also decreases with time.
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This leads to a decline in health service demand as more resources are devoted to
consumption.

4.3. Rational Addiction. The theory of rational addiction, first developed
in [22], uses a human capital model to model addiction as a consistent plan to maxi-
mize a utility function over time. This model may be applied to harmful addiction,
such as to alcohol, cocaine, and cigarettes, as well as to more benign addictions
such as work, eating, or television. Note that maximizing utility does not neces-
sarily mean maximizing beneficial utility. Rather, the claim is that the addictive
behaviour of the consumer is forward-looking with strong, stable preferences and
that this behaviour can be captured through a utility function.

A consumer is potentially addicted to a good, if an increase in his current con-
sumption of this good increases his future consumption of it. Thus, in the rational
addiction theory, someone is addicted to a good only when past consumption of the
good raises the marginal utility of present consumption. This model of addiction
implies that strong addictions may be ended only by going “cold turkey”. From a
public health policy perspective, this model for addiction may be useful for evalu-
ating the impact of interventions on addictions that are harmful to public health,
such as smoking, alcohol use, harmful drug use, or obesity.Cold Turkey is a slang

phrase used to describe

individuals who attempt

to quit an addiction all

at once. There are

many ideas about the

origin of the phrase, in-

cluding the idea of keep-

ing a cold turkey in

the fridge and eating

it whenever a craving

arises.

In this model, a permanent change in the price of addictive goods may have
only a small initial effect on demand, but the effect grows over time until a new
steady state is reached. This aspect of the model may be used to quantify the effect
of “sin taxes”, which have long been used to control the consumption of alcohol
and cigarettes.

The rational addiction model of Becker and Murphy has been critiqued in detail.
Critiques point out that the Becker-Murphy rational addiction model assumes that
consumers become addicted while having perfect foresight of the consequences of
the addiction. This is contrary to most behavioural studies of addiction. As noted
above, a key prediction of the Becker-Murphy model is that expected higher future
prices result in lower consumption today. Although this conclusion is supported by
empirical studies, they are other possible explanations for this behaviour.

A detailed solution of the optimal control problem posed by the Becker-Murphy
model is given in [44]. This provides the opportunity to examine detailed predic-
tions of the Becker-Murphy model and compare it to other models of addiction.
Further work along these lines may lead to models that are useful for evaluating
public health policy towards addiction.

5. Related Reading

Game theory models have close connections to psychosocial risk models (Chapter 8),
Psychosocial Models (Chapter 10), and Optimization (Chaprter 16).

Much of the initial early development of game theory can be found in reference [156]
and Nash’s Ph.D. thesis [160]. The latter includes the initial development of what came
to be known as the Nash equilibrium. A non-technical introduction to game theory can
be found in reference [146].

Uses of the Prisoner’s Dilemma regarding the demand for pharmaceuticals can be
found at http://abcnews.go.com/Technology/WhosCounting/story?id=98179. Uses of
the Prisoner’s Dilemma regarding the rising cost of hospital nursing staff can be found at
http://www.gametheory.net/News/Items/059.html. Reference [72] uses game theory to
examine wait times under various user fee scenarios.



5. RELATED READING 117

The development and theory of human capital models can be found in references [18],
[23], [93], [19], [47], [20], [21], [131] and [85]. Reference [18] is the original application
of human capital models to health and references [23] and [21] expand the idea of human
capital. Reference [93] constructs a model of the demand for the commodity “good health”
and looks at the “shadow price” of health (variables other than the price of medical care).
This model has come to be known as the Grossman Model. Reference [19] examines the
possibility of using an economic approach to provide a unified framework for understanding
human behaviour. Reference [47] applies human capital to pediatric healthcare. Reference
[20] uses economic approaches to analyze social issues. References [131] and [85] extend
the Grossman Model.

Some criticisms of human capital models include [74], [128], [82], [129] and [83].
References [128], [129], and [74] demonstrate that there are flaws in the representative
agent approximation in economic models where there are interacting agents. References
[82] and [83] expand on these flaws and suggest an approach to economic analysis that
regards the economy as a complex system of interactions between agents.

Bolin, Jacobson, and Lindgren’s work (Example 4.2) can be found in reference [30]
and is largely based on work by Grossman [93]. Also discussed in Example 4.2 is the work
of Gjerde, Grepperud, and Kverndokk [85]. Also of interest on this topic is reference [29].

Example 4.3 largely examines references [22] and [44]. Reference [22] develops a

theory of rational addiction to provide insights into addictive behaviour. Their approach

is critiqued in reference [44].





CHAPTER 12

Modelling Social Interaction

Christianity teaches us to love our neighbour as ourselves; mod-
ern society acknowledges no neighbour. Benjamin Disraeli (1804-
1881)

It is your business when the wall next door catches fire. Horace
(65 BC-8 BC)

Network Models and Graph Theory

1. Model Overview

In 1967, a prominent psychologist by the name of Stanley Milgram performed
what became an extremely influential experiment in both pop culture and the
scientific community. The experiment began with Milgram contacting a random
individual in the city of Omaha and asking them to forward a letter to an individual
in Boston1. If the Omahan knew the Bostonian on a first name basis, then they
could mail the letter directly. Otherwise, the Omahan was asked to mail the letter
to someone they knew on a first name basis whom they thought might know the
Bostonian. Each person to receive the letter was given the same instructions: if
you know the Bostonian on a first name basis mail the letter to him, otherwise mail
the letter to someone you think might know the Bostonian on a first name basis.

Not surprisingly, a significant proportion of the people refused to participate,
but eventually 64 of the original 296 letters reached the Bostonian. The remarkable
result of this experiment was that of the 64 letters to arrive, the average number
of times that the letter was passed on to reach its final destination was just 5.5.
That is, on average 5.5 stamps were required for the letters to reach their final
destination. This prompted the now famous six degrees of separation hypothesis,
or the small-world property: if we define a person as one step away from each person
they know, two steps away from each person who is known by one of the people they
know, then everyone is no more than six steps away from each person on Earth.
This hypothesis has resulted in a Broadway play2, a film3, a board game4, and a
growth in the use of modelling techniques based on network theory.

Before discussing network theory, it is worth noting that there are several cri-
tiques to the six degrees of separation experiment. For example:

1Omaha is situated near the center of the United States of America, 1400 miles (2250 km)

west of Boston. Boston lies on the East coast of the United States of America.
2“Six Degrees of Separation” by John Guare, 1990
3“Six Degrees of Separation” directed by Fred Schepisi, 1993
4“Six Degrees of Kevin Bacon” by Craig Fass, Brian Turtle and Mike Ginelli, 1994
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(1) Only 22% of letters successfully reached the target, an extremely low
success rate.

(2) It is possible that the letters that did not reach the target were uncon-
nected, or connected via very long chains.

(3) Participants mailed letters based on their best guess of a shortest path,
these guesses could be very wrong.

(4) It is unlikely that the entire human population is acquainted within six
degrees of separation because of the existence of certain populations that
have had little or no contact with people outside their own culture.

The reason we note these is that one of the primary goals of network models is to
develop mathematical models that display the small-world property, and to explore
how diseases travel along these models. Therefore, if we disbelieve the six degrees
of separation hypothesis then network models may not be a good tool to use during
the modelling process.

Network theory explores the mathematical concept of graphs. Think of a math-
ematical graph as a collection of dots connected by a series of lines. Not all dots
need to be connected, but to make things interesting there should be at least two
dots and one line. Mathematically, the dots are called nodes or vertices and the
lines are called edges. A path is a way of getting from one node to another node
by traveling along the edges. Two nodes are connected if a path exists between the
two nodes. Finally, the distance between two connected nodes is the length of the
shortest path connecting the two nodes (if the nodes are unconnected the concept
of distance becomes confusing).Network models use

graphs to describe social

or physical contacts

between people.

With this set up we can mathematically chart the social structure of the world.
For each individual we create a node and for each relationship we create an edge.
That is, if Jane knows Frank on a first name basis we draw a line connecting Jane
and Frank. The small-world property states that on this graph of the world, any
two nodes can be connected via a path of length six. Of course creating such a
graph for the entire world, or even for a small city, would be an intractable task.
Instead we rely on network theory to create examples of graphs describing social
or physical contact between people. A network model is a model that uses such a
graph as its underlying structure.

The application of network models to healthcare is a relatively new phenom-
enon. However, a good deal of research has already been done exploring how the
small-world property might impact the spread of disease. Other applications have
been slower to arise.

2. Common Uses

Network models are models that describe social or physical interactions between
individuals in a society. Once these interactions are described, the main application
in healthcare is in describing the spread of disease. This leads to questions like,

• How do we expect disease to spread through the network?
• How can we adjust the network to better control the spread of disease?
• Can we determine who to vaccinate to create the maximum effect?

Other applications include,

• examining how social networks impact the demand for healthcare,
• exploring various strategies for the distribution of healthcare information,
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• identifying key immunization targets within a community.

3. Mathematical Details

To understand network theory it is first necessary to discuss the mathematical
concept of a graph. (We should note here that due to the new nature of net-
work theory some of the concepts may be more difficult than in previous chapters.)
Graphs are mathematical objects that are composed of nodes (also known as ver-
tices) and edges connecting them. In healthcare, it is easiest to think of the nodes
as individuals and the edges representing connections between individuals, however
many other interpretations are possible.

The edges may be given a weight that represents the strength of this connection.
For example an edge connecting a father and his young daughter might be given a
weight of 1 as they see each other every day. Conversely, the same daughter and
her classmates might be given a weight of 5/7 since they only see each other five
out of every seven days. (In Section 1 we simplified our discussion of graphs by
assuming all weights were equal to 1.)

A path is a way of getting from one node to another node by traveling along
the edges. Two nodes are connected if a path exists between these two nodes. If all
nodes in the graph are connected then the graph is usually referred to as a network.
Finally, the distance between two connected nodes is the length of the shortest path
connecting the two nodes (if the nodes are unconnected the concept of distance is
undefined). A graph is a collection

of nodes (also known as

vertices), some of which

are connected by edges.

If one can trace a path

along the edges from any

node to any other node,

then the graph is called a

network (or a fully con-

nected graph).

The concepts of paths and distances can be further complicated by the intro-
duction of directed edges. A directed edge is an edge that connects nodes in one
direction (the easiest analogy is a one way street.) For directed graphs, the concepts
of connected nodes and distance may become difficult as the distance from node 1
to node 2 may differ from the distance from node 2 to node 1. However, directed
graphs can be very useful in certain circumstances. For example, genetic diseases
can generally only be passed toward descendants. Directed graphs can also be used
as a mathematical representation of System Dynamics models (see Chapter 14).

Given a network (or graph), one can assign a degree to each node in the network.
The degree of a node is defined as the number of edges exiting the node. In the
analysis of networks, often one of the first things done is to bin (i.e. organize) the
nodes by their degree and attempt to determine the probability distribution for a
node to have a given degree. This provides a first look into the behaviour of the
graph, and some information on how paths within the network behave. Probability and probabil-

ity distributions are dis-

cussed further in Chap-

ter 5.

To elaborate, let us denote the probability that a randomly selected node has
a degree k by pk. We say the network follows a Poisson law if

pk =
µk

k
e−µ,

where the constant µ is determined from the data to fit the model. The network
follows a power law if

pk = Ck−αe−
k
κ ,

where the constants C, α, and κ are determined from data to fit the network
model. (These constants do not represent any physical quantities.) Knowing this
information provides some insight on how the network behaves. Most importantly,
if a real life network is modelled and the probability distribution for the nodes is
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created, then this information can be used to generate examples of networks that
behave similarly to the real network. This allows interventions to be tested in a
more robust manner.

In Figure 1 we illustrate how different probability distributions generate differ-
ent types of networks.

Figure 1. Types of networks: (A) Small-world network,
(B) Power-law network, (B) Poisson-law network.

4. Examples

4.1. Impact of Social Interactions on the Spread of HIV Infection.
As mentioned throughout this chapter, one of the key issues in developing a net-
work model is deciding how to generate the network. That is, how to build the
vertices (individuals) and the edges (relationships) in order to represent the way
in which individuals interact. However, this is only the first step in building most
network models. Following this, one usually creates some rules on how interacting
individuals influence each other.

For example, building a network that shows all of the relationships in a com-
munity is an interesting exercise, but not a model (it does not answer a specific
question). Using that network to explore how injection drug users and needle
sharing impact the spread of HIV in that community is a model. Dabbaghian,
Vasarhelyi, Richardson, Borwein, and Rutherford explored this very question with
a simple rectangular network and data based on Vancouver’s Downtown Eastside
[55]. In this example we summarize their work and highlight some of the results
therein.

Vancouver’s Downtown Eastside is one of the poorest regions in Canada, and
contains one of the highest densities of injection drug users. Recently the HIV
positive population of the Downtown Eastside has reached what some researchers
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refer to as epidemic proportions. One of the major recognized avenues of HIV
spread in the Downtown Eastside is needle sharing among injection drug users. In
order to understand this issue a little better, Dabbaghian, et. al. sought to create
a model of injection drug users. Since traditional models of disease spread based
on differential equations, such as the S.I.R. model discussed in Chapter 13, do
not typically take into account the impact of social influence, the authors chose to
develop a simple network model and overlay a cellular automata simulation.

The network used in the model is the simple rectangular grid. Each vertex
represents an individual interacting with its neighbours. Each vertex has exactly
four neighbours, lying directly “North”, “East”, “South”, and “West” of the vertex.

Each individual in the model can take on one of five possible states. These
are: stayer, susceptible, SIDU, SIDU-HIV, HIV. Individuals labelled as a stayers
represent those who will never use injection drugs and are therefore immune to
contracting HIV (the paper ignores HIV contraction through sexual intercourse).
These individuals never change state. Individuals labelled as susceptible are not
current injection drug users or are injection drug users that do not share needles.
Individuals labelled as SIDU are needle Sharing Injection Drug Users. Individuals
labelled SIDU-HIV are needle Sharing Injection Drug Users that are HIV positive.
Finally, individuals labelled HIV are HIV positive individuals who have stopped
sharing needles. In Figure 2 we describe how individuals may transition between
these five states.

Susceptible SIDU SIDU-HIV

Stayer

HIV

Figure 2. Cellular automata model of HIV spread:
Stayers always remain stayers, but can exert social influence on
neighbours that are not stayers. Susceptibles may transition into
SIDUs. SIDUs may return to susceptible status, or transition into
SIDU-HIV status. SIDU-HIVs may never return to SIDU status,
as HIV is incurable, they may transition into HIV status if they
stop sharing needles. HIVs may return to SIDU-HIV status if they
restart needle sharing.

In the model each individual places a social influence on its four neighbours.
The level of this influence is controlled by two parameters labelled α and β. The
parameter α represents the ability to discourage sharing needles, provided the in-
dividual is not a needle sharer. Conversely, β represents the ability to encourage
sharing needles, provided the individual is a needle sharer. Finally, individuals
slowly die off, and are replaced with new randomly generated individuals over time.

The paper uses the model to explore several scenarios for interventions to the
spread of HIV via injection drug use. First, by setting α and β to 0, they consider
the scenario that nobody has any social influence on anybody else. They find in this
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case that the HIV prevalence rises quickly for a short time and then crashes as the
HIV positive needle sharers die off too quickly to sustain the epidemic. Exploring
other values for α and β they are able to find a region in which the epidemic is
self-sustaining.

The paper is a good first step is developing a better understanding of how
HIV is spread in areas of high injection drug use. According to the authors, future
work will examine sexual transmission of HIV, and immigration of already infected
individuals.

4.2. Control of Communicable Diseases in Healthcare Facilities. The
study of social networks has a long history but it has been largely descriptive.
Global properties of the network, or its dynamics, have not been used to make
predictions or recommendations until recently. In 2003, work by Meyers, Newman,
Martin, and Schrag bridged this gap in the study of the transmission of bacterial
pneumonia caused by Mycoplasma pneuminiae [150]. In this example we examine
this work and summarize the results within.

The goal of Meyers et. al. was to develop a model that could be used to deter-
mine the size of an epidemic and test different intervention strategies. To do this,
they began with a network model consisting of two types of nodes: patients and
healthcare workers. The network’s edges were directional, indicating the transfer of
infection from one person to another. Furthermore, the network was compartmen-
tal, reflecting the structure of a healthcare facility. An example of such a model
appears in Figure 3.

Ward 2Ward 1 Ward N …

Patients

Caregivers

Figure 3. A Network of healthcare facilities:
Reproduced from [150].

Next, the model was overlaid with a Markov state model similar to the epidemi-
ological SIR (Susceptible-Infected-Recovered) model. (For further information on
Markov models and on the SIR model see Chapter 13.) Accordingly, each node in
the model was given one of three health classes: healthy, infective, and previously
ill people who are cured and immune. The model then ran along the rule that
disease transmission can only occur if there is a direct link between two individ-
uals. By setting various initial conditions and running the model over a series of
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time steps, various scenarios for epidemic spread were explored. For example, in
its initial stages an epidemic can include a single infected person or several infected
persons. The size of the epidemic is defined as the number of nodes in the largest
cluster of infected nodes (only one such cluster exists if the epidemic started from
a single case).

The model used three independent parameters to define the size of the epi-
demic: the number of wards where each care-giver works (µc), the transmission
rates from care-givers to wards (τc) and the transmission rates from wards to care-
givers (τw). While the average number of served wards per worker µc is known and
can be changed as a control measure, the transmission rates are not observable and
should be derived by fitting the model to actual or simulated data. This was done
using data from the Centers for Disease Control and Prevention on a mycoplasma
outbreak that occurred in a psychiatric institution in 1999. Interestingly, although
theoretically a simple Poisson distribution for the probability of a disease transmis-
sion should be usable, this did not concur with the data collected, so instead the
binomial distribution was used.

Using the model, the authors concluded that the average number of served
wards per worker appeared to be the crucial factor in controlling the epidemic.
The healthcare workers were found to be the vectors for the spread of the infection.
The model demonstrated that limiting the number of wards served by each care-
giver and better protection for care-givers is the most effective intervention, even
for diseases with long incubation periods, such as pneumonia.

4.3. The Birthrate in Europe from 1950 to 2000. Since the “baby-
boom” following World War II, birth rates in Europe have begun a steady decline.
Although the reasons for this are unknown, many people have developed hypothe-
ses on the matter. For example, an increased emphasis on education has raised the
age of the first time mother, thereby decreasing the total amount of children she
might conceive. Other hypotheses focus on the increased cost of child rearing, or
the decline of the “stay-at-home mom.”

In 2005, Michard and Bouchaud published an interesting network model that
demonstrated that the decrease in birthrate behaved in a manner consistent with
a model that uses social pressure as one of its driving forces [151]. More precisely,
Michard and Bouchaud showed that the decline of birthrate demonstrated the be-
haviour of a random field Ising model. In this example we summarize their work
and explain some of their results.

In the random field Ising model, agents choose between one of two possible
choices, which we shall label as +1 and −1 (in our case the choice is whether or
not to conceive a child). This choice is influenced by three factors:

(1) personal opinion,
(2) social pressure (the opinions of ones close acquaintances), and
(3) external information.

The model starts by randomly generating a network model in which each node
is an individual person and each edge represents a close acquaintance between
two people. The model proceeds by randomly setting a personal opinion for each
individual (node). Finally, the external public information is a global variable that
plays the role of a time-dependent driving force in the decision-making process.
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Letting Si(t) represent the state of node i at time t, we next define the rule

(23) Si(t) = sign

φi + F (t) +
∑
j∈Ni

JijSj(t− 1)


where Ni is the set of friends of agent i, F (t) is the driving force, and φi is the
personal opinion random variable. The function sign takes the value +1 if its
argument is positive and −1 if it is negative. Finally, we define S(t) =

∑
i Si(t) as

the collective opinion of the model. Our primary interest is now how S(t) changes
with respect to time and various driving forces. Equation 23 represents a model

Figure 4. Birth rates of Germany and Portugal: These
curves show the drop-off in birth rate for Germany and Portugal.
The drop-off rate for the other countries is intermediate between
these two examples. The inset shows the rate of change of the
birth rate.
Reproduced from [151].

that is driven by the three forces listed above (personal opinion, social pressure, and
external information). To test if the real data agrees with this hypothesis we turn to
the theory regarding random field Ising models. In particular, in equation (23), the
influence of the opinions of friends is given by the coefficients Jij . If these values are
near a certain critical value, then collective opinion, S(t), of the society begins by
changing slowly if F (t) is increased or decreased. Moreover, if F (t) passes through
0 it will cause S(t) to change rapidly for several time steps, after which the rate of
change of S(t) will slow down. In this model, the distribution of the slopes of the
curve S(t) forms a peaked curve, similar to a Gaussian distribution. Surprisingly,
the height of this peak is related to its width by h ∝ w− 2

3 , regardless of the details
of F or φ [196]. Thus, if we wish to test if this is an appropriate model for our
problem we should next check that actual data satisfies this property.

Michard and Bouchaud collected data from Eurostat regarding 11 different
countries (Belgium, France, Germany, Greece, Italy, Netherlands, Poland, Portugal,
Spain, Sweden, Switzerland, and the United Kingdom), and plotted the number of
births per woman of child bearing age per year with respect to year. (A sample of
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these plots appears in Figure 4.) As can be seen from Figure 4, the birth rate has
been falling sharply over time. For each country, the slope of the fecundity curve
was calculated at a number of points and the result fitted to a Gaussian distribution.
The natural logarithm of the height of each of the peaks was plotted against the
natural logarithm of the width in Figure 5. The points cluster remarkably well
around a line with slope − 2

3 , demonstrating that the fall in birth rates is consistent
with a model of this type. The initial drop in birthrate would have been caused

Figure 5. Peak of the Birth Rate Drop-off Rate versus
the Width: The natural logarithm of the peak of the fecundity
drop-off rate plotted against the natural logarithm of the width
of the fecundity drop-off. A linear regression fit gives a slope of
−0.71± 0.11. The RFIM predicts a slope of − 2

3 .
Reproduced from [151].

by an external factor, such as the availability of birth control pills. However, these
results are strong evidence that once the phenomena took root, social pressure
became a driving force.

5. Related Reading

Network Models’ role in modelling social interactions, give them close associations
with Psychosocial Risk Modelling (Chapter 8) and the Health Belief Model (Chapter
10). To a limited degree, graph theory can be thought of as a mathematical tool of use
in Markov Models (Chapter 13), System Dynamics (Chapter 14), and Queueing Theory
(Chapter 15).

Reference [17] investigates queue networks with various classes of customers. Refer-
ence [175] presents a social organizational strategy framework. Reference [199] considers
a dynamic social network model in which agents play repeated games in pairings deter-
mined by a stochastically evolving social network. Reference [163] demonstrates that a
large class of standard epidemiological models can be solved exactly for a wide variety
of networks. Reference [143] examines how complexity theory may offer insight into the
behaviour of a population of large-scaled network organizational groups, with a focus on
academic medical centers. Reference [164] reviews new developments in network systems,
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including such concepts as the small-world effect, degree distribution, clustering, network
correlations and random graph models. Reference [214] suggests the importance of net-
work science and its potential use in ensuring smooth operation of complex networks for
the U.S. Army.

Reference [150] introduces a network model approach to investigating the spread and
control of mycoplasma pneumoniae with a particular focus on the interactions between
patients and caregivers in an institution with multiple wards. Reference [114] studies
several biological systems as networks. Reference [181] uses contact network epidemiol-
ogy to predict the effect of various control policies for mildly and moderately contagious
diseases. Reference [2] uses a network flow model for long-term bed capacity planning and
medium-term care team capacity planning.

References [196] and [197] examine various aspects of random field Ising models.

Reference [151] uses a random filed Ising model to look at the collective effects induced

by social pressure.



CHAPTER 13

The Future Starts Now

Not the power to remember, but its very opposite, the power to
forget, is a necessary condition for our existence. Sholem Asch
(1880-1957)

It is singular how soon we lose the impression of what ceases
to be constantly before us. A year impairs, a luster obliterates.
Lord Byron (1788-1824)

Markov Models

1. Model Overview

To begin this chapter, let us consider a classical model of disease spread. In this
model, we examine a collection of individuals that can take on one of three states:
susceptible, infected, and recovered. If an individual in the model is susceptible,
then he or she has a probability of becoming infected during the next time step. This
probability is not based on any demographic factors of the individual, but instead
based on the number of infected currently in the model. In particular, the more
people that are currently infected, the more likely it is that a susceptible individual
comes in contact with an infected individual, and thereby becomes infected. If an
individual in the model is infected, then he or she has a probability of becoming
recovered during the next time step. This probability is fixed, and based on the
standard recovery rate of an infected person (for whatever disease one is studying).
Finally, if an individual in the model is recovered, he or she will remain in the
recovered state during the next time step. A visual of this model is given in Figure
1.

The simple model described by Figure 1 is often called the S.I.R. model and
is a classic example of a Markov model in healthcare. In particular, the model
examines a collection of objects that are assigned a series of states over a period of
time steps. Moreover, at the end of each time period, the objects move from one
state to the next according to transition probabilities (also called transition rates)
that depend only on the current state of the system. These are the key aspects of a
Markov model. Markov models are models that examine a collection of objects in a
system that move through a series of states. Moreover, Markov models work on the
assumption that the future state of the object is determined by a random process
dependent only on the current state of the system. This assumption is so basic to
the methodology of Markov models that it is generally referred to as the Markov
assumption. Due to the Markov assumption, Markov models are “forgetful” in the
sense that a knowledge of the past states of the system is not required to predict

129
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Susceptible

Infected

Recovered

Susceptible

Infected

Recovered

Figure 1. The S.I.R. model of disease spread: The classical
S.I.R. model (Susceptible, Infected, Recovered) of disease spread
can easily be viewed as a Markov model.

the future. In spite of this, Markov models can exhibit deep structure through the
cumulative effects of repeated stochastic events.The Markov assumption

is that the future state

of an object in the model

is determined by a ran-

dom process dependent

only on the current state

of the system.

