
Contents

1 The Whys, Whats, and Whens of Modelling in Healthcare 7
1.1 Why model in healthcare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 What is a Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 When to Use Modelling in Healthcare . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 How to Use this Book 11
2.1 The Language of Modellers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 The Modelling Process 15
3.1 Selecting a Modelling Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Qualitative Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Quantitative (Mathematical) Models . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Forming a Conceptual Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Data Collection, Processing, and Analysis . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Implementing and Validating the Model . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Applying the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.6 Revising the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.7 Example: Modelling Healthcare Demand . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.8 Related Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

I Data Collection and Interpretation 25

4 Issues of Data 27

Data Collection and Data Errors 27
4.1 Types of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Data Collection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.2 Serial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.3 Electronic Health Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Data Quality and Data Biases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.1 Sampling Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.2 Non-sampling Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.3 A final note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Related Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1



2 CONTENTS

5 The Basics 35

Descriptive Statistics and Distributions 35
5.1 Model Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Common Uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 Mathematical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3.1 Descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3.2 Basic Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.3 Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.4 Confidence Intervals, and Statistical Significance . . . . . . . . . . . . . . . . 40

5.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4.1 “9 out of 10 Doctors Agree” – Interpreting Descriptive Statistics . . . . . . . 41
5.4.2 EX-TWO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4.3 EX-THREE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.5 Related Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Predictions and Responses 45

Regression Analysis and Econometrics 45
6.1 Model Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Common Uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.3 Mathematical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3.1 Normal Linear Regression and Least Squares . . . . . . . . . . . . . . . . . . 49
6.3.2 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3.3 Generalized Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.4.1 An Artificial Regression between Work Environment and Toe Stubbing. . . . 53
6.4.2 Work, Wages, and Men’s Health . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.4.3 Recovery Curves for Post Surgery Physiotherapy . . . . . . . . . . . . . . . . 56

6.5 Chapter References and Related Reading . . . . . . . . . . . . . . . . . . . . . . . . 56

7 Evaluating Detrimental Behaviour 57

Epidemiological Risk Modelling 57
7.1 Model Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2 Common Uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.3 Model Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.3.1 Relative Risk, Attributable Risk and the Prevented Fraction . . . . . . . . . 59
7.3.2 The Potential Impact Fraction of an Intervention . . . . . . . . . . . . . . . . 62
7.3.3 Analysis using multiply risk factors . . . . . . . . . . . . . . . . . . . . . . . . 64

7.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.4.1 An Artificial Comparison between Chocolate Consumption and the Chicken-pox 64
7.4.2 Mistakes and Misuses of Risk Analysis . . . . . . . . . . . . . . . . . . . . . . 65
7.4.3 Prevent: A Computer Simulation for Computing Potential Impact Fractions . 65

7.5 Related Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8 Adjusting Risky Behaviour 69



CONTENTS 3

Psychosocial Risk Modelling 69
8.1 Model Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.2 Common Uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.3 Model Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.3.1 Perceived Risk and Perceived Efficacy . . . . . . . . . . . . . . . . . . . . . . 71
8.3.2 Education-based versus Policy-based interventions . . . . . . . . . . . . . . . 72

8.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.4.1 Tanzanian soap-operas and HIV: a success story. . . . . . . . . . . . . . . . . 73
8.4.2 Interpreting AR and RR: a dangerous game . . . . . . . . . . . . . . . . . . . 75
8.4.3 SAFE injections: a successful policy change . . . . . . . . . . . . . . . . . . . 75

8.5 Related Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

II Model Design and Interpretation 77

9 Issues in Mathematical Modelling 79

Model Selection, Development, and Implementation 79
9.1 Selecting a Modelling Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9.1.1 Feedback Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.2 Developing the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.3 Implementation of Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9.3.1 Mathematical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
9.3.2 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
9.3.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9.4 Related Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

10 Viewing the System as a Whole 87

System Dynamics and Systems Thinking 87
10.1 Model Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
10.2 Common Uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.3 Mathematical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

10.3.1 Systems Thinking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.3.2 System Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

10.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
10.4.1 Going Solid: The Danger of Lacking Wiggle Room . . . . . . . . . . . . . . . 92
10.4.2 EX-TWO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
10.4.3 Predicting Future Usage for Home and Community Care . . . . . . . . . . . . 93

10.5 Chapter References and Related Reading . . . . . . . . . . . . . . . . . . . . . . . . 93

11 Modelling Optimal Behaviour 95

Game Theory and Human Capital Models 95
11.1 Model Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
11.2 Common Uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
11.3 Mathematical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



4 CONTENTS

11.3.1 The Prisoner’s Dilemma, a Introduction to Game Theory . . . . . . . . . . . 97
11.3.2 Zero-sum Games and the Maxi-min Criterion Solution . . . . . . . . . . . . . 98
11.3.3 Human Capital Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

11.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
11.4.1 Doctor-Patient Relationships as a Prisoner’s Dilemma . . . . . . . . . . . . . 101
11.4.2 Adaptations of the Grossman Incorporating Family and Acceptance of Health

Decline into Human Capital Models . . . . . . . . . . . . . . . . . . . . . . . 102
11.4.3 Rational Addiction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

11.5 Chapter References and Related Reading . . . . . . . . . . . . . . . . . . . . . . . . 104

12 Explaining Irrational Behaviour 107

Psychosocial Modelling 107
12.1 Model Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
12.2 Common Uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
12.3 Model Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

12.3.1 The Health Belief Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
12.3.2 The Behavioural Model for Healthcare . . . . . . . . . . . . . . . . . . . . . . 111

12.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
12.4.1 The Impact of Self-Efficacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
12.4.2 Refining the Behavioural Model of Healthcare . . . . . . . . . . . . . . . . . . 114

12.5 Chapter References and Related Reading . . . . . . . . . . . . . . . . . . . . . . . . 114

13 Modelling Social Interaction 115

Network Models and Graph Theory 115
13.1 Model Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
13.2 Common Uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
13.3 Mathematical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
13.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

13.4.1 EX-ONE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
13.4.2 The Birthrate in Europe from 1950 to 2000 . . . . . . . . . . . . . . . . . . . 119
13.4.3 Control of Communicable Diseases in Healthcare Facilities . . . . . . . . . . . 121

13.5 Related Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

14 Dealing with Lines and Capacity 125

Queuing and Traffic Models 125
14.1 Model Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
14.2 Common Uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
14.3 Mathematical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

14.3.1 Building a Queueing model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
14.3.2 Analyzing a queueing model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

14.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
14.4.1 Washing dishes in the hospital cafeteria . . . . . . . . . . . . . . . . . . . . . 130
14.4.2 Hip and Knee Replacement Surgical Waitlist in British Columbia . . . . . . . 132
14.4.3 Interrelating Hospital Capacity across Departments . . . . . . . . . . . . . . 133



CONTENTS 5

14.5 Related Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

15 The Future Starts Now 137

Markov Models 137
15.1 Model Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
15.2 Common Uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
15.3 Mathematical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

15.3.1 Finite State Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
15.3.2 Higher Order Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
15.3.3 Testing the Markov Assumption . . . . . . . . . . . . . . . . . . . . . . . . . 139
15.3.4 Infinite State Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
15.3.5 Markov Processes and Semi-Markov Processes . . . . . . . . . . . . . . . . . 140

15.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
15.4.1 A Simple Doctor-Patient Loyalty . . . . . . . . . . . . . . . . . . . . . . . . . 141
15.4.2 Slowing the spread of HIV/AIDS via earlier treatment . . . . . . . . . . . . . 142
15.4.3 A Mover-Stayer Model for Problemic Drug Use: A Compartmental Markov

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
15.5 Related Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

16 Finding the “Best” Intervention 147

Optimization 147
16.1 Model Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
16.2 Common Uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
16.3 Mathematical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

16.3.1 Analytically Solvable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
16.3.2 Numerical Methods for Continuous Optimization Problems . . . . . . . . . . 150
16.3.3 Numerical Methods for Discrete Optimization Problems . . . . . . . . . . . . 152
16.3.4 Dynamic Optimization Problems . . . . . . . . . . . . . . . . . . . . . . . . . 154

16.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
16.4.1 Nurse Scheduling as a Linear Program . . . . . . . . . . . . . . . . . . . . . . 155
16.4.2 Shared Transportation Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 156
16.4.3 Dispatching Ambulance Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . 158

16.5 Related Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A Glossary 161

B Sources of Healthcare Data 173
B.1 The POHEM Population Health Model . . . . . . . . . . . . . . . . . . . . . . . . . 173

B.1.1 Lung Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
B.1.2 Breast Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
B.1.3 Colorectal Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

B.2 ARCHIMEDES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
B.3 MORBIDAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
B.4 Electronic Health Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
B.5 Survey Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181



6 CONTENTS

C Mathematical Programming Packages for Computers 183
C.1 Mathematical Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
C.2 Simluarion and Modelling Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Preface
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Chapter 1

The Whys, Whats, and Whens of
Modelling in Healthcare

All this will not be finished in the first one hundred days. Nor will it be finished in
the first thousand days, nor in the life of this administration, nor even perhaps in our
lifetime on this planet. But let us begin. John F. Kennedy (1917-1963)
A good model can advance fashion by ten years. Yves Saint-Laurent (1936-)

1.1 Why model in healthcare

XXX START WITH A HISTORY OF MODELLING AND WHY ITS SO COOL, 1 page
Once apon a time London was dying of cholera. Everybody thought it was the miasma which

spread the disease. But John Snow had a different theory. John Snow made a map of London and
noticed that the closer you were to the Broad Street Pump, the more likely you were to get sick.
He had the pump shut down, and the city was saved. This is a first example of epidemiological
modelling, and (in a way) network modeling in healthcare.

1.2 What is a Model

In todays world of pop culture the word model conjures images of beautiful people sporting the
latest fashions on the front of magazines. This book is not focused on how these people can help
in healthcare by posing for charity calendars. In this book the word “model” means a simplified
representation of a real world situation used to help answer a specific question. As the focus of this
book is modelling in healthcare, the situations and questions we discuss will always be those which
arise in the healthcare industry.

There are two important aspects in the definition of a model. First, models are designed to
answer specific questions. Models tend to answer the questions they are designed to answer, and as
such, designing a model with no particular question in mind often results in a model which provide
no insight into the situation it models. This may a useful exercise for a young academic student,
but for healthcare policy-maker the result is generally just a wasting of resources.

The second important aspect of a model is that it is a simplified representation of the real
situation. Consider the scientific endeavor of modelling a collection of building designs in order
to determine which stands up best in the event of a fire. One option would be to build the
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8 CHAPTER 1. THE WHYS, WHATS, AND WHENS OF MODELLING IN HEALTHCARE

entire collection of buildings and then burn them all down. Although this “model” would answer
the specific question, it would not save any resources in the process. Instead it would be more
reasonable to build small scale replicas of the buildings and burn them down in more controlled
environments. This would answer the question faster and more accurately as many more tests could
be preformed.

When simplifying the real situation for the proposes of modelling it is important to preserve
the properties of the system that are relevant to the question. For example, a model of an airplane
may take on many forms depending on the purpose it serves. To study the aerodynamic properties
of airplanes, a physical model preserving the shape of the airplane is built. To allow passengers to
select seats on a commercial flight, a graphical seating plan may be produced by the airline. The
latter model retains entirely different characteristics of the airplane than does the former.

This raises an interesting note on the distinction between detail and complexity in modelling.
The goal of modelling is to clarify concepts, but models attempting to reproduce a real situation
by introducing a large number of variables tend to accomplish the opposite. Models aim to expose
pertinent relationships between variables, but unnecessary information can conceal these. As such,
a good model has as low a complexity as possible while retaining the details necessary to approach
the specific question to model is designed to examine. In general, models with a focused question
and a limited number of conditions are more likely to be useful.

There are many different models which are applicable to solving questions in the field of health-
care, and there is no such thing as a unique “right” model for a given problem. In fact, in most
cases, more than one model discussed in this book is applicable in solving a single question. In
these cases different modelling methods are often complementary, with the best results obtained
through an approach that integrates multiple methods. In general, modelling is most convincing
when various different kinds of models lead to the same conclusion.

1.3 When to Use Modelling in Healthcare

Before we discuss the various aspects of healthcare which have been impacted by modelling, ex-
pectations of what models can deliver must be tempered. The main role of a model is to steer
decision-makers in the right direction. In most cases a model cannot give the “right” answer to a
question, but it can be a useful tool in characterizing the problem and finding ways to resolve them.
Furthermore, modellers (and decision-makers who examine modellers results) must always remain
aware of the various biases influencing personal opinions and experiences. Models should not be
blinded used, but validated both mathematically and by the solicitation of experts from the field
they are modelling. A model that is in contradiction of the real situation should be held in doubt
and its conclusions examined carefully.

Despite these limitations, modelling techniques stand posed to make a significant impact in the
field of healthcare. XXX talk about budget explosions and how modelling might help.

Some common problems which arise in healthcare and are approached by models discussed in
this book include:

• XXX list to be made later

• PROBLEM, type of models applicable (with chapter refs)

Modelling can be an invaluable tool to aid health care management, as long as it is used ap-
propriately with awareness of its limitations. It is most useful to think of modelling in health care
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not as a specific method, but rather as a process where modellers combine techniques and skills
in mathematics and computation with the specialised knowledge of health care experts to arrive
together at appropriate approaches to problems in health care.
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Chapter 2

How to Use this Book
author (-)

This book can be viewed and used in a number of different manners. Primarily it is an en-
cyclopedia of modelling techniques with an emphasis on how to apply them to current issues in
healthcare, however it could also be used as an introductory (undergraduate) text on the subject.
An excellent (undergraduate) thesis project would be to select a chapter from this book, read it
and its references, and then preform a literature search for new examples of the model’s application
in healthcare.

As an encyclopedia of modelling techniques, each chapter has been written to be entirely self-
contained. That is, any given chapter can be read without previous knowledge from any other
chapter. There are three chapters which focus on non-modelling issues, while the remaining chapters
each focus on one specific type of model. The three non-modelling chapters are:

• Chapter 1, which discusses modelling in healthcare as a whole,

• Chapter ??, which discusses the issues around collecting data for analysis, and

• Chapter 9, which discusses some general issues about constructing and analyzing models.

Each of the remaining chapters discusses one particular model that can be applied in the field of
healthcare. Each of these chapters is given a artistic title which provides some insight as to where
the modelled discussed might be used, and a scientific title which provides the standard naming for
the model the chapter examines.

Throughout the book one will
occasionally see margin notes, such as
this one. The propose of these is to
highlight information which should be of
interest to the reader.

In order to ease reading, the layout for each modelling chapter
is the same. Each modelling chapter is divided into five sections,
entitled: “Model Overview,” “Common Uses,” “Mathematical De-
tails,” “Examples,” and “Related Reading.” In the Model Overview
section we give a brief (usually one page) description of the model.
These Model Overview sections are written using no mathemati-
cal language and should be readable by anyone with a high-school
background in science. The next section, Common Uses, provides
a list of questions which the model is often used to approach. These lists are not complete, but
hopefully provide a strong idea of what kind of problems the model is capable of answering. In
the Mathematical Details sections we give a more detailed description and analysis of the model.
When possible we provide all the necessary scientific background to read these chapters (again the
reader is assume to have completed a high-school education), however in some cases the models are

11
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complicated enough that this is impossible. Sections which require more than a high-school level
background are:

• Section 15.3, Markov and Supply Chain Models, which requires an understanding of matrix
multiplication,

• XXX to be filled in later

In each of the Examples sections we provide two or three examples of how the model is applied in
practice. Often the first of these examples is an artificially created example designed to demon-
strate the model without burdening ourselves with the complications which arise in real examples.
The remaining examples are taken from actual applications of the modelling technique in health-
care. Some of these examples demonstrate successful uses of the model in healthcare, and others
demonstrate how the model can fail if it is used inappropriately. The final section of each modelling
chapter, Related Reading, provides details for each reference used in the chapter, as well as some
references which provide more detailed reading on the model discussed.

Regardless of the model discussed, the
“Model Overview” section is written
assume the reader has only a high-school
education.

This book also contains three appendices which should be of use
to the reader. The first is a comprehensive glossary of terms used in
the book. The second is a collection of data sources we have found
useful in our experience modelling the healthcare system. Most of
these data sources are freely available, perhaps requiring a brief e-
mail contact to initiate the data exchange. The final glossary is a
list, and review, of some of the modelling software that we have

come across during our research. This glossary can be quite technical at times, and is intended for
those who are interested in using software to producing models.

2.1 The Language of Modellers

The world of modelling and researchers whom work in it have existed for a long time. Over this
time a certain vocabulary has been built around the subject which may not be common outside of
it. As such, this book includes a glossary of terms (Appendix A) which should be of use to many
readers. We highly recommend using it whenever a “foreign” word presents itself. For now we
would like to highlight some words which are frequently used throughout this book and comment
on their meaning with regards to modelling in healthcare.

Quantitative Models: Models which the language and tools of mathematics to describe the
behaviour of a system. Such models make numerical predictions about how the real system
will behave.

Qualitative Models: Models designed to provide insight about why a given situation exists
and what are its driving factors. Such models do not provide numerical results pertaining to
a given situation.

Disease: any negative health effect. (This includes viral and bacterial infections, genetic
disorders, increased chances of accidents causing harm, etc...)

Model: a simplified representation of a real world situation used to help answer a specific
question.
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Risk (Factor): any action or situation, be it beneficial or detrimental, which effect the
probability of experiencing disease.

• XXX more added as necessary
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Chapter 3

The Modelling Process
I can’t work without a model. I won’t say I turn my back on nature ruthlessly in order
to turn a study into a picture, arranging the colours, enlarging and simplifying; but in
the matter of form I am too afraid of departing from the possible and the true. Vincent
van Gogh (1853-1890)
QUOTE 2 name (date-date)

From computing the optimal staff schedule for a hospital emergency room to exploring how
global airline industry impacts the spread of disease, models are now impacting almost every area of
the healthcare industry. Yet, to many healthcare policy makers, the development, tuning, testing,
validation, and eventual application of a model is considered a foreign art. In this Chapter we
provide a very broad stroke outline of the modelling process with specific emphasis on modelling
in healthcare.

It is impossible to provide an efficient step-by-step process for selecting, designing, tuning, and
applying an appropriate model to answer a given question. However, it is possible to outline some
guiding principles that can help modelling projects achieve good results, and to outline some general
steps that one should expect do during the modelling process. We begin with a quick overview of
some guiding principles to modelling.

Guiding Principles to Modelling

The question should be clearly defined: Models intended as “multi-purpose” tools that
start without a clear purpose generally end up without any clear conclusions. Conversely,
models designed with a clear purpose in mind, once validated, can generally be easily adapted
to other purposes.

Models should be simple and transparent: In building models, one of the most difficult
tasks is to select the relevant details. Once this relevant details are uncovered, the model
designed should be a simple as possible to incorporate these details.
On a related note, there are many software applications which may aid in modelling. Although
software can reduce the time involved in repetitive tasks, the modeller must still have a
thorough understanding of what the software (and subsequently the model) actually does.
Otherwise, it is easy for errors to arise in the model.

All assumptions should be clearly stated: All models are built on a set of assumptions,
some of which are testable, and others which are not. These assumptions must be clearly

15
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stated, and when possible tested. Assumptions which are not testable should be discussed
with experts from the field.

Variables and measures should be clearly defined: A quantative model is useless if
the result numeric is uninterpretable. As such the numerical variables and output measures
should be clearly stated for each specific model.

Use the best data available: Clearly, the quality of data imposes a limiting factor on the
quality of mathematical models. Although the model may be designed and tested with most
data, final implementation and results should always use the best quality data available.

Interpret result carefully: After a model is created and final results are obtained it is a
common mistake to over interpret the importance of the results. One of the most common
errors is to assume causality where only association is present. Most statistical models are
only capable of showing correlation between two events, not explaining the causality. (This
is discussed more in Chapter 5, and other common errors are discussed as they arise within
this book.)

In Figure 3.1 we provide our view of the modelling process. Notice it is a long process with many
“feed-back” loops. This suggests that in modelling any given problem, many initial approaches
to the problem will be unsuccessful. With practice and experience the number of unsuccessful
approaches tried will decrease, but one should never expect the first attempt to modelling a system
to work flawlessly.

XXX

Figure 3.1: Our View of the Modelling Process

In the remainder of this chapter we elaborate on each step of the modelling process. The chapter
ends with some references where one can learn more about the modelling process.

3.1 Selecting a Modelling Approach

Almost every question (be it health care related or not) can be solving in more than one manner.
Similarly, for most problems more than modelling approach is possible, and each will have advan-
tages and disadvantages. Therefore one of the first concerns a modeller will have to deal with is
selecting what modelling technique to apply. The conclusion of this will generally be driven by
many factors, including the type of data available, the nature of the situation to be modelled, and
the type of answer desired. In general, the most convincing results are obtained when multiply
modelling techniques are applied, and the results support each other.

Broadly speaking, modelling techniques fall into two categories: “Qualitative Models” and
“Quantitative Models”. We now discuss each of these in turn.

3.1.1 Qualitative Models

Many models in healthcare are not designed to provide specific numerical results pertaining to a
given situation, but instead are designed to provide insight about why a given situation exists and
what are its driving factors. Such models are generally referred to as Qualitative Models.
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Qualitative Models detailed in this book
include

• XXX list to be made later

• MODEL NAME, chapter ref,

Qualitative models come in many forms, sometimes they rely on
psychological analysis of a situation, while other models focus on
examining how various aspects of a company interact. However, all
qualitative models have the common factor that they do not attempt
to produce a quantified output as a solution to a problem. Instead,
they attempt to determine the factors which impact a given problem
in order to provide guidance on how the situation can be adjusted.

Consider for example the advertising industry and its continual
goal to convincing the public to spend their money. Over time some clear trends have developed.
More toy commercials appear near the Christmas holidays, and more weight loss commercials
shortly there after. The reasons for these trends may appear clear (people are interested in buying
gifts for their children before Christmas, and interested in fulfilling New Year’s resolutions of weight
loss after Christmas) but some very bright minds were involved in developing and answering the
question of when are people most susceptible to a given form of advertisement.

Similar ideas can easily be applied to the healthcare question of how to increase attendance at
blood banks, immunization clinics, and various other healthcare services which decrease the overall
burden on the healthcare budget. By developing a qualitative model of the factors which effect an
individual interactions with the healthcare system we can better understand why certain groups of
people are less likely to maintain a regular schedule of mammography. In understanding this we
can develop interventions which are better designed to solve the problem.

It should be noted that, statistical data is usually not the starting point of qualitative models
in healthcare. For this reason it is extremely important to validate qualitative models by the use
of scientific experiments. That is, before applying the results implied by a qualitative models, one
should always use quantitative modelling to confirm its validity.

3.1.2 Quantitative (Mathematical) Models

Many of the models described in this book use the language and tools of mathematics to describe
the behaviour of a system. In these cases the system is described by a set of variables and equations
that establish relationships between these variables. We refer to such models as Quantitative or
Mathematical Models.

Quantitative Models detailed in this
book include

• XXX list to be made later

• MODEL NAME, chapter ref,

Mathematical models come in many different forms, all sharing
the common feature of quantifying something. Typically, mathe-
matical models take an input of data and produce an output of
conclusions. Therefore, mathematical models can only be as good
as the data used.

It is instructive to consider a model of something as simple as a
queue in a bank. This demonstrates some interesting characteristics
of models and modelling. On the surface, a model of a bank line-up
is very simple, but even at this level surprising subtleties are revealed
in attempts to make a bank queue efficient or fair. In banks, usually a single queue of customers
served by several bank tellers. The assumption is that the “first come first served” principle is fair
and optimal in this case. In fact, whether the queue is fair depends on what is to be optimized. Are
we interested in having tellers work most efficiently, in order to increase productivity, or should we
optimise the time customers are waiting in line to maximize customer satisfaction? Perhaps some
combination of the two is of interest. Is a single queue equally fair to all customers in line? If all
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bank tellers are suddenly occupied by customers with complicated requests that take a long time to
resolve, the waiting time for those remaining in the queue should increase substantially compared
to customers served before the block occurred. Ultimately we are forced to conclude that there is
no such thing as a fair queue that is optimal in all circumstances and by every measure.

Clearly, even an apparently simple problem such as a bank queue masks a great deal of complex-
ity. This complexity increases manyfold in common situations encountered daily in the health care
system, such as a queue in an emergency department. The concerted operation of multiple health
care services, all relying on the same pool of resources, for example, can be even more complex.
One task of mathematical models is to make complex situations more manageable.

If a quantitative model is chosen the modeller must also make several further choices about the
modelling technique to be used. For example, should the model be

stochastic or deterministic: Stochastic models are models that incorporates random events
and behaviours. For example, prescriptions for a specific medication at a pharmacy are filled
at random times, although the average number of prescriptions may be constant over time.
Useful stochastic models allow for long term patterns and average properties to be determined.
Deterministic models are models where events proceed in a fixed and predictable fashion. As
a result, the same set of initial conditions will result in the same outcomes every time. Despite
this, deterministic models can exhibit extremely complicated behaviour, and are often useful
in studying how changes in one part of a system impact other parts of the system.

static or dynamic: A static model is model that provides a snapshot of the system at a
specific point in time. As such, static models do not allow for time to effect the variables of the
system. Making predictions based on such models is usually done via linear extrapolation, and
therefore limited in its accuracy. However, static models are often sufficient and generally easy
to construct. In contrast, indynamic models the state of variables changes with time. Because
of the time component, dynamic models can provide a representation of the evolution of the
system, which generally allows for more accurate predictive properties. However, dynamic
models are more difficult to design.

discrete or continuous: For each variable in the model, one must decide whether the vari-
ables is discrete or continuous. Discrete variables are variables which can only take values for
a list of possible values. The list may be finite (such as days of the week) or infinite (such as
the list of integers). Alternately, continuous variables are chosen from the real number line,
so any two values always have a third value in between them. Continuous variables may still
have upper an lower bounds (5 ≤ x < 7 for example), or may be unbounded (x ≥ 9). In most
cases what the variable represents will provide insight as to whether its discrete or continuous.
For example, the number of patients in a queue should be discrete, while the arrival rate of
patients into the queue should be continuous.
If a dynamic model is used, whether time is modelled discretely or continuously has a profound
impact on the model, its implementation, and the type of mathematics required to analysis
the model. It should also be noted that all computer simulation models proceed in discrete
time due to the digital nature of computation. However, the time step may be specified so
small that continuity is essentially preserved.
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3.2 Forming a Conceptual Model

Once a modelling approach is selected, the modeller next proceeds to forming a conceptual model of
the problem. This is a cognitive process of translating external events into internal models, similar
to what humans automatically engage in more or less every day in order to make sense of the world
around[1].

When a conceptual model is formed it becomes a theoretical construct that represents, often
visually, the processes, relationships, and variables considered to be important in a system. This
construct should be examined by experts in the area to determine a first level of validity. After all,
unless the experts believe the model it will remain unused regardless of its accuracy.

The conceptual model is both drives and is driven by which variables are considered important
in the system. Since which variables are considered important may change as data analysis is
preformed, one may have to reform the conceptual model several times before the modelling process
is complete. Moreover, in building the conceptual model, it may become clear that the chosen
modelling approach is not appropriate. Thus, one may have to select a new modelling approach in
order to develop the conceptual model into a usable model.

3.3 Data Collection, Processing, and Analysis

Throughout the modelling process, the modeller relies on data. For qualitative models data is used
to test and support the model, for quantitative models data is used to tune the model to allow for
predictions. Overall, data provides descriptive information about the system, and suggests which
variables should be considered important in the model. Examples of possible variables include the
demographic structure of a population, the transmission rate for a communicable disease, or the
rate at which surgical procedures are completed in a surgical waitlist.

Data Collection

The classic GIGO axiom of modelling stands for “Garbage In, Garbage Out”. What GIGO captures
is that a model is only as good as the data used to test and tune it. In some problems, the data
requirements are easy to define, and the data is easy to collect. For example, determining the future
distribution of population age groups can be easily accomplish by examining past age distributions
and extrapolating. Of course, birth rates, death rates, immigration rates and emigration rates all
have to be taken into account, but overall these data can be easily and accurately obtained.

Further discussion regarding the
collection and cleaning of data can be
found in Chapter ??. Discussion on
Statistical Analysis can be found in Part
I of this book.

However, in many problems in healthcare, data collection is a
limiting factor in model development and analysis. This is begin-
ning to change as computerized patient tracking is developed and
implemented, but even then the confidentiality issue causes data col-
lection to become troublesome. Ignoring the issue of patient confi-
dentiality, data collection in healthcare remains a resource-intensive
undertaking that often requires conducting surveys or population
studies. Such surveys can be extremely expensive and time con-
suming to complete, and even on completion the data may be corrupted by survey bias.
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Data Processing (Cleaning)

Ideally, data collection is carried out with a specific modelling problem in mind. This way, the right
kind of data can be collected to help solve the problem in question. In practice, information on
model variables is often extracted from data collected for another purpose. As a result, data may
be biased and contain errors or inaccuracies. Another potential problem in health care modelling
is that initially, the question may be too difficult to define. In this case, the modelling process
begins as an exploratory learning process, with a conceptual model of the problem as its result.
It may not be clear at the outset what data is appropriate for describing the system. In these
circumstances, extensive cleaning of the data is often necessary to improve quality. Data cleaning
involves checking for errors, identifying sources of bias, removing duplicates, and merging, linking,
or inputing databases.

Statistical Analysis

Once data of adequate quality is available, the next step is to study the system through statistical
analysis. Statistical Analysis may include the use of descriptive statistics (see Chapter 5), regression
analysis (see Chapter 6), or risk analysis (see Chapters 7 and 8), or some combination thereof.
(Many other forms of statistical analysis may also be employed, here we only list the forms detailed
in this book.)

The results of the analysis of the data is used to determine which variables are most important
for the problem, test a models validity, and tune a model for making predictions. Often statistical
analysis will inform the modeller that some of their basic assumptions about the system were wrong,
forcing the modeller to take a step backwards and form a new conceptual model for the problem.
This may occur when a modeller determines that a variable assumed to be insignificant is significant
or vice versa.

3.4 Implementing and Validating the Model

Once a model is specified, it has to be implemented in such a way as to produce predictions about
the system under study. Implementation may involve a computer or may proceed using more
analytical techniques.

Computer simulation is a software-based method of implementation. By simulating a system,
it is possible to find a model solution without understanding how the system actually works. In
this regard, simulation is often referred to as a black box; input and output are visible, but how
the output is generated is understood. There are both advantages and disadvantage to simulation
methods. On the one hand, even highly complicated problems can be captured in a simulated
model, without detailed knowledge of the mechanics of the system and without the requirement for
mathematical expertise on the part of the modeller. On the other hand, this lack of transparency
can mask logical errors in the model, often producing false conclusions.

Alternately, one may chose to approach a model via the collection of tools provided by mathemat-
ical analysis. If the modeller is able to described in terms of equations, then analytic or numerical
solutions may be sufficient to “solve” the model without the need for simulation. This provides
several strong advantages over simulation. For example, analytical methods produce exact repro-
ducible solutions without the need for expensive software. Furthermore, analytic methods often
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provide deep insights into the workings of a system. However, analytic solutions for complex mod-
els are often difficult or even impossible to achieve, especially if the modeller is not mathematical
by nature.

A third approach which lies somewhat between simulation and analysis is numerical analysis.
In numerical analysis, the modeller uses mathematical technique to develop equations to represent
the model and simplify these equation as far as possible. The modeller then turns to computers to
numerically approximate solutions to the equations. These technique retains some of the robust-
ness of mathematical analysis without requiring the modeller to have as strong of a mathematical
background.

One must never use the same data set
test the model as to tune the model.
Doing this only shows the model works
on the data set, because it was designed
to work on the data set.

After a model is completed (implemented) it has to be tested
for validity. Validation is carried out to substantiate that the model
performs with satisfactory accuracy within the domain of its ap-
plicability. The simplest test of validity of a model is to compare
the model output with actual data about the system. However, in
doing this one must be warned not to use the same data set test
the model as to tune the model. Doing so does not validate the
model, but only shows the model works on this data set, because
it was designed to work on this data set. In practice, there are many methods for validation of
models. For example, in one review, a taxonomy of 77 verification and validation techniques has
been compiled for conventional simulation models[2].

3.5 Applying the Model

Once a finalized model is tested, tuned, and implemented, it can be used to explore properties of
the system as described by the model. It should be reinforced that no matter how well tested, tuned,
and implemented a model is it can only examine the aspects of the system it is designed to study.
A seating chart of an airplane is the perfect model to allocated seats in an airplane, but no matter
how accurate it can never be used to test if the airplane will actually fly.

Exploring properties of the system can take many forms. For example, models do not usually
display equal sensitivity to all input parameters. Determining which parameters have the greatest
impact on the system can be useful in determine where to make interventions and where to focus
further data collection efforts (parameters which make little impact on the system do not have to be
quantified as accurately as parameters which have major impacts on the system). Analysis which
focuses on determining which parameters have the greatest impact on the system is generally called
sensitivity analysis.

Another popular use of a model is to determine some sort of optimal behaviour. For example,
if a health care ministry has a budget to hire only a fixed number of physicians, they may wish to
know the where to hire the physicians to achieve optimal patient care. In general optimization refers
to applying this type of question to the model. Often the question can be written as “what selection
of parameters minimize the cost such that the desired results occurs?” Finding the answers to such
questions has become a field in itself, and can be accomplished by a number of different means.
Chapters ?? and ?? of this book are devoted to some optimization problems in healthcare.
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3.6 Revising the Model

Here we come full circle and begin another modelling cycle. The modelling process is not merely a
search for a solution, but also a learning process. New knowledge about the system is incorporated
into new versions of the model.

3.7 Example: Modelling Healthcare Demand

Predicting the future demand for healthcare is of upmost importance to many healthcare policy-
makers for the purpose of setting budgets and developing future coping strategies. In this example
we use the question of modelling healthcare demand to demonstrate that one problem can be
approached by a plethora of different modelling techniques.

To do this we identify four groups of targeted models for healthcare demand, which we label:
Population Models, Behavioural Models, Operational Models and Global Models.

Population Models

Population models focus on the healthy population and explore ways to reduce the number of
individuals that become ill through disease prevention and health promotion interventions. Thus,
the output of these models is largely used to inform policy decisions on public health interventions
and prevention strategies.

One of the major focuses of population models is the growing rates of chronic diseases. Diseases
such as cardiovascular disease, diabetes and cancer are becoming of great worldwide. Data from
the United States indicate that preventable illness constitute approximately 70% of the burden of
illness and the associated costs. Preventable causes, such as cigarette smoking and obesity, represent
eight of the nine leading causes of death in the United States[4]. This represents a huge challenge
for finding ways to effectively promote lifestyle modification and prevent disease[3]. By reducing
the number of people advancing from the healthy population to the at risk population, the overall
demand for health care resources may be reduced.

Examples of population models in healthcare can be found in Examples XXX of this book.

Behavioural Models

Behavioural models address how people interact both with healthcare providers and their peers
to receive both expert and lay advice for managing their health. This is one of the main goals
of the psychosocial models described in Chapter 12. Behavioural models aim to understand the
social dynamics that contribute to fluctuations in service utilisation. Thus, like population models,
behavioural models can be used to ask how demand may be reduced before it is generated.

Patient-doctor interactions have been studied at the individual level using game theory[5][6][7]

(see Chapter 11). Social network theory has also been applied to understanding the important roles
that interactions with both peers and professionals play in determining healthcare demand[8] (see
Chapter 13 Example XXX). Further examples of behavioural models in healthcare can be found in
Examples XXX of this book.
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Operational Models

Operational models are concerned with finding the most efficient strategies for processing the preva-
lent level of service requests. Often these are highly focused models studying exactly one aspect of
healthcare. For example, models of staffing schemes and resource utilization within an emergency
department. Thus, unlike population and behavioural models, operational models seek to manage
demand as it arises, instead of trying to reduce demand before it is generated.

Operational models are most frequently applied within hospitals, clinics and other healthcare
facilities and measure demand in terms of wait times or blocked patients (patients who sought
healthcare but could not access it). Queueing theory (Chapter 14) and discrete event simulation
(Chapter ??) have been largely the method used for such problems, since random arrivals and
queueing heavily influence the demand for service. Another method that is becoming more common
in this field is system dynamics (Chapter 10). Examples of operational models in healthcare can
be found in Examples XXX of this book.

Global Models

Global models are complex system models that may incorporate any of the previous three types
in order to study how multiple components of a healthcare system interact. They focus on un-
derstanding how changing one aspect of the global healthcare system (such as improving access to
knee surgery) may effect demand in another aspect of the system (the requests for physiotherapy).
This helps policy-makers determine whether a change in the system will be positive or negative in
a global sense.

Cost-containment is perhaps the toughest problem facing the healthcare system. Health care
is absorbing a growing proportion of government budgets, but demographic explanations fail to
account for this growth. Considering the healthcare system as a complex dynamical system is a
potentially powerful means of analysing how a large number of components interact to produce
unexpected outcomes. For example, an improvement in healthcare delivery in a specific setting
may be accomplished by pulling resources from another setting. Disruptions of this type may result
in excess demand and growing costs as a consequence of a large number of nonlinear interactions
and feedback loops.

Modelling at the global level is not simple, and much work remains to be done in this area. Re-
cently, global models have often been implemented in terms of system dynamics (Chapter 10)[9][10].
Examples of operational models in healthcare can be found in Examples XXX of this book.

3.8 Related Reading

For another description of the modelling process see [11].
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Chapter 4

Issues of Data
He used statistics as a drunken man uses lampposts; for support rather than illumina-
tion. Andrew Lang (1844 1912)
There are two kinds of statistics, the kind you look up, and the kind you make up. Rex
Stout (1886-1975)

Data Collection and Data Errors
Regardless of what one is modelling, or what modelling technique one is applying, at some level

every model should be grounded in reality. Sometimes this grounding in reality comes from consul-
tation with experts in the field, or from logical deductions on how things work. More commonly,
this grounding in reality is established by performing some form of experiment or data collection
regarding the system of interest. The collection (or experimental creation) of good data is an
extremely difficult task in healthcare.

In some aspects of healthcare, such as drug testing, data can be created in a “controlled”
scientific manner, however in the vast majority of situations data must be collected from historical
events. Even in the case of controlled drug testing, tests can easily miss side effects which are slow
in arising. This makes data collection in healthcare an extremely difficult task, which in turn makes
grounding a healthcare model in reality a challenging task.

In this chapter we discuss possible methods for collecting data, and some of the error which can
arise in data collection. We begin with some terminology to describe different types of data.

4.1 Types of Data

When dealing with the data aspect of modelling it is often useful to be able to describe when, how,
and where the data was collected in a concise manner. In this regards it is useful to provide some
terminology on these concepts.

4.1.1 Data Collection Methods

The question of how the data was acquired is of key importance in determining the quality of
the data. In the field of healthcare one generally finds that there are three common methods for
collecting data: experiments, health records, and surveys. Table ?? summarizes the differences of
each of these types of data and highlights some advantages and disadvantages of each. Following
this we discuss each data type is more detail.
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Data Type Advantages Disadvantages
Experimental Data collected through blind

clinical trials.
- accurate and re-
producible

- highly expensive in
time and money
- unethical or imprac-
tical in many cases

Health Records Data collected by health-
care providers detailing when,
where, and how patients ac-
cess the health care system.

- accurate and
contains technical
health information

- generally does not
contain information on
personal health habits
- biased against indi-
viduals who have not
used the system

Survey Data collected by contacting
participants and requesting
that they report the answers
to certain questions.

- relatively quick
and easy to collect
- can be tailored to
answer any desired
question

- contains the highest
room for error

Table 4.1: Three common methods for collecting data, and the advantages and disadvantages of each.

Experimental data

The least common, but most reliable, source of data is data which is generated via scientific ex-
periments. By scientific experiments we refer to experiments which hold to the scientific principle
of reproducibility. That is, the experiment can be repeated in a different time and place with the
same (approximate) results, provided the key factors remain constant.

In physics or chemistry this may be a very achievable goal, however in the field of healthcare
this reproducibility is extremely difficult to achieve. The problem lies in the fact that key factors
in healthcare often hinge around how a single person reacts. Since no two groups of people are the
same, expecting the same outcome from different groups of people is overly optimistic. Nonetheless,
some experimental data exists. Most of this data is created in the form of single blind, double blind,
and triple blind clinical testing.

The idea in a blind clinical test is to give a random group of people either a drug or a placebo
pill. The goal is to test if the drug has an effect that the placebo does not. The subjects given
the drug are termed the experimental group and the subjects given the placebo pill are termed the
control group. The level of blindness is as follows:

single: the subjects are unaware if they are in the experimental or control group.

double: neither the subjects nor the experiment administrators are aware of who is in the
experimental or control groups.

triple: neither the subject, the experiment administrators, not the statisticians who analyze
the data are aware of who is the in experimental or control groups. Although the statisticians
are told whether a subject is group A or group B, they are not told whether A or B is the
control group.
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Generally, if nine double blind tests show
no correlation between a risk factor and
a disease, but one double blind test
shows a correlation, only the one
“interesting” test will become public.

In most drug testing situations double blind tests are considered
the minimal acceptable level of experimentation to produce accu-
rate results. However, even results of double blind tests can be
skewed by experimental error. We discuss this further, and some
if its implications, in Section 4.2. In particular it should be noted
that only experiments which produce “interesting” results tend to
get published, so if 9 double blind tests show no correlation between
a certain drug and disease, but 1 double blind test shows a correlation, most people only see the
one test which shows a correlation.

Even with this problem, experimental data is generally considered the best possible source of
data for modelling research. However, for a variety of reasons experimental data is seldom collected.
One of the more compelling reasons for avoiding experimental data is often the hypothesis one wishes
to test is that a certain object is a risk factor to health. Ethically one cannot intentionally submit
a collection of people to something that one believes will cause those people harm. (Imagine, for
example, performing a double blind test to determine if smoking cigarettes with a filter is less
harmful than smoking cigarettes with a filter.)

Two other strong reasons for avoiding experimental data is the high cost of performing the
experiment and the long time the experiment would require. In healthcare the costs of experiment
data come from paying the participants, supplying the drug, supplying the test environment, and
supplying the necessary expertise to ensure the experiment is performed safely. These costs very
quickly add up to staggering numbers. Moreover, in healthcare the time require to perform proper
experimental tests is often highly impractical. When researching in terms of health time scales are
generally considered in terms of life times, or at least years. For example, although theoretically
one could create an experiment which tests how the consumption a vitamin supplement pill alters
the probability of participants catching the flu, however the experiment would have to be run in a
controlled environment for years before completion. This is clearly impractical.

Finally, in many cases in healthcare the factors one wishes to collect data on cannot be altered
in an experimental manner. A prime example of this is a participants socioeconomic status. Clearly
an experimenter cannot provide a participant with a fixed income for the period of a lifetime to
determine how this impacts their health.

Health Records and Survey Data

Given the difficultly in generating experimental data, healthcare research generally relies on other
sources of data from which to draw its conclusions. Currently there are two common sources outside
of experimental data, health records and survey data.

Health records and survey data both work on the principle that historical trends provide a
naturally formed experiment. The difference lies in how the historical data is collected. Health
record data refers to data that is maintained by healthcare providers regarding when, how, and
why individuals access given points of the healthcare system, while survey data is data is collected
by contacting participants and requesting that they report the answers to certain questions through
interviews or questionnaires.

Since health records are collected and maintained by health professionals, the data is often accu-
rate and contains important health facts that the average individual cannot understand. However,
health record data seldom contains information on individuals personal habits, such as the fre-
quency with which a person exercises. Another difficulty with health record data is it only involves
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individuals whom have actually used the healthcare system, while healthy individuals are unseen.
Survey data can get around both of these problems, as anyone can be requested to participant

and any question can be asked. However, survey data has often been critiqued as inaccurate as
participants tend to over emphasis their “good” traits and under emphasis their “bad” traits. For
example, it is widely accepted that the self-reported mass of an individual is usually lower than the
actual mass of an individual XXX Cite. This is enhanced as an individual mass becomes farther
from the norm.

Survey data can be collected in a variety of manners. Telephone surveys, mail in survey, and
more recently web-based surveys are all common practice. Each method has advantages and dis-
advantages. We refer interested readers to XXX for further information.

4.1.2 Serial Data

In many cases, one wishes to examine how time is changing certain factors in a community. To
do this, data must be collected at a series of points in time. Such data is called serial data or
time-series data.

Serial data may be collected in either a cross-sectional or longitudinal manner. In cross-sectional
data a new collection of individuals is surveyed at each point in time1. This provides a series of
“snapshots” of the population in various points in time and therefore provides some insight as
to how the population dynamics are changing over time. In longitudinal data (sometimes called
panel data) the same collection of individual is survey at each point in time. This type of data is
considerable harder to collect (as people must be recontacted several times over many years), but
provides a higher level of insight into a population. Specifically, longitudinal data allows researchers
to study how an individual changes over time. (This type of data is necessary to properly tune
some models.)

In serial data one separates the participants into a collection of cohorts. A cohort is a group
of individuals from a given population that are defined by experiencing an common event in a
particular time span. In healthcare the most common manner of grouping cohorts is by year of
birth, however one might define cohorts by the year a mother gave birth (to examine changes in
the impact of child birth on health) or the year of an individuals first entry into residential care (to
study changes in the expected life-span of individuals in residential care).

A cohort is a group of individuals from a
given population that are defined by
experiencing an common event (typically
birth) in a particular time span.

In health record data, patients are generally given a “health num-
ber” when they first access the system (or when they first enter the
country). This allows for longitudinal data to be easily abstracted
from health records.

4.1.3 Electronic Health Records

Electronic health records are one of the keys to modernising the
health system and improving access and outcomes[? ]. As electronic

health records become implemented, high quality comprehensive data sets will become more and
more readily available.

In Canada, a drive for standardisation of electronic health records is being headed by the Canada
Health Infoway. Standardised health records will automatically ensure that any data originating

1Occasional the term cross-sectional data is used to refer to data which is not serial data. This can be though of
as the degenerate case where the series of points in time consists of only one point.
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from electronic health records will be of high quality. This has the potential to bring tremen-
dous benefits to studies employing mathematical modelling and health data analyses. For more
information on the Canada Health Infoway see Appendix B Section ??.

4.2 Data Quality and Data Biases

The accuracy of a data sources is often a major concern. Data errors can be broadly grouped into
two categories: sampling errors and non-sampling errors.

4.2.1 Sampling Errors

Sampling errors are errors that arise from estimating a population characteristic by looking at only
one portion of the population rather than the entire population. That is, sampling errors are errors
that result from a poor selection of the representative sample. For example, suppose one is collecting
data on how reading is related to health. To do this one sets up a survey at the local library which
asks patrons to state how many books they read each month and how they perceive their health
status. On the surface this seems fine, but digging a touch deeper one realizes that this data set
would consist of a very biased sample. The major flaw is that anyone who does not read would not
go to the local library and therefore would be ignored in the study. Moreover, people who find it
difficult to get to the library will be under represented, this quite likely would include the portion
of the population which has lower than average health status.

Even when a “good” selection of the representative sample is considered, it usually contains
sampling errors of some form or another. For example, the selection of random phone numbers
from a telephone book will result in ignore the unlisted portion of a population. Random door to
door surveying will result in a bias towards people who are home more often. And regardless of
sample selection one will always be biased towards people whom are more open and therefore more
likely to respond to surveys. This final point is side-stepped with the use of health record data, but
health record data is biased towards people who have accessed healthcare.

To avoid representative sample bias one should always try to obtain as large a sample as possible.
One should also include demographical statistics in the data, and use these statistics to ensure that
a good representative sample is selected. For example, if a data set has a significantly skewed
gender ratio then one should be careful to normalize the data with respect to gender before using
it. Fortunately there is a large collection of literature on how to detect and deal with sampling
error CITES; unfortunately, there is very little research on how to prevent it.

4.2.2 Non-sampling Errors

Non-sampling errors are errors which result from reasons other than poor representative samples.
These errors include poor survey design, poor survey or experiment implementation, and poor data
storage.

Survey Design Errors

Whenever one creates a data set through a survey, one runs the risk on a poorly designed survey
skewing the results. For example consider the following questions:

• Do you read at least two books a month?
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• On average how books do you read in a month?

• How many books did you read last month? and

• What books did you read last month?

All three of the above questions essentially measure the same thing. However, the differ phrasing
may led respondents to answer in very different manners. In the first question a respondent may
be led to believe that reading at least two books a month is the correct answer and therefore lean
towards answering yes (even if they only read one and a half books a month). In the second the
respondent is no longer led to believe 2 is correct, but may still tend to answer with a higher number
than true. Moreover, when respondents are asked for answers of which they are unsure they tend
to estimate and round to nice numbers. For example a person is highly unlikely to answer 1.5 to
the second question, even though that may be closer to the actually average number of books they
read each month. The third and fourth question are better, in that respondents will more likely
answer truly, but cause problems in sampling error as people may read more books in July than in
February. Moreover, it is unclear if you must have started reading the book, finished reading the
book, or both during the given month for the book to count.

As complicated as this seems, it gets worse. For example in [? ] it was found that survey
results depended on the order in which the questions were asked, and that that there are differences
between the way that people respond to written surveys versus oral surveys. The reasons for this
have been attributed to people “learning” about themselves through the course of the questionnaire,
and people being more candid about sensitive questions in an written surveys.

Survey and Experiment Implementation Errors

One of the strongest concerns with survey data is that the vast majority of it is self-reported. That
is, the respondent is asked a question and the answer is recorded without any effort to verify that
the correct answer is given. In general self-reported data tends to over emphasis what society
considers good. For example, self reported weight tends to be lower than actual weight, and self
reported height tends to be higher than actual height CITE. Similarly people tend to under report
their role in illegal activities (such as drug use) and over report their role in XXX CITES.

Self-reported health status is often
considered to be a more important
determinant of health care utilization
than actual health status.

It should be noted that, in some cases self-reported data is
more important than scientifically accurate date. For example, self-
reported health status (and not actual health status) is often con-
sidered to be an important determinant of health care utilization.

Another challenge in implementing surveys is the characteristic
low response rate. In practice most surveys receive response rates of
less than 50% and many less than 25%. To combat this marketing

firms have developed various methods to increase response rates within a survey. Some simple
suggestions include:

• keep the survey brief,

• provide a incentive (the respondent receives cash, gifts, entry to a lottery, etc... for completing
the survey),

• guarantee anonymity, and
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• explaining to potential respondents how the survey can help society.

Many more nefarious, and sometimes dishonest, techniques for improving survey response rates
exists, but we leave those for curious readers and marketing firms to research themselves.

One of the greater problems resulting from low response rates in surveys is interviewer frustra-
tion. If respondents are being slow to understand or answer certain questions the interview may
begin to skip this question, or led the respondent a to answer. Note that, this is not necessarily
a sign of a corrupt interviewer attempting to fix a survey, but is often an honest interviewer just
trying to be helpful.

In terms of experimentation implementation errors, the most common error is the result of an
experimenter biasing the results due to not being blind to the participants status. This is best
corrected by performing double or triple blind experiments.

Data Storage Errors

From the above discussion it may appear that survey data is highly unreliable and whenever possible
health record data should be used. However health record data can also have major errors in its
collection. Most common is the fact that the health record data must be recorded by a human.
Aside from the random typos that all humans are likely to produce, there is the tendency for health
record data to over emphasis the positive results of an institute. For example, health record data
on waitlists is generally computed by the difference in the time a person entered the wait list to the
time they exited the waitlist. Patients who do not exit the waitlist are therefore excluded from the
calculations, which skews the data.