Before implementing a Markov model it is important to determine the list of
all possible states that an object can take. The collection of all possible states that
an object can take is called the state space. In more complicated models, the list
of possible states becomes longer, and the manner in which objects move from one
state to another becomes more complex. For example, the objects may be people
and the states may be the amount and type of healthcare services each person uses
during a given time period. This would result in an extremely large number of
possible states, and therefore a rather complicated model to implement.

The simplest type of Markov model is th finite state Markov chain. In such
models the number of possible states is finite, and transition from one state to
the next occurs at predefined points in time. Such models are relatively simple to
implement, but can still model some surprisingly complex systems. As such they
are often a good first choice for many modelling problems.

Many people believe that the Markov assumption causes Markov models to be
extremely limited in application. For example, your probability of gaining weight is
partly dependent on your current weight, but also partly dependent on your history
of weight gain (see Example 4.2). Even though the Markov assumption forces some
level of forgetfulness on the models, it is nonetheless possible to build memory into
a Markov model. The way this is done is to create new states that incorporate the
memory for the desired trait. For example, we might create a state called “currentlyWhenever we choose to

approach a problem via

Markov models, it is

of the utmost impor-

tance to test whether the

Markov assumption is

valid.

normal, but was obese”. Markov models that incorporate memory in this manner
are sometimes referred to as higher order Markov models. If the model incorporates
one level of memory it is referred to as a 2nd order Markov model (or a Markov
chain of order 2), and models that do not incorporate any memory are sometimes
called 1st order Markov models.

Whenever we choose to approach a problem via Markov models, it is of the
utmost importance to test whether the Markov assumption is valid. Fortunately
there is a simple method to test the Markov assumption. Basically, we build a
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higher order Markov model and check that its results agree with the original lower
order model. If the Markov assumption holds, the two models will produce the
same results (see Figure 2, page 134).

There are many generalizations to finite state Markov models, including infi-
nite state models, Markov processes, semi-Markov processes, and Markov Decision
Processes. These generalizations are discussed briefly at the end of Section 3, but
are beyond the scope of this book.

2. Common Uses

Markov models explore the properties of objects in a system that move through
a series of states. The most important aspect of Markov models is the assumption
that the system satisfies the Markov assumption: the future state of the object is
determined by a random process dependent only on the current state of the system.
In healthcare, this assumption is well suited to modelling the movement of patients
through disease states. In regards to disease states, Markov models are suitable to
answer questions such as:

• How do immunization rates impact the spread of disease through a popu-
lation?

• How many people will be affected by diabetes in future years?
• At what disease state is treatment most suitable to prevent disease spread?

Aside from modelling disease states, Markov models are also useful for examining
if patient history is a factor in behaviour:

• How does doctor-patient loyalty affect the use of the healthcare system?
• To what level does an individual’s past BMI status impact their future

BMI status?
• Does surgeon skill affect patient progress through post-surgery recovery

stages?

3. Mathematical Details

In Markov models we begin with a collection of objects and a list of possible
states for each object. For example, the object may be individual people that can
take one of two states: healthy or sick. The collection of all possible states that an
object can take is called the state space. At each time interval, the model assigns
every object in the system to exactly one state from the state space. At the end
of each time period, the objects move from one state to the next according to
transition probabilities (or transition rates) that depend only on the current state
of the system. That the transition probabilities depend only on the current state
of the system is the key aspect of Markov models, and generally referred to as the
Markov assumption.

Due to the Markov assumption, Markov models are “forgetful” in the sense that
a knowledge of the past states of the system is not required to predict the future.
In spite of this, Markov models can exhibit deep structure through the cumulative
effects of repeated stochastic events.

3.1. Finite State Markov Chains. We begin our discussion with the sim-
plest type of Markov models, Finite State Markov chains. The words “finite state”
mean exactly what one would suppose them to mean; that the list of possible states
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for an object is finite. The final word, “chain”, refers to the assumption that transi-
tion from one state to the next occurs at predefined points in time. For example, in
examining the spread of disease we might decide to update each individual’s state
at the end each day. Alternately, states might be updated on an irregular, but
still predefined basis. For example we might be interested in studying an individ-
ual’s BMI status when they turn 16, 19, 25, 50 and 65. Whether time periods are
evenly spread or not makes no difference in the mathematics required to analyze
the model.

Let S = {s1, s2, . . . , si, . . . , sN} be the state space of the model (the list of all
possible states that an object can take). Let X0 be a column vector of length N
that represents the initial state of the system. That is

X0 =



x0
1

x0
2
...
x0
i
...
x0
N


where x0

i is the number of objects in state i at time step 0. In general we shall use

Xt =



xt1
xt2
...
xti
...
xtN


where xti is the number of objects in state i at time step t.

Next, let Prt(i→ j) be the probability of an object moving to state sj at time
t+ 1 given that the object was in state si at time t. Creating the matrix

P t =


Prt(1→ 1) Prt(2→ 1) · · · Prt(N → 1)
Prt(1→ 2) Prt(2→ 2) · · · Prt(N → 2)

...
...

. . .
...

Prt(1→ N) Prt(2→ N) · · · Prt(N → N)


we find that the state vector for the system at time t+1 is the matrix multiplication
of Pt and the state vector of the system at time t:

(24) Xt+1 = P tXt.

The matrix P t is generally referred to as a transition matrix, and may be dependent
on the time t or the state of the system at time t.

In order for a Markov chain model to run correctly, transition matrices must
satisfy several special properties. First, all elements of the matrix must be non-
negative. This stops objects from flowing backwards through the model. Second,
each column of the transition matrix must sum to 1. This prevents objects from
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appearing or disappearing from the model (models that allow entry into the model,
or exit from the model are discussed in Subsection 3.2).1 The matrix P t is gen-

erally referred to as a

transition matrix.

In particular, the state at time t can be found via the formula

(25) Xt = P t−1P t−2 . . . P 1P 0X0.

If the transition probabilities do not change over time, that is if P t = P 0 for all t,
then the Markov model is called a time homogeneous. Time homogeneous Markov
models allow for obvious simplifications to formula (25):

Xt = [P 0]tX0.

3.2. Markov Model Involving Entry and Exit. In the previous subsec-
tion, we discussed Markov models that did not allow new objects to enter the model,
nor allow objects from the model to exit the model. In some cases one wishes to
incorporate this idea into the model (for example to represent births or deaths).
This can be accomplished in several manners. The easiest manner is to create two
new states, one labelled “to-be-born” one labelled “dead”. Next set the initial
number of objects in the state “to-be-born” to a very high number (say 1000 times
the size of the model), and set the initial number of objects in the state “dead”
to zero. Finally, one adjusts the transition matrices P t to allow for objects to be
born into the appropriate states, and allow for objects from the appropriate states
to transition into the “dead” state.

There are other methods of incorporating birth and death into Markov models,
and in general they are quite straightforward. For example, one can rewrite the
state-vector equation (equation (24)) to Xt+1 = P tXt+bt−dt, where bt is a vector
of objects born into each state at time t and dt is a vector of object exiting each
state at time t. The disadvantage of this method, is one must take care that the
total number of objects in a given state never becomes negative. In particular, one
should never have more objects exit a state, than there are objects in that state. In
the first method discussed, this is taken care of automatically when we check that
each column of the transition matrix must sum to 1.

An additional advantage of the first method, is that it allows us to keep track
of how many objects enter and exit the system over the course of the model. (The
number entering the system is the difference of the initial number and final number
of objects in the state “to-be-born”, the number exiting the system is the final
number of objects in the state “dead”.)

3.3. Higher Order Markov Models. On the surface, the Markov assump-
tion appears to create models which are extremely limited in application. For
example, if we were modelling the spread of disease through a population, then we
would be interested in the two states “uninfected” and “infected.” However, it is
well known that patients who have recovered from a virus are less likely to become
infected again from the same disease. Therefore, if the infected state simply feeds
back into the uninfected state, the model is unlikely to provide useful information.

Even though the Markov assumption forces some level of forgetfulness on the
models, it is nonetheless possible to build memory into a Markov model. The way
this is done is to create new states that incorporate the memory for the desired
trait. For example, in the case of modelling spread of disease through a population,

1A few texts consider transition matrices as the transposition of the above approach; in this
case, the sum of each row totals to one.
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one could create states labelled “susceptible,” “infected,” and “recovered.” The
recovered state now effectively contains the memory that the individual was once
infected.

Markov models that incorporate memory in this manner are sometimes referred
to as higher order Markov models. The order of the Markov model is one more than
the level of memory the model attempts to incorporate. For example, if the model
incorporates one level of memory it is referred to as a 2nd order Markov model
(or a Markov chain of order 2), and models that do not incorporate any memory
are sometimes called 1st order Markov models. The order of a Markov model is
qualitatively descriptive only. That is, since the higher order models can always be
dealt with by adding additional states to the model, higher order Markov models
can mathematically be dealt with in the same manner as first order Markov models.

3.4. Testing the Markov Assumption. Higher order Markov models pro-
vide us with insight on how to test if the Markov assumption is suitable for a
given problem. The basic idea is that if the Markov assumption holds, then build-
ing memory into the model via higher order models should have no effect on the
transition probabilities. These ideas are clarified in Figure 2.

State A1

State A2

State B State C

State A1

State A2 State A2B

State A1B

State C

P(b,c)

P(a1b,c)

P(a2b,c)

Figure 2. Testing the Markov assumption: Testing the
Markov assumption
One method to test if the Markov assumption holds is to turn
a 1st order Markov model into a 2nd order Markov model and
check if the transition probabilities are affected. In the 1st order
model above (top) we have two states, A1 and A2, which feed
into a state B, which then feeds into state C. To create a sec-
ond order model (bottom), we expand state B into two states:
state A1B and state A2B. If the probability of moving from A1B
to C is the same as the probability of moving from A2B to C
(i.e. P (b, c) = P (a1b, c) = P (a2b, c)) then the Markov assumption
holds, and a 1st order model suffices. Otherwise, one should test
if the 2nd order model satisfies the Markov assumption.
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3.5. Infinite State Markov Models. For Markov chains with a finite num-
ber of states, the transition probabilities may be represented as a transition matrix
(see Subsection 3.1). If the number of states is infinite, then this property does not
apply. Instead, the transitions must be described in terms of functions. Recall, for
finite chains we used Prt(i → j) to represent the probability of an object moving
to state sj at time t+ 1 given that the object was in state si at time t. If there are
an infinite number of states, the indices i and j may no longer be integers, and so
building the matrix P t is no longer possible. Instead one creates a function

f(i, j, t) = Prt(i→ j).

Various mathematical techniques have been developed to study such functions,
most of which focus on the question of whether there is a state si that has a high
probability of being occupied regardless of starting conditions. These techniques
are beyond the scope of this book.

3.6. Markov Processes and Semi-Markov Processes. The Markov mod-
els discussed above were Markov chains, meaning that all state transitions occur at
fixed predefined time intervals. In the 1920s, a more general class of models, called
Markov processes, in which transitions occur at arbitrary times was also developed.
In these models, time is viewed as a continuous variable, so time steps can occur at
any point. One classic example of such a process is the “random walk of a drunk-
ard,” in which a point stumbles in a random direction for a random distance. In
this case, the concept of time is incorporated into distance, and so the point can
be thought to be traveling in a random direction for a random length of time. In
literature, the random walk of a drunkard is usually referred to as a Wiener process
or Brownian motion.

Another generalization of Markov chains are semi-Markov processes. In a semi-
Markov process, the transition probabilities depend not only on the current state
of the system, but also on the time that it has spent in that state. The time that
the system spends in each state is assumed to vary stochastically according to a
probability distribution. Semi-Markov models have wide applicability in queueing
theory, reliability modelling, and operations research. Recently, they have been
applied to the modelling of chronic diseases, such as HIV.

3.7. Markov Decision Processes. Markov Decision Processes (MDPs) are
an extension of Markov Processes and Markov Chains, in which the modeller is
allowed to interact with the objects in the system by applying actions to the system.
Applying an action to the system can be thought of as altering the transition matrix
for a selection of time steps. MDPs are used extensively in business to help examine
the effect of decision making in situations where outcomes are partly random and
partly under the control of the decision-maker. The basics of MDPs are not difficult,
once the ideas behind Markov models are understood. However, further discussion
on MDPs are beyond the scope of this book.

4. Examples

4.1. A Simple Doctor-Patient Loyalty. To demonstrate the mathematics
behind a simple time homogeneous Markov chain, consider a drop-in clinic with
three doctors. In this particular drop-in clinic, no appointment is necessary, so
patients may not see the same doctor on every visit. However, the patient (when
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returning to the clinic) may request a specific doctor. If the doctor is available that
day, the patient’s wait time increases but considerations are usually made.

We assume that a patient’s preference for a doctor is completely determined
by the doctor that they visited in their last visit, and the random factor of when
that doctor will be available. The probabilities of visiting a given doctor, given the
doctor seen during the previous visit, is found in Table 1. Notice that some doctors
inspire more patient loyalty than others.

Previous Next Visit Next Visit Next Visit
Visit Sees Doctor 1 Sees Doctor 2 Sees Doctor 3

Saw Doctor 1 0.72 0.09 0.21
Saw Doctor 2 0.18 0.85 0.15
Saw Doctor 3 0.10 0.06 0.64

Table 1. Transition probabilities for a hypothetical Doctor-
Patient Loyalty model.

Suppose the clinic has 300 patients that return on a regular basis, and we wish
to see how these patients impact each doctor’s work load. We begin by assuming
that each doctor will see 100 of these patients, so

X0 =

100
100
100

 .
The transition matrix for this Markov chain will be unchanging with time, and
equal to

P =

0.72 0.09 0.21
0.18 0.85 0.15
0.10 0.06 0.64

 for all t.

Simple matrix-vector multiplication yields

X1 =

102
118
80

 , X2 =

100.86
130.66
68.48

 , X3 =

 98.7594
139.4878
61.7528

 , . . . ,
X20 =

 89.6613
158.9361
51.4026

 , . . . , X50 =

 89.6414
158.9641
51.3944

 , . . . , X100 =

 89.6414
158.9641
51.3944

 .
This might lead us to conjecture that in the long run Doctor 1 will have ap-

proximately 90 patients, Doctor 2 will have approximately 159 patients and Doctor
3 will have approximately 51 patients. To confirm this more mathematically, we
are interested in the equilibrium distribution of X:

lim
t→∞

Xt = lim
n→∞

P × P × P × · · · × PX0 = lim
n→∞

[P ]nX0.

To proceed we must diagonalize the matrix P . To diagonalize a matrix P is to find
an invertible matrix Q and a diagonal matrix D such that P = QDQ−1. This can
be done quickly and easily with modern mathematical computing software. In this
case diagonalizing P provides

P = QDQ−1
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where

Q ≈

−0.583 −0.867 −0.481
0.820 0.154 −0.854
−0.237 0.713 −0.276

 and D ≈

0.680 0 0
0 0.531 0
0 0 1.00

 .
Therefore,

lim
n→∞

PnX0 = lim
n→∞

QDQ−1QDQ−1 . . . QDQ−1X0

= lim
n→∞

QDnQ−1X0

= Q

0 0 0
0 0 0
0 0 1

 Q−1X0

≈

0.30 0.30 0.30
0.53 0.53 0.53
0.17 0.17 0.17

100
100
100

 =

 90
159
51


This mathematically confirms our predictions for this model. More importantly, if
we repeat this analysis with an arbitary

X0 =

x0
1

x0
2

x0
3


with x0

1 + x0
2 + x0

3 = 300 notice that

limn→∞ PnX0 =

0.30 0.30 0.30
0.53 0.53 0.53
0.17 0.17 0.17

x0
1

x0
2

x0
3

 =

0.30(x0
1 + x0

2 + x0
3)

0.53(x0
1 + x0

2 + x0
3)

0.17(x0
1 + x0

2 + x0
3)



=

0.30(300)
0.53(300)
0.17(300)

 =

 90
159
51


So regardless of initial conditions, the resulting distribution of patients will be the
same.

This model illustrates a key feature of many Markov models, that the model
will eventually approach an equilibrium or “steady-state”. This means that the dis-
tribution of patients among the physicians will eventually approach an equilibrium
distribution, which is independent of the initial distribution. In this case, 30% of
the patients will see Doctor 1, 53% will see Doctor 2, and 17% will see Doctor 3.

4.2. Testing the Markov Assumption for an Male BMI State Model.
In this example we consider a simple 3 state Markov model examining changes
in BMI status.2 The portion of the survey data we use consists of following
5316 males over the course of 18 years, and collecting their BMI value (BMI =
mass in kg/(height in m)2) every two years. In this example we seek to check if
the Markov assumption is a valid assumption when studying an individuals BMI
status.

2The model was designed and tested against the National Longitudinal Survey (NLS) data-
base, which is freely available at http://www.bls.gov/nls/.
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The basic model consists of the states: “Normal-weight,” “Over weight,” and
“Obese,” which we shall abbreviate as: nw, ow, and ob respectively. The states
correspond to BMI ranges of

nw ⇔ BMI < 25
ow ⇔ 25 ≤ BMI < 30
ob ⇔ 30 ≤ BMI.

(Note, under weight individuals (BMI < 18.5) are placed in the nw state, this is
due to the lack of under weight individuals in the NLS database.) Since we will tune
the model using NLS data, we will use a two year time step between transitions.
To allow for easier reading of notation, we shall create a time step index i which
will correspond to the age of the individuals at that time step. For example, time
step 20 will represent the time at which individuals are aged 20 or 21, time step 22
will represent the time at which individuals are aged 22 or 23, etc. As two years is
a relatively long time we will assume that any state can transition into any other
state over each time step. Visually this produces the model shown in Figure 3.

Normal

Over weight

Obese

Normal

Over weight

Obese

Figure 3. A 3-state Markov model of BMI status: A visu-
alization of the basic BMI state Markov model.

Let

Xi =

 nwi
owi
obi


be a vector of the number of individuals in each state at time i, where nwi is the
number of normal weight individuals, owi is the number of over weight individuals,
and obi is the number of obese individuals. To determine the number of individuals
in each state during time step i+ 1 we multiply Xi by a transition matrix Ti where

Ti =

 Pri(nw|nw) Pri(nw|ow) Pri(nw|ob)
Pri(ow|nw) Pri(ow|ow) Pri(ow|ob)
Pri(ob|nw) Pri(ob|ow) Pri(ob|ob)


and Pri(y|x) is the probability that at time step i an individual will move to BMI
category y given that their current BMi category is x. We let these probabilities
be time dependent to represent that fact that as individuals age they will begin
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to behave differently. Calculating these probabilities for each time period is easily
done by examination of the NLS data set. Doing so, one finds that at the 30th time
step

T30 =

 0.785 0.102 0.005
0.211 0.793 0.145
0.004 0.105 0.850

 .
In order to test the Markov assumption, we next produce a higher order Markov

model and check if it behaves the same as the first order model. By this we mean
that we change our 3 state model into a 9 state model, where each state stores not
only your current obesity status but also your obesity status from the previous time
step. In order to facilitate discussion we shall label the 9 states s1, s2, . . . , s9 where

s1 = {nw → nw} s2 = {ow → nw} s3 = {ob→ nw}
s4 = {nw → ow} s5 = {ow → ow} s6 = {ob→ ow}
s7 = {nw → ob} s8 = {ow → ob} s9 = {ob→ ob}

and state {x→ y} represents that one time step earlier the individual was in state
x and currently the individual is in state y. These 9 states can transition according
to the logical rule that the next state’s x must be the current state’s y. If

X̃i =


s1
s2
...
s9


represents the current state of the model the the transition matrix T̃i would take
the form

T̃i =



Pri(s1|s1) Pri(s1|s2) Pri(s1|s3) 0 · · · 0
0 0 0 Pri(s2|s4) · · · 0
0 0 0 0 · · · Pri(s3|s9)

Pri(s4|s1) Pri(s4|s2) Pri(s4|s3) 0 · · · 0
0 0 0 Pri(s5|s4) · · · 0
0 0 0 0 · · · Pri(s6|s9)

Pri(s7|s1) Pri(s7|s2) Pri(s7|s3) 0 · · · 0
0 0 0 Pri(s8|s4) · · · 0
0 0 0 0 · · · Pri(s9|s9)


.

If the Markov assumption holds then each row of T̃i will consist of three (nearly)
identical values as there should be no statistically significant difference between the
behaviour of individuals in s1, s2 and s3 (for example). However, using the NLS
data set one can calculate that T̃30 would be

T̃30 =



0.826 0.399 0.000 0 0 0 0 0 0
0 0 0 0.214 0.071 0.041 0 0 0
0 0 0 0 0 0 0.000 0.017 0.000

0.173 0.577 0.333 0 0 0 0 0 0
0 0 0 0.763 0.819 0.514 0 0 0
0 0 0 0 0 0 0.250 0.274 0.084

0.001 0.024 0.667 0 0 0 0 0 0
0 0 0 0.023 0.110 0.445 0 0 0
0 0 0 0 0 0 0.750 0.709 0.916


.
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As one can see, the Markov assumption does not hold (for example Pr(s7|s1) =
0.001, but Pr(s7|s3) = 0.667). Therefore a basic Markov model is not an appro-
priate approach to modelling obesity. We could continue by building higher and
higher order Markov models until the Markov assumption held, but this is likely
an unrewarding task. (On a final note, there is nothing special about examining
time step 30. Examining other time steps shows the same disagreement between
the data and the Markov assumption.)

4.3. A Mover-Stayer Model for Problematic Drug Use: A Compart-
mental Markov Model. Standard Markov models assume that the same transi-
tion matrices apply uniformly to the entire population. However, it is often the case
in epidemiological modelling that the population is divided into different compart-
ments according to their susceptibility or infectiousness. The model then describes
how the size of these compartments changes over time by means of equations de-
scribing the disease dynamics. A common approach to compartmental modelling
is to use a mixed Markov process, which consists of a superposition or mixture
of different Markov chains with independent transition matrices. In this example
we review a compartmental mixed Markov model used to analyze heroin addiction
[188].

The basic model views the population as consisting of two types of people.
Those who are susceptible to becoming problematic drug users and those who are
“prudent” and hence not at risk of becoming drug users. Thus the compartmental
Markov model consists of two subgroups, which we will call “movers” and “stay-
ers.” The movers represent the people who are susceptible to drug abuse, and can
therefore move about the various states of drug use. Conversely, stayers represent
the people who are not at risk of becoming drug users.

In the model of [188], movers can become drug users either by coming in contact
with other drug users or by contact with drug dealers. The diagram in Figure 4
is a compartmental representation of the model. In this figure, the straight lines
represent possible state changes of the movers, and the curves represent the possible
interactions between drug users and people susceptible to drug use (movers) in the
population.

As shown in the Figure 4, this model uses several compartments to model the
phenomenon. If a mover becomes a drug user, then they initially pass through a
phase of light use. After a period of light use, they then move on to a phase of
heavy but invisible use. When usage becomes problematic, they become visible as
heavy drug users and begin their interaction with the healthcare system and social
services. Finally, addictive use of drugs leads to possible reform and a possible
recidivist phase.

In order understand the spread of drug addiction and build a model that can be
used to test the effectiveness of different types of interventions, such as treatment
programs or law enforcement, we use the diagram in Figure 4 to write a set of eight
coupled difference equations that describe the evolution of the system (see Table
2). In evolving the system, it is assumed that the lengths of stay in each of the
compartments are exponentially distributed. To implement the model, a computer
program is written to evaluate the difference equations. Since the computer pro-
gram evaluates the difference equation using a series of predetermined time steps,
this is mathematically a Markov model.
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Demographic  
input/output 

Clients of health care  
services.  

State variable: Z 

Recidivist drug users  
(either light or hard). 

State variable: W1 

No use (temporary). 

State variable: W2 

Hard drug users  
(problematic phase  

of drug use).  

State variable: Y2 

Light drug users  
(initial phase of drug  

use).  

State variable: Y1 

Deaths by any cause  

State Variable: D  

Individuals not 
involved in drug use. 

(susceptible  
populations) 

State variable: X  

ν13 

ν12 

ν15 

ν36 

ν56 

ν26 
π67 

π57 

π47 π37 π17 

π27 

µ26 

µ45 

µ61 

µ12 µ23 µ34 

µ10 µ01 

µ56 µ65 

µ54 µ46 

Figure 4. System dynamics diagram of mover-stayer
model epidemic drug use: The parameters µIj represent flow
of movers from one state to other, the parameters νij represent in-
teractions between the different components in the model, and the
parameters πi7 represent mortality from each of the components.
Reproduced from [188].

In order to implement the model, it is necessary to obtain values for the various
parameters in the model. In this model, µ01, µ10 and π17 are demographic param-
eters, which may be obtained from census data. The parameters µ23 and µ34 are
parameters describing the prevalence of problematic drug use and may be obtained
from studies of the incidence of drug use. The parameters π27 through π67 may
be obtained from studies of the mortality rate among drug users. The parameters
µ45, µ46, µ54, µ56, µ65 and µ61 are the most difficult to obtain; however they may be
estimated from therapy data. (In [188], values for these parameters are estimated
for heroin use in Italy from 1980 to 2000.)

Using this model, the authors explored the effects of both primary and sec-
ondary preventive interventions. A primary intervention is one that is applied
directly to the susceptible population. It is said to have an effectiveness P , if a
proportion P of the movers in the susceptible population become stayers. The ef-
fect of secondary preventive interventions can be evaluated by modifying the ν and
µ parameters. For example, the consequence of increased law enforcement would
primarily be to decrease the parameter µ12. Safe injection sites would primarily
have an effect on the parameters ν56 and µ56. The impact of healthcare policies on
drug use would primarily be on the parameters µ45 and µ54.

The model supports the statement that primary interventions are more effective
than secondary interventions. However, there is substantial latency in the system
after a program of primary intervention is initiated. That is, there would be no
sign of any positive response for a significant period of time. In the case of the
model applied to heroin drug addiction in Italy, this response latency would likely
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X(t+ ∆t) = X(t) + (−µ01 + µ10 − π17)X(t)

− (µ12 + ν12Y1(t) + ν13Y2(t) + ν15W1(t))(1− S(t))X(t)

+ µ61W2(t)

Y1(t+ ∆t) = Y1(t) + (−µ23 − µ26 − π27)Y1(t)

+ (µ12 + ν12Y1(t) + ν13Y2(t) + ν15W1(t))(1− S(t))X(t)

Y2(t+ ∆t) = Y2(t) + (−µ34 − π37)Y2(t) + µ23Y1(t)

Z(t+ ∆t) = Z(t) + (−µ54 − µ46 − π47)Z(t) + µ34Y2(t) + µ45W1(t)

W1(t+ ∆t) = W1(t) + (−µ45 − µ65 − π57)W1(t)

+ (µ56 + ν26Y1(t) + ν36Y2(t) + ν56W1(t))W2(t) + µ54Z(t)

W2(t+ ∆t) = W2(t) + (−µ61 − π67)W2(t)

− (µ56 + ν26Y1(t) + ν36Y2(t) + ν56W1(t))W2(t) + µ26Y1(t) + µ46Z(t)

D(t+ ∆t) = D(t) + π17X(t) + π27Y1(t) + π37Y2(t) + π47Z(t) + π57W1(t) + π67W2(t)

S(t+ ∆t) = S(t)
(1− µ10 − π17)X(t)

X(t+ ∆t)
+ S0

µ01X(t) + µ61W2(t)
X(t+ ∆t)

X(t) size of the susceptible population at time t
S(t) proportion within the susceptible population

who are “stayers” at time t
S0(t) proportion of the new population entering the

susceptible population who are stayers at time
t

Y1(t) population of light drug users at time t
Y2(t) population of hard drug users at time t
Z(t) population whose drug use has made them

known to the healthcare system at time t
W1(t) recidivist drug users at time t
W2(t) temporary holding population for users in

transition at time t
D(t) number of deaths at time t (cumulative)

Table 2. Coupled difference equations represented by Figure 4.

be about 6 years and possibly as long as 8 years. However, when the system does
respond to the intervention it does so rapidly and in a highly non-linear fashion.
This result is important, as many intervention programs would be abandoned as
“failures” if no improvement was seen for 5 years.

However, it should be noted although the model supports the statement that
primary interventions are more effective than secondary ones, this model does not
evaluate the cost of primary versus secondary interventions. For example, the
model predicts a greater effect if the parameter µ12 is adjusted slightly than if the
parameter ν56 is adjusted slightly. However, it does not evaluate how difficult it
is to adjust each parameter. In application one must determine how much effort
is required to adjust each parameter and weight this against the impact of the
adjustment.
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5. Related Reading

Markov models are closely related to Systems Thinking and System Dynamics (Chap-
ter 14), as well as Queueing Theory (Chapter 15). Indeed, Markov models provide an
alternate approach to developing and implementing many of the ideas in those method-
ologies. Markov models are often used as a base for other models to build on. In this
manner, Markov models are often used in conjunction with Network Models (Chapter 12),
Game Theory (Chapter 11), and many statistical models (Part 2).

Reference [188] contains details for Example 4.3.
Reference [90] looks at the mover-stayer Markov model using various estimators and

at the accuracy of these estimators. Reference [161] expands previous work on a Markov
model for predicting future need for resources by taking varying utilization rates between
age groups into account. Reference [46] uses a Markov model to track the movement of
patients through the disease states of malaria. Reference [142] develops a Markov chain
for the analysis of a centralized medical record system in a large hospital. Reference [210]
derives exact HIV incubation distributions under treatment by anti-viral drugs based on
first passage probability distributions for some continuous time Markov chains. Reference
[147] uses a Markov model to describe movements of geriatric patients within a hospital
system. Reference [113] uses Markov modelling to forecast the number of people with
diagnosed and undiagnosed diabetes by age, race, ethnicity and sex. Reference [27] uses
Markov models to analyze various social science processes, such as bed occupancy rates,
brand loyalty, occupational mobility, voter patterns and malaria. Reference [51] proposes
a method for analyzing surveillance data for communicable pathogens using a “structured”
hidden Markov model.

Reference [203] uses a Markov decision process to examine the cost-effectiveness of

alternative screening strategies for HCV infection in comparison with no screening. Refer-

ence [117] presents a Markov decision process model to evaluate different screening policies

for breast cancer. Reference [198] presents a Markov decision process for addressing the

unresolved issue of optimal time to initiate HIV therapy.





CHAPTER 14

Viewing the System as a Whole

Imagination is the beginning of creation. You imagine what you
desire; you will what you imagine; and at last you create what
you will. George Bernard Shaw (1856-1950)

No man is an island entire of itself; every man is a piece of the
continent, a part of the main. John Donne (1572-1632)

System Dynamics and Systems Thinking

1. Model Overview

In conventional management thinking, a problem can be broken down into indi-
vidual parts, and each of these is optimized separately. In healthcare, this approach
is failing as strong interactions exist between various parts of the healthcare sys-
tem. To deal with this problem, many researchers are beginning to apply systems
thinking to the field of healthcare, and turning to system dynamics to help quantify
their models.

Systems thinking is more a style of thought than an actual modelling technique.
Overall, systems thinking can be viewed as a form of qualitative modelling that
focuses on viewing the system as a whole instead of a collection of individual parts.
This method is strongly based on the belief that the components of a system will act
differently when united than when separated. It argues that by viewing the system
as a whole, fundamental insights can be gained, and that persistent difficulties can
be resolved by studying the system as a single entity.

Although the name may appear to be new, many policy makers will already be
familiar with systems thinking. Generally systems thinking models are the type of
models that show up in boardrooms during talks on “how X impacts Y .” Often,
but not always, they are best visualized as a collection of boxes connected by arrows
and influence signs. Each box represents a part of the system, and each arrow and
influence sign combination represents how that box impacts another box in the
system. A positive sign means that an increase in the box from which the arrow
leaves causes an increase in the box into which the arrow arrives. A negative sign
means that an increase in the box from which the arrow leaves causes a decrease
in the box into which the arrow arrives.

As an example, consider Figure 1, which shows how new medicines can both
save lives and increase the chance of medicinal error. In this figure, we have four
boxes: “New Medicines,” “Lives Saved,” “Medicinal Errors,” and “Staff Training.”
Since new medicines can save lives, there is an arrow with a positive sign going
from “New Medicines” to “Lives Saved.” That is, an increase in the number of new
medicines will cause an increase in the number of lives saved. Similarly, the model
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Lives Saved

New Medicines

Staff Training

Medicinal Errors

+

-

+

-

Figure 1. Systems thinking model relating new medicines
to medicinal errors: New medicines can provide better treat-
ment for diseases, thereby saving lives. However, new medicines
also increase confusion amongst hospital staff, which increases the
chance of medicinal errors. This decreases the number of lives
saved (note the negative on the arrow connecting box “Medicinal
Errors” and “Lives Saved”). Finally the model suggests that staff
training could be used to counter this problem.

suggests an increase in the number of new medicines leads to an increase in the
possibility of making a medicinal error, which in turn leads to a decrease (note the
negative sign) in the number of lives saved. To counter this effect, one must use
staff training to decrease the possibility of medicinal errors. The model suggests
that in order for new medicines to have their maximum impact, their introduction
must be accompanied by staff training.

In order to quantify systems thinking, one can turn to system dynamics mod-
els. First developed in the early 1960s, system dynamics models are based on the
economics concepts of stocks and flows. To understand stocks and flows it is
useful to think of the analogy of water flowing through a series of reservoirs and
pipes. As the valves on the pipes open and close, the water flows from reservoir to
reservoir in a different pattern. To connect this with our previous systems thinking
models, each box in the systems thinking model is a reservoir and the arrows con-
necting the boxes become the pipes. Figuring out the exact equations to describe
the flow through a given pipe given a state of the system is how the model becomes
quantified.System dynamics mod-

els (at least from the

perspective of this book)

are defined by their use

of stocks and flows to

describe feedback loops

and complex systems.

The strength of system dynamics modelling lies largely in the fact that it is
both qualitative and quantitative in nature. The qualitative nature of system dy-
namics comes from the fact that it builds upon a systems thinking model approach.
Thus the original model can be created without using data, but solely focusing on
the qualitative nature of the system. This is best obtained based on the experience
and insights of professionals and managers. This knowledge base, although quali-
tative, is the foundation of the actual decision process in the system, and as such is
considered more comprehensive. (A positive side effect is that beginning modelling



3. MATHEMATICAL DETAILS 147

via systems thinking usually makes the model more understandable and believable
later.)

The model shifts to being quantitative when equations that describe each arrow
in the model are added. The equations should be developed and tested using actual
data, which gives the model mathematical accuracy. The equations usually reduce
to a complex system of non-linear differential equations. It is possible (but unlikely)
that these equations can then be solved analytically. More likely, a numerical
differential equation solver or discrete time computer simulation is employed to
provide testing to various system scenarios.

System dynamics models pose a few drawbacks to modelling in healthcare.
Most notably, system dynamics treat individuals in the system like water. It can
remember where a patient is coming from, and where a patient is going to, but it
cannot distinguish between two patients in the same reservoir, nor can it remember
a patient’s entire past history. In some cases, such as modelling wait times for
surgery, these details are significant, in most other cases they are not required and
are usually lost in the mass of the system. In cases where the time a patient has
waited in a given spot (i.e. the ability to distinguish patients in a reservoir) is
important, queueing theory models are probably best to employ, see Chapter 15.
In cases where the entire history of a patient is important, discrete event simulation
is probably the best option, see Chapter 9.

2. Common Uses

Systems thinking is a holistic approach to modelling, based on the belief that
the components of a system will act differently when isolated from the system. It
argues that, by viewing the system as a whole, fundamental insights can be gained.
Using these ideas, systems thinking approaches questions of how various parts of
the system interact. For example,

• What factors are driving the changes in hospital operating budgets?
• How is the shift in population age demographics going to impact the health-

care system?
• How will a pandemic affect the healthcare system?

can all be discussed via systems thinking.
System dynamics is the natural choice for quantifying the ideas developed in

a systems thinking model. In healthcare, system dynamics has been successfully
employed to solve problems such as,

• How can one implement intervention strategies for better control of dis-
ease?

• Would hiring more cleaning staff alleviate the hospital bed crisis?
• How do privately run healthcare facilities impact the need, demand, and

use of publicly run facilities?

Unfortunately, this versatility often makes it difficult to approach system dynamics
via analytical means, so numerical analysis techniques usually become necessary.

3. Mathematical Details

3.1. Systems Thinking. Systems thinking is method of thought as opposed
to an actual modelling technique. It is a form of qualitative modelling that focuses
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on viewing the system as a whole, instead of a collection of individual parts. The
goal is to describe how the various parts of a system interact qualitatively.

Often systems thinking models are best visualized as a collection of boxes con-
nected by arrows and influence signs. Each box represents a part of the system,
and each arrow and influence sign combination represents how that box impacts
another box in the system. A positive sign means that an increase in the box from
which the arrow leaves causes an increase in the box into which the arrow arrives.
A negative sign means that an increase in the box from which the arrow leaves
causes a decrease in the box into which the arrow arrives.

Systems thinking models can be created and viewed in many other ways than
the influence diagrams described above. As one of the major goals of any systems
thinking model is to clarify interactions between various parts of a system, any
visual or descriptive model that accomplishes this suffices. If the model does not
accomplish this, one should “rethink” the system.

An example of a systems thinking model that employs the influence visualiza-
tion method can be found in Figure 1. An example of a systems thinking model
that does not employ the influence visualization is detailed in Example 4.1.

3.2. System Dynamics. After a systems thinking approach is employed, and
an influence diagram is created, a modeller often wishes to quantify their model
in order to be able to make predictions regarding policy changes and future work
loads. To do this, we often turn to system dynamics. System dynamics models are
defined by their use of stocks and flows to describe feedback loops and complex
systems, therefore in order to understand system dynamics we must begin with the
definitions of stocks and flows.

The term stock is derived from the business concept, which refers to the value
of an asset at a balance date. In a more general sense a stock is better described
as an entity that is accumulated over time by inflows and/or depleted over time by
outflows. In healthcare, the entity in question is often patients, so a stock might
measure the number of patients in a hospital emergency department, the number
of patients infected with a specific disease, or the number of patients who require
home care nursing. Returning to systems thinking, stocks measure the contents of
the boxes in an influence diagram.

The term flow is also derived from concepts in economics, and refers to the
total value of changes to a stock during a given period. Thus in healthcare, flows
could represent the number of patients entering and exiting a hospital emergency
department, the number of patients becoming infected or recovering from a specific
disease, or the number of patients who degrade to the point where they need home
care nursing minus the number of patients who improve (or degrade) to the point
where they no longer need home care nursing. Returning to systems thinking, in
a system dynamics model of an influence diagram flows measure the amount of
influence an arrow has on a given box.

Of course stocks and flows can measure objects other than patients. In fact, one
of the strengths of systems modelling is that stocks and flows can measure anything
that is quantifiable. The number of beds in a hospital, the number of washrooms
in use at a given time, and the number of staffed ambulances sitting idle at a given
time could all be modelled using stocks and flows. In short, if you can measure it,
you can model it.
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With stocks and flows defined, and an influence diagram created, the next step
in creating a system dynamics model is to determine the equations that govern each
stock. These equations generally rely on the time t and the state of the system S(t)
at that time. For example, consider the influence diagram in Figure 1. To flesh this
out into a full system dynamics model we make some small changes to the model
to develop the diagram shown in Figure 2.

Figure 2. System dynamics model relating new medicines
to medicinal errors: A reconstruction of the systems thinking
model in Figure 1 as a system dynamics model.

In Figure 2 the function N(t) represents the number of new medicines intro-
duced during the month t. This function could be created by the user to test certain
scenarios, or determined using historical data to predict future trends.

The function T (t) is the number of hours of staff training provided in month t.
Like N(t), this number is chosen by the user to test various training strategies, or
set based on historical training strategies.

The function M(t) represents the number of medicines employed at the hospital
during month t. Since the change in the number of medicines employed per month
is the number of new medicines introduced, we have

(26)
d

dt
M(t) = N(t).

Recall, d
dt
f is the de-

rivative of the function

f with respect to time,

that is, the change in the

function f over a given

time.

The function E(t) represents the number of medicinal errors in a given month.
This number is increased as new medicines arrive and decreased as staff training
takes effect. For the sake of example, we assume both of these effects are linear.
That is, doubling the time spent training per month doubles the effect of training
on the number of errors. (This assumption is somewhat unrealistic, but it makes
the math achievable without use of a computer. Plus, as long as the number of
drugs introduced and the amount of training done does not fluctuate too much, a
linear approximation is reasonably accurate.) This leads to the differential equation

(27)
d

dt
E(t) = αN(t)− βT (t),

where α and β are positive constants.
Finally, the function L(t) is the total number of lives saved from the start of

the model until month t. Each month, L increases with the number of medicinal
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options available, and decreases by the number of medicinal errors. For the sake of
example, assume each medicinal option has the potential to save γ lives. That is

(28)
d

dt
L(t) = γM(t)− E(t).

Equations (26), (27) and (28) combine to form a second order system of ordinary
differential equations, dependent on the input functions N(t) and T (t). To see this,
differentiate equation (28) to obtain

d2

dt2
L(t) = γ

d

dt
M(t)− d

dt
E(t),

then use equations (26) and (27) to replace d
dtM(t) and d

dtE(t) to obtain

d2

dt2
L(t) = γN(t)− (αN(t)− βT (t)).

Integrating this twice we obtain the solution

L(t) =
∫ t
0

∫ t
0

((γ − α)N(t) + βT (t)) dτ1dτ2
= (γ − α)

∫ t
0

∫ t
0
N(t)dτ1dτ2 +

∫ t
0

∫ t
0
βT (t))dτ1dτ2.

If N(t) and T (t) are simple functions (such as constants) these integrals are easily
evaluated. If they are more complicated functions, one may have to resort to
numerical solvers to complete the solution.

The above example demonstrates much of the mathematics required to develop
and solve system dynamics models. Of course the above model did not include any
feedback loops, hence the differential equations were simple to solve. If the model
contains feedback loops, then the differential equations become more challenging,
and often can no longer be solved by analytic methods. In these cases it is usually
very useful to lean on the growing selection of system dynamics software available.
Some of this software is reviewed in Appendix A.

4. Examples

4.1. Going Solid: The Danger of Lacking Wiggle Room. In 2005 Cook
and Rasmussen published an exercise in systems thinking that examines how hos-
pital operating budget and staff workload might impact the safety margins for
practitioners of the healthcare system [50]. In this example we summarize their
thinking, and provide some further interpretation.

Many hospitals have begun operating as what Cook and Rasmussen refer to
as a “solid system.” This system includes the practice of admitting patients into
surgery based on the event that a bed will become available by the time surgery is
complete, not based on the event that a bed is currently available. On the surface,
this sounds like an excellent system; surgeries can begin sooner, and therefore more
surgeries can be performed. However, consider the following real event:

Patient A was admitted into surgery based on the fact that patient
B would leave the recovery room before surgery was completed.
Unfortunately, patient B did not leave the recovery room, because
the bed he was supposed to move to was still occupied by patient
C. Patient C was scheduled to move from the intensive care unit
to the regular ward, but was stopped by patient D who was still
occupying the desired bed. Patient D was actually released from
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the hospital, but was still occupying the bed as his transporta-
tion had not arrived. The transportation was delayed due to an
accident on the freeway.

As one can see from the example, this particular hospital had adopted the “solid
system” approach to management. Moreover, they had adopted the approach at
all levels of the hospital, making them (in theory) highly efficient. Unfortunately,
without the wiggle room created by a less efficient system, patient A was left lying
on the operating room table, occupying highly expensive space, people, and equip-
ment. The question we would like to answer is, why are hospitals becoming “over
efficient”?

Bu
dg

et
W

orkload Tolerance

Public Safety Issues

Figure 3. Factors impacting hospital operating proce-
dures: Budget, workload tolerance, and public acceptance each
play a role in hospital operation procedures. Budget and workload
tolerance are strong factors, constantly pushing operating proce-
dures (the grey dots) towards unsafe practices. Public acceptance
levels waver over time, and generally only arise when accidents be-
come frequent enough to arouse public interest. In the long run
this may result in the public becoming accustomed to unsafe op-
eration procedures.
Based on the work of [50].

Consider three of the major factors that affect how a hospital operates: budget,
workload tolerance, and public acceptance. The hospital’s operating budget is clearly
a factor in how a hospital operates. The next factor, the staff’s workload tolerance,
is based on the fact that if staff are overworked (or perceive themselves to be
overworked) then they tend to neglect performing tedious duties in order to focus
on what they consider more important. Finally, public opinion is of concern, as
if the hospital has too many accidents then they will be penalized due to public
outcry. For example, leaving a patient on an operating room table long after the
surgery is complete is generally considered bad for the hospital’s image.
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Now consider these three factors as sides of a triangle, and the actual oper-
ating state of the hospital as a point inside of the triangle (see Figure 3). Each
factor is exhibiting a force on the operating point, making it quiver inside of the
triangle. The magnitude of this quivering is determined by variations in the three
forces impacting the operating point. Since the forces produced by the budget
and workload tolerance are fairly steady, the operating point is constantly pushed
towards the public acceptance boundary. Conversely, the force from the public
acceptance is not steady, as it only arises when accidents become frequent enough
to arouse public interest. As a result, the operating point may exist very close
to the public acceptance boundary, and may even occasionally cross the boundary
with no repercussions. By flirting with the margin of public acceptance, the pub-
lic becomes hardened to accepting a greater number of accidents and the public
acceptance boundary is loosened without inciting public outcry.

This simple model demonstrates how the constant pushes of budget and work-
load tolerance are overwhelming the standard operating proceedings, forcing hos-
pitals into states that appear more efficient. It also provides some insight on how
to combat this problem, in the idea that the public acceptance force must be made
less erratic. How to alter this force could be explored further by systems thinking,
or by developing psychosocial models on how the public views hospital practices
(see Chapter 10 for more information on psychosocial modelling).

4.2. A System Dynamics model of yo-yo dieting. Recently researchers
have begun to refer to obesity as the “global epidemic” of the 21st century. Obesity
rates all over the world are on the increase. From a medical view-point obesity and
weight gain are associated with increased risk for a number of diseases (such as
diabetes, sleep apnoea, heart disease, and gallbladder disease). From a social view-
point, being over-weight or obese is still considered socially unacceptable. For both
of these reasons, many individuals turn to dieting in an attempt to lose weight.
Indeed, according to a survey by Goldbeter, about 25% of men and nearly 50%
of women reported trying to lose weight in 1985 [88]. However, dieting is often
accompanied by repeated bouts of weight loss and regain, a phenomenon known
as weight cycling or “yo-yo dieting.” In 2006, Goldbeter developed and studied
a simple system dynamics model that examines the dynamics of human weight
cycling [88]. In this example we provide a short overview of the model examined
in that paper.

The paper begins with the development of a qualitative model to examine
human weight cycling, which studies three variables and how they interact. In par-
ticular the model incorporates an individual’s weight, dietary intake, and personal
resolution to lose weight. We shall label these as follows:

• W = Weight (Goldbeter uses P ),
• I = Dietary Intake (Goldbeter uses Q), and
• R = Personal Resolution to lose weight (Goldbeter uses R).

The qualitative model has these three factors interacting as shown in Figure 4.
In order to quantify the model, Goldbeter begins by normalizing the variables

I and R between 0 and 1. He then suggests that the following system of differential



4. EXAMPLES 153

Weight 

Resolu-on Intake 

(a) 

(f) 

(e) 

(d) 

(c) 

(b) (g) 

Figure 4. Systems thinking model examining three factors
in human weight cycling: arrow (a) states that an increase in
weight causes a decreases the tendency to gain weight; arrow (b)
states that an increase in weight and resolution causes a decrease
in the tendency to gain resolution to lose weight; arrow (c) states
that an increase in weight causes an increase in resolution to lose
weight;arrow (d) states that an increase in resolution causes a de-
crease in the tendency to gain resolution to lose weight; arrow (e)
states that an increase in resolution and intake causes a decrease in
the tendency to increase intake; arrow (f) states that an increase
in intake causes a decrease in the tendency to increase intake; ar-
row (g) states that an increase in intake causes an increase in the
tendency to gain weight
Based on the work of [88].

equations might be used to analytically capture the interactions in the model.
dW

dt
= a1I − a2

W

K1 +W
dI

dt
= b1

1− I
K2 + (1− I)

− b2R
I

K3 + I

dR

dt
= c1W

1−R
K4 + (1−R)

− c2
R

K5 +R

where a1, a2, b1, b2, c1, c2,K1,K2,K3,K4,K5 are unknown constants. (Recall df
dt is

the rate of change of the function f with respect to time.) The first of these equa-
tions captures that the rate of change of an individual’s weight (dWdt ) is positively
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correlated with intake and negatively correlated with weight. The second equa-
tion captures that the rate of change of an individual’s intake (dIdt ) is negatively
correlated with intake and negatively correlated with the product of intake and
resolution. The final equation captures that the rate of change of an individual’s
resolution (dRdt ) is positively correlated with weight, negatively correlated with res-
olution, and negatively correlated with the product of weight and resolution.

Although complicated in appearance, the above system of equations is not diffi-
cult to solve with the aid of a computer (once values for a1, a2, b1, b2, c1, c2,K1,K2,K3,K4,K5

are selected). Indeed, using a standard numeric ODE solver we can sketch the so-
lution to the system of equations over time. In Figure 5 we provide plots of W (t),
I(t), and R(t), for the case of a1 = 0.1, a2 = 0.1, b1 = 1, b2 = 1.5, c1 = 6, c2 =
0.75,K1 = 0.2,K2 = 0.001,K3 = 0.001,K4 = 0.001, and K5 = 0.001, with initial
conditions W (0) = 0.05, I(0) = 0.9, and R(0) = 0.02. (Note, these values were
chosen arbitratily.Also, although W (t) represents weight, it should not be thought
of as kilograms or pounds, but instead as an arbitrary weight measurement).
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Figure 5. Human weight cycling plots suggested by Gold-
beter’s model: These plots show how W (t), I(t), and R(t)
change over time when a1 = 0.1, a2 = 0.1, b1 = 1, b2 = 1.5, c1 =
6, c2 = 0.75,K1 = 0.2,K2 = 0.001,K3 = 0.001,K4 = 0.001, and
K5 = 0.001, with initial conditions W (0) = 0.05, I(0) = 0.9, and
R(0) = 0.02. (Note that althoughW (t) represents weight, it should
not be thought in terms of a specific scale, such as kilograms or
pounds.)
Based on the model of [88].

Examining Figure 5 we see how even a simple model using the tools of system
dynamics can capture some interesting behavior regarding weight cycling. In par-
ticular, notice that the weight (W ) slowly grows to until a threshold is met and
then a sudden decrease occurs. This slow growth in weight is accompanied by a
growth in the resolution to lose weight (R). When the resolution to lose weight hits
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a certain threshold, the individual’s dietary intake (I) suddenly decreases, driving
weight loss.

Goldbeter’s model does contain some flaws, but these may be corrected in time.
Most notably, Goldbeter’s model shows a weight cycling that is not accompanied by
a slow increase in weight as the individual ages. This contradicts the fact that an
individual’s weight tends to increase over their life-span. Nonetheless Goldbeter’s
model provides some insight on how system dynamics can be used to study the
question of human weight cycling.

4.3. A Special Issue in System Dynamics Review. The System Dynam-
ics Society is a nonprofit organization devoted to the development and use of sys-
tems thinking and system dynamics around the world. Its membership spans over
fifty countries and includes researchers, consultants, and practitioners in the corpo-
rate and public sectors. For those who study or apply systems thinking and system
dynamics it is considered one of the most prestigious sources of knowledge on the
subject. The society publishes several newsletters and journals. Foremost amongst
them is the “System Dynamics Review” which publishes peer-reviewed articles on
systems thinking and system dynamics and their applications to societal, technical,
managerial, and environmental problems. In 1999 the System Dynamics Review
published a special issue devoted to the use of system dynamics in healthcare. This
issue provides an excellent sampling of the variety of places where system dynamics
can be applied in modelling in healthcare. In this example we provide a brief review
of the papers that appear in the 1999 issue of System Dynamics Review (volume
15 issue 3).