Another problem is much of the health record data for hospitals is inputed by nurses who have
other duties. When hospitals are busy the other duties take precedence and the data is not entered.
Later it may be found that some data gets lost by the time the nurse has enough free time to enter
data. Thus data accuracy is only assured if data inputers are given sufficient and appropriate times
to enter data.

4.2.3 A final note

In spite of the difficulties in collecting accurate data, whether it be experimental, health records
or survey data, it is highly important to ground every model is reality. In general, if the data set
is kept large, and some care is taken to ensure it is a representative sample of the population then
data is an excellent manner of doing this.

Finally, some researchers attempt to increase the size of their data sets by pooling data from
various surveys or experiments. Studies based on pooling of data should be questioned, because of
the difficulty in controlling for the varying biases within the dataset.

4.3 Related Reading

Building on Values, Report of the Romonow Commission on the Future of Health Care in Canada, p. 77
(2002).

Surveys of self-reported health status are commonly used to assess correlations between socioeconomic
status and health. However, this raises the important question, “Is there a correlation between socioeco-
nomic status and how people assess their health?” If there were such a correlation, then it would introduce
a bias into surveys of this nature. This question was addressed in ? ]. They compared the results of a health



34 CHAPTER 4. ISSUES OF DATA

status survey with mortality data in the Swedish Survey of Living Conditions for 1975–1997. They did not
find a strong correlation between socioeconomic status and self-reported health status. Therefore, prop-
erly conducted surveys of self-reported health status are generally valid as a measure of the link between
socioeconomic status and health.

Mention appendix on data sources

Mention Phillips work on errors in epi.



Chapter 5

The Basics
Smoking is one of the leading causes of statistics. Fletcher Knebel (1911-1993)
Statistically, the probability of any of us being here is so small that you’d think the mere
fact of existing would keep us all in contented dazzlement of surprise. Lewis Thomas
(1913-1993)

Descriptive Statistics and Distributions

5.1 Model Overview

In mathematics, the fields of statistics and probability are intimately intertwined.
Descriptive stats, mean, median, mode
Types of distributions, important to pick well.
Confidence intervals
As mentioned, it is also common for descriptive statistics to take the form of charts and graphs.

Typically these are clear and easy to interpret, but occasionally a “researcher” will intentionally
display the data in a misleading manner. (Some examples of this are given in Subsection 5.4.1.)
Policy-makers should be careful in interpreting graphs, and question any conclusions which are not
clearly supported.

5.2 Common Uses

At some level statistics are used in almost every form of modelling. Any time a researcher collects
data, they usually provide some level of descriptive statistics. Descriptive statistics are perfect for
answering quick, trivia like questions such as,

• What is the most common age for an individual to take up smoking?

• What percentage of the population was obese in 1975, 1985, 1995, and 2005? and

• What is the mean age for a women to first experience breast cancer?

To answer questions which are more general than these one should turn to one of the more advanced
forms of statistics discussed in Chapters 7 and 8.
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Any time a model involves random events, a researcher must select an appropriate distribution
to describe how the random events are selected. Models which involve random events, and therefore
probability distributions, can be found in XXX (chapter list).

5.3 Mathematical Details

In mathematics, the fields of statistics and probability are intimately intertwined. We begin this
section with a discussion on the standard techniques used to summarize statistical data. Then, in
order to discuss the mathematics of confidence interval we next review basic probability theory and
develop the ideas of probability distributions. We end with a discussion on confidence intervals and
statistical significance.

5.3.1 Descriptive statistics

In order to provide an “at-a-glance” summary of data, most researchers will at some point rely on
descriptive statistics. Often descriptive statistics are simple, commonly understood values which
give the reader a sense of the data’s central tendency and degree of separation. In other cases,
researchers rely of charts and graphs to help describe the data.

The phrase central tendency refers to descriptions of the data’s most likely, or most commonly
occurring outcomes. That is, if a random data sample was chosen, what type of value would one
expect to see. The three most common measures of central tendency are mean, median, and mode.
Given a data set {x1, x2, x3, . . . xN} the mean of the data is often denoted by x̄ or µ and is defined
by the well known formula µ = (x1 + x2 + . . . + xN )/N. Thus the mathematical word “mean”
corresponds to what is commonly refereed to as the average. To compute the median we begin by
sorting the data: x1 ≤ x2 ≤ x3 ≤ . . . ≤ xN , and then simply use data element xN/2. In the case
where N/2 is not an integer, we use the mean of data elements x(N−1)/2 and x(N+1)/2. Finally,
the mode of the data is the most commonly occurring element. If the most commonly occurring
element is not unique, the data is said to have multiply modes.

The phrase degree of separation refers to descriptions of how close the average data element is
to the central tendency. If the central tendency of mode is employed this is best done by simply
stating what portion of the data elements agree. If mean or median is used, then one often provides
the variance or standard deviation of the data. For a given data set {x1, x2, x3, . . . xN} the variance
is denoted by σ2 and defined by

σ2 = (
N∑

i=1

(xi − µ)2)/N,

where µ is the mean of the data. The standard deviation is then denoted by σ and is the square
root of the variance, (hence the σ2 in the definition of the variance).

Occasionally, some researchers will also provide a measure referred to as the standard error of
the mean. This is defined as the square root of the variance divided by the sample size (σ/

√
n).

This measure is useful for building confidence intervals, but should not be used as a descriptive
statistic.

To interpret standard deviation (or variance) we rely on the “Central Limit Theorem.” Loosely
the central limit theorem states that if the sample size is big and the data is selected from a
consistent random distribution, then the result is a normal distribution. The normal distribution
is formally defined in Subsection 5.3.3, for now it suffices to say the consequence of this is that,
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approximately 68% of the time the random variable will lie within one standard deviation of the
mean, and 95% of the time it will lie within two standard deviations.

As mentioned, it is also common for descriptive statistics to take the form of charts and graphs.
Typically these are clear and easy to interpret, but occasionally a “researcher” will intentionally
display the data in a misleading manner. (Some examples of this are given in Subsection 5.4.1.)
Policy-makers should be careful in interpreting graphs, and question any conclusions which are not
clearly supported.

5.3.2 Basic Probability

The probability of an event E is denoted Pr(E) and defined as the number of ways the event can
occur divided by the number of possible outcomes,

Pr(E) =
# of ways E occurs

# of possible outcomes
.

The probability of an event E given a known set of factors F is the number of ways the event can
occur given the factors divided by the number of possible outcomes where the factors are present,

Pr(E|F ) =
# of ways E occurs given F is present

# of possible outcomes where F is present
.

These two definitions form the basis of probability theory in mathematics, while the remainder of
the theory is largely focused on how to determine the number of ways events can occurs with or
without certain factors present.

A classical example is the rolling of a pair of 6 sided dice and then examining the sum of the
numbers produced. To simplify discussion let us paint the first die green and the second die red.
The green die can take on any one of six possible outcomes, the red die can do the same. As such
the total number of possible outcomes is 36. These outcomes are listed in Table 5.1.

Green Die ⇒ 1 2 3 4 5 6
Red Die

⇓
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

Table 5.1: Possible outcomes for the sum of two rolled dice

From Table 5.1 we can easily count to see there are 6 ways a sum of 7. Therefore the probability
of totally 7 is

Pr(total = 7) =
6
36

.
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Similarly we can see the probability of totally 5, 6, or 9 to be

Pr(total = 5) =
4
36

, Pr(total = 6) =
5
36

, Pr(total = 9) =
4
36

.

Notice that the probability of totally 5 is equal to the probability of totally 9, these means both of
these events are equally likely to occur.

The study of probability is largely
attributed to Blaise Pascal, who is
rumoured to have developed it for the
purpose of winning at games of dice.

From the table we may also compute the probability of totally 5
given that the green die rolls a 4. Notice since the green die is fixed
at 4 there are now only 6 possible outcomes, one of which is a total
of 5. Thus,

Pr(total = 5|green = 4) =
1
6
.

Similarly we find

Pr(total = 7|red = 3) =
1
6
, Pr(total = 5|green = 5) =

0
6
, Pr(total = 12|total ≥ 9) =

1
10

.

Notice, in some cases (such as Pr(total = 5|green = 5)) probability can be 0. When this occurs we
say the event and factors are mutually exclusive, that is the event cannot occur given the factors
listed.

In the case of rolling two dice the probabilities were simple enough to work out by writing out
the entire table of possible events. In most cases this is not true (consider for example rolling 3
dice, 4 dice, 10 dice, etc...). Instead researchers rely on the well developed fields of combinatorics
and probability. Although these are beyond the scope of this book, we will take a brief look at
probability distributions.

5.3.3 Probability Distributions

In the previous Subsection we discussed a simple example of a random event, rolling a pair of dice.
In this example we were able to develop a table (Table 5.1) which described all the possible outcomes
for rolling the dice. Using this table we are able to determine the complete list of outcomes and
there probabilities. We present this in Table 5.2.

x 2 3 4 5 6 7 8 9 10 11 12
Pr(total = x) 1

36
2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

Table 5.2: Possible outcomes for the sum of two rolled dice

Table 5.2 represents what is called a probability distribution. Specifically, if the event E takes on
a finite number of values then the function f(x) = P (E = x) is the finite probability distribution for
the event E. Finite probability distributions have a number of distinctive properties. For example,
since each value is a probability we have 0 ≤ f(x) ≤ 1 for all x. And, since the sum of f(x) over
all x represents the probability of some event occurring we have

∑
x f(x) = 1.

Probability distributions also allow us to compute the expected value of a random variable. This
is, as the name suggests, the value that is expected to occur on average if the distribution is sampled
from repeatedly. More mathematically, if n random variables are selected from a given probability
distribution, then the mean of these values should approach the expected value of the distribution
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as n grows to infinity. The expected value for a finite probability distribution can be computed
from the formula E(X) =

∑
x xf(x).

Although finite probability distributions are simple to understand, they are not practical in
many situations. For example, if we consider the random variable of an individuals mass, it is
clear that there is not a finite number of options. (True, one could make a finite number of
options by restricting mass to the nearest kilogram, but realistically an individual can be 70kg,
70.5kg, 70.00343kg, etc...). To deal with random numbers which can take on any value, continuous
distributions are used.

Unlike finite distributions, continuous distributions cannot take the form of a function. (Con-
sider, if x can take on an infinite number of values, then the properties f(x) ≥ 0 for all x and∑

x f(x) = 1 will be very difficult to achieve.) Instead we use what is referred to as a probability
density function. A function f is is a probability density function (pdf) for a continuous distribu-
tion if Pr(y0 < E < y1) =

∫ y1

y0
f(x)dx. What this means is that the probability of event E lying

between y0 and y1 is equal to the area under the curve f(x) between y0 and y1.

If E has a finite number of outcomes
then the function f(x) = P (E = x) is
the finite probability distribution for E.
If E has an infinite number of outcomes
then the function f(x) is a probability
density function the distribution if
Pr(y0 < E < y1) =

∫ y1

y0
f(x)dx.

Probability density functions come in many shapes and forms,
but like distribution functions they all satisfy two conditions. First,
like distribution functions, pdfs are always positive: f(x) ≥ 0 for
all x. Second, similar to distribution functions, the area under the
entire pdf must be equal to 1:

∫∞
−∞ f(x)dx = 1. Beyond this pdfs

may be as simple or as complicated as one requires to describe the
event.

We can also use pdfs to compute the expected value of a dis-
tribution. The expected value for a continuous probability distri-
bution given by the pdf f(x) can be computed from the formula
E(X) =

∫∞
−∞ xf(x)dx. This is the area under the curve defined by the formula xf(x) (when the

curve is below zero, the area is subtracted).
There are many different pdfs which are studied and used in probability theory, and it is beyond

the scope of this book to go into them all in detail. However, there are several that are of particular
interest in healthcare, and we go into these now.

First is the multinomial distribution. The multinomial distribution results from having a
pdf which is formed from a series of steps (see the leftmost graph in Figure 5.1). The use of
this distribution function is simply to recreate finite distributions in the framework of pdfs.

Second is the normal distribution. The pdf for the normal distribution is given by the classical
“bell curve:”

fµ,σ(x) =
1

σ
√

2π
e
−1
2 ( x−µ

σ )2

(see the center graph in Figure 5.1). This distribution has two parameters µ and σ which correspond
to the expected value of the random variable and the “standard deviation” of the distribution
respectively. Key aspects of the normal distribution are that it is symmetrically distributed about
the mean, and drops off as it moves away from the mean. It follows the 68, 95, 99.7 rule, which
states that 68% of results lie within one standard deviation of the mean, 95% of results lie within
two standard deviations of the mean, and 99.7% of results lie within three standard deviation of
the mean. The normal distribution is the natural choice for any continuous random variable which
is equally likely to be above the mean as below the mean.
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Figure 5.1: The probability distribution functions for a binomial distribution (top left), a Poisson distribution (top

right), a normal distribution (bottom left), and a exponential distribution (bottom right).

The normal distribution is also referred
to as the bell curve, and Gaussian
distribution

Last, is the Poisson distribution. The Poisson distribution ex-
presses the probability of a number of events occurring in a fixed
period of time if these events occur with a known average rate, and
are independent of the time since the last event. A perfect example
in healthcare is the number of newly arriving patients into a hospital

in a given hour. The pdf for the Poisson distribution is defined by

fλ(x) =
λxe−λ

x!
x = 0, 1, 2, ...

(see the top right graph in Figure 5.1). This distribution has one parameter λ which represents the
expected number of occurrences during one time interval.

The Poisson distribution is a natural choice to modelling arrival rates for several reasons. Fore-
most is the logical supposition that an individual visiting a doctor or specialist is an independently
occurring event which happens at a constant average rate. That is, the event of one individual visit-
ing a given specialist in a given month (hour, day, year, etc...) does not make a different individual
more or less likely to visit the specialist in the same month (hour, day, year, etc...).

There are some reasons, however, why the Poisson distribution may not ideally describe health
care utilisation. For one, a restrictive feature of the Poisson distribution is that the mean and
variance of a random variable following this distribution are equal (a notion called equidispersion).
Departures from equidispersion can occur if the variance is either greater than the mean (overdis-
persion) or less than the mean (underdispersion) the mean [1][2]. Overdispersion, which can be
caused by a large number of zero counts in the data set, is unfortunately common in health care
data, as there will be some people who never utilize services.

There may also be reason to question that events occur independently at a constant rate. Events
in health utilisation data are not always independent — multiple visits to a physician by the same
patient are often related, for example — nor is the probability of event occurrence always constant.
It seems likely that Poisson assumptions are often violated in health utilisation data. As a result,
a more flexible generalization called the negative binomial distribution has been considered. (The
pdf for the negative binomial distribution is nontrivial, and beyond the scope of this book.) For the
negative binomial distribution, the variance and mean are unlinked, which may better model health
care utilization counts. In addition, the negative binomial is not sensitive to event dependency and
variable event probabilities, so it is often considered to be an attractive alternative to the Poisson
distribution for modelling health care utilisation data [2].

5.3.4 Confidence Intervals, and Statistical Significance

Once a probability distribution is selected, the mean and variance of a data collection can be used
to construct confidence intervals for the data. Determining a confidence interval begins by selecting
a desired degree of confidence 1−α. For example, if one desires 95% confidence then α = 0.05. After
the degree of confidence is selected, the 1−α confidence interval for a random value X is defined as
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the range of values [x0, x1] such that X has a 1− α*100% chance of lying within. Mathematically
this is,

Pr(x0 ≤ X ≤ x1) = 1− α.

Determining a confidence interval is not a trivial task, but fortunately most statistical software is
capable to performing it for the user. Therefore instead of discussing how to compute confidence
intervals, we discuss how to interpret the output of common statistical software.

Most statistical software will provide a mean µ, a standard error of the mean σ/
√

n, a z value
z, and an associated probability (either Pr(< z) or Pr(> z) depending on the software). If the
associated probability is given in the form Pr(< z) then this is the value of 1 − α, if it is given in
the form Pr(> z) then this is the value of α. Combined these provide a 1− α confidence interval:

µ− z
σ√
n

< µtrue < µ + z
σ√
n

.

That is, there is a probability of 1− α that the true mean of the distribution is between µ− z σ√
n

and µ + z σ√
n
. Depending on the software the user may be able to input the desired α and the

computer return the appropriate z value. Clearly the desired results is for the standard error of the
mean, the z value to be small, and the value of α to be small. Generally an α < 0.05 is considered
statistically significant, and αs greater than this value are considered insufficiently small to develop
and any conclusions.

5.4 Examples

5.4.1 “9 out of 10 Doctors Agree” – Interpreting Descriptive Statistics

Let us pretend that an unscrupulous pharmaceutical company has decided to try and convince the
public that its headache medicine is “better” than its competitors. In order to distinguish the two,
we shall call the unscrupulous company Company A and their four major competitors Companies
B, C, D and E. Company A begins by collecting some data on the cost and “effectiveness” for each
product. The cost is easily obtained by going to the local drug store and asking the price of a
package of 24 tablets for each type of headache medicine. To compare effectiveness of each product,
the company examined the number of milligrams of “pain-medicine” per tablet for each medicine,
and the number of tablets in a recommended dose. In addition to this the company performed a
case study of 500 people in which it asked each person to use a specific brand of headache medicine
for one month, and then rate the medication as either “not effective (1),” “somewhat effective (3),”
or “completely effective (5).” Participants who reported not requiring headache medication during
the month of the study were excluded. The finding of this research is found in Table 5.3.

To present their results to the public, Company A produces the pamphlet found in Figure 5.2.
Let us critically examine this figure. The first portion of the figure comprises of the mean value

for the survey data they collected. At a glance it would appear that Brand A is significantly more
effective (according to this survey) than any other brand. Let us begin with the survey itself. Since
this was not presented, the public is left with the question of what is meant by a value of 5, 4, 3,
2, or 1? (Note they was actually no value for 4 or 2, something the public does not know.) Next,
notice the scale on the y-axis does not start at 0. Indeed the effectiveness of Brand E may appear
4 times lower than the effectiveness of Brand A, but the actual mean values are µA = 4.3 (for
Brand A) and µE = 4.0 (for Brand E). Moreover, the standard deviation in the data for Brand A is
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Cost for mg of tablets mg of % rating % rating % rating
Company 24 tablets medicine per medicine effect effect effect

per tablet dose per dose 1 3 5
A 8.99 175 3 525 5 25 70
B 11.99 250 2 500 5 35 60
C 10.99 225 2 450 10 20 70
D 10.49 225 2 450 20 0 80
E 14.99 400 1 400 10 30 60

Table 5.3: Results of Company A’s research into cost and effectiveness for various headache medications.

Figure 5.2: “Descriptive Statistics” developed by Company A.

σA = 1.15, and for Brand E is σE = 1.35. Since 100 people were sampled for each group, this gives
a standard error of the mean of σA/

√
100 = 0.115 for Brand A, and σE/

√
100 = 0.135 for Brand

E. Looking up the z value for a normal distribution associated with a confidence of 1 − α = 0.95
we find z = 1.645 [1]. Thus we have the confidence intervals

4.3− 1.6450.115 < µA−true < 4.3− 1.6450.115 ⇒ 4.110825 < µA−true < 4.489175,

and
4.0− 1.6450.135 < µE−true < 4.0 + 1.6450.135 ⇒ 3.777925 < µE−true < 4.222075

for Brand A and Brand E respectively. Since these two intervals overlap, one cannot draw any
statistical significance from the survey data.

Let us now turn our attention to the two graphs on the right, “Amount of Painkiller per
dose” and “Cost for 24 Tablets.” Together these charts make it appear that Brand A is providing
significantly more painkiller per dose, and cost significantly less. Both of these statements are false.
Notice that as before, neither chart begins at zero. Further more, the cost given is per 24 tablets,
not per dose. Since Brand A require 3 tablets per dose, a box of 24 tablets actually only contains
8 doses, while Brand E, which appears the most expensive, only uses one tablet per dose.
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The conclusion of this example is that one must be wary of descriptive statistics. Although
there is certainly a place for descriptive statistics in research, one should not attempt to draw any
conclusions without being provided a more detailed analysis. By providing some select descriptive
statistics it is not difficult to manipulate data to appear to have it support the conclusion one
desires. More information on this can be found in the popular book [4].

5.4.2 EX-TWO

5.4.3 EX-THREE

5.5 Related Reading

1. Cameron 1988

2. Cameron-book

3. A good statistics textbook

4. Huff, D. How to Lie With Statistics (book)
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Chapter 6

Predictions and Responses
I don’t try to describe the future. I try to prevent it. Ray Bradbury (1920-)
When men speak of the future, the Gods laugh. ancient Chinese proverb

Regression Analysis and Econometrics

6.1 Model Overview

In 2003 researchers from the University of California, Berkley, completed a four year study of how
much data existed in the world1. The results showed that from 1999 to 2002 the amount of stored
data in the world approximately doubled. That’s a growth rate of approximately 25% per year
(consider that the population of the earth is growing at a mere 1.14% per year2). Approximately
one quarter of this data is in the form of electronically stored statistics. With this in mind, policy
makers worldwide are left with the increasingly daunting task of sifting through this data in an
attempt to make better decisions.

Fortunately for policy makers, the recent past has also seen great growth in statistical analysis
techniques and software. For policy makers in healthcare, the interest in data analysis often lies in
developing a quantitative relationship between a set of variables and a possible outcome. For this,
researchers often turn to the field of econometrics.

According to the Merriam-Webster dictionary, econometrics is the application of statistical
methods to the study of economic data and problems, however in the field of healthcare it might
be better to reverse this definition and say: econometrics is the application of economic theory to
aid in statistical analysis.

Econometrics is the application of
economic theory to aid in statistical
analysis.
When econometrics is applied to
something other than “cost of
healthcare” it is often refered to as
regression analysis.

When data is collected, one of the variables measured is often
considered to be a response or outcome of interest. The other vari-
ables measured are explanatory or predictor variables. In econo-
metrics of healthcare one attempts to develop a formula or equation
which relates the predictor variables to the response variable.

It should be noted that, in econometric literature the terms ex-
planatory variable and predictor variable are used interchangeably.
We favour predictor variables to emphasize that when choosing pre-
dictor variables it is important that these variables be measurable

1“How Much Information? 2003” www2.sims.berkeley.edu/research/projects/how-much-info-2003/
2CIA world factbook: www.cia.gov/cia/publications/factbook/

45
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before the responses variable is known. For example, suppose we
are interested in determining an equation which will help provide a estimated cost for a patient
undergoing chemotherapy to treat cancer. The response variable is the “cost of treatment.” Ex-
planatory variables might include things such as the initial size of the cancer discovered, the age
of the patient, and the number of chemotherapy session the patient uses. The first two of these
are predictive, in the sense that they can be determined before treatment is complete. The last
of these, the number of chemotherapy sessions, is not predictive as it cannot be determined until
treatment is complete. Of course, at this point the total cost of chemotherapy is already known, so
in a practical sense the third variable is not particularly useful for developing healthcare policies.

Three possible explanatory variables for
determining the response variable “time
required to recover from hip replacement
surgery” are:

1. Age of patient.

2. Body Mass Index of patient.

3. Number of post-surgery
physiotherapy sessions.

Although the third provides a very high
degree of explanation, it is not
particularly useful as it cannot be
determined until the response variable is
already known. Therefore it is not a
good predictor variable.

Once the response variable and predictor variables have been
determined, econometrics uses statistical techniques to understand
and predict how the value of the response variable will change for
different values of the predictor variables. This begins by creating
a hypothetical model under which one feels the data is likely to fit.
(The term econometrics refers to the fact that these models are often
based in economic theory.) After creating a hypothetical model, a
statistical tool called regression analysis is used to fit the data to
the model. If a good fit can be created then this helps validate the
model, if no fit can be found then the model is rejected and the
process begin again.

The creation of the hypothetical model is essentially the creation
of a mathematical equation which one feels describes the “shape”
of the data. For example, one might expect the cost of running a
hospital would increase in direct proportion with square footage of
the hospital, so the model linking the two would be a straight line.
Alternately, one generally expects body mass to increase with the
square of a person height, so the model linking these would be in
the form of a quadratic. Other more complicated interactions (such
as prevalence of HIV/AIDS in relation to a country’s GNP, literacy

rate, and prevalent religion) are likely to require more complicated models. This is where the vast
collections of economic literature become useful.

The next step is to associate a probability distribution function with the data. To explain,
consider that even if two individuals have the exact same predictor variables, one would not expect
the response variable to be exactly the same. Thus we assume, the response variable contains some
degree of randomness. In associating a probability distribution with the data, one is quantifying
how one predicts this randomness will behave. The choice of probability distribution function
will depend on the nature of the data collected, so questions such as, “is the measured response
discrete or continuous?” and “does one expect a skewing of the probabilities or that the measured
responses will be evenly distributed about its average?” should be considered when deciding on
what probability distribution to use.

Information on various probability
distributions can be found in Chapter 5.

Once the model and probability distribution have been created,
the model is fit to data. This involves using information from
the data to estimate any unknown parameters in the mathemati-
cal equation, and is generally done by a method called regression
analysis. If a collection of parameters can be found which creates a

good fit of the equation to the data, then the model is accepted and can be used to make predic-
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tions. Otherwise the researcher should return to the beginning, and create a different model to try
to fit the data.

6.2 Common Uses

Econometrics is a subset of statistics in which one uses techniques developed in economic theory
to help clarify the results one uncovers. Many of the questions approached by these techniques
involve considering an individual’s health as a personal asset which can be increased or decreased
by the health choices an individual makes. As such these techniques are most useful in answering
questions regarding the cost of healthcare and healthcare demand, such as:

• How does age impact the expected cost of cancer treatment?

• What is the role of health insurance on the demand for health services? and

• How does physician density public access to healthcare?