The first three articles in the special issue examine the question of patient wait
time. In the first paper, González-Bustoa and Garćıa create a system dynamics sim-
ulation to study waitlists in Spain [89]. Their model is significant as it shows how
interactions between two types of patients, elective surgery and emergency surgery
patients, affect each other’s wait time through the joint use of resources. Their
model also incorporates several outside factors, such as surgeon income expecta-
tions (in Spain a fee-for-service system is used), to create an elasticity of demand.
In the second paper, Ackere and Smith examine waitlists in the UK National Health
Service [217]. Unlike González-Bustoa and Garciá’s work, Ackere and Smith focus
only on elective surgery patients. However, their model also examines the interac-
tions between the demand for surgery, resources for surgery, and average wait time
for surgery, as well as incorporates elasticity of demand. In the third paper, Wol-
stenholme examines patient flow for UK National Health Service across all levels
of service (from general practitioner to residential care) [227]. Wolstenholme uses
his model to explore how various system interventions (such as a 20% increase in
hospital bed capacity) will impact patient wait time for each type of service. As
all three of these papers point out, these system dynamics approaches to modelling
wait time allow for the modelling system feedback that is not possible using the
traditional queueing theory method.

In the fourth paper in the special issue, Dangerfield and Roberts use system
dynamics (and optimization) to study the question of incubation periods for AIDS
[58]. Their model is based on earlier work by the same authors [56], and the
paper examines how optimization methods can be used to determine good data
distributions for the model.
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The last three articles in the special issue are written by individuals who are
working in the healthcare industry, instead of academics doing healthcare research.
As such the papers are much more applied in nature. In the fifth article, Roys-
ton, Dost, Townshend and Turner outline how system dynamics has been used by
the Department of Health in England [190]. The paper covers a variety of exam-
ples, such as developing policies for disease screening and emergency care, and in
each case explains how system dynamics provided the necessary modelling tools
to approach the questions of interest. In the sixth paper, Hirsch and Immediato
discuss what they feel are the three major challenges faced by the U.S. healthcare
industry, and how system dynamics can be used to address these challenges [107].
The three challenges they note are: the transition from a fee-for-service to a capi-
tated payment system; the shift from autonomous providers to integrated delivery
of care; and an expanded definition of healthcare to include health improvement
and prevention rather than a narrow focus on treatment of illness. In the final pa-
per, Cavana, Davies, Robson, and Wilson discuss how system dynamics modelling
played a role in the New Zealand Ministry of Health determining the factors that
interact to drive quality of care in the health and disability sector [43]. In this case,
system dynamics provided a communication tool for economists, policy makers, and
clinicians to develop a shared mental model of the complex system that drives the
quality of care.

5. Related Reading

Systems thinking produces qualitative models that are the basis of many other mod-
elling techniques. Psychosocial Models (Chapter 10), such as the Health Belief Model,
apply the ideas behind systems thinking to the setting of human behaviour. Models
developed through systems thinking are often implemented as system dynamics models.
System dynamics models bear strong connections to Markov Models (Chapter 13) and
queueing theory models (Chapter 15). Descriptive statistics (Chapter 5) and regression
analysis (Chapter 6) are often required to tune system dynamics models.

Reference [180] explores new approaches to issues in clinical practice and organiza-
tional leadership using complex adaptive systems. Reference [75] examines how managers’
actions shape the dynamic characteristics of organizations. References [76], [77], and [78]
provide some personal recollections on the development of system dynamics by J.W. For-
rester.

Reference [57] is an introduction to the special issue of the System Dynamics Review
discussed in Example 4.3. References [89], [217], [227], [58], [190], [107] and [43] also
appear in that issue. Reference [56] provides the background to the model results discussed
in reference [58].

Reference [59] reviews some system dynamics models used to address European
healthcare issues and possible future roles of these models. Reference [108] reviews
strengths and difficulties in the application of system dynamics to health care. Reference
[153] looks at the background of system dynamics modelling and its uses in modelling
public health. Reference [112] reviews system dynamics modelling in healthcare, with a
focus on chronic disease prevention. Reference [205] looks at how systems thinking and
modelling can enhance the ability to generate and learn from evidence and use this in
promoting effective changes in public health policy.

Reference [136] describes the components of an emergency and urgent care system
within one health authority and suggests ways in which patient flow and system capacity
could be improved. Reference [140] outlines a systems thinking approach called qualitative
politicized influence diagrams that may be useful in managing the general practice system
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behaviour. Reference [169] argues that it is possible to focus on the structural complexity
of system dynamics models to design a partition strategy that maximizes the test points
between the model and the real world. Reference [226] focuses on the use of system
archetypes in system dynamics modelling. Reference [228] describes a series of system
dynamics challenges and explores the issue of mismatch in organizations between process
and boundary structure. Reference [109] introduces a conceptual framework applying a
system dynamics approach to rural disaster preparedness and planning.

Reference [16] develops a system dynamics model that suggests that there is a need
for a separation of responsibility into medical care of individual patients and preven-
tion/population health, as they require different organizational structures. Reference [34]
uses system dynamics to model emergency and on-demand healthcare in Nottingham,
England. Reference [111] presents results from a system dynamics simulation used to
model a hypothetical community in poor health and suffering from various intertwined af-
flictions. Reference [133] formulates a system dynamics model to explore the factors that
contribute to long wait times for urgent admissions to acute care in hospitals. Reference
[134] discusses a system dynamics model of an accident and emergency department. Ref-
erence [186] reports on the use of simulation modelling for redesigning specimen collection
centers at a medical diagnostic laboratory. Reference [50] examines a dynamic model of
risk and safety and its applications in healthcare.

Reference [155] compares discrete-event simulation and system dynamics as methods

for simulating the dynamics of systems. Reference [209] looks at discrete-event simulation

and system dynamics in the context of supply chain.





CHAPTER 15

Dealing with Lines and Capacity

People nowadays like to be together. Not in the old-fashioned way
of, say, mingling on the piazza of an Italian Renaissance city,
but, instead, huddled together in traffic jams, bus queues, on
escalators and so on. It’s a new kind of togetherness which may
seem totally alien, but it’s the togetherness of modern technology.
James Graham Ballard (1930-)

Affairs are easier of entrance than of exit; and it is but common
prudence to see our way out before we venture in. Aesop (circa
600 BC)

Queueing and Traffic Models

1. Model Overview

The question of providing timely access to healthcare is of great interest to
many policy-makers. From a humanitarian point of view, it is the people’s duty is
to promote human welfare. From the political point of view, the ability to provide
a minimum level of healthcare to whomever is in need is a source of pride for many
countries. However, from the business perspective, there is generally insufficient
budgets to provide everyone with all the healthcare they desire. To help determine
operating budgets, and locate “bottle-necks” in the system, modellers often turn
to queueing theory and traffic models.

Queueing theory and traffic models are mathematical models that describe the
dynamics of objects arriving, waiting in a queue, and then being served by a server.

Mathematically, the two forms of modelling are essentially the same, the key
difference lying in what outcome we are trying to measure. In queueing theory
models, we focus on understanding wait times within the system, while in traffic
models we focus on locating points of congestion within the system. Since wait
times are generally determined by the point of most congestion, and congestion
points are defined as points in the system where an object spends an inordinate
amount of time, it is clear that the two problems are intimately intertwined.

In developing queueing theory or traffic models, we begin with a system and a
collection of objects that seek to enter and exit the system. In healthcare, one of
the best examples of queueing theory is modelling wait lists for surgery and one of
the best examples of applying traffic theory is in modelling bed counts in hospitals.
In the queueing example, wait list modelling, the system one wishes to enter (and
eventually exit) is the operating room and the objects that wish to enter the system
are the patients waiting for surgery. In the traffic example, bed count models, the
system we wish to study is the number of available beds in a hospital, and again
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the objects wishing to enter the system are patients (typically post-surgery). The
similarities between these two examples is obvious. In fact the only real difference
is that in waitlist modelling we are interested in how long an individual patient has
to wait in order to enter the system, while in bed count modelling we are interested
in the number of beds in use at any given moment. That is, in the first we are
interested in the properties of the objects, while in the second we are interested in
the properties of the system. Since the interactions between the objects and the
system are what determines these properties, it is clear that the study of queueing
theory and traffic theory are simply two sides of the same coin.Queueing theory and

traffic theory are two

sides of the same coin.

When developing queueing theory models or traffic models, we should think of
the objects as an abstraction of people waiting in a line. In addition to this line we
have a server, which is an abstraction of a teller that serves the line. In the case of
healthcare, the server might represent a patient leaving the hospital, thus opening
a bed for another patient to move into.

In order to model how objects move through a system, we must determine the
arrival pattern, the service pattern, the number of service channels, the system
capacity, and the queue discipline. More complicated queueing models may also
incorporate multiple services stages and impatience.

The arrival process is the distribution of arrival times of objects entering the
queue, and the service process is the distribution of service times of those objects
in the queue. Most commonly, these rates are stochastic and the Poisson or expo-
nential distribution is used (see Chapter 5 for details on probability distributions).
These are the natural rates for queueing theory as they represent the probability
of a series of consecutive independent events.

The number of service channels is the number of possible ways an object can
exit the queue. If there is more than one server, the queue will probably interact
in various manners. For example, arrival patterns may dictate that a new arrival
will automatically enter the shortest queue.

The system capacity refers to the maximum number of objects allowed in the
system. In some models there may be multiple service stages, that is, when an ob-
ject exits one queue it is automatically placed into a following queue. In these cases,
each service stage will have its own service capacity. If we are studying concepts of
expected waitlist length, it is important to define this accurately. Conversely, if we
are developing models to analyze how the capacity of the system changes, then we
may simply define the maximum system capacity as infinite, so maximum expected
capacities can be determined.

The queue discipline refers to the manner in which customers are selected for
service, and is often considered the most important decision in developing a queue-
ing theory or traffic theory model. There are four common queue disciplines: First
In First Out (FIFO), Last In First Out (LIFO), Service In Random Order (SIRO),
and Priority schema. First in first out commonly arises in line-ups where patients
will feel they are being treated unfairly if it is not used. Last in first out arises in
dealing with stacked objects where the top object must be removed before lower
objects are accessible. This most commonly occurs when dealing with warehousing
issues, including blood banks and organ donor clinics. Service in random order is
applied when the actual queue discipline is not under the control of the modeller.
For example, if one is modelling hospital bed counts, then the server represents
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when a patient leaves the hospital, making a bed available for use. Finally, priority
schema are used in emergency room and surgery queueing.

In more advanced queueing theory models, we often wish to exhibit impatience
in the objects. Impatience represents objects that leave the system prematurely or
refuse to enter the system due to issues with the queue length.

After developing a queueing theory or traffic theory model, we usually desires
information on average queue lengths, maximum queue lengths, average systems
capacity, maximum system capacity, etc. To do this we seek understanding of the
equilibrium state of the queue. Equilibrium is the idea that, if run long enough,
the model may approach a point where the length of the queue and capacity of the
system are independent of the time variable. This is discussed further in Section
3.2. It is worth emphasizing here that not all queues will approach an equilibrium
state.

2. Common Uses

Queueing theory is applicable in any situation where we are trying to model
objects moving through a system. Its two major uses are in studying wait times for
the objects to travel through the system, and to examine fluctuations in the capacity
of the system. Queueing theory regarding wait time is of great help in studying
questions regarding waitlists for surgeries, or admittance rates into various hospital
departments. For example:

• How does the number of surgeons impact how long a patient waits before
receiving surgery?

• How does hospital emergency room admittance change throughout the day?
• How does the hospital determine how many elective procedures to do, while

still maintaining the necessary access for emergencies?
With regard to capacity of the system, queueing theory in healthcare is often used
to study the amount of bed space available in a hospital and to locate potential
bottle necks in the system. Queueing theory may address questions such as:

• How does hospital bed usage vary throughout the day, week, month, or
year?

• How do different hospital department occupancy rates interact?
• Is back-log in one hospital department causing extra stress on another

department?

3. Mathematical Details

Both queueing and traffic models address problems where objects or people
move through a system. Both models begin with a system and a collection of ob-
jects that seek to enter and exit the system. The theory behind these two modelling
techniques is essentially the same, and the major difference lies in what outcome
we want to measure. In general, traffic models are focused on congestion in dynam-
ical systems, whereas queueing models focus on understanding wait times within
the system. Since the interactions between the objects and the system are what
determine these properties, it is clear that the study of queueing theory and traffic
theory are simply two sides of the same coin. Hence, although the remainder of our
discussion shall refer to queueing models, it should be recognized that the theory
below is equally applicable to traffic models.
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3.1. Building a Queueing model. In order to study how the system and
objects interact, we next develop the idea of a server. If the objects are an abstrac-
tion of customers waiting in a line, then a server is a concept that abstracts the
idea of the teller that serves that line. In the case of waitlist modelling, the server
might represent an open operating room slot that can be used to serve one patient
from the waitlist. In the case of bed count modelling the server might represent a
random event that sends a patient home (thus making a hospital bed available for
use).To build a queueing

model one must define:

A: the arrival pattern,

B: the service pattern,

X: the number of service

channels,

Y: the system capacity,

and

Z: the queue discipline.

Once these items are se-

lected, the constructed

queues are often called

an A / B / X / Y / Z

queue.

Now that we have the idea of objects, systems, and servers firmly established,
we can state that the basic ingredients of queueing (and traffic) models are the
arrival pattern, the service pattern, the number of service channels, the system
capacity, and the queue discipline. More complicated queueing models may also
incorporate multiple services stages and impatience. We will discuss each of these
in turn.

Arrival and service processes. The arrival process is the distribution of arrival
times of objects entering the queue. The arrival process may be either deterministic
or stochastic. If it is stochastic, a probability distribution must also be selected
to describe the arrival rate (most commonly this is a Poisson distribution, but
occasionally others are used).

The service process is the distribution of service times for the objects in the
queue. As with the arrival process, this may be either deterministic or stochastic,
and a variety of probability distributions can be considered.

Number of service channels and multiple service stages. The number of service
channels is the number of possible ways an object can enter into service. In a
simple case, this might be viewed as a number of parallel queues, each of which
have independent servers to allow for exiting the queue (see Figure 1).

Server 1

Server 3

Server 2

Figure 1. A multiple service channel queue: A schematic
representation of a queueing theory model with multiple service
channels and parallel queues.

If these independent queues are not interacting then each can be studyied
individually. More realistically, if there is more than one server, there may be
complex interactions within the system. For example, arrival patterns may dictate
that a new arrival will automatically enter the shortest queue, or if impatience is
used (see below) then objects in the queue may move to shorter queues as they
become available. This latter concept is called jockeying.
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In some models it may also be appropriate to have multiple service stages. That
is, when an object exits one queue they are automatically placed into a following
queue. This is captured in the Figure 2

Stage 1 Server(s) Stage 2 Server(s)

Figure 2. A multiple service stage queue: A schematic rep-
resentation of a queueing theory model with multiple service stages.

In multistage queues one may wish to incorporate the idea of blocking. The idea
in blocking is that certain stages of the queues have maximum occupancy levels.
Thus even if an object in an earlier queue has been served, it may be blocked from
entering a later queue.

The most complicated queueing models are multistage queues that take the
form of a complex network with feedback loops. In these queues, an object exiting
one level of the queue may result in a number of different possible outcomes. It may
exit the system, enter a queue, or enter a number of different queues. The process
of deciding which queue to enter next may be based on occupancy, time, or may be
strictly random. (An example of such a queueing model is given in Example 4.2.)

System capacity. The system capacity refers to the maximum number of objects
allowed in the system. In most applications in healthcare, the system capacity
is finite. However, if we are developing models to analyze how the capacity of
the system changes then we may simply define the maximum system capacity as
infinite, so maximum expected capacities can be determined.

Queue discipline. Perhaps the most important aspect to developing a queueing
model is the idea of queue discipline. Queue discipline refers to the manner in which
customers are selected for service. The four most common disciplines are:

(1) First In First Out (FIFO),
(2) Last In First Out (LIFO),
(3) Service In Random Order (SIRO), and
(4) Priority schema.

At first glance the first in first out rule may seem like the only fair and logical rule,
prompting one to ask why the other disciplines would ever be considered. In the
case of healthcare, it should be immediately clear that sometimes priority schema
will take precedence over the classical FIFO rule. In fact, in most queueing theory
textbooks, emergency room and surgery queueing are used as the classic examples
of when priority schema should be developed.

Service in random order queues often arise when the actual queue discipline is
not under the control of the modeller. For example, if one is modelling hospital bed
counts, then the server represents when a patient leaves the hospital, making a bed
available for use. In general this is not under the control of the doctor, but has a
large random aspect involved. To clarify, although a doctor may know several hours
(or even days) before a patient leaves what the departure time will be, the doctor
cannot know the departure time of a random patient as they enter the hospital (i.e.
before diagnosis occurs). Moreover, the doctor can certainly not say to a healthy
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patient, “I’m sorry you can’t leave yet. You see, John over there isn’t healthy yet,
and he got here before you.”

The applications of the last in first out rule to healthcare are more obscure.
The LIFO rule, often called the stack rule, most commonly arises in computer
programming and warehouse management, where it is easier to take off the top of
the pile than the bottom. Surprisingly, LIFO is often used in blood banks, despite
the fact that storing blood for too long can cause spoilage. (This is likely because
it is quite rare for blood banks to remain stocked for long.)

Impatience. In more advanced queueing models, it may be important for the
objects to exhibit impatience. This is of particular interest when the objects be-
ing considered are people (as is often the case in healthcare). Some examples of
impatience include:

• Balking: The customer may decide not to enter the queue upon arrival,
perhaps because it is too long.

• Jockeying: If there are multiple queues in parallel the customers may
switch between them.

• Reneging: The customer may decide to leave the queue after waiting a
certain time in it.

• Drop-offs: Customers may be dropped from the queue for reasons outside
of their control.

Mathematically, the concepts of reneging and drop-offs can be treated as one,
but it is often easier to understand the model if these are treated separately.

3.2. Analyzing a Queueing Model. Having built a queueing model, we
now wish to extract from it information such as average queue lengths, maximum
queue lengths, average systems capacity, maximum system capacity, etc. If the
model is based on deterministic arrival and service rates, then this is typically a
fairly simple procedure that can be done very effectively via computer simulation.
If the arrival or service rates of the model are stochastic, as is the case with most
applications in healthcare, the process becomes more complicated.

In either case, one of the most important concepts in queueing theory is that
of equilibrium. Equilibrium is the idea that, if run long enough, the model may
approach a point where the length of the queue and capacity of the system are
independent of the time variable. It is worth making it very clear that not all
queues will approach an equilibrium state (see Figure 3).Note that not all queues

will approach an equilib-

rium state.

In the case of deterministic models, reaching an equilibrium state often means
that the length of the queue and the capacity of the system become constant from
one time period to the next. However, it may also mean that the length of the
queue and capacity of the system alternate between two states, or cycle through a
known pattern of states.

In the case of stochastic queueing models, the concept of equilibrium becomes
much more complicated. Instead of approaching a constant or cyclic state, the
length of the queue and capacity of the system may (if one is lucky) approach a time-
independent probability distribution. This means that at any given time period,
the length of the queue and capacity of the system will be unknown, but follow a
known probability distribution. (For information on probability distributions see
Chapter 5.) Since the term equilibrium is no longer sufficient, this state is usually
referred to as a statistical equilibrium (see Figure 3).To say a queue is

approaching statistical

equilibrium does not

mean the queue length

and system capacity are

approaching a constant

value, rather it means

that in the long-time

limit, the queue lengths

and system capacities

will be samplings of

a time-independent

probability distribution.
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Figure 3. Queueing models reaching various equilibrium
states: The above graphs might represent model output for queue
length over time. The first graph (left) quickly reaches an equilib-
rium state of 25. The second graph (right) does not reach a fixed
equilibrium state, but does approach a statistical equilibrium with
a mean of about 25 and a standard deviation of about 0.1.

The mathematics required to analyze if a queue has an equilibrium state can
be very simple, or very complicated, depending on the model developed. For simple
queues it is often possible to develop a closed form analytic solution that describes
the equilibrium state of the queue (two examples of this are given in Example 4.1).
In more complicated cases, the queue may be solved via simulation methods (see
Chapter 9). The trouble with “solving” queueing models via simulation methods
is that it is often difficult to determine exactly when a state of equilibrium has
been achieved, especially if the queue is complicated and stochastic in nature. This
is often worked around by running the simulation for a “warm-up” period before
trusting the results of the simulation.

4. Examples

4.1. Washing dishes in the hospital cafeteria. In this example we de-
velop several artificial queueing models that simulate dish washing in a small town
hospital cafeteria1. If we replace the dirty

dishes in this example

with occupied hospital

beds, and the clean

dishes with available

hospital beds, then

we can easily use this

framework to develop a

queueing theory model

for hospital bed count.

The objects in our queue will be dirty dishes (plates), and the system will be
the storage racks used to collect the dishes. Dishes arrive into the queue after a
hospital employee uses them to eat a meal. Dishes exit the queue after the hospital’s
dish washer cleans them and places them into the clean dish racks. We will assume
that the cafeteria workers follow a LIFO queueing discipline. This means that dirty
dishes are added to the top of a “pile” of dirty dishes, and the cafeteria workers
clean dishes on the top of the pile first. In our model we will assume that there is
only one server channel. This can be viewed as either lumping all the dish washers
into one unit or as a single employee whose job is to clean dishes.

Our first and most basic model will be a deterministic queue. After some data
collection we determine that the hospital cafeteria sells 12,000 meals each day, and

1By artificial, we do not mean that the model is unrealistic, only that the model is calibrated
with artificial data.
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therefore produces 12,000 dirty dishes per day. The dish washers are capable to
cleaning 500 dishes per hour. We therefore set our arrival rate to A = 12, 000/day
and our service rate as B = 500/hour. Our queue may now be modelled as follows.
Let t represent time in hours, and N(t) represent the number of dirty dishes in the
dirty dish racks at time t. Then

N(t) = max{0, A ∗
⌊
t
24

⌋
−B ∗ btc+N0}

= max{0, 12000 ∗
⌊
t
24

⌋
− 500 ∗ btc+N0},

where N0 represents the number of dirty dishes at time t = 0, and the brackets
b·c represent the flooring function (i.e. round down to the nearest integer). Notice
we take the maximum of the computed number and zero, this forces the dirty dish
count to always be nonnegative.

Examining this model it is easy to compute the equilibrium of the system.
Since each day we are adding 12,000 dishes to the queue, and removing (up to)
500 ∗ 24 = 12, 000 dishes from the queue, it is clear that the queue will balance
itself out every day. Thus at the beginning of each day, the queue will jump to
N0 +12, 000−500 every twenty four hours, and then decease by 500 each hour until
it reaching N0. Thus the equilibrium for this queue is a pattern that cycles every
24 hours.

Of course this model is naive in several manners. It is unlikely that all the dirty
dishes arrive at exactly midnight every night. Second, it is unlikely that the dish
washers process exactly 500 dishes, every hour, on the hour. Basically, we have
completely ignored the stochastic nature of the problem. To correct this, consider
the following more advanced queueing model.

We assume that the arrival rate and service rate are stochastic. In partic-
ular we will set the arrival pattern as a Poisson distribution with a mean of
12, 000 dishes/day and the service pattern as a Poisson distribution with a mean
of 500 dishes/hour. (Recall, the Poisson distribution is the natural choice for mod-
elling arrival rates. See Chapter 5, Subsection 3.3, for more information on the
Poisson distribution.) Our new queue can be visualized as shown in Figure 4.

Poisson: µen = 12000/24 Poisson: µex = 500 

Arrival (meal consumed) Queue (dirty dishes) Service (dish washer)

Figure 4. Dish washing queue: A schematic model of the dish
washing queue developed in example 4.1. (The abbreviations en
and ex refer to enter and exit respectively.)

We now seek the statistical equilibrium for this queue. We begin by defining
Prn(t) as the probability that the queue contains n elements (dirty dishes) at time
t. The change in probability from t to t+ 1 can now be computed as follows:

(29) Prn(t+ 1)−Prn(t) = µen Prn−1(t) + µex Prn+1(t)− µen Prn(t)− µex Prn(t).
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Equation (29) can be interpreted as follows:

µen Prn−1(t) : plus the chance a queue of length n− 1 increases to length n,
µex Prn+1(t) : plus the chance a queue of length n+ 1 decreases to length n,
−µen Prn(t) : minus the chance a queue of length n increases to length n+ 1,
−µex Prn(t) : minus the chance a queue of length n decreases to length n− 1,

sums to

Pr
n

(t+ 1)− Pr
n

(t) : the change in probability from time t to time t+ 1.

The first two terms of the right hand side of equation ( (29)) are added, since
they increase the probability of a queue of length n, while the final two terms are
subtracted since they decrease the probability of a queue of length n. For the
special case of n = 0 equation (29) is replaced by

(30) Pr0(t+ 1)− Pr0(t) = µex Pr1(t)− µen Pr0(t).

Next we assume that for some large value of t the queue has reached statistical
equilibrium, implying Prn(t) = Prn(t + 1) = Prn. Thus, equations (29) and (30)
reduce to

Pr1 = µen
µex

Pr0
Prn+1 = µen+µex

µex
Prn−µenµex

Prn−1

This system is solved by the iterative formula

(31) Prn =
(
µen
µex

)n
Pr0 .

To develop equation

(31) correctly, we

should actually begin by

developing a series of

differential equations,

and then setting the

derivatives to 0. Equa-

tions (29) and (30)

provide a discretized

interpretation of this

mathematical technique.

Since the queue must have some length (0, 1, . . .), we note that the sum of all
the probabilities Prn must be 1:

1 =
∞∑
n=0

Prn =
∞∑
n=0

(
µen
µex

)n
Pr0 = Pr0

∞∑
n=0

(
µen
µex

)n
.

This sum converges if and only if µen
µex

< 1, therefore a statistical equilibrium can
be achieved if and only if µen

µex
< 1. If µen

µex
is less than 1, then the sum converges to

∞∑
n=0

(
µen
µex

)n
=

1
1− µen

µex

,

which tells us Pr0 = 1 − µen
µex

, and provides (with equation (31)) the statistical
equilibrium for the model.