The ultimate goal of econometric analysis as applied to healthcare demand is to characterise
the incentive structures underlying observed patterns, test the effects of incentive-altering policy,
and to estimate future demand. Statistical models are often used to reveal associations between
patient variables and the frequency of health care utilisation.

When the response variable is a risk of
disease, then one should also use the
specific field of statistics called
epidemiological risk modelling. This is
discussed in detail in Chapter 7.

When econometrics is applied outside of cost and demand, it is
often refereed to as regression analysis. In regression analysis one
attempts to determine an equation which relates the risk factors
to the outcome of interest. In these equations the input variables
should be known (or testable) properties of the patient (e.g. gender,
age, etc...) and the output variables should be the expected value of
the health outcome. For example one might try to create equations
relating:

• number of cigarettes smoked per week to likelihood of contracting cancer,

• age and education to likelihood of attending a immunization clinic, or

• initial sense of pain and age to recovery rates after knee surgery.

6.3 Mathematical Details

Suppose that an experiment (or series of experiments) has been performed and a collection of data
has been developed. From the raw data one seeks to develop formulae which can be used to predict
what impact a change in the information will have on the probability of an event. (Henceforth we
shall call the outcome we are seeking to predict the response variable, and information which we
are using to make the prediction the predictor variables.) This is the primary goal’s of econometrics
and is generally accomplished in two parts.
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The response variable is the outcome we
are trying to predict. The predictor
variables is the information we are using
to make the prediction.

Econometric analysis begins by creating a model under which
one feels the data is likely to fit. These models are generally based
in economic theory, which leads to the term econometrics (economic
measurement). After creating a hypothetical model, econometrics
continues by using the statistical tool of regression analysis to fit
the data to the model. If a good fit can be created then this helps

validate the model, if no fit can be found then the model is rejected and the process begin again.
Let us begin with the question of how to select a model to attempt to fit the data to. If the

data is simple enough, one of the best ways to begin this process is to simple plot the data points
on a graph. To see this, let us consider a simple example.

A young student who wishes to know how much her car is costing her to drive. In order to
develop an answer to this for several months she records her milage and her car related expenses
(gas, insurance, maintenance, etc...). This hypothetical data is collected in Table 6.1. Examining

month Jan. Feb. Mar. Apr. May
car expenses ($) 230 210 220 250 250

milage (km) 345 304 309 430 450

Table 6.1: Car related costs and milage by month.

Table 6.1 it is clear that the farther she drives, the more car related expenses she incurs. Plotting
the four data points on a graph she notices they look roughly like a straight line. With a little bit
of playing she determines that the formula

cost/month = 88 + milage× 0.25

gives a reasonable approximation of these numbers (see Figure 6.1).
Of course in most cases one cannot expect the relationship between two variables to be linear.

For example, it is commonly accepted that the relationship between height and weight is that weight
increases with the square of an individual’s weight.

If the data is more complicated, or in particular if more than two variables are being considered,
then it is likely that graphing the data to help guess at relationship is impossible. In these cases,
one must rely on economic theory to help select what style of equation might be best suited for
the model. A complete survey of all possible model types is well beyond the scope of this book.
Instead we present three important styles which are well suited to analysis in healthcare: normal
linear regression, logistic regression, and generalized linear regression.

In normal linear regression one assume the relationship between the data is polynomial and that
any errors in the data are distributed in a normal manner (i.e. along a bell curve). This is well
suited for many physical phenomena such as the relationship of height to weight, or the relationship
of the cost of maintenance to the size of a hospital. More details on normal linear regression are
given in Subsection 6.3.1.

In logistic regression one assumes that the relationship follows an ‘S’ shaped curve called the
logistic curve. This implies the response variable is impacted less by changes in the predictor
variables when the predictor variables are near the extreme ends of their range. This style of curve
is well suited to many health related issues such as the relationship between recovered health and
time since surgery. Also, whenever the collect data has a response variable that can only take on
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Figure 6.1: Car related costs and milage for four months. The dots are data points and the dashed line is the

approximated linear regression.

one of two possible values, the common consensus amongst statisticians is to use logistic regression.
For example, logistic regression should be used if you are considering the relationship between age
and the risk of a heart attack (since in the data each individual has either had a heart attack or
has not). More details on logistic regression are given in Subsection 6.3.2.

Generalized linear regression is a style of regression analysis which incorporates both linear and
logistic regression. The mathematics behind generalized linear regression are quite deep, so we only
provide a cursory overview of the subject (Subsection 6.3.3).

6.3.1 Normal Linear Regression and Least Squares

In normal linear regression, the response variable is assumed to be a polynomial function of the set
of predictor variables. That is, the relationship can be written as

Y = β0 + β1X1 + β2X2 + . . . + βnXn (6.1)

where Xi are the predictor variables, Y is the response variable, and βi (i = 1, 2, ...n) are fixed
coefficients used to describe the linear relationship between Xi and Y . Despite appearances, it is
important to note here that the term “linear” regression refers to the linearity in the coefficients
βi and not in the predictor variables Xi (i = 1, 2, ...n). Indeed in many cases one does not wish to
assume a linear relationship between the response variable and the predictor variables. (Recall for
example, mass is generally considered proportional to the square of an individuals height.) How
to deal with nonlinearity in the predictor variables is easily explained by an example. Suppose the
response variable Y depends on predictor variables X1 and X2 in a relationship of the form

Y = β0 + β1X1 + β2X2 + β3X
2
1 + β4X1/X2

2 .

Defining two new variables as X3 = X2
1 and X4 = X1/X2

2 , the above formula becomes

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4,
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which is linear in its predictor variables. One way to remember this is to remember that height,
mass, and BMI can all be predictor variables.

In the above example, the response variable was the cost of driving the car for a given month,
and the predictor variable was the distance the car was driven in that month. In healthcare, the
response variable maybe the cost of treating a patient, the likelihood of an individual experiencing
a given disease, the likelihood of an individual using the healthcare system, or any number of other
things. Explanatory variables may include things like an individual’s sex, race, body mass index,
etc...

The word “linear” in linear regression
refers to the coefficients βi and not to
the predictor variables Xi. A regression
of the form

Y = β0 + β1X1 + β2X
2
1 ,

can easily be made linear in X1 by
writing

Y = β0 + β1X1 + β2X2,

where X2 = X2
1 .

The difficultly in developing a linear regression largely reduces
to how to determine the coefficients βi (i = 1, 2, ...n). To do this we
begin by making multiple independent observations of the response
variable. If the predictor variables are something one can control,
this can be done in the form of experiments which ensure good
distributions of the predictor variables and high accuracy in the
response variable. However, in healthcare it is not common to have
control over the predictor variables, and so observations are often
made via surveys which may not give a good distribution of the
predictor variables or high accuracy in the response variable.

Suppose N surveys have been performed which provide us with
N independent observation of the response variable and N distri-
butions of the predictor variables:

Survey 1 response = Y1 predictor variables = (X1,1, X2,1, ...Xn,1)
Survey 2 response = Y2 predictor variables = (X1,2, X2,2, ...Xn,2)

...
...

...
Survey N response = YN predictor variables = (X1,N , X2,N , ...Xn,N ).

Since data collected naturally contains some randomness, we do not expect to be able to find
coefficients βi (i = 1, 2, ...n) such that

Yj = β0 + β1X1,j + β2X2,j + . . . + βnXn,j for all j = 1, 2, ...N.

Instead we view each Yj as a realization of a random variable Y which depends on the predictor
variables (X1, X2, ...Xn) and a random factor ε. Our equation becomes

Yj = β0 + β1X1,j + β2X2,j + . . . + βnXn,j + εj for all j = 1, 2, ...N.

and we attempt to find the coefficients βi (i = 1, 2, ...n) which provide the best fit to the observed
data (that is the smallest values for εj). For normal linear regression, we assume that the random
variable Y takes on a normal distribution and then use ordinary least squares.

In the ordinary least squares estimation procedure, the unknown β coefficients are estimated by
minimizing the sum of the squared differences between the observed responses Yi and the potential
linear approximation:

min
β̂1,β̂2,...β̂n


N∑

j=1

(
Yj − [β̂1X1,j + β̂2X2,j + . . . + β̂nXn,j ]

)2


= min

β̂1,β̂2,...β̂n

N∑
j=1

ε2
j .
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Taking squares of the differences between observed and fitted responses prevents positive and neg-
ative deviations from the line from cancelling each other when summing the errors.

The normal distribution (a.k.a. Gaussian
distribution) is the distribution
associated with the classical “bell curve”.
Some of its key characteristics include, a
symmetric unbounded distribution about
its mean with a higher likelihood of
being near the mean.
The central limit theorem states that
that the sum of the random variables
with finite variance tends towards a
normal distribution.

At this point it is worth noting an important result from statisti-
cal theory: the Gauss-Markov theorem. The Gauss-Markov theorem
states that if the random variable is normally distributed then the
best linear unbiased estimator for the coefficients is found via ordi-
nary least-squares[1]. That is, if a researcher is going to assume that
the data fits a normal linear regression scheme, then ordinary least
squares should be used to determine the coefficients βi (i = 1, 2, ...n).

On a final note, the ordinary least square problem is a quadratic
optimization problem. It, along with normal linear regression, can
be accomplished by a number of optimization and statistical soft-
ware packages (see Appendix C).

6.3.2 Logistic Regression

In logistic regression, the response variable is assumed to follow what
is called the logistic curve. This curve is defined as

Y =
eβ0+β1X1+β2X2+...+βnXn

1 + eβ0+β1X1+β2X2+...+βnXn
(6.2)

where, as before, Xi are the predictor variables, Y is the response variable, and βi (i = 1, 2, ...n) are
fixed coefficients used to describe the linear relationship between Xi and Y . As in linear regression,
it is important to note that one can easily incorporate non-linearity in the predictor variables (Xi)
in this model. For example, if we desire the predictor variable X1 to be cubed in the exponent, we
can easily create a new variable X2 = X2

1 :

e.g. Y =
eβ0+β1X1+β2X3

1

1 + eβ0+β1X1+β2X3
1

=
eβ0+β1X1+β2X2

1 + eβ0+β1X1+β2X2
.

In order to compute the coefficients βi (i = 1, 2, ...n) for the logistic regression, we begin by
considering the function

P (x) =
ex

1 + ex
.

Notice that
P (x)

1− P (x)
=

(
ex

1 + ex

)
÷

(
1− ex

1 + ex

)

=
(

ex

1 + ex

)
÷

(
1

1 + ex

)
= ex.

Therefore log
(

P (x)
1−P (x)

)
= x, and in particular, equation (6.2) tells us

log
(

Y

1− Y

)
= β0 + β1X1 + β2X2 + . . . + βnXn.
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Figure 6.2: Examples of logistic curves. Logistic curves can take the shape of an ‘S’ (top left), the shape of an

‘inverted S’ (bottom left), or a portion of one of these shapes (right)

At this point it appears that, if we replace the response variable Y with a new response variable
Ŷ = log

(
Y

1−Y

)
then we have effectively reduced the logistic regression to a linear regression. Unfor-

tunately, this replacement ruins any chance we had of the error terms being normal distributed, and
therefore we cannot apply ordinary least squares to determine the coefficients. Instead, something
called maximum likelihood estimation must be used. The good news is most statistical software
packages are capable to performing this estimation.

6.3.3 Generalized Linear Regression

In both the normal linear regression and logistic regression discussed above we make several assump-
tions on the relationship between the predictor variables and the response variable that may not
be valid. Most importantly we assumed that errors in the data collected for the response variable
are normally distributed. In many cases this assumption is unreasonable.

For example, suppose we are trying to predict people’s family planning choices, specifically how
many children families will have, as a function of income and various other socioeconomic indicators.
The response variable (number of children) will be not be normally distributed, since it bounded
below (a family can never have less than 0 children) and there is a skewed likelihood towards a
smaller number of children. In this case, it would be more reasonable to assume that the dependent
variable follows a Poisson distribution.

In order to deal with regression analysis for non-normal distributions one usually turns to
generalized linear models. The full mathematics of generalized linear models are beyond the scope
of this book, but it is worth noting on some of their features.
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Most importantly, generalized linear models can be used when response variables follow distri-
butions other than the normal distribution. More specifically, generalized linear models allow for
regression analysis of response variables that follow any probability distributions in the exponential
family of distributions. These include (but are not limited to) the normal, binomial, Poisson, and
gamma distributions.

More detailed information on various
probability distributions can be found in
Chapter 5.

Generalized linear models we replace equation 6.1 with

f(Y ) = β0 + β1X1 + β2X2 + . . . + βnXn. (6.3)

Notice the only change is the replacement of the response variable Y
with a function of the response variable f(Y ). This function (called
the link function) is what allows for the great diversity in applying generalized linear models.

With the relaxation of the assumptions of a normally distributed response and homogeneous
variance, the ordinary least squares estimation procedure is no longer appropriate. Instead, some-
thing called maximum likelihood estimation must be used. Most statistical software packages can
perform this estimation.

An interesting final note is that if the link function f is the identify function (that is f(Y ) = Y )
then the generalized linear model reduces to normal linear regression, while if f is the logit function
then the generalized linear model reduces to logistic regression.

6.4 Examples

6.4.1 An Artificial Regression between Work Environment and Toe Stub-
bing.

For the sake of example let us suppose that a researcher has developed a hypothesis that the number
of stairs in an office has an impact on the frequency of office workers stubbing their toe3. In order
to test this hypothesis he contacts 618 office workers and asks the employes to fill out a simple two
question survey:

1. how many stairs do you walk up/down to get to your office? (not staircases, but total stair
count)

2. did you stub your toe last month?

He collects the data in Table 6.2.

# of stairs category 0 1-3 4-6 7-9 10-12 13-15 16+
# of people in category 193 85 72 113 71 63 21
# of toes stubbed in category 1 1 2 6 5 5 2
% of toes stubbed in category 0.52 1.18 2.78 5.31 7.04 7.93 9.52

Table 6.2:

3All numbers for this example are made up. To the best of our knowledge no study has every compared work
environment to toe stubbing.
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Examining his table, he feels that the hypothesis was correct. In order to confirm this, and to
apply his research, he decides to use econometrics to develop a model which would predict the at
what point (in regards to toe stubbing) an office should invest in an elevator.

He begins by plotting the points [0, 1.04], [2, 1.18], [5, 2.78], [8, 5.31], [11, 7.04], and [14, 7.93]
on a graph (see Figure 6.3). Notice he omits the data regarding people with more than 15 stairs
on their way to work. This is due to low data size, and the fact the interval is unbounded so no
midpoint can be selected.

Figure 6.3: Percentage of toes stubbed by number of stairs to get to the office.

Examining Figure 6.3 he hypothesizes that a good fit might be found via logistic regression. This
hypothesis is supported by several other factors. First, a linear regression is unlikely, as any linear
regression would result in a 100% toe stubbing rate once the number of stairs became sufficiently
high. Second, the measured response variable (“did you stub your toe”) is binary in that it can only
take one of two values. This means that applying a normal distribution function to the outcome is
illogical.

The researcher proposes the logistic curve

P = A
eβ0+β1x

1 + eβ0+β1x
% (6.4)

where P is the response variable representing the probability of stubbing one’s toe, x is the predictor
variable of the number stairs, and β0, β1 are unknown coefficients. The coefficient A represents
the maximal proportion of the population that will stub their toe in any given month. From here,
he asks his favour statistics software package to fit the coefficients of equation (6.4) to the points
[0, 1.04], [2, 3.53], [5, 3.64], [8, 6.19], [11, 7.04], and [14, 7.58]. The software package tells him that
the values A = 9, β0 = −3 and β1 = 0.4 provide a goodness of fit of over 90%, which pleases him
immensely (details of goodness of fit are discussed in Chapter 5). He may now use the equation

P = 9
e−3+0.4x

1 + e−3+0.4x
%



6.4. EXAMPLES 55

to predict the probability that an individual will stub their toe in a given month, given that the
individual climbs/decends x stairs on the way to work. In particular he may conclude that is never
more than a 9% chance of stubbing one’s toe in any given month.

Figure 6.4: Percentage of toes stubbed by number of stairs to get to the office fit with a logistic curve.

6.4.2 Work, Wages, and Men’s Health

The correlations between work-time, wages and health have been repeatedly addressed in econo-
metric literature. One example is due to Haveman, Wolfe, and Kreider in 1994[2]. In this example
we review this study and the results therein.

The data for the study was taken from the Michigan Panel Study of Income Dynamics, which
consisted of following 613 white males from 1976 to 1983 and recording annually their job, income,
number of hours they work each week, and various personal characteristics. In addition to this
the participants were asked a series of questions regarding their health status. Specifically, each
respondent was first asked, “Do you have a physical or nervous condition that limits the type of
work or the amount of work you can do?” If the answer was “yes”, then a followup question was
asked: “Does it limit your work a lot, somewhat, or just a little.” Based on these questions a score
of 0 (for no condition) to 3 (for a condition which limits a lot) was given to each respondent for
each year.

This data was fit to the system of linear equations jointly indexed in individual (i) and time (t)
below (equations (6.5)).

Hit = β0 + β1Wit + β2P
H
it + β3O

H
it + eit

Wit = α0 + α1Hit−1 + α2Rit + α3P
W
it + α4O

W
it + uit

Rit = π0 + π1Hit−1 + π2Wit−1 + π3R
P
it + vit,

(6.5)

In these equations H is health status, W is hours worked, R is wages, PH is personal characteris-
tics which determine health, PW is personal characteristics contributing to work time, and PR is
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personal characteristics contributing to wages. Additionally, e, u, and v are error terms related to
observed factors.

To fit the equations, a method called the generalized method of moments was used. This method
is similar to ordinary least squares, but adjusts for having a system of equations where the error
terms (e, u, and v) may have some correlation. This allows correlations between the quantities in
the model to be estimated without introducing biases. (See [3] for more details.)

The conclusions of the study support the hypothesis that health limitations and age are positively
correlated, while health limitations and education are negatively correlated. However, an expected
positive correlation between prior work-time (that is, total number of years working) and health
limitations was found to be absent. This is surprising, as the authors predicted that extended time
in a hazardous work environment would lead to a greater risk of poor health. The study however
suggests that it is not how long you worked in a given job, but what that job is that determines
your health status.

6.4.3 Recovery Curves for Post Surgery Physiotherapy

6.5 Chapter References and Related Reading

Econometric models have close connections to (XXX list models and chapters of note in the book
XXX).
Reference XXX discusses XXX.

1. A textbook which includes Gauss-Markov theorem.

2. Haveman, R., Wolfe, B. & Kreider, B. “Market work, wages, and men’s health.” J. of Health
Econ. 13: pp. 163–182 (1994).

3. Hansen, L. “Large sample properties of generalized method of moments estimators.” Econo-
metrica 50: pp. 1029–1054 (1982).



Chapter 7

Evaluating Detrimental Behaviour
The policy of being too cautious is the greatest risk of all. J. Nehru (1889 - 1964)
Life is a sexually transmitted disease and the mortality rate is one hundred percent. R.
D. Laing (1927-1989)

Epidemiological Risk Modelling

7.1 Model Overview

A recent study by Hakes and Viscusi showed that the general public has a serious problem in
evaluating risky behaviour[1]. The study consisted of asking 493 adults a series of questions of the
form “how many people do you think died due to in 1991?” The results were staggering. On
average people believed that roughly the same number of deaths resulted from the measles as from
accidental poisoning1. The authors suggested that the public’s difficulty in distinguishing between
differing magnitudes of risks has lead to a similar spending for reducing each risk. The result is a
gross misdistribution of healthcare budgets.

A similar effect results when examining the factors that create each risk. Everyday, healthcare
policy makers must make decisions such as whether money would be better spent researching
anticancer drugs or supporting antismoking campaigns. To make these decisions, policy makers
rely heavily on the statistical methods of epidemiological risk modelling.

epidemiology (”e-p&-”dE-mE-’ä-l&-jE):
The study of the factors controlling the
presence or absence of a disease or
pathogen.

In epidemiological risk modelling one uses statistical methods to
attempt to determine associations between a given factor (or factors)
and a health outcome. Although the factor is generally refereed to
as a risk factor, it should not necessarily be viewed as a negative.
For example, the risk factor of “hand-washing” has been shown to
reduce the risk of disease spread in hospitals[2]. On the other hand,
numerous studies have linked the risk factor of “smoking” to an
increased risk of contracting lung cancer2 In the same manner it should be noted that, with a little
creativity, one always phrase a given health outcome as either a positive or a negative outcome.
For example, instead of examining what factors impact the chance of a wide spread bubonic plague
(poor sewers, rat infestations, etc...), one could study what factors impact the chance of avoiding

1In 1991, the measles resulted in 5 deaths, while 5200 people died from accidental poisoning.
2Perhaps the most famous study linking smoking to lung cancer is the 1964, the US Surgeon General report

“Smoking and Health.”
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a wide spread bubonic plague (clean sewers, effective pest control, etc...). In general this confuses
the issue with a large collection of double negatives, therefore, in order to make discussion easier,
we shall always assume that the health outcome is the undesirable outcome. As such we shall refer
to the health outcome as a disease, and call a risk factor beneficial if it reduces the likelihood of a
given health outcome and harmful if it increases the likelihood of the outcome. It should be noted
now that the word disease is used in the sense of a “harmful development,” and therefore may be
used to represent any negative health outcome. For example, under this terminology, we may view
exercise as a beneficial risk factor for the disease of obesity.

In epidemiological risk modelling the
term disease is used to refer to any
negative health. For example, drinking
and driving can be viewed as a harmful
risk factor for the “disease” of
automobile accidents.

To develop an epidemiological risk model, one begins collecting
data regarding the risk factors and diseases one wishes to examine.
The data is then used to determine various statistical values that
associate the risk factors to the disease. Some of the most popular of
these values are the relative risk, attributable risk, prevented fraction,
and potential impact fraction.

Before discussing these values, we will briefly turn our attention
to another popular value called the odds ratio. We single out this
popular value as a warning to policy makers. The odds ratio tells

you the change in the odds of having a specified disease given that one has the risk factor. This
is extremely similar to the relative risk (below) but very misleading in its implementation. The
problem is, without knowing the original odds of having the disease, the change in odds is useless
information. For example, telling someone that moving to Saskatchewan will triple their chance
of being killed by a lightning strike3 may sound impressive; however, since one’s chance of being
killed by lightning is less than 1 in 10,000,000 per year and the population of Saskatchewan is about
1,000,000, it still seems like a fairly safe place to live. As a general rule, anytime a researcher reports
on odds ratio instead of one of the more standard measures of risk, the results should be strongly
questioned.

Loosely speaking, the relative risk tells you the change in the probability of having the specified
disease given that one has the risk factor. More specifically, relative risk provides the multiplicative
factor relating the disease status of those with the risk factor to those without. For example, if the
relative risk is 3, then an individual with the risk factor is three times more likely to experience
the disease than an individual without the risk factor. Alternately, if the relative risk is 0.25 then
an individual with the risk factor is four times less likely to experience the given disease than an
individual without the risk factor. Thus, if the relative risk is greater than 1 then the risk factor is
harmful, while if the relative risk is less than 1 then the risk factor is benificial.

If the relative risk is greater than 1, one may wish to examine the attributable risk. Whenever the
relative risk is greater than 1, the attributable risk lies somewhere between 0 and 1 and represents the
proportion the given disease could be (theoretically) reduced if the given risk factor were eliminated.
For example, an attributable risk of 0.28 means that if the risk factor could be eliminated from the
population, the prevalence of the disease would (theoretically) be reduced by 28%.

Conversely, if the relative risk is less than 1, then one may wish to examine the prevented
fraction. Whenever the relative risk is less than 1, the preventive fraction lies somewhere between
0 and 1 and represents the proportion the disease could be (theoretically) reduced amongst the
individuals that do not have the risk factor. For example, a prevented fraction of 0.37 means that
37% of individuals which do not currently have the risk factor would benefit from obtaining the

3This statement is made up for the sake of example, there is no statistical evidence that Saskatchewanites are in
any greater danger of death by lightning.
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risk factor.
Regardless if the risk factor is beneficial or harmful, on may wish to examine the potential impact

fraction. In the potential impact fraction, one assumes that they are able to make an intervention
which somehow changes the prevalence of the risk factor in the population. (If the risk factor is
beneficial one attempts to increase its existence, if it is harmful one attempts to decrease it.) The
potential impact fraction then measures the reduction that would result from a given change in
prevalence. This is a considerable more complicated concept than that of relative risk, attributable
risk, and prevented fraction, so we leave further discussion to Section 7.3 and refer the reader to
Example 7.4.1 for a detailed example on these concepts.

WARNING ABOUT EPI RESULTS and RESEARCH BIAS – Phillips work on errors in epi.
On a final note, in simple risk models the various statistical values that associate the risk factors

to the disease may be computed analytically. However, in general the risk factors and the impacts
of intervention hold complicated interrelationships which make analytic calculations difficult. In
these cases one often resorts to computer based simulation to approximate the value of objects
such as the potential impact fraction. An example of this is provided in Subsection 7.4.3 and more
details on computer simulation can be found in Chapter ??.

7.2 Common Uses

The goal of epidemiological risk modelling in healthcare is to develop models of the relationship
bewteen risk factors and diseases, accidents or mortality. Therefore, in general epidemiological
risk modelling answers the question of “what (if any) is the relationship between risk factor X
and health outcome Y ?” For example, epidemiological risk modelling may be used to approach
questions such as:

• What is the relationship between smoking and lung cancer?

• What is the relationship between obesity and risk of a heart attack? and

• What is the relationship between childhood exercise programs and obesity?

More advanced techniques in epidemiological risk modelling are also capable of theoretically
examining the effect of interventions on the health of the population. This allows epidemiological
risk modelling to approach questions such as:

• What effect would a tax increase on tobacco products have on the amount of lung cancer in
the population? and

• Would a policy enforcing exercise programs in high-school have a significant impact on the
number of heart attacks in young adults?

7.3 Model Details

7.3.1 Relative Risk, Attributable Risk and the Prevented Fraction

We begin with the precise definitions of relative risk, attributable risk, and prevented fraction. To
do this, recall that the probability of an event E occurring is

Pr(E) =
# of ways E occurs

# of possible outcomes
.
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We use the notation Pr(E|F ) to represent the probablity an event E occurs given factor F is
present:

Pr(E|F ) =
# of ways E occurs given F is present

# of possible outcomes where F is present
.

Orally Pr(E|F ) is read as
“the probability of E given F ,”
while Pr(E|F c) is read as
“the probability of E given F
complement.”

We use the notation F c to represent the option that the factor F is
not present (the c stands for complement which is the mathematical
word for “that which completes the set”).

For example, suppose you at a party consisting of 40 males and
60 females. Suppose that 30 of the males are drinking beer, while
20 of the females are drinking beer. Then the probability that a
randomly selected person is drinking beer is

Pr(Beer) =
# of beer drinkers

# of people
=

30 + 20
40 + 60

= 0.5,

the probability of a randomly selected male drinking beer is

Pr(Beer|Male) =
# of male beer drinkers

# of males
=

30
40

= 0.75,

and the probability of a randomly selected female drinking beer is

Pr(Beer|Malec) =
# of not male beer drinkers

# of not males
=

20
60

≈ 0.33.

We now formally define relative risk. The relative risk is the ratio in the probability of having
the specified disease given the risk factor to the probability of having the specified disease without
the risk factor. Mathematically we denote relative risk by RR and define it as

RR =
Pr(Disease|Risk Factor)
Pr(Disease|Risk Factorc)

=
Pr(D|F )
Pr(D|F c)

. (7.1)

Henceforth we shall denote the Disease
by D and the risk Factor by F .

Since the probability of an event is always between 0 and 1, the
relative risk is can be any number greater than zero (we assume
that neither Pr(D|F ) nor Pr(D|F c) is 0, since these cases restrict
the health outcome to occurring only if the risk factor is in the
appropriate state).

Recall, to simplify discussion we assume
that the researched health outcome is
undesirable, and therefore refer to is as a
disease. As such,
harmful risk factors increase the chance
of the given disease, and
beneficial risk factors reduce the chance
of the given disease.

It is not difficult to see that, the risk factors of interest are those
that result in a relative risk that is noticeably greater than or no-
ticeably less than 1. If the relative risk is greater than 1 then the
probability of the disease is increased in the presence of the risk
factor, and therefore the risk factor is harmful. Conversely, if the
relative risk is less than 1 then the probability of the disease is de-
creased in the presence of the risk factor, and therefore the risk
factor is beneficial. As such, the relative risk provides a reference
for the potential benefit or harm of a given risk factor. This helps
dictate how future epidemiological risk modelling should proceed.

If the risk factor is harmful (i.e. RR > 1) then one would like to
proceed by examining the proportion of the disease which is (theoretically) attributable to the risk
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factor. This is generally done by calculating the attributable risk. Mathematically the attributable
risk is denoted AR and defined

AR =
Pr(D)− Pr(D|F c)

Pr(D)
. (7.2)

A public health interpretation of attributable risk is that it is a measure of the extent that a disease
is preventable, if the risk factor could be eliminated or reduced. As such, attributable risk should
be thought of as a population based risk measure, whereas relative risk is more individual based.
That is, attributable risk describes how the risk factor impacts the population as a whole, while
relative risk describes how the risk factor alters an individuals chance of the given disease.

In literature relative risk is sometimes
also refereed to as the likelihood ratio.

If the risk factor is beneficial (i.e. RR < 1) then one would
like to examine the proportion the disease could be (theoretically)
reduced if the risk factor were universally present. This is done by
calculating the prevented fraction. Mathematically the prevented
fraction is denoted PF and defined by

PF =
Pr(D|F c)− Pr(D)

Pr(D|F c)
(7.3)

Like attributable risk, the prevented fraction should be thought of as a population based risk
measure, instead of an individual based measure.

To compare the attributable risk and prevented fraction notice that

1−AR = Pr(D|F c)
Pr(D) and 1− PF = Pr(D)

Pr(D|F c) , (7.4)

Other terms used for attributable risk
include: excess risk, risk difference,
etiological fraction, etiological
proportion, attributable fraction (or
proportion), and preventable fraction (or
proportion).

(provided Pr(D|F c) 6= 0). Therefore the attributable risk and pre-
vented fraction are related by the equation

(1−AR)(1− PF ) = 1 whenever Pr(D|F c) 6= 0. (7.5)

This formula has several ramifications. To begin, it provides a means
for statistical estimates of AR to be used to estimate PF , and vice
versa. Secondly, since AR and PF are always less than one, it
demonstrates that exactly one of these values will be between 0 and
1 while the other value will be negative. Reexamining the definitions of AR and PF one can see
that if the relative risk is greater than 1 then 0 < AR < 1 while if the relative risk is less than 1 then
0 < PF < 1. Indeed, if the relative risk is greater than 1 then Pr(D|F ) > Pr(D|F c), while Pr(D)
must lie between these two values. This implies Pr(D) > Pr(D) − Pr(D|F c) > 0 and therefore
0 < AR < 1. Conversely, if the relative risk is less than 1 then Pr(D|F c) > Pr(D|F ), and again
Pr(D) must lie between these two values. This implies Pr(D|F c) > Pr(D|F c) − Pr(D) > 0, and
therefore 0 < PF < 1.

Relating the attributed risk, AR to relative risk, RR, is more complicated, but also possible.
Some classical formulae include

AR =
Pr(F )(RR− 1)

1 + Pr(F )(RR− 1)
and AR =

Pr(F |D)(RR− 1)
RR

.

Notice that these formulae for AR require not just knowledge of the relative risk, but also the
probably of the risk factor occurring, Pr(F ), or the probability of the risk factor occurring given
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that the health outcome occurred, Pr(F |D). Relating the prevented fraction to the relative risk
can now be done via equation (7.5).

From the presentation given above it may appear that the calculation of relative risk, at-
tributable risk, and the prevent fraction is straight forward. If the risk model developed only
concerns itself with a single risk factor which is either present or not present, then estimating the
key values Pr(D), Pr(D|F ) and Pr(D|F c) is a fairly straight forward task. However, in this case
there is a high chance that there exists confounding risk factors, that is risk factors that are not
accounted for in the model. On the other hand, if multiple risk factors are considered or the risk
factor can take one of several levels then it becomes necessary to select a statistical model to use
to estimate the key values Pr(D), Pr(D|F ) and Pr(D|F c). The choice of statistical model to use
is usually based on the type of data collect, and can result in biases in the end analysis. We refer
readers to Chapter 5 for information on dealing with these issues.

7.3.2 The Potential Impact Fraction of an Intervention

Regardless of whether a risk factor is beneficial or harmful, one might be interested in what sort of
impact various interventions might have on the disease. To provide a numeric comparison between
various intervention strategies one often calculates the potential impact fraction for each interven-
tion. To do this one assumes that the prevalence of the risk factor in the population is altered
in some manner. This could result in either an increase or decrease in the prevalence of the risk
factor, and resulting in either an increase or decrease of the disease incidence. The potential impact
fraction is then the change in the disease probability relative to the current disease probability.
Mathematically the potential impact fraction is denoted by PIF and defined:

PIF =
(Pr(D)− Pr∗(D))

Pr(D)
(7.6)

where Pr∗(D) is the probability of the disease under the modified distribution of the risk factor.
(The division by Pr(D) gives a sense in the size of the change relative to the how likely the event
is to begin with.)

Another term used for the potential
impact fraction is the generalised impact
fraction.

Although the mathematical statement of the potential impact
fraction may be simple, its calculation is not trivial. The main
difficulty lies in the computation of Pr∗(D). Unlike Pr(D), the value
Pr∗(D) is a prediction of how the change in the risk factor will effect
the overall probability of the disease. To develop a practical manner
of computing the PIF consider the assumption

Pr(D|F ) = Pr∗(D|F ) and Pr(D|F c) = Pr∗(D|F c). (7.7)

In words Assumption (7.7) states that the probability of experiencing the disease given that an
individual has the risk factor, and the probability of experiencing the disease given that an individual
lacks the risk factor are constant regardless of the prevalence of the risk factor in the population.
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Noting that Pr(D) = Pr(F ) Pr(D|F ) + Pr(F c) Pr(D|F c) and applying Assumption (7.7) we find

PIF = Pr(D)−Pr∗(D)
Pr(D)

= Pr(F ) Pr(D|F )+Pr(F c) Pr(D|F c)
Pr(D) − Pr∗(F ) Pr∗(D|F )+Pr∗(F c) Pr∗(D|F c)

Pr(D)

= Pr(F ) Pr(D|F )+Pr(F c) Pr(D|F c)
Pr(D) − Pr∗(F ) Pr(D|F )+Pr∗(F c) Pr(D|F c)

Pr(D)

= Pr(D|F )
Pr(D) (Pr(F )− Pr∗(F )) + Pr(D|F c)

Pr(D) (Pr(F c)− Pr∗(F c))

= Pr(D|F c)
Pr(D|F c)

Pr(D|F )
Pr(D) (Pr(F )− Pr∗(F )) + Pr(D|F c)

Pr(D) (Pr(F c)− Pr∗(F c)) .

Next we recall that the definition of relative risk (equation (7.1)) and the fact that Pr(F c) =
1− Pr(F ) to simplify this to

PIF = RR Pr(D|F c)
Pr(D) (Pr(F )− Pr∗(F )) + Pr(D|F c)

Pr(D) ((1− Pr(F ))− (1− Pr∗(F )))

= RR Pr(D|F c)
Pr(D) (Pr(F )− Pr∗(F )) + Pr(D|F c)

Pr(D) ((1− Pr(F ))− (1− Pr∗(F )))

= RR Pr(D|F c)
Pr(D) (Pr(F )− Pr∗(F ))− Pr(D|F c)

Pr(D) (Pr(F )− Pr∗(F ))

= (RR− 1) Pr(D|F c)
Pr(D) (Pr(F )− Pr∗(F )) .

Finally, applying Equation (7.4) we conclude (under Assumption (7.7))

PIF = (RR− 1)(1−AR) (Pr(F )− Pr∗(F )) . (7.8)

A similar approach can be done to relate PIF to the prevented fraction, yielding the final equation

PIF = (1−RR)
(

1
1−PF

)
(Pr∗(F )− Pr(F )). (7.9)

On the surface Assumption (7.7) may seem very reasonable. After all, why would the prevalence
of the risk factor in the population alter how the risk factor impacts the given disease. However,
consider the risk factor of smoking and the health outcome of lung cancer. Should the impact of
smoking on your chance of developing lung cancer change based on how much of the population
smokes? On the surface the answer is no, but if we look deeper we see that the surface answer is
flawed. The reason lies in the concept of secondhand smoke.

Consider a hypothetical town where 90% of the inhabitants smoke. Suppose now that an
intervention is preformed which (somewhat miraculously) changes the town dynamics so only 10%
of the population smokes. Let Pr(L|S) be the probability before the intervention of an individual
contracting lung cancer given that the individual smokes and Pr∗(L|S) be the same after the
intervention. The question of whether Pr(L|Sc) = Pr∗(L|Sc) is therefore:

does a nonsmoker in a town of 90% smokers have the same probability of contracting
lung cancer as an individual in a town of 10% smokers?

Given this extreme example, the answer is clearly no: the non-smoker in a town of 90% smokers
is assaulted with nine times the amount of secondhand smoke as the individual in a town of 10%
smokers.

Our example here of smoking and lung cancer may seem a little contrived. However, the truth is
that, in general, the risk factors and the impacts of intervention hold complicated interrelationships
which make Assumption (7.7) false. In these cases it is often easiest to resort to computer based
simulation to approximate the value of Pr∗ under given interventions. An example of this is given
in Subsection 7.4.3 and more information on computer simulation can be found in Chapter ??.
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7.3.3 Analysis using multiply risk factors

To be written. XXX

7.4 Examples

7.4.1 An Artificial Comparison between Chocolate Consumption and the
Chicken-pox

For the sake of example let us suppose that a researcher has developed a hypothesis that the
consumption of chocolate helps speed recovery from the Chicken-pox4. To test this she successfully
contacts 3429 parents of children who had the Chicken-pox within the last year. Each of these
parents fills out a survey stating how many days their child took to recover from the disease,
and whether their child ate any chocolate during that time. Letting D represent the “disease” of
spending 4 or more days sick from the Chicken-pox and F represent the factor of eating chocolate,
she compiles the following table:

Consumed Chocolate

Days spent
sick

yes (F ) no (F c)
≥ 4 days (D) 749 463
< 4 days (Dc) 1515 702

Table 7.1: Artificial data table relating chocolate consumption of Chicken-pox recovery time.

The above data suggests that

Pr(D) = 749+463
3429 ≈ 0.3535,

Pr(D|F ) = 749
749+1515 ≈ 0.3308, and

Pr(D|F c) = 463
463+702 ≈ 0.3974.

Dividing Pr(D|F c) by Pr(D|F ) we see that the relative risk is RR = 0.8324 which is less than 1,
therefore Chocolate appears to be a beneficial risk factor. Since the risk factor is beneficial we also
compute the prevented fraction:

PF =
Pr(D|F c)− Pr(D)

Pr(D|F c)
≈ 0.3974− 0.3535

0.3974
≈ 0.1106.

This suggests that 11% of the non-chocolate-eaters would benefit from eating chocolate. To see
where this number relates, consider the 1165 children who did not consume chocolate during their
sickness. The survey stated that 463 of them took four or more days to recover. If they had all
consumed chocolate we would expect only 33.08% of them to take four or more days to recover,
this is 385 children. Thus, 463 − 385 = 78 children would have benefitted from eating chocolate;
this is an improvement of 78

702100% = 11.1%.
Finally, the researcher explores the potential impact of making chocolate freely available to any

child with the Chicken-pox. To do this she notes that currently only 749+1515
3429 100% = 66.03% of

4All numbers for this example are made up. To the best of our knowledge no study has every compared chocolate
consumption and disease recovery rates.
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children consumed chocolate while they had the Chicken-pox. If chocolate were freely available for
children with the Chicken-pox, she feels this would increase to 98%. Thus the potential impact
fraction for this intervention would be

PIF = (1−RR)
(

1
1−PF

)
(Pr∗(F )− Pr(F ))

≈ (1− 0.8324)
(

1
1−0.1105

)
(0.9800− 0.6603) ≈ 0.0602.

That suggests that if chocolate were freely available to children with the chicken-pox, the number of
children who require four or more recovery days would decrease by approximately 6%. Considering
our example, if 98% of the 3429 children ate chocolate during their illness, our new data set
would have (0.98)3429 = 3360 children who ate chocolate during their illness and 69 who did not.
Assuming Pr(D|F ) and Pr(D|F c) do not change this would result in 3360 Pr(D|F )+69Pr(D|F c) =
1139 children taking four or more days to recover and 2290 children recovering in less than 4
days. Previously we had 1212 require four or more days to recover, thus we see a decrease of
1212−1139

1212 100% = 6.0%.
Of course, the above study is too naive to be persuasive. For example, the confounding factor

of family income is ignored (a higher family income is likely to impact both recovery time and the
amount of chocolate consumed). Also, it would be much more logical to group people into more
than two categories with regards to chocolate consumption. (Not to mention, the data is completely
fabricated.) Nonetheless, the above example does provide a simple demonstration of the prevented
fraction, the potential impact factor, and their interpretations.

7.4.2 Mistakes and Misuses of Risk Analysis

Forthcoming Rockhill, and how not to use AR. XXX

7.4.3 Prevent: A Computer Simulation for Computing Potential Impact
Fractions

In many cases the risk factors and impact of intervention hold complicated interrelationships which
make it difficult (or impossible) to compute the potential impact fraction of an intervention. In
these cases one often resorts to developing a computer simulation in order to estimate the potential
impact fraction. One such simulation is the Prevent model developed in the late 1980s[3]. In this
example we attempt to provide a broad stroke outline of the Prevent model. References for those
who seek further information can be found in Section 7.5.

The Prevent model is an epidemiological approach to predicting the effect on mortality resulting
from a health condition after an intervention on known risk factors. In order to capture realistic
disease dynamics in a population, it extends the usual epidemiological methodolgies to take into
account two important facts:

i. The relationship between risk factors and diseases typically involves many risk factors and
many diseases. A single risk factor may play a role in multiple diseases and a single disease
may involve multiple risk factors. These two phenomena occur simultaneously, leading to a
complicated dynamical relationship between risk factors and diseases.

ii. There may be considerable latency between exposure to a risk factor and the incidence of a
disease. These time lags must be incorporated into a dynamical risk model.
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In the Prevent model, the potential impact fraction is time-dependent and defined by

PIFt =
Prt(D)− Pr∗t (D)

Prt(D)
,

where Prt(D) is the time-dependent probability of disease in the reference population and Pr∗t (D) is
the time-dependent probability of disease in the intervention population. The model also introduces
a new quantity, the trend impact fraction, which is defined by

TIFt =
Pr0(D)− Prt(D)

Pr0(D)
.

This measures the number of disease cases in the reference population that are prevented (or caused)
by the autonomous time evolution of the risk factor prevalence. In Figure 7.1 we see how these
values interrelate.
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Figure 7.1: Simulation Flow in Prevent Model

This flow represents one time interval of a simplified version of the Prevent algorithm. Two demographic classes, A

and B, are considered with different risk ratios. The superscripts 0 and 1 denote the reference and the intervention

populations, repectively. PIFt is the time-dependent potential impact function, TIFt is the time-dependent trend

impact function. The mortality rates in the reference and intervention populations are M0
t and M1

t , respectively.

The time-dependent outcome states of the reference and intervention populations are POP 0
t and POP 1

t , respectively.

The difference between these two states is the health benefit of the intervention.

In 1989, Gunning and Schepers evaluated the Prevent model on Dutch population health data
collected from a variety of sources[3]. The risk factors examined included cigarette smoking, hyper-
tension, hyperlipidemia, occupational hazards, obesity, diet, and alcohol use. The diseases examined
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included ischemic heart disease, cerebrovascular disease, lung cancer, breast cancer, colon cancer,
and stomach cancer. They also examined the link between traffic accidents and risk factors such
as years of driving experience, alcohol use, and preventive regulations. This resulted in extremely
complicated interrelationships between their risk factors and their health outcomes. Ultimately the
Prevent model was successfully used to study the impact of various interventions on these diseases.

In 2006, Bronnum and Hansen evaluated the accuracy of the Prevent model by applying it
to synthetic population data generated by microsimulation[5]. They concluded that the model
is generally quite accurate, but it does tend to slightly overestimate the health benefits of the
intervention. Nonetheless, in realistic scenarios this error would be minor and estimates obtained
from the model are accurate enough for use in health policy planning.

In summary, Prevent is a sophisticated risk simulation model with the ability to use population
health data to handle complex disease dynamics. The basic concepts are also flexible and a variety of
extensions to the model are possible. Furthermore, the model has considerable scope for applications
to healthcare policy development and evaluation.

7.5 Related Reading

Epidemiological Modelling has close associations with ...XXX

Reference [1] discusses the inaccuracy of public knowledge regarding risk. Reference [2] discusses the benefits
and drawbacks of replacing soap hand washing with an alcohol hand rub in hospitals. References [3], [4],
and [5], are examples of implementation of the Prevent Model.

1. Hakes, J. K. & Viscusi, W. K. “Dead Reckoning: Demographic Determinants of the Accuracy of
Mortality Risk Perceptions.” Risk Analysis, 24(3): pp. 651–664 (2004).

2. Widmer, A. F. “Replace Hand Washing with Use of a Waterless Alcohol Hand Rub?” Clinical
Infectious Diseases, 31, pp. 136–143 (2000).

3. Gunning-Schepers, L. “The health benefits of prevention: a simulation approach.” Health Policy
(Elsevier, Amsterdam), Jul 12(1-2), pp. 1–255 (1989).

4. Joseph, J. A. “The applicability, usefulness, and limitations of the PREVENT model, as demonstrated
by modeling the effects of alcohol consumption interventions on coronary heart disease mortality.”
University of Toronto, M.Sc. Thesis, Dept. of Community Health, (1997).

5. Bronnum-Hansen, H. “How good is the Prevent model for estimating the health benefits of preven-
tion?” J. Epidemiol Community Health, 53, pp. 300–305 (2006).
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Chapter 8

Adjusting Risky Behaviour
The best cure for hypochondria is to forget about your own body and get interested in
someone else’s. Goodman Ace (1899-1992)
The best way to stop smoking is to carry wet matches. anonymous

Psychosocial Risk Modelling

8.1 Model Overview

In Chapter 7 we concerned with the question of how to measure the link between a risk factor
and a disease. This provides a measure of healthcare demand based on disease prevalence in the
population and a methodology for modelling the impact of public health interventions. In this
chapter turn our attention to the question of how to develop an intervention strategy. That is, the
psychological and social aspects of applying risk modelling: Psychosocial Risk Modelling.

The term disease refers to any negative
health outcome.
Risk factors can be beneficial, if they
decrease the likelihood of a disease, or
harmful, if they increase the likelihood of
a disease.
(see Chapter 7 for more details)

In many cases, once a link between a negative health outcome
and a risk factor is found, policy makers attempt to change the
prevalence of the risk factor in society by altering the policies govern-
ing society. Perhaps the best example of this is the effect of US Sur-
geon General’s 1964 announcement that smoking causes lung can-
cer1. Almost immediately the United States enacted the “Federal
Cigarette Labeling and Advertising Act” which compelled cigarette
companies to issue warnings on all cigarette packs. Shortly there-
after, Britain banned television advertisements for cigarettes, and
in 1970 the United States followed suit. Since then, most first world
countries have enacted laws regarding warning labels on cigarette packages, restricting (or elimi-
nating) the advertisement of cigarettes, and creating smoke-free zones in many public places. Most
recently, in March of 2006, Scotland has banned smoking in all enclosed public places; this includes
every pub, club and bar, and some outside shelters.

An attempt to adjust the prevalence of a risk factor in society via a new law or policy is a
policy-based intervention. We use the word policy used instead of law since policy-based approaches

1On January 11th, 1964, the US Surgeon General Luther Terry released the 387 page report “Smoking and
Health.” In Chapter 4, Summaries and Conclusions, it states “Cigarette smoking is causally related to lung cancer
in men . . . The data for women, though less extensive, point in the same direction” (page 37). A complete copy of
the report can be found online at http://www.cdc.gov/tobacco/sgr/sgr_1964/sgr64.htm.
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include examples such as the distribution of free condoms and clean needles in areas with a high
prevalence of HIV.

In many cases, including smoking, policy-based interventions have had profound impact on the
prevalence of a risk factor in a population2. However, in other circumstances enacting new policies
is not effective or not practical. For example, clear links have been uncovered between unprotected
sex with multiple partners and the spread of HIV/AIDS. However, enacting anti-adultery laws is
ineffective, and policies regarding condom usage can infringe upon religious ideals. Other problems
arise when considering more complicated risk factors such as the recent research linking red wine
and individual health[1]. These results suggest that moderate amount of red wine increase overall
health, while large amounts decrease overall health. Clearly, enacting a policy enforcing adults to
drink the appropriate would be nearly impossible.

When dealing with issues where policy-based approaches are ineffective many researchers often
focus on the idea of improving the individual’s knowledge of the matter at hand. In this regards,
psychosocial risk modelling attempts to adjust the individual’s perceived risk and perceived efficacy
regarding the risk factor and the particular disease. We refer to these approaches as education-based
interventions.

When researching psychosocial models of
risk it is important to remember that it
is not the actual risk nor the individual’s
actual efficacy, but the individual’s
perceived risk and perceived efficacy that
effect how they behave.

In psychosocial modelling the phrase perceived risk is used to
refer to an individuals belief on how detrimental (or beneficial) a
given course of action is to ones health. In this context, perceived
risk can be thought of as a balancing of the answers to “what’s the
worst that could happen?” and “how likely is that to happen?” In
adjusting the public’s perceived risk, one tries to help them gain a
better grasp of the correct answers to these two questions.

The phrase perceived efficacy refers to an individual’s belief on
how much control they have over a given situation. In regards to

health care, perceived efficacy is not just an individual’s knowledge about what actions they can
take, but also their knowledge on their ability to perform these actions. For example, a drug user
may know that sharing needles is dangerous and increases the risk of HIV, but unless the same
drug user knows where to obtain clean needles this knowledge is useless. In many cases altering
an individual’s perceived efficacy involves breaking down certain cultural barriers and beliefs the
individual has developed. For example, in many cultures women do not feel they have the right to
demand their sexual partners wear a condom, changing this belief can have very positive effects on
the control of spread of sexually transmitted diseases.

As with policy-based interventions, education-based interventions are not always effective in
combating risky behaviour. For example, many people choice to take up smoking despite being
aware of the health risks and nicotine’s addictive properties. Moreover, there is no clear cut answer
to the question of when to use a policy-based approach and when to use a education-based approach
to adjust risky behaviour. Even in hindsight it is often unclear which intervention has made the
larger impact. One could argue that the decrease in the prevalence in smoking in the United States
is not due to policy changes but instead due to a spreading of the knowledge that smoking is
hazardous to one’s health. Alternately one could point out that, despite this knowledge, every year
over one million teenagers take up smoking3, and argue that without laws restricting the purchase
of cigarettes to minors this number would be even higher.

2According to the National Center for Chronic Disease Prevention and Health Promotion the adult smoking rate
in the United States dropped from 42.4% in 1965 to 22.5% in 2002.

3Data according to the National Center For Chronic Disease Prevention and Health Promotion
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8.2 Common Uses

The goal of psychosocial risk modelling in healthcare is to develop models of explaining how the
general public may be swayed into better health behaviour. In general this question can be reduced
to “how can we increase/decrease the prevalence of the risk factor X in the population?” For
example:

• How can we increase the use of clean needles amongst drug users?