From here the modeller may be satisfied, or may wish to develop this model
further. Some examples might include adding a maximum length to the queue
(representing the total number of dishes the cafeteria owns), using multiple time-
dependent arrival and departure rates that represent different times of the day
(week, month, or year), creating multiple server queues where each dish washer
works at a different rate, or creating multiple staged queues that represent moving
the dirty dishes from the table to the dish rack and then cleaning them. Once
the modeller is satisfied with the quality of the model, the model can be used to
explore certain “interventions.” For example, the impact of a cafeteria dish washer
strike could be examined by running the queue to equilibrium then dropping the
departure rate to 0, while the effect of hiring more dish washers could be examined
by increasing the departure rate.
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4.2. Interrelating Hospital Capacity across Departments. Both from a
humanitarian and a business perspective, it is of interest to reduce inefficiencies in
the healthcare system. One approach is to examine the problem of bed allocation in
hospitals. In this example we summarize work by Cochran and Bharti on designing
and implementing a queueing theory model for hospital bed allocation [45].

Cochran and Bharti’s goal was to produce an accurate queueing theory network
model to describe patient flow through a hospital. Their modelling process began
by interviewing staff, and charting the patient flow in a 400 bed hospital in the
United States of America. Using this information they developed a complicated
network that described possible patient flows in the hospital. A simplified version
of this network can be found in Figure 5. The model was tuned using statistics

Surgical 
Cases 

Direct 
Admissions 

Emergency 

Medicine Triage 

Registration 

Surgery 

Pre-op 
OR 

Emergency  
Department Adult Pediatrics 

Post 
Anesthesia  
Care Centre 

Discharged Admitted  
Surgery 

Leave 
without  

treatment 

Treated and  
Discharged 

Transferred Discharged 

Adult Pediatrics 

Critical Care Telemetry Med/Surg 

Telemetry Critical Care Med/Surg 

Others GYN 

GYN Others 

Figure 5. Hospital patient flow queue: A simplified version
of Cochran and Bharti’s queueing theory model describing patient
flow through a hospital.
Based on the work of [45].

obtained from economic data stored by the hospital. In particular, they required
admittance rates, probability of being an elective admittance versus an emergency
room admittance, average length of stay data for each unit in their model, and
(when applicable) the relative probabilities of where a patient will move after being
serviced at a given hospital unit.

The next step in Cochran and Bharti’s analysis was to simplify the model to
the point where the model could be solved analytically. In particular this meant
making the following assumptions:

• no difference was made between exiting the hospital due to recovery and
exiting the hospital due to death,
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• each empty bed is available to all patients arriving in the unit (i.e. all
beds are always appropriately staffed and equipped for any patient),

• there is only one type of patient and no priority structure,
• the length of stay for each unit is exponentially distributed,
• the length of stay for each unit is independent of the state of the system,

and
• the relative probabilities of where a patient will move after being serviced

at a given unit are independent of the state of the system.
Although on some level each of these assumptions is wrong, together they mean
that the resulting model was what is referred to as a Jackson Network Queue. The
importance of this is that, regardless of how complicated the model is, any Jackson
Network Queue can be analytically solved to find an exact closed form stochas-
tic equilibrium. To check that the above assumptions were not too restricting,
the closed form solution for the queue was compared to actual historical hospital
occupancy rates, and a very close match was found. Whenever an analyti-

cal closed form solution

can be created, it should

be used to check that

the simulation model is

working properly.

The next step in Cochran and Bharti’s analysis was to develop a discrete event
simulation program for the model. This was first done using the restricting assump-
tions above, and the simulation was compared to the closed form solution. (This
is an excellent troubleshooting step, and should be performed whenever possible.)
Next, the restricting assumptions were relaxed one at a time until only the final
two remained (the relative probabilities and length of stay rates are independent of
the state of the system). In addition, the discrete event simulation model included
blocking of patients caused by the finite bed capacities of each unit, two classes of
patients (emergency and regular patients) with emergency patients given priority
for beds, and probability distributions that varied according to the time of day and
the day of the week. It was again checked, and confirmed, that the final simulation
produced results very similar to historical hospital data.

Having developed the simulation, Cochran and Bharti proceeded to develop
optimization strategies for improving hospital efficiency. First they noted that there
were large discrepancies in the bed loads between different departments. Using both
the analytic and simulation models the optimal bed allocation to balance loads was
calculated, and suggested reallocations were provided to the hospital. Using the
simulation model, moments of unbalance in the temporal loads were determined,
and strategies to rebalance the loads were developed. For example, they showed how
blocking could be decreased if elective procedures were conducted during off-peak
times.

4.3. Hip and Knee Replacement Surgical Waitlist in British Columbia.
Over the past 40 years, knee and hip replacement surgery has advanced to the point
where it is the standard approach (in Canada) for treating chronic joint pain. The
improvement in techniques, along with the aging population of Canada, has led
to an increased demand for these procedures and, consequently, increases waitlist
length. To understand the attributes that impact waitlist length, and to explore
potential interventions, a research team at the IRMACS center developed a working
queueing theory model for hip and knee replacement surgical waitlists [184],[218].
In this example we outline the model, and provide some of the analytical evaluation
of the model.

The basic model consists of individuals entering the queue on a continuous
basis. Individuals can exit the queue either through surgery or by dropping out.
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The surgery server is assumed to be the classic FIFO server (first in first out), while
the drop-out server was SIRO (service in random order). This means that to have
surgery, an individual must wait until they are at the front of the queue, but an
individual may drop off the queue at any time. The arrival rate and surgery rate
are both assumed to be continuous with rates r and s respectively (in this manner
the queue can be modelled via differential equations). The drop-off rate is also
continuous, but with a rate that varies in proportion to the current length of the
queue: kN (k is the drop-out proportion, and N is the current length of the queue).

In order to work with the queue, a discrete event simulation was developed
and analytical methods were employed. Using the discrete event simulation, the
researchers were able to “tune” the model until the parameters r, s, and k produced
results similar to those found in the available data. The available data consisted
of two data sources: the Discharge Abstract Database (DAD) and the Surgical
Wait List (SWL) registry. The DAD is a validated data set that includes hospital,
surgeon, and procedure, but no information on wait times. Conversely, the SWL
registry includes entry and exit dates for surgical waitlists, but is unvalidated data.
Using common patient identifiers (surgeon plus operation date for example), these
two lists were combined and the linked cases were used for data flow analysis in
preparation for the simulation.

The queue length N can be mathematically approximated2 by the differential
equation

dN

dt
= r − s− kN.

This equation states that the change in the size of the queue is proportional to the
people joining the queue, minus the number of people exiting via surgery and the
number of drop-outs. Clearly, if the rate of joining (r) is greater than the rate of
surgery (s), then the queue will grow. However, the rate of drop-off (kN) grows
with N , and will eventually approach r− s. Thus, eventually the rate of growth of
the queue becomes negligible. (This was supported in the output of simulations.)

This system can be solved analytically, obtaining formulas for the queue size,
waits and total dropouts, and giving a valuable comparison. In particular, the
differential equation for the queue size has the solution

(32) N(t) =
r − s
k
−
(
r − s
k
−N0

)
e−kt,

where N0 is the number of individuals in the queue at time 0.
As we are further interested in the wait time for a given individual, for a fixed

individual P we define the wait time as W = tout − tin, where tin is the time the
patient enters the waitlist and tout is the time the patient enters surgery. We also
define the size of the waitlist in front of P at time t as Q(t). The function Q(t)
satisfies the differential equation

dQ

dt
= −s− kQ,

when t is restricted to the time interval tin ≤ t ≤ tout. (The change in the size of
the queue in front of P is proportional to the number of people exiting via surgery

2This is called the fluid approximation for large queues
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and the number of drop-outs.) This equation is solved by

Q(t) = − s
k

+
( s
k

+Qtout

)
e−k(t−tout),

where Qtout is the number of people in front of P at time tout. As Qtout must be 0
this reduces to

Q(t) = − s
k

+
s

k
e−k(t−tout).

Finally, we link N(t) and Q(t) by noting that N(tin) = Q(tin). Thus

N(tin) = − s
k + s

ke
−k(tin−tout)

N(tin) = − s
k + s

ke
kW

ekW = k
s

(
N(tin) + s

k

)
kW = ln

(
k
sN(tin) + 1

)
W =

ln( ksN(tin)+1)
k .

Thus we have a closed form solution to the expected total wait time for P , provided
we know the length of the waitlist at the time P enters the queue.

5. Related Reading

Queueing theory models have close connections to Markov Models (Chapter 13) and
system dynamics models (Chapter 14). Queueing theory models also rely heavily on
probability distributions (Chapter 5).

Examples of queueing theory and traffic theory applied to healthcare are abundant.
A few examples include references [17], [48], [28], [89], [133], [71], [91], [110], [159], [97]
and [92]. Reference [17] investigates queue networks with various classes of customers.
Reference [48] derives the queue size distribution for infinite server queues with Poisson
arrivals and exponential service times. Reference [28] uses a discrete event simulation
model of an emergency room to determine issues contributing to wait times in the deliv-
ery of primary care in emergency rooms. Reference [89] constructs a simulation model
to improve understanding of the behaviour of waitlists over time and the effect of policy
on wait times. Reference [133] formulates a system dynamics queueing theory model to
explore the factors that contribute to long wait times for urgent admissions to acute care
in hospitals. Reference [71] describes a simulation model designed to provide decision
support for patient scheduling for elective surgery in the public hospital system. Refer-
ence [91] uses a queueing model to investigate the effect of changing several conditions
on bed allocation and bed occupancy rates in hospitals. Reference [110] discusses the
circumstances in which queueing theory predicts it is optimal to have waiting time for
public health treatment. Reference [159] explores the application of queueing theory and
principles of industrial engineering, adapted to clinical settings, in substantially reducing
delay in current health care systems. Reference [97] provides an overview of patient flow
and the application of queueing theory to model this flow. Reference [92] describes a novel
method of incorporating impatience into queueing theory for healthcare.

Literature of waitlists in healthcare includes references [141], [54], [158], [98], [206],
[99], [139], [192], [39], [215], [166], [138] and [191]. Reference [141] examines a case
in economics where queues of suppliers and customers emerge in a nonstochastic setting
when price is below or above the market-clearing level. Reference [54] discusses the
main arguments advanced to explain the waiting lists in Britain’s National Health Service
and presents a framework that focuses on “demand” and “supplier” induced demand
considerations. Reference [158] presents findings from a simple simulation model about
waiting lists for hospital inpatient treatment. Reference [98] reviews the implications
and results of implementing maximum wait time guarantees in Sweden. Reference [206]
discusses how supply has been addressed in Victoria by changing the financial incentives
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in hospitals and the consequent reductions in waiting lists. Reference [24] compares the
differences in prices and wait times of 7 health services between US and Canadian hospitals.
Reference [99] focuses on physicians as implementers of health policy reforms. Reference
[139] investigates misconceptions about waiting lists and outlines a number of initiatives
that could contribute to more durable solutions to the waiting list problem in Canada.
Reference [192] looks at the decline in Canadians’ approval of their healthcare system,
the reasons behind these declines and why these perceptions may hamper progress in
the healthcare area. Reference [39] describes the relevance of the functional relationship
between point-count measures assessing severity of patients’ conditions and the extent
of benefit expected from waitlist services for the development and validation of priority
criteria. Reference [215] investigates the level of capacity required to operate a booked
admissions policy for elective inpatient services where patients are given a date for hospital
admission months in advance rather than being out on a waiting list and being informed
of their admission date at short notice. Reference [166] provides an overview of the
Western Canada Waitlist Project. Reference [138] explores some of the logical and ethical
implications of the work done for the Western Canada Waitlist project. Reference [191]
explores the issues and methods related to developing acceptable waiting times for selected
medical services in Canada.

Reference [4] contains the details omitted from Example 4.3.

Reference [45] uses a queueing theory network model to minimize bed blocking in

hospitals, and is discussed in Example 4.2.



CHAPTER 16

Finding the “Best” Intervention

The man who is a pessimist before 48 knows too much; if he is an
optimist after it, he knows too little. Mark Twain (1835-1910)

I am an optimist. It does not seem too much use being anything
else. Winston Churchill (1874-1965)

Optimization

1. Model Overview

At the beginning of this book (Chapter 1, page 4) we defined a model to be
a simplified representation of a real world situation used to help answer a specific
question. This chapter is not about creating models. That is, the tools discussed
in this chapter do not create simplified representations of real world situations.
Instead the tools discussed in this chapter are designed to be used on models,
sometimes in order to determine a theoretically optimal intervention, other times
simply to tune the model to best fit real world data. In either case, what we seek
to do is determine what set of input parameters for the model create the “best”
model output. In mathematics (and in

this book), the term op-

timization refers to the

study of how to find the

minimum or maximum

of a function over an al-

lowed set.

In order to answer this question it is clear that we must begin by defining
what is meant by the word “best”. Mathematically, this means we need to create
a quantitative objective function. This is a function that takes the model output
and turns it into a single number. We then seek to determine what selection of
input parameters for the model cause the quantitative object function to produce
the best number. This might represent the smallest error, or the greatest benefit.

For example, suppose we have created a model that examines how the number of
surgeries impacts the wait time for knee and hip surgery (as in Example 4.3), and we
want to “optimize” the number of surgeries performed each month in order to keep
patient wait times at an “acceptable level”. At this point, we must carefully address
the question of what is meant by the statements “optimal number of surgeries” and
“acceptable level.” The second statement, “acceptable level”, could be addressed
by stating that x percent of patients should receive surgery within y months. The
“optimal number of surgeries” might then be defined as the number of surgeries
that result in the minimal total cost to achieve this level. With strong definitions
in place, we can turn to the tools optimization to answer the question.

As in the above example, in many circumstances the objective function takes
the form of minimizing the total cost of the intervention. However, in some cases
more complex objective functions may be required. For example, we might seek
to maximize the impact of a medicine, or minimize the number of individuals that
will be infected by a given disease.

173
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Another very common use of optimization in modelling is in the idea of pa-
rameter tuning. A crucial step in the implementation of any mathematical model
is to make the model’s output align with observed real world data. The most com-
mon manner of doing this is to tune a set of model parameters in a manner that
minimizes the “error” between the model output and observed real world data.
In simple models the tuning of parameters can often be accomplished by well es-
tablished methods (such as least-squares or maximum likelihood, see Chapter 6),
while more complicated models may rely more heavily on advanced optimization
methods.

In either case, the basic method is the same. We begin by defining a qualitative
objective function that measures the error between the model output and observed
data. For example, the classic mean square error,

error =
∑

(model output− observed data)2

is used in the least squares method for linear regression (Chapter 6).
After creating an objective function, the modeller must next optimize the func-

tion. We call this step solving the optimization problem. This can be done in many
different manners. If we are lucky, the problem is easy enough to solve exactly,
possibly by hand. However, it is much more likely that the problem is either too
large or too complicated for this to be the case. In such circumstances, we can
often turn to computers and optimization algorithms for assistance. Optimization
algorithms are collections of formal steps that are guaranteed to provide better and
better estimates to the solution of an optimization problem. Since, in most real
world circumstances it is sufficient to find the solution within one or two percent,
optimization algorithms provide a large toolbox of methods for solving optimization
problems.

Fortunately, optimization and the development of optimization algorithms is
a fairly well established field of mathematics, so many optimization algorithms
have already be designed and implemented as computer codes. Unfortunately,
the diversity of the field, and the diversity in the types of problems that require
optimization, means that most codes are designed with a specific problem style in
mind. In the Mathematical Details section of this chapter, we try to provide some
insight on how to examine an optimization problem with the goal of selecting a
good optimization algorithm to solve the problem.

2. Common Uses

Strictly speaking, optimization is not a modelling technique but a method of
examining models to determine what intervention will have the “best” effect. Most
commonly, optimization problems consider techniques to minimize cost under some
given constraint. For example

• What combinations of drugs minimize the cost of pharmaceuticals while
producing the desired effect?

• Where should we build a new hospital to minimize cost given that everybody
should be able to reach it in less than 30 minutes?

• How should we schedule nurses to minimize cost given that certain staffing
and hospital service constraints must be met?

are all examples of optimization problems. Each of these problems can be posed in
the dual form, which examines how to maximize the impact given a fixed budget:
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• What combination of drugs provides the maximal impact given we can only
afford a fixed budget?

• Given a fixed budget, where is the best place to build a new hospital in
order to maximize public accessibility?

• How to we maximize our patient service in terms of nursing coverage given
a fixed budget?

Many other problems can be posed as optimization problems. In most cases, the
first step to solving such a problem is to develop a model of the problem upon
which optimization techniques can be applied. Because of this, it is important to
know what types of problems are easily solved by today’s optimization tools, and
what types of problems are intractable using today’s optimization tools.

3. Mathematical Details

Optimization is a method of examining models to determine what intervention
will have the “best” effect. In order to answer this question it is clear that we
must begin by defining what is meant by the word “best”. To answer this, we must
define the term best in regards to a quantitative objective function. A quantitative
objective function is a function with the property that for every input the function
must return a real number or the value +∞, and must take on a non-infinite value
in at least one location. Mathematically, functions with these properties are called
proper1.

Let f(x) be a proper function from IRn to IR and S be a non-empty set in IRn.
Optimization is the field of study interested in solving the problem

min{f(x) : x ∈ S},

or (in English) minimize the objective function f(x) such that x lies in the constraint
set S. By minimize we mean find a point x̄ such that f(x̄) ≤ f(x) for all other x
in S. Before we discuss the role of the constraint set, let us note that should we be
interested in maximizing a function,

max{f(x) : x ∈ S},

then we can always create a minimization problem by applying the following theo-
rem:

Theorem: Let f(x) be a proper function from IRn to IR and S
be a non-empty set in IRn. Then, any point which maximizes
f(x) over S also minimizes −f(x) over S, and vice versa. Con-
sequently,

max{f(x) : x ∈ S} = −min{−f(x) : x ∈ S}.

1Here, and henceforth, we consider optimization in terms of minimizing the quantitative

objective function. If we are interested in maximizing the function, then most of these definitions

are “turned upside-down”. For example, if we are studying maximization then a proper function
is one such that for every input the function must return a real number or the value −∞, and

must take on a non-infinite value in at least one location.
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The addition of the constraint set can make similar optimization problems
behave very differently. To see this consider the following three problems:

min{x2 − x : x ∈ IR},(33)
min{x2 − x : x = −2,−1, 0, 1, or 2}, and(34)

min{x2 − x : x =
m

3n
for some m,n = 1, 2, ...}.(35)

(In problems (33), (34), and (35), we have the constraint sets S = IR, S =
{−2,−1, 0, 1, 2}, and S = {x : x = m

3n for some m,n = 1, 2, . . .} respectively.)
In each of the above problems the objective function is the same, however the
problems are very different. It is not difficult to show that the problem (33) is
solved at x = 0.5 and gives an objective value of −0.25. Problem (34) is easier,
but comes with a twist. Since there are only 5 options for x it is a simple matter
to check each and determine the minimum value is 0. However, this value occurs
at both x = 0 and x = 1, so the problem has multiple solution points. Finally, in
problem (35) we have the strangest situation. By selecting m and n carefully we
can construct points with objective function values arbitrarily close to −0.25, but
we can never achieve this value as it only occurs when x = 0.5 (which can never
be created as a fraction with the denominator being odd). Thus this optimization
problem is technically unsolvable.

To get around the issues arising in problem (35), mathematicians usually search
for the infimum (alternately supremum) of a problem instead of the minimum (al-
ternately maximum). The infimum of f over a set S, inf{f(x) : x ∈ S}, is the
highest lower bound for the problem. That is, a minimum value that does not
necessarily have to be obtained.

In order to solve an optimization problem it is important to classify what
type of problem it is. To begin, we differentiate between two important classes of
optimization problems: continuous and discrete.

In many optimization problems the constraint takes the form of intervals in
IR or simple shapes in IRn. The important point of this is that the constraint
set does not consist of a list of isolated points, but instead consists of a type of
continuum of points. Such problems are referred to as continuous optimization
problems. Problem (33) is a continuous optimization problem. Conversely, in some
optimization problems the constraint set takes the form of a list of possible solutions.
This list may be finite, or infinite in length, but in either case elements are distinct in
nature. Such problems are referred to as discrete optimization problems. Problems
(34) and (35) are discrete optimization problems.

We now give descriptions of some of the more commonly arising types of op-
timization problems. In the simplest cases we actually describe how to solve the
problem, but in most cases we only discuss how to recognize the type of prob-
lem, and then reference appropriate algorithms or computer software for the given
problem.

3.1. Analytically Solvable Problems.
3.1.1. Continuous Problems: In the simplest case, where f(x) is differentiable

and S is IR (the set of all real numbers) or a closed interval in IR, we can often
resort to first year calculus. To solve these problems, first recall that the derivative
of f(x) at the point x represents the slope of the function at x. If the function is at
a minimum (or maximum) then the slope at that point must be zero. Therefore,
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to solve the problem we can simply differentiate f(x) to get d
dxf(x), find all the

points where d
dxf(x) = 0, and compare the function values at these points. If S is

a closed interval in IR then we must also remember to check the endpoints of the
interval as possible locations for the minimum.

To illustrate, let us apply this to min{x2−x : 1 ≤ x ≤ 7}. First f(x) = x2−x,
so d

dxf(x) = 2x − 1. Since 2x − 1 = 0 only when x = 0.5, we must check 0.5 as a
possible location of the minimum. Since x must be in the closed interval 1 ≤ x ≤ 7
we must also check the endpoints 1 and 7. Checking these we find

f(0.5) = −0.25, f(1) = 0, and f(7) = 42.

Although the minimum value in this list is −0.25, the point x = 0.5 is not feasible
for the problem (as x must be greater or equal to 1). Therefore the minimum
objective value is 0 and occurs at x = 1.

The mathematics described above can also be performed in multiple dimen-
sions. Basically, points are replaced with vectors and derivatives are replaced with
gradients. However, in higher dimensions we must be more careful with the edges
of the constraint set, as they will not be just two points.

3.1.2. Discrete Problems: The other case where analytical methods may some-
times be applied is when the constraint set is a finite list of elements. If the list is
small enough then we can simply perform an exhaustive search to determine the
optimal answer. With the aid of a computer the exhaustive search can generally be
automated, so even large finite lists can be approached in this manner. In practice,
however, discrete optimization problems have so many elements in the finite list
that, even with the aid of a computer, an exhaustive search would take years to
complete.

3.2. Numerical Methods for Continuous Optimization Problems. Now
suppose that although the optimization problem is continuous in nature, it is com-
plicated enough that solving the problem analytically is not an option. This can
result from working with a high number of dimensions, the objective function in-
volving integrals, the constraint set taking a complicated form, or the objective
function being non-differentiable (among many other possible reasons). In this
case we must turn to numerical solving methods. Which method to select depends
on the form of the problem.

3.2.1. Linear Problems. One of the simplest forms for a continuous optimiza-
tion problem is that of a linear program2. A linear program is an optimization
problem of the form

(36) min{c>x : Ax = b}
or

(37) max{b>y : A>y ≤ c}
where b and c are column vectors and A is a matrix (> denotes the transposition
operation). For example,

min

5x1 + x3 :
[

2 1 −1
0 3 2

] x1

x2

x3

 =

 0
1
1

 ,

2The word program instead of problem is historical dating back to world war II. The phrase
Linear Problem is perfectly acceptable, but not often used by mathematicians.



178 16. FINDING THE “BEST” INTERVENTION

is a linear program with

x =

 x1

x2

x3

 , A =
[

2 1 −1
0 3 2

]
, b =

 0
1
1

 , and c =

 5
0
1

 .
Mathematically, problem (36) is called the primal problem and problem (37) is
called the dual problem.

The interesting thing about linear programs is that if A, b, and c are fixed and
the problem (36) has a solution, then its solution has the same objective function
values as problem (37). In fact, if x and y can be found where problem (36) and
problem (37) take on the same value, then this is necessarily the solution.

This amazing fact is called duality theory and has resulted in some very powerful
algorithms for solving linear programs. Using today’s computers, linear programs
with millions of variables can be solved in just hours.

3.2.2. Quadratic and Semi-definite Problems. The theory and abilities of lin-
ear programming can be extended to two broader classes of problems referred to as
quadratic programs and semi-definite programs3. In quadratic programs the linear
problem (36) is generalized by the addition of a quadratic term in the objective
function. In semi-definite programming, the linear problem (36) is generalized in
a manner that replaces the optimization of the vector x with optimization over a
matrix X contained in the “semi-definite cone”. Understanding the full meaning of
this sentence is generally a graduate level course in mathematics, and well beyond
the scope of this book. The important part is that many of the powerful optimiza-
tion algorithms from linear programming have been generalized to these settings.
In particular, semi-definite programming allows for easy solving of problems that
involve quadratic objective functions or quadratic constraints (along with many
other problems).

3.2.3. Differentiable Convex Problems. Let us return now to the more general
structure of an optimization problem

min{f(x) : x ∈ S}.

We shall define the set S to be convex if any two points contained in S can be
joined by a straight line that never leaves S. That is, if x1 ∈ S and x2 ∈ S then
λx1 + (1− λ)x2 ∈ S for all 0 ≤ λ ≤ 1. We shall call the objective function convex
if by drawing the function and shading in the area above the function we creates
a convex set. That is, f is convex if {(x, α) : α ≥ f(x)} is a convex set. (The set
{(x, α) : α ≥ f(x)} is called the epi-graph of f .)

Suppose the function f and the set S are both convex. Further suppose that f
is differentiable and the gradient of f is readily available. Under these conditions
we can solve the optimization problem min{f(x) : x ∈ S} using a wide variety of
well-studied methods. Some generalized examples follow:

Steepest Descent: At any point x, the gradient of f , ∇f(x), represents
the direction that is directly “up-hill” from x. As such, to find the mini-
mum we can repeatedly take steps in the direction −∇f(x). This is called
steepest descent.