• How can we decrease the prevalence of smoking in the population?

• How can we improve the eating habits of the general population?

Psychosocial risk modelling often approaches these questions through the idea of education.
This alters the question to “how can we better educate the public on the dangers/benefits of X?”
For example:

• How can we better educate drug users on the importance of using clean needles?

• How can we better educate the public on the importance of a healthy diet?

In other cases psychosocial risk modelling approaches these questions through social policy making
or stricter laws. For example:

• Should smoking be banned from public places?

• Should public school cafeterias adopt a policy of no longer serving high fat food?

8.3 Model Details

The two most common approaches to adjusting risky behaviour lie in eduction and policy making.
In education-based interventions, one attempts to increase the public’s awareness of the risk factor
and what they can do to reduce it. In policy-based interventions, one attempts to adjust the
prevalence of the risk factor by developing laws or policies which reduce harmful risky behaviour
or reinforce beneficial risk factors. Regardless of which approach one selects, in order to alter the
health behaviour of an individual it is imperative to understand the underlying factors which impact
health behaviour. Many models have been proposed to explain human behaviour, several of which
are discussed in other Chapters of this book. For now we satisfy ourselves with a brief overview of
two of the most important factors in health behaviour: the concepts of perceived risk and perceived
efficacy. (For more complete descriptions of models to explain human behaviour see Chapters 11
and 12.)

8.3.1 Perceived Risk and Perceived Efficacy

By perceived risk we refer to an individual’s perception of the harm or benefit of a given course of
action. For example, consider the action of maintaining a healthy diet. An individual who sees little
benefit in eating healthy would have a low perceived risk while an individual who sees harm in poor
eating habits would have a high perceived risk. For this example, an education-based approach
to changing an individuals perceived risk might be to educate them on the negative side effects of
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unhealthy eating habits. Alternately, a more policy-based intervention might be the enacting of
laws forcing restaurants to provide nutritional information regarding each option on their menu.

The term perceived efficacy refers to an individual’s perception of whether they can achieve
a given course of action, and how much effort it would require. Again consider the example of
maintaining a healthy diet. Even people with a high perceived risk with regards to this action
may eat poorly based on a low perceived efficacy. For example, somebody in a corporate sale
position may feel that their job requires them dine out a lot with clients, which lowers their ability
to maintain a healthy diet. One may attempt to change an individual’s perceived efficacy by
educating them on how to take better control over a given course of action or developing policies
which make a given course of action more achievable. In the example of a healthy diet, this might
be achieved by teaching people how to select healthy affordable choices from restaurant menus or
developing corporate policies regarding eating at healthier restaurants.

It is worth emphasizing here that when researching approaches to altering health behaviour, it
is not the actual risk and actual efficacy, but the perceived risk and perceived efficacy, that drive an
individual’s actions. In many cases an individual’s perception of risk and efficacy are very different
than their actual risk and efficacy[2].

8.3.2 Education-based versus Policy-based interventions

Unfortunately there is often no clear cut answer regarding when one should use an education-based
interventions and when one should use a policy-based intervention. In fact, in many cases it is
unclear whether a given intervention is education-based or policy-based. Consider for example the
“Health Canada: Challenge to Youth Media Contest.” This contest was organized and funded by
Health Canada, and asked youth from across Canada to create a 20 second anti-smoking commer-
cial. The winning entries (the top 20 out of over 10,000 entries were received nationwide) were
given the opportunity to see their advertisements produced by a professional agency and aired in
cinemas across Canada. As a government organized and funded contest, it could be argued that
this represents a policy-based intervention. However, the result of the contest was 20 anti-smoking
advertisements and the chance for schools nationwide to educate their students on the dangers of
smoking. Thus, the contest could very easily be seen as an education-based intervention4.

Although there are no strict rules to determining what intervention will be most effective in a
given situation, there are some ways to guide one’s thought process. To begin it is always a good
idea to examine pervious interventions. If a past intervention was particular effective, repeat it or
refine it; if a past intervention was a failure, learn from its mistakes.

Another good question to ask is, how good is the public’s knowledge of the given risk factor
and how they can control it (i.e. what is the public’s perceived risk and perceived efficacy)? If
public knowledge is high, then further education-based interventions may not be effective, while
if public knowledge is low, education-based interventions are more likely to have an impact. This
information can usually be obtained via public surveys and forums.

A final question to consider is what are the current policies and laws regarding the risk factor?
In some cases, such as drug abuse, the current laws are extremely strict, and creating further laws
would not be effective. In these cases more creative interventions are needed.

There are many arguments for implementing both policy-based and education-based interven-
tions interventions to adjust health behaviour. For policy-based interventions the arguments are

4For more information on the Health Canada: Challenge to Youth Media Contest see http://www.schoolfile.

com/cash/HealthCanadaYouth.htm
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often along the lines of: without intervention, perceived risk and perceived efficacy are too low.
New policies can increase perceived risk by enforcing a extra penalty for poor health behaviour (for
example, laws governing the use of seat-belts in automobiles) and increase perceived efficacy by
forcing health options to be available (for example, providing free clean needles to drug users – see
Subsection 8.4.3). The arguments for education-based interventions generally reduce to: inaccurate
perceptions of risk and perceptions of efficacy lead to incorrect decisions regarding risky behaviour.
Therefore, when developing an education-based intervention strategy, it is important component to
consider how to accurately communicate information about risks to the public. Measures such as
risk ratio and attributable risk (see Chapter 7) may be useful to policy-makers, but for the general
public these measures are confusing and difficult to interpret. (Indeed, even trained epidemiologists
make flaws in interpreting these measures[3]; we discuss this further in Subsection 8.4.2.) Similarly,
journals such as the American Journal of Epidemiology are excellent sources of information for
healthcare professionals, but seldom read by the general public. The lessons from these examples
are simple; information should be communicated to the public in a manner they can comprehend
and in a location they frequently access. However, effective implementation of these lessons is
surprisingly difficult.

8.4 Examples

8.4.1 Tanzanian soap-operas and HIV: a success story.

The country of Tanzania and its 37 million citizens lie on the East coast of Africa. It is a poor
country, with 3 television stations, 150,000 telephones lines, and 1.6 million people living with
HIV/AIDS5. This HIV infection rate is among the hightest in the world.

It has been found that the epidemic is maintained primarily through extramarital sex, with about
97% of cases occurring through heterosexual intercourse. Thus, modification of sexual behavior is
potentially an important means of controlling the epidemic. In 2000, the results of a 4 years
education-based intervention study were published[5]. In this example we outline the study, and
highlight some of its successes.

A soap opera is an ongoing, episodic
work of fiction, usually broadcast on
television or radio. They are
characterized by their open ended plots
and complicated inter-character
relationships.

The study began with the proposal of an educational soap opera
entitled “Twende na Wakati” (Let’s Go with the Times) designed
to adjust the levels of perceived risk and perceived efficacy regard-
ing HIV/AIDS. Although it is widely accepted that entertainment-
education programs are effective in influencing audience behaviour
in various communities, this is the first case of a national-level in-
tervention using entertainment-education as a tool to combat the
HIV epidemic.

Much of theory underlying the entertainment-education asserts
that social-cognitive dimensions have a greater impact in effecting behavioural change than a mere
providing of information. That is, providing the information on HIV/AIDS is necessary, but without
impacting social beliefs the intervention is unlikely to be effective. As such, Twende na wakati
transmitted its message by using characters in the show as negative, transitional and positive role
models. Each broadcast was also followed by a 30 minute educational epilogue providing more
direct education on HIV/AIDS.

5Data from the CIA world fact book: https://www.cia.gov/cia/publications/factbook
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Twende na wakati was broadcast via radio in Swahili twice a week for 30 minutes each. The
choice of radio as an intervention media was highly appropriate, as radio is the most popular form of
electronic entertainment in Tanzania and an important source of information on HIV/AIDS. Since
the intervention strategy aimed at reducing the number of sexual partners and increasing condom
use in the broadcast area, the soap opera promoted the following:

• all STDs should be medically treated,

• condoms are effective in preventing HIV infection,

• AIDS is an incurable disease spread by sexual contact, and

• various rumors about HIV/AIDS are false.

In order to assess the impact of the intervention, one region of the country was denoted a control
region, and the radio show was not broadcast in this region for the first two years (1993-1995). Due
to the positiveness of the preliminary results, from 1995 to 1997 the soap opera was broadcast
nationwide.

Some common, and false, rumors about
HIV/AIDS in Tanzania include:
• condom lubricant contains HIV
• you can visually identify if people are
infected with HIV, and
• it is harder for fat people to contract
AIDS.

Data was collected through personal interview surveys that were
carried out five times at 1 year intervals, starting just prior to the
first broadcast. Males (aged 15 to 60) and females (aged 15 to 49),
selected on a sampling grid, were asked about to provide information
on personal characteristics, exposure to Twende na wakati, other
sources of information on HIV/AIDS, and personal attitudes and
preventive behaviour practices regarding HIV/AIDS.

During the first two years of the study, exposure to Twende na
wakati was only 2% in the comparison area and 47% in the treatment
area. When broadcasting was extended nationwide, listenership in-

creased to about 60% and 75% in the treatment and comparison areas, respectively.

Statistical analyses of the Twende na
wakati project used ANOVA and logit
loglinear models to compare the control
and treatment areas. Additional analyses
using logistic regression and ANOVA
were carried out to account for 8
independent variables. Possible
geographic effects were also tested by
stepwise multiple linear regression
models. (See Chapter 5 for descriptions
of these models.)

In the treatment area (the non-control region before 1995, and
nationwide after 1995), survey respondents showed a modest but sig-
nificant increase in knowledge regarding HIV/AIDS. This increase
was not present in the control region, suggesting that the soap opera
was directly responsible. Although no significant change in attitude
toward having sexual partners prior to marriage was seen, personal
perception of risk among respondents has increased and significant
changes in preventive behaviour was found. Specifically, survey re-
spondents showed a significant increases in condom use and decline
in the total number of sexual partners. This behaviour was shown
to be influenced through several intervening variables. Most no-
tably, respondents showed an increased perception of risk of con-
tracting HIV/AIDS, an increased self-efficacy with respect to pre-
venting HIV/AIDS, and an identification with the primary charac-

ters in the soap opera.
In conclusion, this study is an excellent example of the indirect nature of cognitive processes

involved in assimilating information and producing behavioural change. It represents an empirical
test of cognitive theories of behaviour change, and shows that education-entertainment can be a
highly effective intervention impacting both perceived risk and perceived efficacy.
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8.4.2 Interpreting AR and RR: a dangerous game

The issue of communicating information in a form the general public can make sense of has been
addressed by various researchers ([1] and citations therein). As mentioned, there is a common
consensus that measures such as risk ratio and attributable risk are be difficult to interpret for the
general public.

In Chapter 7 the concepts of attributable
risk (AR) and relative risk (RR) are
developed. Equation 7.2 defines
attributable risk as

AR =
Pr(D)− Pr(D|F c)

Pr(D)
,

while Equation 7.1 defines relative risk as

RR =
Pr(D|F )
Pr(D|F c)

,

where Pr(D|F (c)) is the probability of
experiencing disease D given risk factor
F is present (c - not present).

To help avoid public misunderstanding of risk, some researchers
have suggested other forms of risk measures to help the public digest
what level of risk various activities entail. For example, the impact
of risky behaviour could be communicated to the public in terms
of “average number of life years lost/saved”[1]. Measures such as
these are much easier to understand, and allow the public to better
gauge what level of risk each risk factor represents. However, the
cost of this communication it that it is often difficult to estimate
these values from epidemiological quantities such the attributable
risk. One possible manner of estimating these values is to resort
to a computer simulation involving the risk factors and diseases of
interest.

For the case of the impact of moderate alcohol consumption on
coronary heart disease, Phillips and Zeckhauser[1] developed a sim-
ulation model using mortality data from the Framingham Heart
Study[6]. Their simulation predicts that the potential life years
gained from moderate alcohol consumption6 would be 0.75 years
for men and 0.63 years for females. A number of approximations
were made in the simulation, which may call into question the accuracy of their results. Nonetheless,
the research of [1] provides an excellent example of how combining risk analysis with simulation
provides a useful tool for generating information about health choices in a form that may be easily
communicated to the public.

8.4.3 SAFE injections: a successful policy change

Forthcoming, after special visit by a SAFE fellow.

8.5 Related Reading

Psychosocial Modelling is also discussed in XXX. It has close associations with ...XXX

Reference [1] ...XXX

1. Phillips, C. V., & Zeckhauser, R. “Communicating the Health Effects of Consumer Products: The
Case of Moderate Alcohol Consumption and Coronary Heart Disease.” Managerial and Decision
Economics, 17, pp. 459–470 (1996).

2. Hakes, XXX

3. Rockhill

4. Pierce JP, Fiore MC, Novotny TE, et al. “Trends in Cigarette Smoking in the United States, Pro-
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63 to 12 drinks per week, spread out evenly over the week
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Chapter 9

Issues in Mathematical Modelling
It’s tough to make predictions, especially about the future. Yogi Berra (1925-)
quote II name (yyyy-yyyy)

Model Selection, Development, and Imple-
mentation

In many cases, the problems and issues arising in healthcare can be answered (at least as a
first approximation) via the statistical techniques discussed in Part I of this book. For example,
if one wishes to measure whether a particular drug is effective in combating a particular illness,
then a double blind test followed by the epidemiology techniques discussed in Chapter 7 is perfectly
satisfying. Alternately, if one wishes examine the complicated relationships between various societal
factors and health, then the regression analysis and econometrics of Chapter 6 provide most (if not
all) of the tools necessary for the project.

However, in many cases researchers, and policy-makers, are more interested in “what-ifs” than
what is. That is, policy-makers are happy to see that a drug is effective, but are really interested
in questions such as “if we made this drug freely available to the public, how would the global
prevalence of the illness change?” To answer questions such as this, more advanced models must
be employed. Part II of this book describes some of the modelling techniques which have been used
to answer these harder “what-if” questions.

Before turning our attention to these techniques it is prudent to lay down a key observation
one should keep in mind while using these models. Namely, its must be strongly noted that,
just because these techniques use mathematics other than statistical analysis, this does not mean
statistical analysis is no longer useful. Indeed, regardless of the modelling technique one uses,
at some level the model should be rooted in real life, which means tuning the model using real
statistical data. During this stage of modelling, the ideas and mathematics discussed in Part I of
this book become necessary to proceed.

Regardless of the modelling technique
used, at some level all models must be
tuned using real data and the statistical
analysis discussed in Part I of this book.

With this in mind, we note that the remainder of this Part will
largely ignore the statistical analysis required to tune models. In-
stead we focus on providing the reader with a high level understand-
ing of what each modelling technique is and what it may be able
to accomplish. Our collection of modelling is no way exhaustive,
but hopefully provides a broad background for any researcher or
policy-maker interested in modelling in healthcare.
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In the remainder of this chapter we discuss some of the issues which arise in selecting a modelling
technique, developing the model, and implementing the results.

9.1 Selecting a Modelling Technique

Unlike what is commonly taught in grade school, for most problems (especially mathematics prob-
lems) there is more than one way to arrive at a solution. This is particularly evident in modelling,
as any given question can be approached by several different modelling techniques. This makes se-
lecting the “best” technique for the job a nearly impossible task. In fact, the “best” technique might
be to approach the question via several different modelling techniques and compare the answer each
model provides.

Selecting a modelling technique to
employ is largely a matter of experience
and luck. When in doubt the best course
of action is probably to use multiply
techniques and compare the results from
each.

Broadly speaking, models fall into two categories: qualitative
and quantitative. These categories are discussed in some detail in
Chapter ??, Section 3.1, so we will not rewrite these details here.
Instead, we simply remind the reader that qualitative models are
models which avoid the use of numbers. Instead qualitative models
are designed to provide insight about why a given situation exists
and what its driving factors are. Conversely, quantitative models are
models which use mathematical variables and equations to describe
the behaviour of a system. Such models are designed to make nu-

merical predictions about how a system will evolve over time and how interventions will impact
this evolution.

Quantitative models can be sub-divided further into the categories: stochastic or deterministic,
static or dynamic, and discrete or continuous. These are discussed in Chapter ?? Section 3.1, so
we will say no more here. Instead we turn our attention to the idea of a feedback loop.

9.1.1 Feedback Loops

An important concept in both qualitative and quantitative modelling is that of a feedback loop. A
feedback loop is what occurs when the state of one variable in the model impacts how the state
of that same variable progresses over time. The classic example is impact of population size on
population size. Consider Figure 9.1 (this figure reappears in Figure 12.1 of Chapter 12).

Population Size
�

-
Births per Year

Figure 9.1: A simple feedback loop.

In Figure 9.1 we see a diagram representing how population size and the number of births
per year interact. The first arrow, pointing from “population” to “births,” represents the fact
that the population has an impact on the number of births per year. The second arrow, pointing
from “births” to “population,” represents the fact that the number of births has an impact on the
population. To summarize, the first arrow states that the more people there are the more babies
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are born, while the second are states that the more babies are born the more people there are.
Therefore, the more people there are the faster the population will increase.

From this simple example it may appear that feedback loops are trivial in there construction
and interpretation. However, as models become more complicated feedback loops can become very
difficult to analysis. In fact, in many cases the state of a variable may both positively and negatively
impact how that variable changes over time.

Most advanced models in healthcare will contain at least one feedback loop. This reflects real
life, where in most circumstances the current health of an individual impacts their future health, the
current efficiency of a hospital impacts the future efficiency of the same hospital, and the current
length of a surgical waitlist impacts how quickly that waitlist will grow. Feedback loops are often
so important and so complicated that the entire goal of a qualitative model is simply to describe
of the feedback loops in a system.

When selecting a modelling technique to employ, one should ask both if the problem in question
has feedback loops, and if so how important it is to model understand them.

9.2 Developing the Model

After a modelling technique is selected, the next stage a researcher proceeds through is the devel-
opment of the model. Since this is discussed in some detail in Chapter ?? we will not elaborate
here. Instead we focus on some traps that modellers may fall into during the development process.

The model does not answer the stated question: One of the most common problems in
a researcher–policy-maker relationship is communication. As a result sometimes a researcher
will spend months developing a brilliant model which in no way tells the policy-maker what
they want to know. To reduce the likelihood of this occurring, it is important that the policy-
maker clearly state the exact question they wish answered, and that the researcher clearly
state how the model will help answer that question. This process should be repeated at
regular intervals to reduce the likelihood of work losing focus part way through the project.

The theoretical model is incomprehensible: One of the guiding principles of modelling is
transparency. Models which are too confusing to understand may be correct, but are seldom
employed in the long run. With transparency comes the ability for experts in the field to
examine they model and determine if they believe the underlying assumptions are correct.

The model is unbelievable: It is important to seek out experts in the field one wishes
to model and include them in the process of model design. Note that experts in the field of
study does not mean experts at modelling the field of study. For example, if one is to model
disease spread through a hospital, one should discuss the model with doctors who have seen
how the hospital system works and how diseases can be spread within that environment. If
the model is clear and believed by them, then there is a significantly higher chance that the
model will be successful in the long run.

The model does not fit the data: If the model does not fit the data, then it is best to
assume that the model is wrong. Since this sometimes means throwing out months of work,
some researchers are very reluctant to do this. Instead they may continually try to tweak and
tune the model to make it work. This process is seldom successful, and usually results in an
incomprehensible model that is riddled with untestable assumptions. In the end, the tweaked
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model will probably be discarded, and instead of losing months of work the researcher ends
up losing years of work.

In all of the above problems, there is one major trap that modellers often fall into. Specifically,
if the model is not working, modellers will often attempt to tweak the model in some manner in
order to fix the problem. In some cases this works, especially if they margin of error for the model
is small. In other cases, this can lead to a long series of “model corrections” which result in an
incomprehensible model that works only for the very specific situation is was designed for. To avoid
this modellers (and researchers in general) must be willing to admit that the method they have
attempted did not work, and to restart the process beginning with a different modelling technique.
This is extremely easy to say, and very difficult to achieve.

9.3 Implementation of Models

Supposing that question has been specified, a model has been proposed and designed, data has been
collected and the model has been tuned to the data, it is not the task of the modeller to “solve”
the model. That is, the model must be examined in a manner which allows the user to answer
the questions which were specified. In many cases this means developing simply equations which
describe the state of the model at a given time, given a certain initial state. This is refereed to
as implementing the model, and in general can be accomplished in three manners: mathematical
analysis, numerical analysis, and simulation. No single one of these techniques is better than the
rest. In fact, like the rest of the modelling process, results are most convincing when multiply
techniques are employed. We now discuss each technique in turn.

9.3.1 Mathematical Analysis

The oldest and most robust manner of implementing a model is through the careful use of a pen and
paper. After developing and tuning the model, the modeller may be able to describe the model as
a collection of equations. Sometimes these equations can be studied without the aid of a computer,
and many properties of the model can be determined. For example, finding equilibrium points for
the model involves examining for which initial conditions the model does not evolve over time.
Answers to questions such as these many provide insight into the model, and system modelled, that
computer aided techniques do not.

The tools used for mathematical analysis of a model vary from model to model, and a com-
prehensive review of analytical methods in mathematical modelling is far beyond the scope of this
document (in fact it would essentially amount to a survey of the entire field of mathematics). A
Instead, we will give a brief introduction to a few of the branches of mathematics which are most
often applied to modelling. In each of the remaining chapters of Part II we will discuss the tools
needed to analysis specific models.

Statistical Analysis: Statistics is the mathematics beyond the collection, analysis, interpre-
tation, and presentation of data. It is a huge field of study and most schools require at least
a first or second year statistics course in order to complete a Bachelor of Science degree. As
mentioned above, and illustrated in Part I of this book, the field of statistics plays a pivotal
role in development of models.
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Calculus: Calculus is the study mathematics enhanced by the concept of a limit. Like
statistics it is a huge field of study and and most schools require at least a first year calculus
course in order to complete a Bachelor of Science degree. From a modelling perspective the
most important concepts from calculus are the derivative and integral of a function. In this
book we denote these by d

dtf(t) and
∫

f(t)dx respectively. In the world of modelling the
derivative of a function most commonly represents the rate of change of that function with
respect to time (it some cases it may be with respect to another variable). The integral of a
function plays the role of an anti-derivative. In modelling the integral often represent a sort
of continuous version of the sum.

Linear Algebra: Linear algebra is the branch of mathematics concerned with the study
of vectors, and there operators. Most schools teach linear algebra as a first or second year
course and make it mandatory for a large variety of degrees. The most common appearance
of linear algebra in modelling is in the form of matrix multiplication and eigenvalue analysis.
Matrix multiplication is the generalizes the notion of a linear function (y = mx + b) to multi-
dimensional spaces. Eigenvalue analysis is used to determine fixed points of such functions,
and to understand how “stable” the functions are with respect to errors in the data.

Multivariate Calculus: Calculus in more than one dimension is usually refereed to as
multivariate calculus. Most schools teach multivariate calculus as a second or third year
course and only make it mandatory for certain degrees. Although the principles of the subject
are the same, many of the definitions must be reworked to make sense in a multi-dimsenional
light. In particular, derivatives become gradients ( d

dtf becomes ∇f) and integrals get taken
over sets instead of intervals (

∫ b

a
f becomes

∫
S

f). In modelling multivariate calculus arises
when the model has multiply interacting variables.

Differential and Integral Equations: A system of differential equations is a set of equa-
tions that describe the infinitesimal interaction between different components of the system.
They are characterized by equations that involve both the function and its derivative (or
its integral). Most schools teach differential equations as a third or fourth year course and
only make it mandatory for certain degrees. Differential equations arise often in modelling,
particularly when the model evolves over time in a continuous manner. If the model contains
feedback loops then the differential equations become more complicated, and more difficult
to solve analytically.
Two important concepts in differential equation are attractors and equilibrium states. An at-
tractor is a state to which the system evolves towards over time regardless of initial conditions
(or at least for a wide variety of initial conditions). Equilibrium states are states that once
obtained the differential equations do not leave. All attractors are equilibrium states, but not
all equilibriums states are attractors. Understanding how differential equations behave near
equilibrium states is useful in understanding the model as a whole.

Graph Theory: Graph theory is the study of mathematical structures representing con-
nections between objects. Graph theory is an advanced subject in mathematics and many
schools do not teach it at an undergraduate level. In modelling graph theory is most strongly
applicable when examining network models. Such models are discussed in Chapter 13.

Optimization: Optimization is the study of minimizing or maximizing a function. Basic
optimization is touched on in most first year calculus classes, but advanced optimization is
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not often taught at an undergraduate level. In modelling optimization is usually applied at
an end stage when policy-makers are interested in what policy changes might improve the
systems behaviour. In order to be effective, optimization requires a clearly defined objective
function. That is, questions like “how can be best run a hospital?” cannot be approached
through optimization, but questions such as “what nursing schedule minimizes the number of
staff hours while maintaining a given level of service?” can be approach through optimization.

9.3.2 Numerical Analysis

As models become larger and more complicated it becomes increasingly difficult to solve them via
analytic means. Fortunately, many of the mathematical tools of analysis have been automated to
various degrees in mathematical programming languages. Some, but far from all, or these languages
are outlined in Appendix C of this text. Here we discuss in general terms what these languages are
capable of.

If the complication in implementing the model is a result of model size (as opposed to model
complexity), it can often be difficult to solve simply because there is so much room for error when
using a pen and paper. A prime example of these is statistical analysis for large data sets. In
this case, several of the mathematical programming languages are capable of solving complicated
systems of equations (or differential equations) in a symbolic manner. The final equation may be
complicated, but computer aid can be further enlisted to produce graphs of the equation. By chang-
ing parameters, resolving, and regraphing, researchers can often gain a good deal of understanding
about a model in very little time. As an added bonus, computers do not tend to get upset about
tedious grunt work.

If the complication in implementing the model is a result of model complexity, mathematical
programming languages can be used to produce numeric (approximate) solutions to the equations
of the model. Good examples of this are the solving of large systems of equations via fix point
methods, or the solving of difficult differential equations via Euler’s method or the Runga-Kutta
method. Numerical methods are also extremely useful for solving difficult optimization problems.

Fortunately, it is not necessary for the user to fully understand how a method work in order to
use it. However, it is best if the user has a decent understand of the methods employed so that
they know whether these methods are appropriate in their situation. As an analogy, consider that
one does not need to know how the combustion engine works to drive a car, but every good driver
should know that the tires should be inflated before going anywhere.

9.3.3 Simulation

Sometimes a model is complicated enough that even writing down the equations which represent
the model becomes overly challenging. In cases such as this one often moves to simulation software
to try an create a fully computerized version of the model. Due to the ease of understanding
simulations, simulation software has become extremely popular in recent years. In Appendix C we
list some of the simulation software packages currently available. Here we discuss in general terms
what simulation is, and what it is capable of.

As a simulation is a method of implementing a model, it is not surprising that it can be stochastic
or deterministic. In a stochastic simulation, events are triggered according to a probability distri-
bution. For example, patients may arrive at the emergency room according to a Poisson process,
with a given expected arrival rate. Clearly, this is more realistic than a deterministic simulation
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in which it is assumed that patients arrive at a specified fixed interval. Whether the additional
complexity and computational overhead of a stochastic model are necessary depends on the level
of detail of the problem that the model is addressing.

Finally, although in the past simulations have been termed either Discrete Event Simulation
or Continuous Simulations, current practice has put Discrete Event Simulations at the forefront.
In discrete event simulation, the time flow in follows a sequence of discrete steps, whereas in
continuous simulation the time flow is continuous. Historically, continuous simulations were done
using analogue computers, essentially electrical circuits custom built to emulate the system to
be modelled. Although analogue computers are still used in a few highly specialized modelling
problems, the vast majority of simulations now use digital computers. By necessity, all simulations
on a digital computer must use discrete time steps, thus the term continuous simulation has largely
fallen out of practical use. When using the term simulation, we shall always be referring to discrete
event simulation.

In discrete event simulation, the model progresses through a series of events as defined by the
simulation algorithm. For example, a patient entering a hospital emergency department might
follow the following sequence of events:

1. enter emergency

2. initial assessment

3. treatment

4. release

The simulation algorithm is based on an understanding of the processes being modelled. In gen-
eral, the simulation would not consist of a simple sequence of events as above, but would include
conditional branching and iterations.

Since static models do not need to be simulated, all simulations are dynamic. Choosing the cor-
rect time step for the simulation is crucial to its success. The time steps in a simulation corresponds
to a time scale in the physical system. For example, in a simulation of an emergency department,
each iteration of the simulation may correspond to an hour of time in the physical system, or if the
model is intended to focus on more detailed dynamical behaviour it may correspond to a minute of
physical time. The model is then run through the required number of iterations which correspond
to the desired physical time span.

It is often the case that during the simulation we may wish to vary the input statistical distri-
bution or model parameters over time. For example the rate of patient arrivals to an emergency
department will typically depend on the time of day. It is well known that the emergency depart-
ment is busier during the afternoon and evening than in the early hours of the morning. In this
case, we may use a moving Poisson process, in which the expected arrival rate varies slowly with
time.

Typically, discrete event simulation runs must be run for a “warm up” period, before they realis-
tically model the physical system. Consider again our example of a hospital emergency department.
When the simulation starts, there are no patients in the system. However, this is certainly not the
case with the actual emergency department. It has existed, serving patients, since the hospital was
constructed.

The level of detail within the simulation algorithm is critical. There is no simple rule about the
degree of detail to incorporate. Like all models, simulations must tread a fine line between being
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detailed enough to solve the problem for which they are designed and simple enough to allow it to
be clearly understood. Aspects which are extraneous to the question being investigated should be
excluded from the model. It is best to begin with a simple model using aggregated data and add
complexity only where needed, validating at each step.

9.4 Related Reading

XXX some textbooks which cover the stuff in section 9.3.1



Chapter 10

Viewing the System as a Whole
The science of healthcare has progressed more rapidly than our ability to manage health-
care as a truly integrated system. Randolph W. Hall (-)
We have a lot of people revolutionizing the world because they’ve never had to present
a working model. Charles F. Kettering (-)

System Dynamics and Systems Thinking

10.1 Model Overview

As healthcare systems worldwide face the challenge of delivering quality services while maintaining
control over escalating costs, there is growing support for the view that conventional approaches
to the organisation of healthcare systems are failing[1]. In conventional management thinking, a
problem can be broken down into individual parts, and each of these is optimized separately. In
healthcare this approach is failing as strong interactions exist between various parts of the healthcare
system. To deal with this problem, many researchers are being to apply systems thinking to the
field of healthcare, and turning to system dynamics to help quantify their models.

Systems thinking is more of a style of thought than an actual modelling technique. Overall,
systems thinking can be viewed as a form of qualitative modelling which focuses on viewing the
system as a whole instead of a collection of individual parts. The method is based strongly on
the belief that the components of a system will act differently when united than when separated.
It argues that by viewing the system as a whole fundamental insights can be gained, and that
persistent difficulties can be resolved by studying the system as a single entity.

Although the name may appear new, many policy makers will already be familiar with systems
thinking. Generally systems thinking models are the type of models which show up in a boardroom
during a talk on “how X impacts Y .” Often, but not always, they are best visualized as a collection
boxes connected by arrows and influence signs. Each box represents a part of the system, and each
arrow and influence sign combination represents how that box impacts another box in the system.
A positive sign means that an increase in the box from which the arrow leaves causes an increase
in the box into which the arrow arrives. A negative sign means that an increase in the box from
which the arrow leaves causes a decrease in the box into which the arrow arrives.

As an example, consider Figure 10.1, which shows how new medicines can both save lives and
increase the chance of medicinal error. In this figure, we have four boxes: “New Medicines,” “Lives
Saved,” “Medicinal Errors,” and “Staff Training.” Since new medicines can save lives, there is an

87
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New Medicines – + –¿ Lives Saved ¡– - –Medicinal Errors ¡– - – Staff Training.

Figure 10.1: New medicines can provide better treatment for diseases, thereby saving lives. However, new medicines

also increase confusion amongst hospital staff, which increases the chance of medicinal errors. This decreases the

number of lives saved (note the negative on the arrow connecting box “Medicinal Errors” and “Lives Saved”). Finally

the model suggests that staff training could be used to counter this problem.

arrow with a positive sign going from “New Medicines” to “Lives Saved.” That is, an increase in
the number of new medicines will cause an increase in the number of lives saved. Similarly, the
model suggests an increase in the number of new medicines leads to an increase in the possibility
of making a medicinal error, which in turn leads to an decrease (note the negative sign) in the
number of lives saved. To counter this effect on must use staff training to decrease the possibility
of medicinal errors. The model suggests that in order for new medicines to have there maximum
impact, their introduction must be accompanied with staff training.

In order to quantify systems thinking, one can turn to system dynamics models. First developed
in the early 1960s, system dynamics models are based on the economics concepts of stocks and
flows[2]. To understand the concepts of stocks and flows it is useful to think of the analogy of water
flowing through a series of reservoirs and pipes. As the valves on the pipes open and close, the water
flows from reservoir to reservoir in a different pattern. To connect this with our previous systems
thinking models, each box in the systems thinking model is a reservoir and the arrows connecting
the boxes become the pipes. Figuring out the exact equations to describe the flow through a given
pipe given a state of the system is how the model now becomes quantified.

System dynamics models (at least from
the perspective of this book) are defined
by their use of stocks and flows to
describe feedback loops and complex
systems.

The strength of system dynamics modelling lies largely in the
fact that it is both qualitative and quantitative in nature. The
qualitative nature of system dynamics comes from the fact that it
builds upon a systems thinking model approach. Thus the original
model can be created without using data, but solely focusing on
the qualitative nature of the system. This is best obtained based
on the experience and insights of professionals and managers. This
knowledge base, although qualitative, is the foundation of the actual

decision process in the system, and as such is considered more comprehensive. (A happy side effect
is that the systems thinking beginning usually makes the model more understandable and believable
later.)

The model shifts to a quantitative model by adding the equations which describe each arrow
in the model. The equations should be developed and tested using actually data, which gives the
model a mathematical accuracy. The equations usually reduce to a complex system of non-linear
differential equations. It is possible (but unlikely) that these equations can then be solved analyti-
cally. More likely, a numerical differential equation solver, or discrete time computer simulation is
employed to provide testing to various system scenarios.

System dynamics models pose a few drawbacks to modelling in healthcare. Most notably, system
dynamics treat individuals in the system like water. It can remember where a patient is coming
from, and where a patient is going to, but it cannot distinguish between two patients in the same
reservoir, nor can it remember a patients entire past history. In some cases, such as modelling wait
times for surgery, this is significant, in most these details are not required and are usually lost in
the mass of the system. In cases where the time a patient has waited in a given spot (i.e. the ability
to distinguish patients in a reservoir) is important, Queueing theory models are probably best to
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employ, see Chapter 14. In cases where the entire history of a patient is important, Discrete Event
Simulation is probably the best option, see Chapter ??.

10.2 Common Uses

Systems Thinking is a holistic approach to modelling based on the belief that the components of
a system will act differently when isolated from the system. It argues that by viewing the system
as a whole fundamental insights can be gained. Using these ideas, systems thinking approaches
questions of how various parts of the system interact. For example,

• What factors are driving the changes in hospital operating budgets?

• How is the shift is population age demographics going to impact the healthcare system? and

• How a pandemic affect the healthcare system?

can all be discussed via systems thinking.
System dynamics is the natural choice for quantifying the ideas developed in a systems thinking

model. In healthcare, system dynamics has been successfully employed to solve problems such as,

• How can one better implement intervention strategies for better control of disease?

• Would hiring more cleaning staff alleviate the hospital bed crisis? and

• XXX?

Unfortunately, this versatility often makes it impossible to approach System Dynamics via analytical
means, so simulation techniques become necessary.

10.3 Mathematical Details

10.3.1 Systems Thinking

Systems thinking is more of a style of thought than an actual modelling technique. Overall, it is a
form of qualitative modelling which focuses on viewing the system as a whole instead of a collection
of individual parts. The goal is to describe how the various parts of a system interact qualitatively.

Often, but not always, systems thinking models are best visualized as a collection boxes con-
nected by arrows and influence signs. Each box represents a part of the system, and each arrow and
influence sign combination represents how that box impacts another box in the system. A positive
sign means that an increase in the box from which the arrow leaves causes an increase in the box
into which the arrow arrives. A negative sign means that an increase in the box from which the
arrow leaves causes a decrease in the box into which the arrow arrives.

Systems thinking models can be created and viewed in many other manners than the box and
influence diagrams described above. As one of the major goals of any systems thinking models
is to clarify interactions between various parts of a system, any visual or descriptive model which
accomplishes this suffices. If the model does not accomplish this, one should “rethink” the system.

An example of a systems thinking model which employs the “box-influence” visualization method
can be found in Figure 10.1, page 88. An example of a systems thinking model which does not
employ the “box-influence” visualization is detailed in Example 10.4.1.
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10.3.2 System Dynamics

After a systems thinking approach is employed, and a box-influence diagram is created, a modeller
often wishes to quantify their model in order to be able to make predictions regarding policy changes
and future work loads. To do this one often turns to system dynamics. System dynamics models are
defined by their use of stocks and flows to describe feedback loops and complex systems, therefore
in order to understand system dynamics we must begin with the definitions of stocks and flows.

The term stock derives from the business concept of a stock, which is refers to the value of an
asset at a balance date. In a more general sense a stock is better described as an entity that is
accumulated over time by inflows and/or depleted over time by outflows. In healthcare, the entity in
question is often patients, so a stock might measure the number of patients in a hospital emergency
department, the number of patients infected with a specific disease, or the number of patients whom
require home care nursing. Returning to systems thinking, stocks measure the contents of the boxes
in a box-influence diagram.

The term flow also derives from concepts in economics, and refers to the total value of changes
to a stock during an given period. Thus in health care, flows could represent the number of patients
entering and exiting a hospital emergency department, the number of patients becoming infected
or recovering from a specific disease, or the number of patients who degrade to the point they need
home care nursing minus the number of patients who improve (or degrade) to the point where they
no longer need home care nursing. Returning to systems thinking, in a system dynamics model of
a box-influence diagram flows measure the amount of influence an arrow has on a given box.

Of course stock and flows can measure objects other than patients. In fact, one of the strengths
of systems modelling is stocks and flows can measure any object which is quantifiable. The number
of beds in a hospital, the number of washrooms in use at a given time, and the number of staffed
ambulances sitting idle at a given time, could all be modelled using stocks and flows. In short, if
you can measure it, you can model it.

With stocks and flows defined, and a box-influence diagram created, the next step in creating
a system dynamics model is to determine the equations which govern each stock. These equations
generally rely on the state of time t and the state of the system S(t) at that time. For example,
consider the box-influence diagram in Figure 10.1. To flesh this out into a full systems dynamics
model we make some small changes to the model to develop the diagram shown in Figure 10.2.

round two

Figure 10.2: A reconstruction of the systems thinking model in Figure 10.1 as a system dynamics model.

In Figure 10.2 the function N(t) represents the number of new medicines introduced during the
month t, this function could be created by the user to test certain scenarios, or determined using
historical data to predict future trends.

The function T (t) is the number of hours of staff training provided in month t. Like N(t),
this number is can chosen by the user to test various training strategies, or set based on historical
training strategies.

The function M(t) represents the number of medicines employed at the hospital during month
t. Since the number of change in the medicines employ per month is the number of new medicines
introduced, we have

d

dt
M(t) = N(t). (10.1)
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Recall, d
dtf is the derivative of the

function f with respect to time, that is,
the change in the function f over a given
time.

The function E(t) represents the number of medicinal errors in a
given month. This number is increased as new medicines arrive and
decreased as staff training takes effect. For the sake of example,
we assume both of these effects are linear. That is doubling the
time spent training per month, doubles the effect of training on the
number of errors. (This assumption is somewhat unrealistic, but
it makes the math achievable without use of a computer. Plus, as long as the number of drugs
introduced and the amount of training done does not fluctuate too much, a linear approximation
is reasonable accurate.) This leads to the differential equation

d

dt
E(t) = αN(t)− βT (t), (10.2)

where α and β are constants.
Finally, the function L(t) is total number of lives saved from the start of the model until month

t. Each month L increases with the number of medicinal options available, and decreases by the
number of medicinal errors. For the sake of example, assume each medicinal option has the potential
to save 100 lives. That is

d

dt
L(t) = 100M(t)− E(t). (10.3)

Equations (10.1), (10.2) and (10.3) combine to form a second order system of ordinary differential
equations, dependent on the input functions N(t) and T (t). To see this differentiate equation (10.3)
to obtain

d2

dt2
L(t) = 100

d

dt
M(t)− d

dt
E(t),

then use equations (10.1) and (10.2) to replace d
dtM(t) and d

dtE(t) to obtain

d2

dt2
L(t) = 100N(t)− (αN(t)− βT (t)).

Integrating this twice we obtain the solution

L(t) =
∫ t

0

∫ t

0
(100− α)N(t) + βT (t))dτ1dτ2

= (100− α)
∫ t

0

∫ t

0
N(t)dτ1dτ2 +

∫ t

0

∫ t

0
βT (t))dτ1dτ2.

If N(t) and T (t) are simple functions (such as constants) these integrals are easily evaluated. If
they are more complicated functions, one may have to resort to numerical solvers to complete the
solution.

The above example demonstrates much of the mathematics required to develop and solve sys-
tem dynamics models. Of course the above model did not include any feedback loops, hence the
differential equations were simple to solve. If the model contains feedback loops, then the differ-
ential equations become more challenging, and often can no longer be solved by analytic methods.
In these cases it is often very useful to lean on the growing selection of system dynamics software
available. Some of this software is reviewed in Appendix C.



92 CHAPTER 10. VIEWING THE SYSTEM AS A WHOLE

10.4 Examples

10.4.1 Going Solid: The Danger of Lacking Wiggle Room

In 2005 Cook and Rasmussen published an exercise in systems thinking which examines how hos-
pital operating budget and staff workload might impact the safety margins for practitioners of
the healthcare system[3]. In this example we summarize their thinking, and provide some further
interpretation.

Many hospitals have begun operating as what Cook and Rasmussen refer to as a “solid system.”
This system includes the practice that patients are admitted into surgery based on the event that
a bed will become available by the time surgery is complete, not based on the event that a bed is
currently available. On the surface this sounds like an excellent system; surgeries can begin sooner,
and therefore more surgeries can be performed. However, consider the following, real, event:

Patient A was admitted into surgery based on the fact that patient B would leave the
recovery room before surgery was completed. Unfortunately, patient B did not leave the
recovery room, because the bed he was suppose to move to was still occupied by patient
C. Patient C was scheduled to move from the intensive care unit to the regular ward,
but was stopped by patient D who was still occupying the desired bed. Patient D was
actually released from the hospital, but was still occupying the bed as his transportation
had not arrived. The transportation was delayed due to an accident on the freeway.

As one can see from the example, this particular hospital had adopted the “solid system” approach
to management. Moreover, they had adopted the approach at all levels of the hospital, making
them (in theory) highly efficient. Unfortunately, without the wiggle room created by a less efficient
system, patient A was left lying on the operating room table, occupying highly expensive space,
people, and equipment. The question we would like to answer is, why are hospitals becoming “over
efficient”?

Consider three of the major factors which effect how a hospital operates: budget, workload
tolerance, and public acceptance. The hospital’s operating budget is clearly a factor in how a
hospital operates. The next factor, the staff’s workload tolerance, is based on the fact that if staff
is overworked (or perceives itself to be overworked) then they tend to neglect performing tedious
duties in order to focus on what they consider more important. Finally, public opinion is of concern,
as if the hospital has too many “accidents” then they will be penalized due to public outcry. For
example, leaving a patient on a operating room table long after the surgery is complete is generally
considered bad for the hospital image.

Now consider these three factors as sides of triangle, and the actual operating state of the
hospital as a point inside of the triangle (see Figure XXX a). Each factor is exhibiting a force
on the operating point, making it quiver inside of the triangle. The magnitude of this quivering
is determined by variations in the three forces impacting the operating point. Since the forces
produced by the budget and workload tolerance are fairly steady, the operating point is constantly
pushed towards the public acceptance boundary. Conversely, the force from the public acceptance
is not steady, as it only arises when accidents become frequent enough to arouse public interest.
As a result, the operating point may exist very close to the public acceptance boundary, and may
even occasionally cross the boundary with no repercussions. By flirting with the margin of public
acceptance, the public becomes hardened to accepted a greater number of accidents and the public
acceptance boundary is loosened without inciting public outcry (see Figure XXX b).
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This simple model demonstrates how the constant pushes of budget and workload tolerance are
overwhelming the standard operating proceedings, forcing hospitals into states which appear more
efficient. It also provides some insight on how to combat this problem, in the idea that the public
acceptance force must be made less erratic. How to alter this force could be explore by further
systems thinking, or developing psychosocial models on how the public views hospital practices (see
Chapter 12 for more information on psychosocial modelling).

10.4.2 EX-TWO

10.4.3 Predicting Future Usage for Home and Community Care

XXX to be inserted in Sept.

10.5 Chapter References and Related Reading

Systems Thinking produces qualitative models that have close connections to (XXX list models and chapters
of note in the book XXX).

System Dynamics models have close connections to (XXX list models and chapters of note in the book
XXX).

Reference XXX discusses XXX.

1. plsek-2001

2. Forrester1961

3. “Going Solid”: A Model of Systems Dynamics and Consequences for Patient Safety, Cook, R., and
Rasmussen, J. Qual. Saf Health Care; 14 pp. 130–134 (2005).
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Chapter 11

Modelling Optimal Behaviour
Economics is haunted by more fallacies than any other study known to man. This
is no accident. The inherent difficulties of the subject would be great enough in any
case, but they are multiplied a thousandfold by a factor that is insignificant in , say,
physics, mathematics, or medicine – the special pleading of selfish interests. Henry
Hazlitt (1894-1993)

Game Theory and Human Capital Models

11.1 Model Overview

The question of why people behave as they do is one of the oldest and hardest questions worldwide.
Usually this question is examined by psychologists via a battery of creative psychological experi-
ments. However, recently, mathematicians have begun their own assault on the question of human
behaviour via the mathematics and logic of optimization. In order to approach the question of hu-
man behaviour in a tractable manner, mathematicians ask the question, how would people behave
if each decision was made logically and focused on the maximizing personal gain. In such models
each players, that is the individuals being modelled, decision impacts the gain of the other players
in the game. Therefore players seek maximize their personal gain subject to the worst possible (or
most likely) decisions of the other players. These ideas are the basis of the rapidly expanding field
of game theory and the development of the human capital model.

In game theory, decisions are associated
with payoff functions, and individuals
are modelled to make decisions based on
maximizing their individual payoff.

In order to quantify personal gain, each decisions are associated
with a payoff function. Of course quantifying the idea of personal
gain in a payoff function is more difficult in some fields than oth-
ers. If personal gain is measured in terms of monetary gain these
concepts become easy to define, so it is not surprising that much of
the early development of game theory was based in economics[1][2].
However, more recently researchers have considered short term and
long term health as quantifiable factors, and used these to develop what are refereed to as the
human capital model.

Before discussing human capital, it is prudent to bring up the idea of the Nash equilibrium.
Introduced by John Nash in his Ph.D. thesis[3], the Nash equilibrium captures the idea that (in
a multi-player strategic game) the optimal action for any given player depends on the actions of
the other players. The Nash equilibrium is based on the assumption that each player will select

95
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their strategy based on their assessment of the action to be taken by the other players. All players
are assumed to follow this logic, and to correctly assess the strategy of other players. Equilibrium
occurs when no player has anything to gain by changing only their strategy, thus all future rounds
of the game will result in the same collection of decisions.

In the human capital model, long-term
health is considered a stock which can be
bought or sold for other assets.

Returning to healthcare, game theory has a clear usage in ex-
amining how policy changes regarding financial incentives will effect
doctor and patients decisions. To move beyond this limited usage
we must examine more creative payoff functions. In particular, pay-
off functions in healthcare will often consider health as an asset that
can be bought into or traded off for other gains. Such functions are

the keystone of human capital models. The main idea in human capital models is that people may
increase their “value” through investing in education, training, or health[4][5][6][7][8].

Although human capital models are not generally considered game theory models, much of the
theory is the same. Like in game theory, players (in this case people and their employers) make
decisions regarding their training and health. These decisions are based on their assessment of how
improving these factors will increase their value at the cost of time and/or money. Also like in
game theory, decisions are complicated by a players perception of how the other players will react
to a given decision. For example, will providing training to one’s employees encourage them to seek
better paying jobs? The ideas are further complicated by ideas such as quality of life, trust, and
other random factors.

Both game theory and the human capital model have been criticized by various quarters. Op-
ponents of game theory generally argue that game theory works on the assumption that decisions
are seldom made in the purely logical manner that game theory uses. Proponents of game theory
respond to this by stating that one of the strongest uses of game theory is to determine where
humans are irrational thereby providing focus for future study.

The critics of human capital models generally run along the same lines. Critics state that most
human capital models are too simplistic, and human capital models which are not overly simplified
are impossible to work with. Furthermore, human capital models are founded on the representative
agent approximation for economic systems. For many simple economic systems, the representative
agent approximation has been shown to be valid. However, this is not true in general. In particular
in economic models in which consumers have limited information and economic models in which
there are interactions between agents, the representative agent approximation has been shown
to be flawed[9][10][11][12][13][14]. This is the case in healthcare where the information asymmetry
between patients and providers is typically significant, and patients interact with other patients to
determine trust factors for given physicians. Nonetheless, human capital models may still be useful
for understanding some components of healthcare demand and other health behaviour.

11.2 Common Uses

Game theory is a branch of applied mathematics that studies strategic situations where players
choose different actions in an attempt to maximize their returns. The theory provides models of
rational decision-making in strategic interactions. As such, it may be used to understand how
people interact with the health care system, addressing questions such as,

• How does trust effect doctor-patient cooperation and quality of care?

• How do incentive structures effect physician decisions? and
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• How might user fees effect patient waiting times?

Human Capital models seek to understand decisions regarding health from an economics per-
spective. Like game theory, the human capital model creates a payoff function with captures the
idea that health is a stock which can be bought or sold for other commodities. These ideas make
human capital models useful for examining questions such as,

• How do user fees and insurance impact the demand for healthcare?

• What is the role of family in the demand for healthcare? and

• How can be better understand drug addiction?

11.3 Mathematical Details

11.3.1 The Prisoner’s Dilemma, a Introduction to Game Theory

Fortunately game theory models often do not require advanced mathematics to understand. Un-
fortunately, they often require a long and carefully thought-out series of logical thinking that can
be difficult to validate. As such, it is probably easiest to approach the mathematics of game theory
via an example. We begin with the classical prisoner’s dilemma.

Possibly the most famous example of strategic game in mathematics is the Prisoner’s Dilemma.
The game considers the following situation:

Two partners in crime are arrested by the police. Although the police have sufficient
evidence for a minor charge, they have insufficient evidence for a major conviction, so
they separate the prisoners and ask them to testify against the other. In return the
police offer the following deal,

1. if neither partner testifies then they will both receive one year sentences on the
minor charge,

2. if one testifies against the other and the other does not testify, the one who testifies
will receive a full pardon but the one who does not testify will receive a 10 year
sentence,

3. if they both testify then they will both receive 6 year sentences.

Given that neither prisoner knows how the other will behave, how should the prisoners
act?