3Like in linear programming, the word program is tradition. The phrase semi-definite problem
is perfectly acceptable, but not often used by mathematicians.
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Newton’s Method: If the point x is a minimum for f then necessarily
∇f(x) = 0. If we can find a second derivative of f (or even just approxi-
mate a second derivative of f), then we can apply Newton’s root finding
method to the function g = ∇f .
Bundle Methods: By finding the function value f and the gradient
value ∇f at a point x, we know roughly what the function looks like very
close to x. By using these approximations for a large collection of points,
we can create a piecewise linear approximation to the function f , which
can be easily optimized. By refining the approximation function we can
quickly locate the minimum of the function.

All of these methods are well studied, and proofs of convergence exist in many
forms. Most of these methods are simple to program and many non-commercial
codes exist. However, most of these codes are not user friendly, so figuring out how
to use them can be a difficult task.

3.2.4. Differentiable Non-convex problems. If the function f or the set S is non-
convex (that is, does not satisfy the above definitions), then optimization is faced
with a difficult challenge. In particular, convex problems have the very satisfying
property that if ∇f(x) = 0 then the point x is a minimum for f . Non-convex
problems do not satisfy this property, so it is very easy to find a point x that
appears to be a minimum but is not. This problem is illustrated in Figure 1

!2 !1.5 !1 !0.5 0 0.5 1 1.5 2
!1

0
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global minimum 

f(x) 

Figure 1. The difficulty with non-convex optimization: In
a nonconvex problem we can often locate points which appear to
minimize the function but in reality do not. In the graph above, a
computer implemented optimization method could easily mistake
one of the two local minima to be the global minimum.

There are many suggested methods for dealing with this problem, but realis-
tically it is nearly impossible to guarantee optimality for non-convex problems. In
practice, one of the best methods to deal with non-convex problems is to pretend
they are convex. This is done by randomly generating a large collection of starting
points and then running convex optimization methods on the problem starting at
each point. Each starting point will result in convergence to one possible minimum,
and taking the best of these results is a good guess at the optimal solution.
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3.2.5. Non-differentiable problems. Another difficultly that may arise in apply-
ing an optimization algorithm to a problem is that the function f may not be
differentiable, or the gradient of f is may not be readily available. In this case we
turn to non-differentiable optimization methods.

In some cases, the gradient exists (and is calculable) at enough points, that even
though the function is non-differentiable, differentiable methods can be applied. If
this is not the case, then we usually resort to a form of pattern search (also called
direct search). Pattern search is basically a formalized method for trial and error.
We begin by selecting a number of points, and determining the objective function
value for each. This information is then used to determine where to generate a new
selection of points.

One of the most famous pattern search methods is the Nelder-Mead algorithm.
Although many more recent methods provide improvements to this method, Nelder-
Mead continues to be a popular choice due to its ease of implementation.

3.3. Numerical Methods for Discrete Optimization Problems. When
decision variables can assume only discrete values from a specified set, the problem
is called a discrete optimization problem. When that specified variable set is a
set of integers, we call it an integer program. When the specified set consists
of combinatorial structures (sets, subsets, permutations, partitions, Hamiltonian
paths, or subgraphs), the problem is called a combinatorial optimization problem.
Most combinatorial optimization problems may be formulated as integer programs,
however this often results in the integer program formulation having an exponential
number of constraints, so it is usually avoided.

On the surface, discrete optimization problems may sound easier than continu-
ous optimization problems, as there are less possible answers, but in practice they
are much more difficult. The difficulty lies in the fact that we can no longer lean
on the mathematical power of functional analysis to help solve the problem. The
result is that most optimization methods for discrete problems are based more on
heuristical approaches than proven algorithms. However, there are a few exact so-
lution methods for discrete optimization problems. We discuss these next, and then
turn our attention to some of the heuristical approaches.

3.3.1. Exact Solutions. One of the most powerful theorems of calculus is the
fact that the minimum of a differentiable function occurs at a point where the
derivative is 0. This theorem is inapplicable in discrete optimization, as the dis-
continuity of the constraint set does not allow for the taking of derivatives. As a
result, there are very few optimization algorithms for discrete optimization that are
actually proven to converge.

The most basic method that always works is to test every possible element
in the constraint set. If the constraint set is finite and small then this can be
done quite easily with the assistance of a computer. However, in the majority of
discrete optimization problems the constraint sets have an exponential number of
elements. This means that solving the problem with n variables requires checking a
multiple of 2n solutions. Consider for example, a problem with 2n elements in the
constraint set, and suppose we can check one point every microsecond (1/1000 of a
second). If we try the problem with ten variables we require just 1024 microseconds,
approximately 1 second. If we try the problem with 20 variables, this number raises
to 17 minutes. For 30, 40, and 50 decision variables the time jumps to 12 days,
34 years, and 3500 years respectively. By the time you reach 75 decision variables
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checking all feasible solutions would require longer than the scientifically accepted
age of the earth.

To make matters worse, some problems have n! elements in the constraint set.
Under the same circumstances (each solution requires one microsecond to check),
instances with 5, 10, and 20 decision variables would require 1/10 of a second, 1
hour, and 70 million years, respectively.

Luckily, there are methods and techniques that avoid explicit exploration of
all feasible solutions. The branch and bound method explores only a portion of
the set of feasible solutions yet still guarantees the correct answer (when run to
completion).

3.3.2. Heuristics. A heuristic is a reproducible method for improving one’s
knowledge on a problem. In optimization this means an algorithm that, when
run on an optimization problem, will find a solution no worse than the best known
solution. Good heuristical methods are those that usually produce sufficiently good
results when applied in commonly occurring conditions.

Heuristics can be divided into construction heuristics and improvement heuris-
tics. A construction heuristic builds a feasible solution to a problem in small steps,
usually by “growing” a series of partial solutions to the problem. Improvement
heuristics improve a feasible solution in a series of iterative steps.

Many of the improvement methods are local search methods. These are meth-
ods that iteratively search solutions near the best known feasible solution seeking
some improvement. Stopping criteria for these algorithms are usually when there
is no improving solution in the neighbourhood of the current solution. The disad-
vantage of these methods is that generally we have no way of knowing if we have
found a global optimum, or simply a local optimum. Some of these modern heuris-
tical methods include simulated annealing, evolutionary algorithms (also known as
genetic algorithms), ant colony algorithms, and tabu search.

Simulated Annealing: The ideas behind simulated annealing are de-
rived from metallurgy, where annealing refers to the process of controlled
heating and cooling of a metal in order to improve its properties, such as
strength and hardness. In simulated annealing we begin with a collection
of potential solutions and a “temperature gauge” T . If the temperature
gauge is high, then the algorithm produces new candidate solutions that
have a low relationship to current best candidate solution. If the temper-
ature gauge is low, then the algorithm produces new candidate solutions
that have a strong relationship to the current best candidate solution.
The idea is that by controlled increase and decrease of the temperature
gauge, we can focus in on good candidate solutions, while avoiding the
tendency to become stuck at a local minima of the problem. Simulated
annealing is popular for large discrete optimization problems.
Evolutionary Algorithms: Also called Genetic Algorithms, evolution-
ary algorithms use ideas inspired from the theory of biological evolution.
In particular, evolutionary algorithms consider candidate solutions to co-
incide with individuals in a population, and the objective function to be
a measure of survivability for each individual. The algorithm generates
many random candidate solutions (individuals) and then evaluates which
solutions have the best survivability. These solutions are then allowed
to breed (by taking slightly randomized averages between two candidate
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solutions) and mutate (by adding random perturbations to a single candi-
date solution). Repeating this procedure many times, we hope to evolve
towards an optimal solution. The weakness in such methods is the large
amount of computing power required to perform evolutionary algorithms.
Ant Colony Algorithms: The ant colony algorithm is a heuristic
method specifically designed for the study of route finding. That is, lo-
cating the shortest route that satisfies certain conditions (such as, deter-
mining the shortest route to get an ambulance to an emergency situation
given we must stay on the road). The inspiration comes from the methods
ant colonies use to locate the shortest path to a food source. Initially ants
wander randomly until they locate food, then they return to the colony
while laying down a pheromone trail for other ants to follow. Ants are
attracted to the pheromone covered path, but pheromone slowly evapo-
rates over time. Since, the more time it takes for an ant to travel down
a given path the longer the pheromone has to evaporate, shorter paths
are given preference. This preference reinforces the pheromone levels of
the shortest path, and, with luck, convergence to the shortest route oc-
curs. Ant colony algorithms mimic this behaviour with simulated ants and
pheromones. Such algorithms have been relatively successful in solving
difficult route finding problems, such as the traveling salesman problem.
However, like all heuristic methods they have no assurance of locating the
optimal solution.
Tabu Search: Tabu search can be thought of as an add-on to any pattern
search method (see Subsection 3.2.5). To begin, a pattern search method
is applied in order to find a local optimum. In order to avoid becoming
stuck at a local optimum (instead of finding the global optimum), the tabu
search occasionally defines a local area as “tabu,” thus forcing iterations to
move away from this area, even if this causes movement towards a worse
solution. Over time the tabu of a given area is removed, allowing the
pattern search to return there if no better solution has been located. Tabu
search has been shown relatively effective at helping us avoid becoming
stuck at the first local optimum we encounter. Thus it often improves the
final result. However, for nonconvex problems it is still quite possible to
end in a local optimum instead of a global one.

Empirical studies have shown that many heuristics may be very successful. More
importantly, for many discrete optimization algorithms heuristical methods are the
only practical option.

3.4. Dynamic Optimization Problems. At times, the optimization prob-
lems arising in healthcare may have dynamic components (i.e. the data changes
with time) and should be modelled by a dynamic optimization problem. A dynamic
optimization problem is one where the problem changes as new data becomes avail-
able. At each time step, the optimizer must output a solution to the problem that
provides a good level of optimization and allows for flexibility when new data ar-
rives. A prime healthcare example is emergency vehicle dispatching (ambulances
must be dispatched in a manner that retrieves patients in a somewhat optimal time,
but reserve the flexibility for new calls to change dispatch priorities).

This is a relatively new field of optimization so little can be said about the best
methods to approach such problems. Many researchers solve dynamic optimization
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problems using what are called online algorithms. These algorithms are typically a
blend of exact and heuristical methods. Another option includes the idea of solving
a problem over a limited rolling time horizon.

4. Examples

4.1. Nurse Scheduling as a Linear Program. The nurse (physician, sur-
geon, etc.) scheduling problem deals with finding the minimum number of nurses
required in a department so that patient needs are met. In this example we demon-
strate how nurse scheduling can be approached as a linear program.

Assume that the resources needed in the department are constant over suc-
cessive intervals of 4 hours each, and that particular needs involve the following:
4 nurses are needed in the department between 8 am and noon, 8 between noon
and 4 pm, 10 between 4 pm and 8 pm, 7 between 8 pm and midnight, 12 between
midnight and 4 am, and 4 between 4 am and 8 am.

Consider first a situation in which there is a three-shift schedule (8 am–4 pm,
4 pm–midnight, and midnight–8 am). After introducing decision variables x1, x2,
and x3 that represent the number of nurses in each of the three shifts, the opti-
mization problem becomes:

min x1 + x2 + x3

subject to x1 ≥ 8
x2 ≥ 10

x3 ≥ 12

Examining this problem it is easy to see that the optimal solution is obtained when
x1 = 8, x2 = 10, and x3 = 12. Thus the minimum number of nurses required is 30.

It is interesting to observe that if we model the same nurse scheduling problem
by a slightly different mathematical programming formulation, we may be able to
achieve a better solution. Specifically, let us allow for a six-shift schedule where the
starting shift times can be 8 am, 12 pm, 4 pm, 8 pm, 12 am, or 4 am, and all shifts
are 8 hours long. The new optimization problem is:

min x1 + x2 + x3 + x4 + x5 + x6

subject to x1 + x6 ≥ 4 (8am− 4pm shift)
x1 + x2 ≥ 8 (12pm− 8pm shift)

x2 + x3 ≥ 10 (4pm− 12am shift)

x3 + x4 ≥ 7 (8pm− 4am shift)

x4 + x5 ≥ 12 (12am− 8am shift)

x5 + x6 ≥ 4 (4am− 12pm shift)

This problem is slightly more difficult to solve, but it can be easily checked that
x1 = 0, x2 = 10, x3 = 0, x4 = 12, x5 = 0, and x6 = 4 is a feasible solution to the
problem (in fact this is the optimal solution). Notice this only requires 26 nurses,
so rewriting the problem has saved 4 nurses.

In both of these examples the optimal solution was fortunately formed of inte-
gers (we never had to employ half a nurse). This is a result of the artificial nature
of the example. Realistic problem parameters (number of nurses required during
the day) would likely result in a non-integer optimal solution. Various remedies
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for this exist, one of which is to consider the problem as a discrete optimization
problem.

4.2. Dispatching Ambulance Vehicles. The efficiency of emergency med-
ical services in reducing mortality is strongly related to the time needed by a
paramedic team to arrive at the scene. This time largely depends on the location of
the nearest ambulatory service. With the development of new telecommunication
and computer technologies, comes the opportunity to collect real-time data that
can be used to improve ambulance response times. As such recent research has
explored methods of optimizing the ambulance allocation and the ambulance re-
deployment problems. Both problems examine methods to maximize the expected
number of calls covered within a given time frame, subject to constraints such as
number of vehicles and potential locations of vehicle bases.

The ambulance allocation problem consists of determining which ambulance
should be sent to answer a given call. In a mathematical sense, we would weight
the time it would take a given ambulance to reach a call against the probability
that the ambulance would be needed elsewhere, and determine which ambulance is
the best to send in terms of minimizing total expected response time for all calls
(not just response time to the given call). However, in a practical sense, society
would not accept such a solution, so the ambulance allocation problem is generally
solved by the simple rule: “send the nearest ambulance”.

Given that we are not able to tamper with the ambulance allocation problem,
we must turn to the ambulance redeployment problem to improve response time
to calls. The ambulance redeployment problem consists of relocating available
ambulances to potential location sites when calls are received. Basically, when one
ambulance moves to answer a call, the remaining ambulances shift locations in
order to ensure maximal coverage of the service area.

In 1983 Daskin proposed a method to write the ambulance redeployment prob-
lem as a linear program that would be resolved every time either a new ambu-
lance became available (i.e. finished responding to a call) or an ambulance became
unavailable (i.e. left to answer a call) [60]. Although this approach provided a
theoretically sound solution to the problem, it required the problem to be solved in
real-time. Furthermore, to follow the framework of this approach, we was required
to redeploy ambulances each time a call arrived. Ambulance crews were dissatisfied
with this approach.

In order to improve on this approach, we move to dynamic optimization meth-
ods. In order to avoid ambulances being in continuous motion, we must seek robust
solutions. These are, solutions that may not be perfectly optimal at any given
moment, but are reasonably optimal in a large variety of situations. This remains
a difficult problem, but some approaches have been proposed. For example, the
inclusion of some (or all) of the following constraints help improve the robustness
of the redeployment problem:

• only a limited number of ambulances can be moved when a redeployment
occurs;

• vehicles moved in successive redeployments cannot always be the same;
• repeated round trips between two location sites must be avoided;
• long trips between the initial and final location sites must be avoided;
• an assignment to a call should be avoided near the end of a working shift;

and
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• at the end of a shift, the ambulance has to be moved closer to the central
service point where the vehicles are based.

In [84], this problem is approached via a parallel tabu search heuristic. The main
component of this algorithm is the pre-computation of redeployment scenarios that
allows immediate decision-making when calls are received. Simulations based on
real data have confirmed the efficiency this approach.

Another approach is provided by [106], who adds the constraint
• ambulances may only be redeployed when completing a call,

to the problem. This constraint is satisfying to ambulance crews and provides
robustness to the problem at the cost of efficiency. The redeployment problem
was solved using simulation and tested in several cities world wide with reasonable
success.

4.3. Shared Transportation Problem as a Discrete Optimization Prob-
lem. In this example, we consider the problem of how to deliver transportation ser-
vices to disabled and elderly people. This is an example of the shared transportation
problem, sometimes called the dial-a-ride problem.

In this problem we assume that each healthcare program has been put in place
to help disabled and elderly people meet their transportation needs. The program
is accessed by a patient phoning in a request to be picked up and transported to a
health client at a certain time. To save costs, transportation is shared, and consists
of a fleet of buses serving transport requests. The overall optimal schedule can be
maintained even if some trips have to follow longer routes, as long as customers are
picked up and dropped off on time.

The problem can be modelled by the pickup and delivery problem with time
windows (PDPTW). The PDPTW is a vehicle routing problem that deals with
finding an optimal set of routes for a fleet of vehicles in order to serve a set of
transportation requests. A transportation request is defined by a pair of locations:
a person or a package has to be picked up at the pickup location and delivered
at the delivery location. Each location is associated with a specific time interval
allocated for the visit to that location. This interval is known as the time window of
the location. Each vehicle has a capacity constraint. The solution to the problem
consists of a set of routes and schedules. A route is a sequence of locations to be
served by one vehicle. A schedule for a route is the sequence of times when each
location on the route will be serviced.

More formally, the problem may be described as follows. Let the number of
vehicles be m and the number of customers be n. We enumerate the vehicles
V = {1, 2, . . . ,m}. Each vehicle v has a start location s(v) and an end location
e(v), usually called depots. Since there are n customers we have n pick-up locations
and n drop off locations. We label these P+ = {p+(i) : i ∈ 1, 2, ...n} and P− =
{p−(i) : i ∈ 1, 2, . . . , n}, where p+(i) is the pick-up location for customer i and
p−(i) is the drop-off location for customer i. Let N be the set of all locations:
N = P+ ∪ P− ∪ {s(v) : v ∈ V } ∪ {e(v) : v ∈ V }. We enumerate N in the order

N = {p+(1), p+(2), . . . , p+(n), p−(1), p−(2), . . . , p−(n),
s(1), s(2), . . . , s(m), e(1), e(2), . . . , e(m)},

so a customer picked-up at location i ∈ N is dropped-off at location i+ n ∈ N .
The required time window for location i ∈ N is [ai, bi], meaning the customer

must be picked-up/dropped off between time ai and bi. For each two distinct stop
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locations i, j ∈ N , we let ti,j and ci,j represent direct travel time and travel cost
from location i to location j.

Let the maximum load of vehicle v be Qv.
Three types of variables are used in this mathematical formulation: binary flow

variables Xv
i,j , time variables Ti, and load variables Li. The binary flow variable

Xv
i,j has value 1 if vehicle v travels from node i to node j. The time variable Ti is

the time when node i is serviced, and the load variable Li is equal to the load in
the vehicle after servicing node i.

The optimization problem for this PDPTW is the integer program given below.

minimize
∑
v∈V

∑
i,j∈N

ci,jX
v
i,j(38)

subject to
∑
v∈V

∑
j∈N

Xv
i,j = 1, i ∈ P+(39)

∑
j∈N

Xv
i,j −

∑
j∈N

Xv
j,i = 0, i ∈ P, v ∈ V(40)

∑
j∈P+

Xv
s(v),j = 1, v ∈ V(41)

∑
i∈P−

Xv
i,e(v) = 1, v ∈ V(42)

∑
j∈N

Xv
i,j −

∑
j∈N

Xv
j,n+i = 0, i ∈ P+, v ∈ V(43)

T vi + tvi,n+i ≤ T vn+i, i ∈ P+, v ∈ V(44)

Xv
i,j = 1 ⇒ T vi + tvi,j ≤ T vj , i, j ∈ P, v ∈ V(45)

Xv
s(v),j = 1 ⇒ T vs(v) + tvs(v),j ≤ T

v
j , j ∈ P+, v ∈ V(46)

Xv
i,e(v) = 1 ⇒ T vi + tvi,e(v) ≤ T

v
e(v), i ∈ P−, v ∈ V(47)

ai ≤ T vi ≤ bi, i ∈ P, v ∈ V(48)

as(v) ≤ T vs(v) ≤ bs(v), v ∈ V(49)

ae(v) ≤ T ve(v) ≤ be(v), v ∈ V(50)

Xv
i,j = 1 ⇒ Lvi + lj = Lvj , i ∈ P, j ∈ P+, v ∈ V(51)

Xv
i,j = 1 ⇒ Lvi − lj−n = Lvj , i ∈ P, j ∈ P−, v ∈ V(52)

Xv
s(v),j = 1 ⇒ Lvs(v) + lj = Lvj , j ∈ P+, v ∈ V(53)

Lvs(v) = 0, v ∈ V(54)

0 ≤ Lvi ≤ Qv, i ∈ P+, v ∈ V(55)

Xv
i,j ∈ {0, 1}, i, j ∈ N, v ∈ V(56)

(57)

Constraint (39) states that each pickup location is left by exactly one vehicle.
Constraint (40) means that the number of vehicles coming to location j is equal to
the number of vehicles leaving location j. Constraints (41) and (42) ensure that each
route starts with a pickup location and ends with a delivery location, not counting
depots. Constraint (43), called the pairing constraint, deals with the fact that each
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pickup location and its corresponding delivery location have to be served by the
same vehicle. Less formally, a patient will be driven by one vehicle. Constraint
(44), called precedence constraint, ensures that each pickup site is located before
its corresponding delivery location — in other words, patients have to be picked
up before they can be dropped off. Constraints (45)–(47) represent compatibility
between routes and schedules and constraints (48)–(50) are time window constraints
ensuring that each location is served within its own time window. Constraints (51)–
(53) represent compatibility between routes and vehicle capacity and constraints.
Constraints (54)–(55) are capacity constraints ensuring that no vehicle is filled
above capacity, or has an occupancy that is negative.

The above problem is extremely complicated, and clearly cannot be solved by
hand. Research by Savelsbergh and Sol has shown that branch and bound methods
can been successfully employed to solve this problem [194].

5. Related Reading

Reference [165] is a recent textbook on applied optimization algorithms. Reference
[195] overviews the basics of linear programming, including the classic simplex method.
Reference [187] explores some of the more advanced methods for solving linear programs.
References [221] and [220] discuss the advancement of linear programming into semi-
definite programming.

Reference [33] explains a large collection of methods for convex optimization, it is
available online at http://www.stanford.edu/~boyd/cvxbook/. Reference [31] covers
some more recent advancements in numerical techniques for convex optimization.

Reference [162] presents the classic Nelder-Mead algorithm. Reference [229] provides
a survey of the advancements in pattern search algorithms up to 1995. Reference [49] is a
survey paper outlining the general framework of pattern search methods. Reference [137]
is an example of recent research and development in pattern search methods. Reference
[219] develops the tools needed to implement a pattern search method using parallel
computing. Reference [10] details a pattern search method for constrained optimization
problems.

Reference [127] discusses optimization by simulated annealing. Reference [11] exam-
ines evolutionary algorithms. Reference [67] is a survey of the mathematics behind ant
colony algorithms. Reference [86] explores the meta-heuristical approach of tabu search.

Reference [94] discusses the current state of online and real-time optimization with the
aim of reaching a broad audience. Reference [183] examines the idea of solving dynamic
optimization problems over a limited rolling time horizon.

Reference [194] discusses characteristics that separate pickup and delivery problems
from standard vehicle routing problems as well as problem types and solution methods,
and is discussed in Example 4.3.

Reference [60] is one of the first models for examining optimal ambulance deployment,

and discussed in Example 4.2. Reference [84] looks at the problem of redeployment of a

fleet of ambulances using a dynamic model that includes a parallel tabu search heuristic

to compute redeployment scenarios, and is discussed in Example 4.2. Reference [106]

also examines the problem of ambulance redeployment, and is discussed in Example 4.2.

Reference [36] traces the evolution of ambulance location and relocation models from 1973

to 2003. Reference [87] reviews the development and current state of operations research

for deployment and planning analysis pertaining to Emergency Medical Services and Fire

Departments. Reference [7] describes some decision support tools for dynamic ambulance

relocation and automatic ambulance dispatching.





APPENDIX A

Computer Programming Packages Useful in
Modelling

There are numerous pieces of computer software that can be of assistance in
modelling. In this appendix we provide a list of some of the more popular pro-
grams, along with a brief description of each. The appendix is divided into three
sections, the first focusing on statistical software packages, the second on general
mathematical packages, and the third on computer software designed to run specific
models.

1. Statistical Software

Microsoft Excel: Microsoft Excel is one of the most popular spreadsheet
programs for personal computers today. It contains many basic statistical com-
mands including linear and logistic regression. However, statistics is limited by
the maximum spreadsheet size and the program’s fairly slow operating speed. It
is best suited for producing basic summary statistics from small sample sizes. It
is available from MicrosoftTMfor both Microsoft Windows and Mac OS X, http:
//office.microsoft.com/.

S, R, and S-PLUS:. S is a powerful environment for the statistical and graph-
ical analysis of data. It provides the tools to implement all basic statistical meth-
ods along with many advanced methods such as generalized linear regression and
time series analysis. S-PLUS is a commercial implementation of S developed and
supported by Insightful CorporationTM, http://www.insightful.com/. R is a
free open source version of S used in many academic settings. It is available at
http://www.r-project.org/. S-PLUS is available for Microsoft Windows and
Unix, while R is available for Microsoft Windows, Mac OS X, and Linux.

SAS:. SAS, originally the “Statistical Analysis System,” is one of the most
popular operations management tools in industry. Although not specifically de-
signed as a statistical software package, most versions include a large variety of
advanced statistical packages. It is available from S.A.S.TMfor Microsoft Windows,
Mac OS X, and Unix operating systems, as well as a variety of mainframe installa-
tions, http://www.sas.com.

2. Mathematical Software

Berkeley Madonna: Berkeley Madonna is a multi-purpose numerical differ-
ential equation solver. It is able to solve systems of differential equations rapidly and
graphically display the system evolution at run time. However it has limited uses
outside of differential equations. It is available for both Microsoft Windows and Mac
OS X. A free trial download is available at http://www.berkeleymadonna.com/.
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Maple: Originally developed at the University of Waterloo, Maple is now one
of the preeminent software packages in mathematics. It is a good general purpose
computer algebra system capable of both symbolic and numerical analysis of func-
tions, systems of equations, and systems of differential equations. It also comes with
a limited optimization library and support for many other branches of mathematics.
One of its few drawbacks is that many of its libraries are not loaded as compiled
code so it can run quite slowly. This is rapidly being corrected in newer versions of
the software. Maple is available from MapleSoftTMfor Microsoft Windows, Linux,
and Mac OS X : http://www.maplesoft.com/.

Mathematica: Mathematica is a full featured suite for the mathematical sci-
ences. It has extensive capabilities in both computer algebra calculations and
numerical analysis. It is available from Wolfram ResearchTMfor Microsoft Win-
dows, Mac OS X, Linux, Solaris, and most other unix operating systems http:
//www.wolfram.com/.

MATLAB:. Due to its superior numerical algorithms, MATLAB is one of the
most widely used software packages for numerical analysis in applied mathematics,
science, and engineering. It has a large number of toolkits supporting a wide range
of mathematical specialization. Its popularity in the mathematical sciences has
also resulted in numerous freely available toolkits designed and implemented by
academics. It is developed and supported by MathWorksTMand is available for
Linux, Solaris, Mac OS X, and Microsoft Windows, http://www.mathworks.com/.

3. Simulation and Modelling Codes

Modelling Languages

ANML:. (Another Modelling Language) is a general purpose modelling lan-
guage for describing various systems such as communication networks. The lan-
guage, which is object-oriented, consists of three general constructs: models, schemas
and databases. Models are descriptions of specific system scenarios, schemas spec-
ify the rules for creating models, and databases serve as a repository of components
for easy reuse in different models. ANML is based on the Domain Modelling Lan-
guage, which was developed as part of the Scalable Simulation Framework and the
Extensible Markup Language. ANML was developed at the University of Calgary,
the open source is available at http://warp.cpsc.ucalgary.ca/Software/ANML/
anml.php.

dML:. (deX Modelling Language) is an object-oriented language based upon
C++, which is part of the deX modelling package. dML is designed to facilitate
the development of parallel simulations, either on multi-processor systems or on
clusters.

GPSS:. This was the first simulation programming language. It was developed
at IBM and appeared in 1961. Strictly speaking, GPSS is not a complete program-
ming language, but rather a set of FORTRAN routines. GPSS programs follow a
block-diagram representation, which represent the process flow in the simulation. It
is particularly well-suited to modelling queueing problems and remains popular to
this day. A commercial GPSS compiler is currently available from Wolverine Soft-
ware. In addition, a MATLAB toolkit is available for processing GPSS simulations
in MATLAB.

PARSEC:. Developed by the Parallel Computing Laboratory at UCLA, it is
an acronym for “PARallel Simulation Environment for Complex systems”. It is
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a C-based discrete-event simulation language that adopts the process interaction
approach to discrete-event simulation. PARSEC provides support for executing a
discrete-event simulation model using several different asynchronous parallel sim-
ulation protocols on a variety of parallel architectures. As such, it is well-suited
for deploying discrete-event simulations on computer clusters. PARSEC is freely
available for academic use.

SHIFT:. This is a programming language for describing dynamic networks of
hybrid automata, which may exhibit both discrete and continuous behaviour. The
components interact via a network, which may itself evolve in time. SHIFT is
well-suited for applications such as automated highway systems, air traffic control
systems, robotic shopfloors, and similar systems whose operation cannot be cap-
tured easily by conventional models. SHIFT was developed by the California PATH
(California Partners for Advanced Transit and Highways) Project at the Univer-
sity of California, Berkeley and both a compiler and a run-time system are freely
available.

SIMSCRIPT I/II/III:. Simscript is an “english-like” high level simulation
language designed for discrete-event and hybrid discrete/continuous modelling. The
first version, SIMSCRIPT I, was developed by the RAND Corporation for the US
Air Force and released in 1962. This initial version was implemented as a FOR-
TRAN preprocessor, producing FORTRAN code that was then subsequently com-
piled with a FORTRAN compiler. SIMSCRIPT II, which was also developed by the
RAND Corporation, was released in 1968. The CACI Products company currently
sells and supports a commercial version called SIMSCRIPT II.5. They have also
recently released SIMSCRIPT III, which extends SIMSCRIPT II to provide full
support for object-oriented programming.

Simula: First released in 1965, Simula is a full-featured object-oriented pro-
gramming language designed for discrete-event simulations. It introduced object-
oriented concepts and has had great influence on all modern class-based, object-
oriented programming languages. Simula remains in use today and Cim is a cur-
rently available compiler for it. Cim is implemented as a Simula to C converter,
followed by compilation of the C code using a C compiler. It is open source and
licensed under the GPL. It should run under most unix-like operating systems.

SLX:. SLX is a new simulation language from Wolverine Software. It utilizes
a layered approach, starting with the SLX kernel at the bottom, a traditional
simulation language in the middle, and more application-specific dialects at the
top. Thus, simulation programmers may construct models using the upper layers
of language and are not required to delve into the lower-level details. However,
models requiring features not available at the upper level may still be modelled by
using lower-level programming to build new higher-level constructs. In addition
to its multilayered structure, another focus of SLX is to provide support for DES
models with parallel processes.

Libraries and Application Program Interfaces

baseSim: baseSim is a simulation library for Borland Delphi. It supports
a variety of discrete-event simulation models, including Monte Carlo simulation
models. It is sold and supported by iBright Ltd.

C++Sim: This is an object-oriented C++ simulation library developed at the
University of Newcastle upon Tyne. It provides SIMULA-like simulation routines,
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random number generators, queueing algorithms, and thread package interfaces.
This library is freely available for teaching and research use.

CSIM:. CSIM is a commercial library of simulation routines for C or C++. It
provides routines for discrete-event simulation models of complex systems. CSIM
is a product of Mesquite Software.

DESMO-J:. DESMO-J (“Discrete-Event Simulation and Modelling in Java”)
is an object-oriented framework targeted at programmers developing simulation
models in Java. It provides support for building models with a graphical user
interface. Developed at the University of Hamburg, DESMO-J is part of the larger
Eclipse project for developing open source modelling and simulation tools. DESMO-
J is licensed under the Apache License.

DSOL:. DSOL is a Java-based suite for continuous and discrete-event sim-
ulation. The focus of DSOL is to view simulation as a set of loosely-coupled,
web-enabled services. As such, DSOL focuses on the development of simulation
models with web-based interfaces. DSOL was developed at the Delft University of
Technology and is open source.

RedShift: RedShift is a simulation library written in Ruby and C. Its syntax
is based on that of SHIFT and Lambda-SHIFT. RedShift is open source and freely
available.

Simulación 4.0: Simulación 4.0 is a visual basic library designed to provide
support for simple simulations within Microsoft Excel. Simulación 4.0 is freely
available.

SimPy: SimPy is an object-oriented, process-based, discrete-event simulation
library for Python. It provides the modeller with components of a simulation
model including processes (for active components such as customers, messages, and
vehicles) and resources (for passive components such as servers, checkout counters,
and tunnels). It also provides monitor variables to aid in gathering statistics. SimPy
is an acronym for “Simulation in Python”. It is open source and released under the
Lesser GNU Public License.

SSF:. SSF (Scalable Simulation Framework) is an open standard for a discrete-
event simulation application program interface (API). SSF is designed to support
parallel simulations that support very large collections of simulation entities run-
ning on a computational cluster. Implementations of SSF in both C++ and Java
are freely available. Furthermore, the SSF specification is defined in an abstract
manner, allowing it to function as a model for high-level modelling languages or
graphical modelling environments. Associated with SSF is the Domain Modelling
Language (DML), which is an open standard for defining model configurations.

Simulation Engines

JiST:. JiST (“Java in Simulation Time”) is a high-performance discrete-event
simulation engine that runs over a standard Java virtual machine. The JiST system
architecture consists of four distinct components: a compiler, a byte-code rewriter,
a simulation kernel and a virtual machine. JiST simulations are written in standard
Java and compiled to byte-code using a regular Java language compiler. These com-
piled classes are then modified by JiST using a byte-code-level rewriter to run over
a simulation kernel. This architecture provides exceptional performance and also
allows for efficient parallelization execution on large clusters. JiST was developed
at Cornell University and is freely available for academic use.
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SimKit: The SimKit engine is based on an object-oriented, logical-process
view of discrete-event simulation. In a SimKit simulation, each physical process is
characterized by a logical process. The logical processes communicate by exchang-
ing messages called events. SimKit implementations in both C++ and Java are
available. It is open source and was developed at the University of Calgary.

WARPED:. WARPED is a highly parallel simulation engine, implemented in
C++. WARPED makes extensive use of the object-oriented structure of C++ and
it defines a number of specialized classes for simulation. A variety of libraries are
also available. Included with WARPED is KUE, a library for building queueing
models. WARPED was developed at the University of Cincinnati and has been
released into the public domain.

Simulation Packages

AnyLogic: AnyLogic is a Java-based simulation package from XJ Systems.
It has support for stochastic modelling, interactive 2-D and 3-D animation, as
well as optimization. A number of different modelling paradigms are available
with AnyLogic, including process flow diagrams, system dynamics, agent-based
modelling, and state charts. AnyLogic runs under Microsoft Windows 2000 or
Windows XP.

Arena: Arena is based on the SIMAN simulation language. However, its user
interface is completely graphical. Models are built from graphical objects called
modules. Modules are then organized into structures called templates. A number
of standard templates are included with Arena. Arena is developed and supported
by Rockwell Automation, Inc. It is available for Microsoft Windows. In addition to
Arena, Rockwell Automation also offers OptQuest, an optimization suite for Arena.

AutoMod: Automod is a graphical modelling package that provides true to
scale 3-D virtual reality animation, making simulation models easy to understand
and explain. It uses CAD-like features to define the physical layout of manufactur-
ing, material handling, and distribution systems. Although primarily designed for
operations analysis of manufacturing systems, it may also be applied to a variety
of other types of simulation modelling. AutoMod is available from Brooks Software
and it runs under Microsoft Windows.

eM-Plant: This package focuses on the modelling and simulating of production
systems and processes. It provides the capability to optimize material flow, resource
utilization, and logistics. It takes an object-oriented approach to model design
and has extensive features for visualization and animation of models. eM-Plant is
developed and supported by UGS, and runs under Microsoft Windows.

Enterprise Dynamics: This is an object-oriented dynamic analysis and con-
trol package, available from Incontrol Enterprise Dynamics. Model design is based
on blocks and templates. It supports both 2-D flowchart animation and 3-D models.
Enterprise Dynamics runs under Microsoft Windows.

Extend: This simulation suite from Imagine That Inc. supports both discrete-
event simulation and numerical solutions of systems of differential equations. In
1988, Extend was the first simulation package to introduce a graphical interface
utilizing a block-diagram approach to model-building. There is also support for
animation of the process flow diagram. A C-like programming environment is
available for defining new blocks. Extend runs under the Microsoft Windows and
Mac OS X.
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iThink and Stella: iThink and Stella from ISEE Systems use a graphical sys-
tems dynamics approach to model design. The models are designed graphically
using flow diagrams to show process flow and feedback loops. iThink and Stella
are similar packages, with iThink focused more on business applications and Stella
focused towards education and research. Both packages run under Microsoft Win-
dows and Mac OS X.

JSIM. This is a Java-based simulation and animation environment that focuses
on web-based simulation. It was developed at the University of Georgia. Simulation
models may be built using either the event package (event-scheduling paradigm) or
the process package (process-interaction paradigm). In addition, a graphical design
interface allows process models to be be rapidly built graphically. JSIM is open
source and licensed under a BSD-style license. It requires Java 5.0.

SimuLink: Simulink is a graphical environment for developing models of dy-
namical systems produced by MathWorks. Essentially it provides a graphical in-
terface to MATLAB. SimEvents is an extension to SimuLink, which is specialized
for discrete-event simulation. SimuLink is available for Linux, Solaris, Mac OS X,
and Microsoft Windows.

MicroSaint: MicroSaint is a graphical discrete-event simulation package from
Micro Analysis and Design, Inc. It provides two graphical views of the simulation: a
network flow diagram and a 2-D animation of the model. Support for optimization
is also provided by the OptQuest module, which is included with the package. The
package runs under Microsoft Windows.

OMNeT++: This is a discrete-event simulation package with strong GUI sup-
port. It utilizes a modular open-architecture, making it flexible and easy to ex-
tend. Its initial application area was the simulation of communication networks,
however, it is now widely used to simulate queueing networks, IT systems, and
business processes. A variety of examples are included with the software distribu-
tion. OMNeT++ runs under most versions of unix-like operating systems, including
Linux, Mac OS X, and FreeBSD, as well as under Microsoft Windows. It is open
source and free for academic use. Commercial use requires a license from Simul-
Craft, Inc.

Ptolemy Project: Based at the University of California at Berkeley, this
project is developing an open source software system for modelling, simulation,
and design of concurrent, real-time systems. Their main focus is on models that
have concurrently executing components, which interact with each other. Ptolemy
has a graphical interface for constructing simulation models using block diagrams.
It supports data-flow, discrete-event simulation, process networks, and finite-state
machine models of computation. Ptolemy is written in C++ and compiles using
gcc on most unix-like operating systems. A follow-up Java-based system called
Ptolemy II is under development.

SansGUI:. This is a modelling and simulation environment for developing
and deploying scientific and engineering simulators without the need for writing
any graphical user interface code. SansGUI supports the development of graphical
interfaces for models that are implemented in Microsoft Visual C/C++, Compaq
Visual Fortran 6.1, or any programming language or environment that can gener-
ate Win32 DLLs callable by Microsoft Visual C/C++. This includes simulations
implemented in MATLAB. SansGUI is available from ProtoDesign, Inc, and runs
under Microsoft Windows.



3. SIMULATION AND MODELLING CODES 195

SDX:. This is a Fortran-based problem solving environment for both continu-
ous and discrete dynamical systems. Typical applications include aerospace, applied
mathematics, biological systems, and control systems. It is available from Eclipse
Software and runs under Microsoft Windows.

ShowFlow. This is a simulation software package that places a strong empha-
sis on graphically representing the simulation from a systems dynamics perspective.
It is developed by Webb Systems Ltd. and runs under Microsoft Windows.

Simile: This is a simulation package for complex dynamical systems in the
earth, environmental and life sciences. It is developed and supported by Simulistics
Ltd. Models are developed graphically using a system dynamics approach. Simile
then converts the graphical representations into C++ code that is compiled and
executed. Simile runs under Microsoft Windows, Mac OS X, Linux, and FreeBSD.

SIMPROCESS:. This is an integrated process-based simulation software pack-
age based on SIMSCRIPT II.5. It provides a graphical interface for constructing
a discrete-event simulation model using processes, activities, entities, resources,
and connectors. SIMPROCESS is available from CACI Products. It runs under
Microsoft Windows, Linux, and Solaris.

SIMUL8: The focus of SIMUL8 is to provide a simulation package that is easy
to use for non-experts. It relies heavily on a graphical interface, with models being
constructed by assembling graphical building blocks. Templates are used to allow
a variety of common simulation scenarios to be developed easily. The simulation
model and data are saved in XML, for easy access by other programs and web
interfaces.

Traffic: This is a suite of programs for the analysis of queue models. It is
distributed and supported by Erlang Software. A source code license may be pur-
chased. The Traffic programs run under Microsoft Windows, Linux, and Solaris.
With a source code license, it should compile under most unix-like operating sys-
tems.

WITNESS:. This package uses a graphical interface with modules and tem-
plates for model design. The Lamner Group offers two versions of WITNESS: one
focused on modelling in the service sector and the other focused on the manufactur-
ing sector. The models may be displayed in 2-D animation. A variety of extension
modules are available, supporting extra capabilities such as 3-D animation, CAD
design, and optimization. WITNESS runs under Microsoft Windows.

Packages for Agent-Based Simulation

Brahms: This is a modelling language, composer, compiler, virtual machine,
and simulation viewer for agent-based simulations. This system is distributed by
Agent Solutions and licensed to NASA. It is free for academic and research use. It is
currently not available for commercial use. Brahms runs under Microsoft Windows,
Linux, Solaris, and Mac OS X.

Ps-i: This is a Tcl/Tk based environment for agent-based simulations. It has
built-in routine optimization for improving simulation performance, plus the ability
to change model parameters while the simulation is running. Ps-i is open source
and licensed under the GNU Public License.

SeSAm: Developed at the Universität Würzburg, the Shell for Simulated Agent
Systems (SeSAM) provides a generic environment for agent-based simulation. It
provides easy visual agent modelling, flexible environment and situation definitions,
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an integrated graphical simulation analysis, and the ability to run distributed sim-
ulations on a cluster. Furthermore, SeSAM is a full programming language. The
package is able to deal with complex multi-agent systems simulations for complex
models with flexible agent behaviour and interactions. SeSAM is open source and
licensed under the Less GNU Public License. It requires Java 5.0 or better.

SimWalk: This is an agent-based simulation package primarily targeted at
modelling pedestrian flows in complex environments. However, it can also be used
to model marketing scenarios and other types of social interactions.
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Numerical optimization. Universitext. Springer-Verlag, Berlin, second edition, 2006. Theo-

retical and practical aspects.
[32] K. Boulding. Economic Analysis. Harper and Row, New York, 1966.

[33] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge University Press,

Cambridge, 2004. http://www.stanford.edu/ boyd/cvxbook/.
[34] S. C. Brailsford, V. A. Lattimer, P. Tarnaras, and J. C. Turnbull. Emergency and on-demand

health care: modelling a large complex system. Journal of the Operational Research Society,

55(1):34 – 42, 2004.
[35] H. Bronnum-Hansen. How good is the Prevent model for estimating the health benefits of

prevention? J. Epidemiol. Community Health, 53:300–305, 1999.

[36] L. Brotcorne, G. Laporte, and F. Semet. Ambulance location and relocation models. Euro-
pean Journal of Operational Research, 147(3):451–463, 2003.

[37] B. Burström and P. Fredlund. Self rated health: Is it as good a predictor of subsequent

mortality in lower as well as in higher social classes? J. Epidemiol. Community Health,
55:836–840, 2001.

[38] Barbara M Byrne. Structural Equation Modeling with AMOS. CRC Press, second edition,
2009.

[39] Hadorn David C. Setting priorities on waiting lists: point-count systems as linear models.

Journal of Health Services Research and Policy, 8:48–54, 2003.
[40] A. C. Cameron and P. K. Trivedi. Regression analysis of count data. Cambridge University

Press, Cambridge, UK, 1998.
[41] A. C. Cameron, P. K. Trivedi, F. Milne, and J. Piggott. A microeconometric model of the

demand for health care and health insurance in Australia. The Review of Economic Studies,

55:85–106, 1988.

[42] John S. Carson. Introduction to modeling and simulation. In R. G. Ingalls, M. D. Ros-
setti, J. S. Smith, and B. A. Peters, editors, Proceedings of the 2004 Winter Simulation

Conference, pages 9–16, 2004.
[43] Robert Y. Cavana, Philip K. Davies, Rachel M. Robson, and Kenneth J. Wilson. Drivers of

quality in health services: different worldviews of clinicians and policy managers revealed.

System Dynamics Review (Wiley), 15(3):331 – 340, 1999.

[44] Harry Clarke and Svetlana Danilkina. Talking rationally about rational addiction. preprint,
Dept. of Economics, La Trobe University, 2006.



BIBLIOGRAPHY 199

[45] Jeffery K Cochran and Aseem Bharti. A multi-stage stochastic methodology for whole hos-

pital bed planning under peak loading. International Journal of Industrial and Systems

Engineering, 1:8–36, 2006.
[46] J. E. Cohen and B. Singer. Malaria in Nigeria: Contrained continuous-time Markov models

for discrete-time longitudinal data on human mixed-species infections. In Some Mathemati-

cal Questions in Biology, pages 69–133. Providence: American Mathematical Society, 1979.
[47] A D Colle and M Grossman. Determinants of pediatric care utilization. The Journal Of

Human Resources, 13 Suppl:115 – 158, 1978.

[48] Collings, T. and Stoneman, C. The m/m/∞ queue with varying arrival and departure rates.
Operations Research, 24(4):760–773, 1976.

[49] A. R. Conn, K. Scheinberg, and Ph. L. Toint. Recent progress in unconstrained nonlin-

ear optimization without derivatives. Math. Programming, 79(1-3, Ser. B):397–414, 1997.
Lectures on mathematical programming (ismp97) (Lausanne, 1997).

[50] R Cook and J Rasmussen. ”going solid”: a model of system dynamics and consequences for
patient safety. Quality & Safety In Health Care, 14(2):130 – 134, 2005.

[51] Ben Cooper and Marc Lipsitch. The analysis of hospital infection data using hidden markov

models. Biostatistics (Oxford, England), 5(2):223 – 237, 2004.
[52] Kenneth Craik. The Nature of Explanation. Cambridge University Press, Cambridge, 1943.

[53] Thomas F. Crossley and Steven Kennedy. The reliability of self-assessed health status. Jour-

nal of Health Economics, 21:643–658, 2002.
[54] John G. Cullis and Philip R. Jones. National health service waiting lists: A discussion of

competing explanations and a policy proposal. Journal of Health Economics, 4(2):119 – 135,

1985.
[55] V. Dabbaghian, K. Vasarhelyi, N. Richardson, P. Borwein, and A. R. Rutherford. The

impact of social interactions on the spread of HIV infection among injection drug users: A

Cellular Automaton model. CSMG Technical Report, pages 1–18, 2008.
[56] B. Dangerfield and C. Roberts. Fitting a model of the spread of aids to data from five

european countries. In O.R. Work in HIV/AIDS, pages 7–13, Birmingham, 1994.
[57] B. Dangerfield and C. Roberts. Foreword to the special issue on health and health care

dynamics. System Dynamics Review (Wiley), 15(3):197 – 199, 1999.

[58] B. Dangerfield and C. Roberts. Optimisation as a statistical estimation tool: an example in
estimating the aids treatment-free incubation period distribution. System Dynamics Review

(Wiley), 15(3):273 – 291, 1999.

[59] B. C. Dangerfield. System dynamics applications to european health care issues. The Journal
of the Operational Research Society, 50(4):345–353, 1999.

[60] M. S. Daskin. A maximum expected coverage location model: Formulation, properties and

heuristic solution. Transportation Science, 17:48–70, 1983.
[61] M. S. Daskin and L. K. Dean. Location of health care facilities. In F. Sainfort M. L. Brandeau

and W. P. Pierskalla, editors, Operations research and health care: A handbook of methods

and applications, International series in operations research and management science, pages
43–76. Kluwer, Boston, 2004.

[62] Paul Davidsson. Agent based social simulation: A computer science view. Journal of Arti-
ficial Societies and Social Simulation, 5(1), 2002.

[63] G. A. Diamond, A. Rozanski, and M. Steuer. Playing doctor: application of game theory to

medical decision-making. Journal of Chronic Diseases, 39:669–677, 1986.
[64] P Diehr, D Yanez, A Ash, M Hornbrook, and D Y Lin. Methods for analyzing health care

utilization and costs. Annual Review Of Public Health, 20:125 – 144, 1999.
[65] Ana V. Diez-Roux. Multilevel analysis in public health research. Annu. Rev. Public Health,

21:171–192, 2000.

[66] Eddy K. A. Van Doorslaer. Health, Knowledge and the Demand for Medical Care: an

econometric analysis. Van Gorcum, Assen/Maastricht, 1987.
[67] Marco Dorigo and Christian Blum. Ant colony optimization theory: a survey. Theoret.

Comput. Sci., 344(2-3):243–278, 2005.
[68] Steven B. Dowd. Applied game theory for the hospital manager: Three case studies. The

Health Care Manager, 23:156–161, 2004.

[69] F. Y. Edgeworth. Mathematical Psychics. Kegan Paul, London, 1881.

[70] Matthew J. Eichner. The demand for medical care: What people pay does matter. American
Economic Review, 88(2):117 – 121, 1998.



200 BIBLIOGRAPHY

[71] J. E. Everrett. A decision support simulation model for the management of an elective

surgery waiting system. Health Care Management Science, 5(2):89 – 95, 2002.

[72] Michael G. Farnworth. A game theoretic model of the relationship between prices and waiting
times. Journal of Health Economics, 22:47–60, 2003.

[73] Centre for Disease Control and Prevention. HIV/AIDS Surveillance Report, 2007. Techni-

cal report, Department of Health and Human Services, Centres for Disease Control and
Prevention, Atlanta, USA, 2009.

[74] Mario Forni and Marco Lippi. Aggregation of linear dynamic microeconomic models. Journal

of Mathematical Economics, 31(1):131 – 158, 1999.
[75] Jay W. Forrester. Industrial dynamics. Pegasus Communications, Waltham, MA, 1961.

[76] Jay W. Forrester. System dynamics and the lessons of 35 years. In Kenyon B. de Greene,

editor, The Systemic Basis of Policy Making in the 1990s. MIT Press, 1991.
[77] Jay W. Forrester. System dynamics, systems thinking, and soft or. System Dynamics Review

(Wiley), 10(2/3):245 – 256, 1994.
[78] Jay W. Forrester. The beginning of system dynamics. McKinsey Quarterly, 4:4 – 16, 1995.

[79] The Framingham heart study, 2002. http://www.nhlbi.nih.gov/about/framingham.

[80] J. F. Fries, C. E. Koop, J. Sokolov, C. E. Beadle, and D. Wright. Beyond health promotion:
reducing need and demand for medical care. Health Affairs, 17:70–84, 1998.

[81] World Cancer Research Fun. Food, nutrition, physical activity and the prevention of cancer:

A global persective. Technical report, World Cancer Research Fund, 2007.
[82] Mauro Gallegato and Alan Kirman, editors. Beyond the representative agent. Edward Elgar,

Cheltenham, UK, 1999.

[83] Mauro Gallegato, Alan P. Kirman, and Matteo Marsili, editors. The Complex Dynamics
of Economic Interaction: Essays in Economics and Econophsyics, volume 531 of Lecture

Notes in Economics and Mathematical Systems. Springer, Berlin, 2004.

[84] M. Gendreau, G. Laporte, and F. Semet. A dynamic model and parallel tabu search heuristic
for real-time ambulance relocation. Parallel Computing, 27:1641–1653, 2001.

[85] Jon Gjerde, Sverre Grepperud, and Snorre Kverndokk. On adaption and the demand for
health. Applied Economics, 37:1283–1301, 2005.

[86] F. Glover and M. Laguna. Tabu Search. Springer, New York, 1997.

[87] J. B. Goldberg. Operations research models for the deployment of emergency services vehi-
cles. EMS Management Journal, 1(1):20–39, 2004.

[88] A. Goldbeter. A model for the dynamics of human weight cycling. J. Biosci., 31:129–136,

2006.
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[129] Alan Kirman and Jean Benôıt Zimmermann, editors. Economics with Heterogeneous In-
teracting Agents, volume 503 of Lecture Notes in Economics and Mathematical Systems.

Springer, Berlin, 2001.

[130] Marie Fanelli Kuczmarski, Robert J. Kuczmarski, and Matthew Najjar. Effects of age on
validity of self-reported height, weight, and body mass index: Findings from the third na-

tional health and nutrition examination survey, 1988-1994. Journal of the American Dietetic

Association, 101(1):28–34, 2001.
[131] Snorre Kverndokk. Why do people demand health? Technical report, Ragnar Frisch Centre

for Economic Research, University of Oslo, 2000.

[132] Kajal Lahiri and Guibo Xing. An econometric analysis of veterans’ health care utilization
using two-part models. Empirical Economics, 29(2):431 – 449, 2004.

[133] D. C. Lane, C. Monefeldt, and J. V. Rosenhead. Looking in the wrong place for healthcare
improvements: A system dynamics study of an accident and emergency department. Journal

of the Operational Research Society, 51(5):518–531, 2000.

[134] David Lane, Camilla Monefeldt, and Jonathan Rosenhead. Emergency - but no accident —
a system dynamics study of an accident and emergency department. OR Insight, 1998.

[135] Jean K. Langlie. Social networks, health beliefs, and preventive health behavior. Journal of

Health and Social Behavior, 18(3):244–260, 1977.
[136] V Lattimer, S Brailsford, J Turnbull, P Tarnaras, H Smith, S George, K Gerard, and

S Maslin-Prothero. Reviewing emergency care systems I: insights from system dynamics

modelling. Emerg Med J, 21(6):685–691, 2004.
[137] R. M. Lewis and V. Torczon. A globally convergent augmented Lagrangian pattern search

algorithm for optimization with general constraints and simple bounds. SIAM J. Optim.,

12(4):1075–1089, 2002.
[138] Stephen Lewis and Claudia Sanmartin. Managing waiting lists to achieve distributive justice.

A working paper prepared for the Western Canada Wait List Project.
[139] Steven Lewis, Morris L. Barer, Claudia Sanmartin, Sam Sheps, Samuel E.D. Shortt, and

Paul W. McDonald. Ending waiting-list mismanagement: principles and practice. CMAJ:

Canadian Medical Association Journal, 162(9):1297 –, 2000.
[140] W. G. Liddell and J. H. Powell. Agreeing access policy in a general medical practice: a case

study using qpid. System Dynamics Review (Wiley), 20(1):49 – 73, 2004.
[141] Cotton M. Lindsay and Bernard Feigenbaum. Rationing by waiting lists. American Eco-

nomic Review, 74(3):404 – 417, 1984.

[142] Liu, Chih-Ming, Wang, Kuo-Ming, and Guh, Yuh-Yuan. A markov chain model for medical

record analysis. The Journal of the Operational Research Society, 42(5):357–364, 1991.
[143] Mary V. Look. Policy Systems and their Complexity Dynamics: Academic Medical Centers

and Managed Care Markets. PhD thesis, Virginia Polytechnic Institute and State University,
Virginia, 2003.

[144] A. Mark, D. Pencheon, and R. Elliott. Demanding healthcare. Int. J. Health Plann. and

Mgmt., 15:237–253, 2000.

[145] Brian J. Masterson, Thomas G. Mihara, George Miller, Stephen C. Randolph, M. Emma
Forkner, and Andrew L. Crouter. Using models and data to support optimization of the



BIBLIOGRAPHY 203

military health system: A case study in an intensive care unit. Health Care Management

Science, 7(3):217 – 224, 2004.

[146] Roger McCain. Game Theory: A Non-Technical Introduction to the Analysis of Strategy.
South-Western College Pub, 2003.

[147] McClean, S. I., McAlea, B., and Millard, P. H. Using a markov reward model to estimate

spend-down costs for a geriatric department. The Journal of the Operational Research So-
ciety, 49(10):1021–1025, 1998.

[148] K. M. McGrail, B. Green, M. L. Barer, R. G. Evans, C. Hertzman, and C. Normand. Age,

costs of acute and long-term care and proximity to death: evidence for 1987-88 and 1994-95
in British Columbia. Age and Ageing, 29:249–253, 2000.

[149] Beth E. Meyerowitz and Shelly Chaiken. The effect of message framing on breast self-

examination attitudes, intentions, and behavior. Journal of Personality and Social Psychol-
ogy, 52(3):500 – 510, 1987.

[150] L. A. Meyers, M. E. J. Newman, M. Martin, and S. Schrag. Applying network theory to
epidemics: Control measures for mycoplasma pneuminiae outbreaks. Emerging Infectious

Diseases, 9:204–210, 2003.

[151] Quentin Michard and Jean-Philippe Bouchaud. Theory of collective opinion shifts. The
European Physical Journal B — Condensed Matter and Complex Systems, 47:151–159,

2005.

[152] Olli S. Miettinen. Proportion of disease caused or prevented by a given exposure, trait or
intervention. American Journal of Epidemiology, 99:325–332, 1974.

[153] Bobby Milstein and Jack Homer. Background on systems dynamics simulation modeling,

with a summary of major public health studies. Syndemics Prevention Network, May 2006.
[154] Y. Mizuno, D. Wilkonson, S. Santibanez, C. Dawson Rose, A. Knowlton, K. Handley, M. N.

Gourevitch, and INSPIRE Team. Correlates of health care utilization among hiv-seropositive

injection drug users. AIDS Care, 18(5):417–425, 2006.
[155] John Morecroft and Stewart Robinson. Comparing discrete-event simulation and system

dynamics: modelling a fishery. In Proceedings of the 2006 Operational Research Society
Simulation Workshop, 28-29 March, 2006,, pages 137–148. UK Operational Research Soci-

ety, 2006.

[156] Oskar Morgenstern and John von Neumann. Theory of Games and Economic Behaviour.
Princeton University Press, 1944.

[157] N.R. Campbell M.R. Joffres and K. Tu B. Manns. Estimate of the benefits of a population-

based reduction in dietary sodium additives on hypertension and its related health care costs
in canada. Can J Cardiol, 6:437 – 443, 2007.

[158] P. Mullen. Waiting lists in the post review nhs. Health Service Management, 7(2):131 – 145,

1994.
[159] Mark Murray and Donald M. Berwick. Advanced Access: Reducing Waiting and Delays in

Primary Care. JAMA, 289(8):1035–1040, 2003.

[160] John F. Nash. Non-cooperative Games. PhD thesis, Princeton University, 1950.
[161] Vicente Navarro, Rodger Parker, and Kerr L. White. A stochastic and deterministic model

of medical care utilization. Health Services Research, 5(4):342 – 357, 1970.
[162] J. A. Nelder and R. Mead. A simplex method for function minimization. Comput. J., 7:308–

313, 1965.

[163] M. E. J. Newman. Spread of epidemic disease on networks. Phys. Rev. E, 66(1):16128 –
16139, 2002.

[164] M. E. J. Newman. The structure and function of complex networks. SIAM Review, 45(2):167
– 256, 2003.

[165] J. Nocedal and S. J. Wright. Numerical optimization. Springer Series in Operations Research

and Financial Engineering. Springer, New York, second edition, 2006.

[166] Tom Noseworhty. Top priority. Canadian Healthcare Manager, 11(6):43–44, 2004.
[167] Ted O’Donoghue and Matthew Rabin. Risky behavior among youths: Some issues from

behavioral economics. In Jon Gruber, editor, Risky Behavior Among Youths, pages 29–67.
University of Chicago Press, Chicago, 2001.

[168] Public Health Agency of Canada. Hiv/aids epi updates, november 2007. Technical report,

Surveillance and Risk Assessment Division, Centre for Infectious Disease Prevention and

Control, Public Health Agency of Canada, 2007.



204 BIBLIOGRAPHY

[169] Rogelio Oliva. Model structure analysis through graph theory: partition heuristics and

feedback structure decomposition. System Dynamics Review (Wiley), 20(4):313 – 336, 2004.

[170] Panel on Dietary Reference Intakes for Electrolytes and Standing Committee on the Scien-
tific Evaluation of Dietary Reference Intakes Water. Dietary Reference Intakes for Water,

Potassium, Sodium, Chloride, and Sulfate. National Academies Press, 2004.

[171] World Health Organization. Fact sheet number 297: cancer. Technical report, WHO, 2006.
[172] World Health Organization. Reducing salt intake in populations. Technical report, World

Health Organization, 2007. report of a WHO forum and technical meeting, 5-7 October

2006, Paris, France.
[173] A. Signhal P. W. Vaughan, E. M. Rogers and R. M. Swahele. Entertainment-education

and hiv/aids prevention: a field experiment in tanzania. Journal of Health Communication,

5(Supplement):81–100, 2000.
[174] Mari Palta, Ronald J Prineas, Reuben Berman, and Peter Hannan. Comparison of Self-

Reported and Measured Height and Weight. Am. J. Epidemiol., 115(2):223–230, 1982.
[175] Bernice A. Pescosolido. Beyond rational choice: The social dynamics of how people seek

help. American Journal of Sociology, 97:1096–1138, 1992.

[176] Carl V. Phillips. Quantifying and reporting uncertainty from systematic errors. Epidemiol-
ogy, 14(4):459–466, 2003.

[177] Carl V. Phillips. Publication bias in situ. BMC Medical Research Methodology, 4, 2004.

[178] Carl V. Phillips and Richard Zeckhauser. Communicating the health effects of consumer
products: The case of moderate alcohol consumption and coronary heart disease. Managerial

and Decision Economics, 17:459–470, 1996.

[179] K. A. Phillips, K. R. Morrison, R. Andersen, and L. A. Aday. Understanding the context of
healthcare utilization: assessing environmental and provider-related variables in the behav-

ioral model of utilization. Health Services Research, 33(3 Pt. 1):571 – 596, 1998.

[180] Paul E. Plsek and Trisha Greenhalgh. Complexity science: the challenge of complexity in
health care. British Medical Journal, 323:625–628, 2001.

[181] B. Pourbohloul, L. A. Meyers, D. M. Skowronski, M. Krajden, D. M. Patrick, and R. C.
Brunham. Modeling control strategies of respiratory pathogens. Emerging Infectious Dis-

eases, 11:1249–1256, 2005.

[182] Nicolaas P. Pronk, Michael J. Goodman, Patrick J. O’Connor, and Brian C. Martinson.
Relationship between modifiable health risks and short-term health care charges. Journal

of the American Medical Association, 282:2235–2239, 1999.

[183] H. N. Psaraftis. Dynamic vehicle routing problems. In B. L. Golden and A. A. Assad, editors,
Vehicle Routing: Methods and Studies, volume 16 of Studies in Management Science and

Systems, pages 223–248. North-Holland, Amsterdam, 1988.
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hysteresis. arXiv:cond-mat/0406320, 2005.
[198] S. Shechter. The optimal time to initiate HIV therapy. In INFORMS Optimization Society

Conference: Optimization and Health Care, San Antonio, Texas, February 3–5 2006.

[199] Brian Skyrms and Robin Pemantle. A dynamic model of social network formation. Proceed-
ings of the National Academy of Sciences, 97:9340–9346, 2000.

[200] Kaiser staff. Health care spending in the united states and OECD countries. online, http:

//www.kff.org/insurance/snapshot/index.cfm, 2007.
[201] Inc. StatSoft. Electronic statistics textbook. Technical report, StatSft, inc., Tulsa, OK, 1997.

[202] J. A. Stein, S. A. Fox, and P. J. Murata. The influence of ethnicity, socioeconomic status,

and psychological barriers on use of mammography. Journal of Health and Social Behaviour,
32:101–113, 1991.

[203] Ken Stein, J. Dalziel, Andrew Walker, B. Jenkins, Alison Round, and Pam Royle. Screen-

ing for hepatitis C in genito-urinary medicine clinics: a cost utility analysis. Journal of
Hepatology, 39(5):814–825, 2003.

[204] Andrew Steptoe and Jane Wardle. Health behaviour, risk awareness and emotional well-
being in students from eastern europe and western europe. Social Science & Medicine,

53(12):1621–1630, 2001.

[205] John D. Sterman. Learning from evidence in a complex world. American Journal of Public
Health, 96:505–514, 2006.

[206] Andrew Street and Stephen Duckett. Are waiting lists inevitable? Health Policy, 36(1):1–15,

1996.
[207] A. H. Studenmund and Henry J. Cassidy. Using Econometrics: A practical guide. Little,

Brown and Company, 1987.

[208] L. Tabár, B. Vitak, H-H. T. Chen, M-F. Yen, S. W. Duffy, and R. A. Smith. Beyond ran-
domized controlled trials: Organized mammographic screening substantially reduces breast

carcinoma mortality. Cancer, 91(9):1724–1731, 2001.

[209] Antuela Tako and Stewart Robinson. Towards an empirical comparison of discrete-event
simulation and system dynamics in the supply chain context. In S. Robinson J. Garnett,

S. Brailsford and S. Taylor, editors, Proceedings of the 2006 Operational Research Society
Simulation Workshop, 28-29 March, 2006. UK Operational Research Society, 2006.

[210] Y. W. Tan. First passage probability distributions in Markov models and the HIV incubation

distribution under treatment. Mathematical and Computer Modelling, 19(11):53–66, 1994.
[211] C. Tarrant, T. Stokes, and A. M. Colman. Models of the medical consultation: opportunities

and limitations of a game theory perspective. Quality and Safety in Health Care, 13:461 –
466, 2004.

[212] Gavin Turrell, Brian Oldenburg, Ingrid McGuffog, and Rebekah Dent. Socioeconomic de-

terminants of health: towards a national research program and a policy and intervention

agenda, 1999. School of Public Health, Queensland University of Technology.
[213] UNAIDS. Report on the global HIV/AIDS epidemic 2008: executive summary. Technical

report, Joint United Nations Program on HIV/AIDS, 2008.
[214] National Research Council (U.S.). Network Science. National Academy Press, Washington,

2005.

[215] M. Utley, S. Gallivan, T. Treasure, and O. Valencia. Analytical methods for calculating

the capacity required to operate an effective booked admissions policy for elective inpatient
services. Health Care Management Science, 6:97–104, 2003.



206 BIBLIOGRAPHY

[216] S. T. Vadaparampil, V. L. Champion, T. K. Miller, U. Menon, and C. S. Skinner. Using the

health belief model to examine differences in adherence to mammography among african-

american and caucasian women. Journal of Psychosocial Oncology, 21(4):59–79, 2005.
[217] Ann Van Ackere and Peter C. Smith. Towards a macro model of national health service

waiting lists. System Dynamics Review (Wiley), 15(3):225 – 252, 1999.

[218] A. van der Waall, A. Bakhtiari, B. Ramadanović, A. Rutherford, Y. Wang, and L. Vertesi.
Analysis and modelling of hip, knee and cataract surgeries in british columbia during 2001–

2008 on a health authority level. Report, The Complex Systems Modelling Group, IRMACS,

SFU, April, 2009. Prepared for the British Columbia Ministry of Health Services.
[219] F. Vanden Berghen and H. Bersini. CONDOR, a new parallel, constrained extension of Pow-

ell’s UOBYQA algorithm: experimental results and comparison with the DFO algorithm.

J. Comput. Appl. Math., 181(1):157–175, 2005.
[220] L. Vandenberghe and S. Boyd. Applications of semidefinite programming. In Proceedings

of the Stieltjes Workshop on High Performance Optimization Techniques (HPOPT ’96)
(Delft), volume 29, pages 283–299, 1999.

[221] Lieven Vandenberghe and Stephen Boyd. Semidefinite programming. SIAM Rev., 38(1):49–

95, 1996.
[222] Jan M. H. Vissers. Health care management modelling: a process perspective. Health Care

Management Science, 1(2):77 – 85, 1998.

[223] Adam Wagstaff. Econometric studies in health economics : A survey of the british literature.
Journal of Health Economics, 8:1–51, 1989.

[224] A. F. Widmer. Replace hand washing with use of a waterless alcohol hand rub? Clinical

Infectious Diseases, 31:136–143, 2000.
[225] Rainer Winkelmann. Econometric analysis of count data. Springer, 2003.

[226] E. F. Wolstenholme. Towards the definition and use of a core set of archetypal structures in

system dynamics. System Dynamics Review (Wiley), 19(1):7 – 26, 2003.
[227] Eric Wolstenholme. A patient flow perspective of u.k. health services: exploring the case

for new ”intermediate care” initiatives. System Dynamics Review (Wiley), 15(3):253 – 271,
1999.

[228] Eric Wolstenholme. Using generic system archetypes to support thinking and modelling.

System Dynamics Review (Wiley), 20(4):341 – 356, 2004.
[229] M. H. Wright. Direct search methods: once scorned, now respectable. In Numerical anal-

ysis 1995 (Dundee, 1995), volume 344 of Pitman Res. Notes Math. Ser., pages 191–208.

Longman, Harlow, 1996.
[230] Z. Yang, E. C. Norton, and S. C. Stearns. Longevity and health care expenditures: The real

reasons older people spend more. Journal of Gerontology, 58B(1):S2–S10, 2003.



Index

addiction, 116

analytic solution, 176

ant colony algorithm, 182

attractors, 92

attributable risk, 62, 64, 65, 81

average, see also central tendency

bell curve, see also

probability distribtuion, normal

black box, 15

blind clinical trial, 22, 26

branch and bound, 181

Brownian motion, 135

Bundle method, 179

calculus, 91

multivariate, 91

Canada Health Infoway, 24

cellular automata, 123

central limit theorem, 32, 50

central tendency, 29, 31

confidence interval, 30, 36, 39

confounding risk factors, 66

constraint set, 175, 177

continuous (model), see also
model, continuous

continuous simulation, see also
model, simulation

cost-containment, 18

cues to action, 97

data

cleaning, see also data, processing

cohort, 24

cross-sectional, 24

experimental, 21, 23

health record, 24

health record, 21, 23, 26

logitudinal, 24

panel, see also data, longitudinal

processing, 15

self-reported, 26

serial, see also data, time series

survey, 21, 23, 24

time series, 24

data analysis, see also
statistics, and statistical analysis

data collection, 14, 16, 45

data error, 24

experimenter bias, 26

false positive, 27

implementation, 26

interpretation, 27

non-sampling, 25

pooling datasets, 28

publication bias, 23, 27

response rate, 26

sampling, 25

storage, 26

survey design, 25

data quality, 24

degree of separation, 30, 31

demand-access-utilization chain, see also

influence diagram

descriptive statistics, see also statistics,

descriptive

differential equation, 91

discrete (model), see also model, discrete

discrete event simulation, see also

model, simulation

disease, definition, 8, 62

doctor-patient interaction, 17, 110, 113, 136

dominance (in game theory), 111

double blind, see also blind clinical trial

duality theory, 178

dual problem, 178

edge (in graph theory), 120, 121

directed, 121

weighted, 121

electronic health record, 24

endogenous, 102

epidemic model, 124

equidispersion, 36

equilibrium, 90, 92

evolutionary algorithm, 181

exact solution method, 180

exogenous, 102
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expected value, 34

explanatory variable, see also

predictor variable

feedback loop, 88, 96, 99, 148

flow, 146, 148

game theory, 107–109

Gauss-Markov theorem, 50

generalized impact fraction, see also
potential impact fraction

generalized linear regression, see also

regression, generalized linear

generalized method of moments, 55

genetic algorithm, see also

evolutionary algorithm

global minimum, 179

gradient function, 112

graph, 121

graph theory, 92, 119

healthcare demand

behavioural models, 17

global models, 18

operational models, 17

population models, 17

health outcome, 61–63, 66

health stock, 109, 113, 115

heuristics, 181

hierarchical linear model, 56

human capital model, 107, 108, 113

influence diagram, 96, 99, 100

integer program, see also
optimization problem, integer

integral equation, 91

intervention

education-based, 76, 78–80

policy-based, 75, 76, 78

primary versus secondary, 141

latent variables, 103

least squares, see also
ordinary least squares

lifetime utility function, 115

linear regression, 54

linear algebra, 91

linear function, 91

linear minimax problem, 112

linear program, see also
optimization problem, linear

linear regression, 57

link function, 52

local minimum, 179

logistic curve, 51, 54

logistic regression, see also

regression, logistic

Markov

assumption, 129, 131, 137, 139

chain, finite state, 130, 132, 136

chain, infinite state, 134

decision process, 135

order of model, 131, 133, 134

process, 134

semi-Markov process, 134, 135

state space, see also state space

maxi-min criterion, see also

mini-max criterion

maximum likelihood estimation, 52, 174

MDP, see also Markov, decision process

mean, 29, 31

median, 29, 31

mini-max criterion, 111

mode, 29, 31

model

behavioural, 95, 99, 100

conceptual, 14

continuous, 13

definition, 4, 8

deterministic, 13

discrete, 13

dynamic, 13

epidemiological risk, 63

guiding principles, 9

health belief, 95, 97, 101

hierarchical linear, 57

implementation, 93

Markov, 125, see also Markov, -

mathematical, see also

model, quantitative

mover-stayer, 140

multi-level, see also
model, hierarchical linear

network, 120

process, 10

psychosocial, 17

psychosocial risk, 75, 101

qualitative, 8, 11, 12, 88, 148

quantitative, 8, 12, 14, 88

queue, see also queueing theory

random field Ising, 125

simulation, 15, 93

continuous, 93

discrete event, 18, 93, 170

static, 13

statistical, 45

stochastic, 13

system dynamics, 121

types, 11

validation, 12, 15, 16

model function, 45, 47

mutually exclusive events, 33

Nash equilibrium, 107, 109, 114

network, 121

network theory, 119

Newton’s method, 179
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node (in graph theory), 120, 121

degree of, 121

normal distribution, see also
probability distribution, normal

normal linear regression, see also

regression, normal linear
numerical analysis, 16, 92

objective function, 173, 175
odds ratio, 62

online algorithm, 183

optimization, 16, 92, 173
optimal behaviour, 16

optimization problem, 174, 176

combinatorial, 180
continuous, 176, 177

differentiable convex, 178

differentiable non-convex, 179
discrete, 176, 180

dynamic, 182

integer, 180, 185
linear, 177, 183

nondifferentiable, 180
quadratic, 50, 178

scheduling, 183

semi-definite, 178
ordinary least squares, 49, 50, 174

overdispersion, 36

overfitting (a model), 69, 70

path, 120, 121

connected, 120, 121
patient-doctor interaction, see also

doctor-patient interaction

payoff function, 107, 109, 115
payoff table, 110

pdf, see also probability density function

perceived barriers, 97
perceived benefit, 97

perceived efficacy, 76, 78, 98

perceived risk, 76, 77, 81
perceived severity, 97

perceived susceptibility, 97

player (in game theory), 107, 110
potential impact fraction, 62, 63, 66, 72
predictor variable, 54
predictor variable, 45, 47, 49, 51, 52, 54
prevented fraction, 62–65

PREVENT model, 72
primal problem, 178

prisoner’s dilemma, 109, 113
probability, 29, 31, 32
probability density function, 34, 46
probability distribution, 30, 33

continuous, 34
empirical, 35
exponential, 35

finite, 34
multinomial, 35

negative binomial, 36

normal, 30, 32, 35, 50

Poisson, 34, 35

probability distribution function, see also
probability density function

psychosocial, see also
model, psychosocial risk

publication bias, 69

publication bias in situ, 69

quadratic program, see also
optimization problem, quadratic

queue, see also queueing theory

queueing theory, 12, 18, 159

arrival pattern, 160, 162

arrival rate, 166, 170

balking, 164

blocking, 18, 162

drop-off, 164, 170

equilibrium state, 161, 164, 166

impatience, 161

Jackson Network, 168

jockeying, 164

length, 161

multistage, 162

reneging, 164

server, 159, 162

service channel, 160, 162

service pattern, 160, 162

system capacity, 160, 162

traffic model, 159–161

wait time, 17, 159

queue discipline, 160, 163

first in first out (FIFO), 160, 170

last in first out (LIFO), 160

priority schema, 160

service in random order (SIRO), 160, 170

rational addiction theory, 116

recovery curve, 56

recovery rate, 56

regression

generalized linear, 49, 52

logistic, 48, 51, 52, 57

normal linear, 48–50, 52

regression analysis, 46, 47

regression coefficient, 49, 51

relative risk, 62–64, 67

representative agent, 108

response variable, 54

response variable, 45, 47, 49, 51, 52, 54

risk, definition, 8

risk ratio, 62

risk behaviour, 61, 76

risk factor, 47, 61, 63, 64, 69, 72

risk ratio, 81

scheduling problem, see also
optimization problem, scheduling
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self-efficacy, 98, 101

semi-definite program, see also

optimization problem, semi-definite
sensitivity analysis, 16

server, see also queueing theory, server

simulated annealing, 181
simulation, see also model, simulation

single blind, see also blind clinical trial

SIR model, 125, 129
six degrees of separation, 119

small-world property, see also

six degrees of separation
social interaction, 119, 122

social network, 17
standard deviation, 30, 31

standard error, 31, 37

state space, 130, 131
statistical analysis, 45, 91

statistical significance, 36

statistics, 29, 31
descriptive, 29–31

summary, 30

steepest descent, 178
stock, 146, 148

systems thinking, 145, 147

system dynamics, 145–148, 150

tabu search, 182

traffic models, see also queueing theory
transition matrix, 134

transition probability, 129, 131, 133, 134

transition rate, see also
transition probability

trend impact fraction, 72

triple blind, see also blind clinical trial

underdispersion, 36

utility function, 107, 108, 113, 116
expected lifetime, 115

validation, 46
variance, 31

vertex (in graph theory), 120, 121

waitlist, see also queueing theory

wait time, see also

queueing theory, wait time
Wiener process, 135

zero sum, 110
zero sum game, 112