Each prisoner has a choice of two strategies: testify or not testify. Let us denote these strategies
by T (for testify) and N (for not testify). The results of each prisoners choice is usually called the
payoff and captured in a payoff table. To demonstrate, in Table 11.1 we provide the payoff table
for each combination of strategies. The table represents the jail time each prisoner will incur given
their and their partner’s strategy.

Next we consider the Nash equilibrium for the prisoner’s dilemma. The Nash equilibrium is
defined as XXX. From the table it is clear that the minimum total jail time occurs if neither
prisoner testifies, and the maximum total jail time occurs when both prisoners testify. Therefore
one might conclude that the best strategy is for neither prisoner to testify. However, if prisoner 1
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Prisoner 2

Prisoner a
N T

N (1 year, 1 year) (0 years, 10 years)
T (10 years, 0 years) (6 years, 6 years)

Table 11.1: The payoff table for the prisoner’s dilemma problem. The bracket value is the amount of jail time

prisoner 1 and 2 will receive, respectively.

does not testify, then it is in prisoner 2’s best interest to testify. However, regardless of prisoner 2’s
action, prisoner 1’s jail time is decreased by testifying (either by 1 year or by 4 years). Hence
prisoner 1’s best course of action is to testify. Reversing 1 and 2, the same argument shows prisoner
2’s best course of action is also to testify. As a result the Nash equilibrium is for both prisoners
to testify. Hence, without some extra determinants of behaviour (such as partner loyalty) both
prisoners will testify, resulting in the maximum total jail time.

Although the prisoner’s dilemma may appear contrived, it provides a mathematics example of
why people may not always work towards the greatest good. In particular, the prisoner’s dilemma
demonstrates how a lack of trust can result in the overall worst solution instead of the overall best
solution. Interestingly, the prisoner’s dilemma has been used to model many “irrational” behaviours
in real world situations and healthcare. For example, the logic behind the prisoner’s dilemma can
be easily transformed into an explanation of the stock piling of nuclear weapons (“if they have them
and we don’t...”), the lack of concern over pollution (“if we slow production but they don’t...”), and
road congestion (“if I drive well, but he doesn’t...”). In healthcare the prisoner’s dilemma has been
used to model Doctor-Patient cooperation (see Example 11.4.1), the demand for pharmaceuticals1,
and the rising cost of hospital nursing staff2. In all of these cases the overall optimal solution
is offset by that fact a individuals can gain (or at least not lose as much) by not playing to the
communal good.

11.3.2 Zero-sum Games and the Maxi-min Criterion Solution

In the prisoner’s dilemma the participants of the game were called prisoner 1 and prisoner 2. Since
game theory is easier discussed in a general form, henceforth we shall use the word players to refer
to the participants of a game. If a game is played once then the players must each select a strategy
and they the payoff table is consulted to determine the outcome. If a game is played multiply times,
we refer to each playing of the game as a round. In this subsection we will discuss more advanced
notions in game theory, in particular zero-sum games.

An alternate definition of a zero-sum
game is: a game in which wealth is never
created nor destroyed.

A zero-sum game is a game in which the sum of the gains and
losses between all players (with losses taken as negatives) is zero. In
particular, in two player zero-sum games, whenever one player wins
the other must lose. In zero-sum games with more than two players
there may be multiple winners, but each value won must be lost
elsewhere. Hence in zero-sum games, whenever there is a winner,

there is a loser.
1http://abcnews.go.com/Technology/WhosCounting/story?id=98179
2http://www.gametheory.net/News/Items/059.html
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It is easy to provide examples of zero-sum games, as most forms of gambling are zero-sum games.
Simple zero-sum games, such as baseball or chess, result in each player either winning or losing.
More complicated zero-sum games, such as poker, may have different levels of victory depending
on how the game plays out. (It is worth remarking that, when poker is played in a casino it is no
longer a zero-sum game as wealth is destroyed by the casino taking a cut of each pot.)

Solving (that is, finding the strategy that rational players should follow) zero-sum games can
be accomplished by a series of techniques. The two most common are dominance, the mini-max
criterion.

The idea of dominance is based on eliminating strategies which are dominated by another
strategy. More precisely, if strategy x always provides a better payoff that strategy y, regardless
of the other players action, then one should never select strategy y so it can be removed from the
payoff table. An example of a game successful solved by dominance in provided in Table 11.2.

A B C
x (5, -5) (10, -10) (10, -10)
y (0, 0) (-25, 25) (-10, 10)

⇒ A B C
x (5, -5) (10, -10) (10, -10) ⇒ A

x (5, -5)

Table 11.2: A payoff table solved by dominance, (player 1 payoff, player 2 payoff). Player 1 may select either

strategy x or y, and player 2 may select strategy A, B, or C. Regardless of player 2’s action, player 1 will always

reap the most profit if strategy x is played, therefore player 1 should always select strategy x. in the resulting table,

strategy A dominants player 2’s payoff, so player 2 should always select strategy A. The end result is player 1 gaining

5 per round.

Dominance solutions rely on the payoff table having strategies which are clearly superior for
certain players. This is seldom the case, after all who would agree to play such a game? In cases
where dominance does not result in a complete solution, one turns to the mini-max criterion (a.k.a.
maxi-min criterion) for further guidance. For a two-person zero-sum game it is rational for each
player to choose strategies which maximizes the minimal expected payoff. However, a player must
be careful not to be predictable or the other player will use this to their advantage.

The terms mini-max and maxi-min are
used interchangeably in mathematics.
This is not surprising as the first is short
for minimize-maximize the second is
short for maximize-minimize.

To illustrate consider the following payoff table

A B
x (5, -5) (-20, 20)
y (-10, 10) (15,-15)

Player 1 may look at the table and see larger gains by playing strat-
egy y (15 instead of 5) and smaller losses (-10 instead of -20) there-
fore lean to using that strategy. However, player 2 will probably
notice this, especially if player 1 uses strategy y every time, and
therefore lean to using strategy A. This would leads player 1 to use strategy x, which causes player
2 to use strategy B and so on... To break free from this tailspin of circular logic, we propose that
both players select their strategies randomly with some probability distributions.

Let px be the probability that player 1 selects strategy x, py be the probability that player 1
selects strategy y, qA be the probability that player 2 selects strategy A, and qB be the probability
that player 2 selects strategy B. In order to make sure everybody plays exactly one strategy per
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round we must have

px + py = 1, px ≥ 0, py ≥ 0 and qA + qB = 1, qA ≥ 0, qB ≥ 0.

We can therefore reduce our variables to p = px and q = qA, and solve py = 1− p and qB = 1− q
later. Given these probabilities the expected value for player 1 in any given round is

E(p, q) = 5pq − 20p(1− q)− 10(1− p)q + 15(1− p)(1− q).

(The expected value for player 2 is the negative of this value.) Player 1 seeks to maximize this
value and controls p, while player 2 seeks to minimize this value and controls q. Therefore we have
the optimization problem

= min
q

max
p
{5pq − 20p(1− q)− 10(1− p)q + 15(1− p)(1− q) : 0 ≤ p ≤ 1, 0 ≤ q ≤ 1}.

Notice that if one fixes q then this is a linear problem in p, and if one fixes p then this is a linear
problem in q. Such problems are called Linear Minimax Problems. In 1944, Von Neumann showed
that the linear minimax problems which arise from two-person zero sum games are always solvable.
Moreover, he provided a technique for finding the solution. Simply put, he noticed that at the
solution the expected function must be flat, and therefore have a gradient of zero3. In our case this
yields,

0 = ∇E(p, q)
=

(
d
dpE(p, q), d

dq E(p, q)
)

= (5q − 20(1− q) + 10q − 15(1− q), 5p + 20p− 10(1− p)− 15(1− p))
= (50q − 35, 50p− 25) .

Which implies
p = 0.5, and q = 0.7.

Recall, the gradient function is the
multi-dimensional version of the
derivative. That is, it measures the slope
of a multi-dimensional function.

∇f = [
d

dx1
f,

d

dx2
f, ...

d

dxN
f ].

Therefore player 1 should use strategy x 50% of the time and strat-
egy y 50% of the time, while player 2 should use strategy A 70% of
the time and strategy B 30% of the time. The expected payoff fol-
lowing such strategies is 5(0.5)(0.7) − 20(0.5)(0.3) − 10(0.5)(0.7) +
15(0.5)(0.3) = −2.5. On average each round player 1 should ex-
pect to lose 2.5, while player 2 should expect to win this amount.
(Therefore, player 1 should refuse to play this game.)

11.3.3 Human Capital Models

Although the human capital model was not developed under the
guise of game theory, the ideas within bare a close resemblance with

game theory. In particular, the human capital model is based on using long term health as a type
of payoff function and modelling individuals as players who seek to maximize this payoff.

3Proving this observation, and proving that a solution will always occur, is considerably more difficult that stating
it. All of these things were done in [2].
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The term human capital comes from
economic literature, where human
capital refers to the stock of productive
skills and technical knowledge embodied
in labor. The term became popular due
to the economist Arthur Cecil Pigou who
stated ”There is such a thing as
investment in human capital as well as
investment in material capital.

Like game theory, human capital models in healthcare are largely
based on logic and optimization techniques. To see this, let us begin
by letting Ht represent the health stock of an individual at time t.
That is, Ht represents a quantification of an individuals perceived
health at a given time. Human capital theory supposes an individual
will seek to maximize this stock over time.

The health stock at time t + 1 is related to the health stock at
time t by

Ht+1 = Ht + It − δtHt (11.1)

where It is the gross investment in health and δt is the depreciation rate of health. Human capital
models suggest various methods to maximize this stock at various points in time subject to various
wealth constraints. Wealth constraints state that one’s wealth can never become negative in order
to buy more health stock.

One example of a wealth constraint is the full wealth constraint:

n∑
i=0

PtMt + QtXt + Wt(Ω− τ)
(1 + r)t

=
n∑

i=0

WtΩ
(1 + r)t

+ A0.

In the full wealth constraint Ω is the total amount of time available, τ is the time spent working,
Wt is the wage rate, Mt is a vector representing all goods purchased which contribute to health, Pt

is the price vector for goods contributing to health, Xt is the vector of other goods purchased, Qt

is the price vector for the other goods, r is the market rate of interest, and n is the total number of
time intervals. Essentially the full wealth constraint states that the amount of money earned over
a life time will exactly equal the amount spent. This may seem unrealistic unless one considers any
money left over at the end of life as money spent on providing inheritance.

Most applications of human capital theory use a relatively simple form for the dependence of
the payoff function on the variables in the model. For such models, various well studied methods
in mathematical optimization can be applied to determine maximal solutions to the model. For
example, in many cases the model can be solved via the method of Lagrange multipliers. More real-
istic forms for the utility function are likely to have numerous local maximums and therefore more
complicated global analysis techniques are required to study them. In either case, the mathematics
behind the optimization of human capital models is beyond the scope of this book.

11.4 Examples

11.4.1 Doctor-Patient Relationships as a Prisoner’s Dilemma

Although, it is a highly simplistic view of the doctor-patient relationship, the Prisoner’s Dilemma
may be formulated in a medical context. In a medical consultation, it is possible for the physician
either to recommend treatment that is in the patient’s best interests or (whether through error,
misjudgement, lack of skills, or conflicting goals) to recommend treatment that is not in the best
interests of the patient. In any given consultation, the patient has to decide whether to follow the
physician’s prescribed course of treatment or ignore the doctors advice and seek another physician.
Let us label these “strategies” as follows:
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Player 1: The Doctor Player 2: The Patient
Strategy G – provide Good advice Strategy F – Follow the advice
Strategy B – provide Bad advice Strategy I – Ignore the advice

There are four possible outcomes:

(G, F ): physician provides good care; patient follows the treatment plan,

(G, I): physician provides good care; patient does not follow the treatment plan,

(B,F ): physician provides poor care; patient follows the treatment plan, and

(B, I): physician provides poor care; patient does not follow the treatment plan.

To create a payoff table for these options consider the following arguments. First, from the physi-
cian’s perspective producing bad advice requires no effort, and therefore we set the physician’s
payoff for bad advice to 0. Next, producing good advice costs the physician some effort, but is
rewarded if it is followed; therefore we set the physician’s payoff for good advice as +1 if it is
followed and -1 if it is not. From the patients point of view, following good advice is rewarding
(payoff = +1) but following bad advice is detrimental (payoff=-1). Finally, ignoring the physician’s
advice causes no change in health status so we set the payoff to 0. This produces the following
payoff table:

F I
G (+1, +1) (-1, 0)
B (0, -1) (0, 0)

This table has two Nash equilibriums, (G, F ) and (B, I). However, the (G, F ) equilibrium is
unstable in the sense that if one player changes their strategy the other player stands to lose.
Conversely, the (B, I) equilibrium is stable in the sense that if one player changes their strategy
then only that players stands to lose. Therefore, game theory would argue that the (B, I) outcome
is the rational outcome for this game. Thankfully, in the real world this is not the usual case.

The missing ingredient in this Prisoner’s Dilemma model of the doctor patient interaction is
that the doctor-patient encounter is not an isolated event, but is a series of interactions over which
a sense of trust develops. Therefore, this should be modelled as a repeated game which allows
some concept of trust and communication. Once these elements are added to the game the (G, F )
equilibrium becomes stable.

11.4.2 Adaptations of the Grossman Incorporating Family and Accep-
tance of Health Decline into Human Capital Models

Two criticisms of using human capital models to describe health are that they do not take into
account the role of relationships in health and they do not explain why people sometimes “give-up”
on their health. Recent works by Bolin, Jacobson, and Lindgren and by Gjerde, Grepperud, and
Kverndokk have discussed these two issues and developed distinct models to examine them.

In 2002, Bolin, Jacobson, and Lindgren developed a human capital model based on the Grossman
model[15] and game theory which incorporates the role of family into the health decision process[20].
In this extended model, a family consists of a husband, a wife, and a single child. Spouses interact
strategically both in the production of their own health and in the production of health in other
family members.
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The strategic aspect of health investment is that the more the wife invests in the health of her
husband, even as he also invests in his own health, the more likely he will be to invest in the health
of his wife. Conversely, the more the wife invests in her own health, even while the husband also
invests in her health, the less likely he will be to invest further in the health of his wife. The same
strategic rules also hold with the husband and wife interchanged. With this in mind, situations
are considered in which none of the individuals can be sure that the other individual will honour a
co-operative agreement concerning how to allocate joint resources. Also, the incentives for husband
and wife to invest in their child’s health may be altered by changes in government policies and
regulation (e.g., child allowance and custody rules).

One possible application of this model is that it may be used to understand the health effects
of divorce. The model predicts that members of families which are divorced are less healthy than
other individuals. However, as noted in [20], this prediction is not entirely born out by the empir-
ical evidence. It is possible that this discrepancy reflects the somewhat simplistic form of family
dynamics in the model.

Another interesting aspect of health is that people tend to adapt to their state of health over
time. For example, if someone has had a long illness or a history of chronic disease, than after an
improvement they might rate their health status as good, even though their absolute health might
be lower than someone who is normally healthy. This phenomena is addressed in [17] and [18] where
the Grossman model is modified to incorporate adaption.

One method to incorporate adaption into a human capital model is to assume that the utility
function depends not the objective health status, but on a definition of subjective health status.
This could be done by defining the objective health function as

K(t) =
H0

1 + β
+ (1 + β)

∫ t

0

e−β(t−s) H ′(s) ds, (11.2)

where H0 > 0 is the initial health endowment, H ′ is the derivative of the objective health status, and
the parameter β ≥ 0 determines the importance associated with present health status as opposed
to past health status. The extent to which the subjective health takes into account changes in the
health status in the past is determined by a parameter β. The larger β, the more the individual
focuses on only recent changes in health. If β is smaller, then the individual takes into a greater
time period when determining their subjective health status.

Gjerde, Grepperud, and Kverndokk, treat the lifetime in their model as an endogenous uncertain
variable, by using a probabilistic hazard function to model the occurrence of death[18]. This allows
them to calculate an expected lifetime utility function, without assuming a fixed lifetime. The model
is then solved by optimizing the expected lifetime utility.

The primary conclusion from this model is that adaption leads to a lower optimal health stock
over time, as the individuals adapt to declining health with age. Furthermore, the rate of return to
health services also decreases with time. This leads to a decline in health service demand as more
resources are devoted to consumption.

11.4.3 Rational Addiction

The theory of rational addiction, first developed in [21], uses a human capital model to model
addiction as a consistent plan to maximize a utility function over time. This model may be applied
to harmful addiction, such as to alcohol, cocaine, and cigarettes, as well as to more benign addic-
tions such as work, eating, or television. Note that maximizing utility does not necessarily mean
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maximizing beneficial utility. Rather, the claim is that the addictive behaviour of the consumer is
forward-looking with strong, stable preferences and that this behaviour can be captured through a
utility function.

A consumer is potentially addicted to a good if an increase in his current consumption of this
good increases his future consumption of it. Thus, in the rational addiction theory, someone is
addicted to a good only when past consumption of the good raises the marginal utility of present
consumption. This model of addiction implies that strong addictions may be ended only by going
“cold turkey”. From a public health policy perspective, this model for addiction may be useful for
evaluating the impact of interventions on addictions which are harmful to public health, such as
smoking, alcohol use, harmful drug use, or obesity.

In this model, a permanent change in the price of addictive goods may have only a small initial
effect on demand, but the effect grows over time until a new steady state is reached. This aspect of
the model may be used to quantify the effect of “sin taxes”, which have long been used to control
the consumption of alcohol and cigarettes.

The rational addiction model of Becker and Murphy has been critiqued in detail in [22]. They
point out that the Becker-Murphy rational addiction model assumes that consumers become ad-
dicted, while having perfect foresight of the consequences of the addiction. This is contrary to most
behavioural studies of addiction. As noted above, a key prediction of the Becker-Murphy model is
that expected higher future prices result in lower consumption today. Although this conclusion is
supported by empirical studies, they are other possible explanations for this behaviour.

A detailed solution of the optimal control problem posed by the Becker-Murphy model is given
in [22]. This provides the opportunity to examine detailed predictions of the Becker-Murphy model
and compare it to other models of addiction. Further work along these lines may lead to models
which are useful for evaluating public health policy towards addiction.

11.5 Chapter References and Related Reading

Game Theory models have close connections to (XXX list models and chapters of note in the book XXX).

In [23], we see how game theory can be used to examine wait times under various user fee scenarios.
The original application of human capital models to health is [4].
A human capital approach to modelling has been applied to pediatric healthcare[16], addiction [21][22],

and to the role of the family in the demand for health[19][20].
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Chapter 12

Explaining Irrational Behaviour
Man is a rational animal. Aristotle (384–322 BC)
Man is a rational animal who always loses his temper when he is called upon to act in
accordance with the dictates of reason. Oscar Wilde (1854–1900)

Psychosocial Modelling

12.1 Model Overview

For modelling purposes, it would be considerably easier if everybody acted is an isolated and rational
manner. However, a brief examination of almost anyone’s life shows that this untrue. Indeed, if
rationality was the norm, the fifty five billion dollar casino gambling industry would be in serious
jeopardy1, everyone would attend their local vaccination clinic2, and over 150,000 psychologists
would suddenly be out of work3. Therefore, whenever one attempts to develop models human
behaviour, it is important to examine the role irrationality plays in this behaviour.

On an individual level, modelling irrational behaviour is, of course, impossible. However, on a
group level, it is possible to examine how social conditions effect the general behaviour of group
members. To this end, the field of Psychosocial modelling has been developed to examine the
impact of social conditions on behaviour. In healthcare, Psychosocial models develop psychological
frameworks which examine how social conditions effect how people make decisions about their
health.

Psychosocial (sI-kO-’sO-sh&l): relating
social conditions to mental health.

So far, Psychosocial modelling in healthcare has enjoyed a fairly
long and successful history. In the early 1950s, the Health Belief
Model began the examination of why individuals were reluctant to
accept disease preventive measures, such as vaccination and screen-
ing tests. In the 1960s, the Behavioral Model for Healthcare was
developed to study the more general question of when and why families access healthcare. Both
of these models have blossomed into large fields of research, which include examinations of how

1The 2006-07 Indian Gaming Industry Report totals 2005 casino gambling revenue in the USA as $55.3 billion;
Indian owned casinos accounted for $22.6 billion of this.

2A 2003 survey of 1330 Canadian adults showed that 79.4% of subjects held positive views towards vaccines,
but only 45.4% of subjects had or intended to have an influenza vaccine (Rivto, et. al., Journal of Immune Based
Therapies, 1:3).

3According to the US Bureau of Labor Statistics there were approximately 179,000 psychologists employed in the
USA in 2005 .
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one’s usage of the healthcare system is impacted by one’s social circle. More recently, advances in
computers and mathematical data analysis have allowed these theoretical models to be examined
and verified.

The health belief model is based upon the psychological theory that human behaviour depends
on the value placed by the individual upon a particular goal and the individual’s estimation of the
liklihood of achieving that goal. Essentially the health belief model suggests that an individuals
decision to access healthcare is affected by six elements: the perceived benefits of accessing healthcare,
perceived susceptibility to requiring the benefits, perceived severity of not acquiring the benefits,
perceived barriers of accessing healthcare, cues to action, and self-efficacy (see Table 12.3.1, page
110). The goal in researching the health belief model is to determine how these elements interrelate
and what factors effect them. This is described in some detail in Subsection 12.3.1.

The Behavioural Model for Healthcare is based on the concept that an individuals behaviour
is not only a product of their environment, but also a contributing factor to the development of
that environment. For example, if a particular area is lacking in trained medical personal, people
in that area may seek alternate forms of healthcare, thus reducing the need for medical resources
in the area. Such an effect is called a feedback loop and a system which describes these feedback
loops is called a demand-access-utilization chain. The goal in researching the behavioural model
for healthcare consists of examining the interrelationships between the physical environment, social
environment, health behaviour, and health outcome. Details to this are discussed in Subsection
12.3.2, and the demand-access-utilization chain of the Behavioural Model for Healthcare is given in
Figure 12.2.

12.2 Common Uses

It should be noted immediately that the goal of Psychosocial models is to provide a psychological
framework to help understand patient behaviour, not to produce numerical predictions of future
patient behaviour. Nonetheless, Psychosocial models can help answer many questions posed in the
healthcare industry.

Perhaps the most common use of Psychosocial modelling in healthcare is the examination of
when and why people make use of healthcare. In this regards, Psychosocial models are used to
approach the general question: “what prompts people to visit a trained medical practitioner?”
More practically one might use Psychosocial modelling to answer questions such as:

• How can we improve attendance at immunization clinics?

• How can we improve patient compliance with regards to medical instruction (such as proper
use of antibiotics)? and

• How can we increase the usage of mammography examinations to diagnose breast cancer?

Of course this is far from the only use of Psychosocial models in healthcare. In fact, it is
reasonable to say that anytime one attempts to model general patient behaviour on a group level,
one should incorporate Psychosocial models to some degree. For example, Psychosocial models
should be included when approaching questions such as:

• How can we improve the lunch time eating habits of High School Students?

• What factors impact smoking rates in teenage girls? and
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• Who should we educate to reduce unwanted pregnancies?

12.3 Model Details

Qualitative versus quantitative modelling
is discussed in Chapters 1 and 9.

Two of the most popular Psychosocial models in healthcare are the
Health Belief Model and Behaviour Model for Healthcare. We will
approach each of these in turn. However, before doing this, it is
worth noting that Psychosocial models are qualitative models, and
not quantitative models. That is, the goal of Psychosocial models
is to provide a psychological framework to help understand patient behaviour, not to produce
numerical predictions of future patient behaviour.

12.3.1 The Health Belief Model

The health belief model (henceforth refereed to as hbm) is a conceptual framework developed in the
early 1950s by psychologists attempting to understand the widespread failure of people to accept
preventative measures in healthcare (such as vaccinations and screening tests). The model is based
on the psychological theory that human behaviour is largely driven by the perceived value of a given
goal, and the perceived likelihood of achieving that goal. In the field of healthcare, the model states
an individuals likelihood of access healthcare is based on six elements: perceived benefits, perceived
susceptibility, perceived severity, perceived barriers, cues to action, and self-efficacy (see summary
in Table 12.3.1).

The original hbm of the 1950s only
considered the elements of perceived
benefits, perceived susceptibility, perceived
severity, and perceived barriers. The
elements of cues to action and
self-efficacy were not added until the late
1970s.

The element of perceived benefit captures the positive outcomes
that an individual feels may occurs by accessing healthcare. Gen-
erally this captures an improvement in life quality or life span. For
example, one might visit a doctor in the hope of relieving a persis-
tent cough, take an influenza vaccine in the hope of avoiding a nasty
flu, or begin chemotherapy in the hope of prolonging one’s life.

The element of perceived susceptibility captures the individuals
feeling on whether or not the perceived benefits will be required. For
example, a teacher may feel highly susceptible to catching a nasty
flu during the course of a year, and therefore be likely to take an
influenza vaccine. Conversely, a young university student may feel they are the epitome of health
and therefore not perceive themselves susceptible to influenza. Similarly, an 25 year old woman will
perceive a lower susceptibility to breast cancer than a women of 55 years old, and therefore be less
likely to have a mammography examination.

Sometimes the elements of perceived
susceptibility and perceived severity are
combined into one element: percieved
threat.

The element of perceived severity captures how an individual
feels about the result of requiring the benefits but not acquiring
them. For example, an individual educated on the effects of cancer
may perceive a higher severity in the illness than someone who not
been educated. Perceived severity also captures possible social con-
sequences such as how a disease may affect an individuals work or
family life. For example, influenza may be perceived as more severe
to someone who cannot abide the possibility of missing work.

The element of perceived barriers captures the potential difficulties in accessing the particular
aspect of healthcare in question. For example, the distance to the local clinic and the difficulty of
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Table 12.1: Elements affecting an individuals access to healthcare according to the hbm.

Element Summary Examples
Perceived Perceived positive outcomes of • Relief from pain
Benefits accessing healthcare. • Reduced likelihood of getting sick

• Increase in life span
Perceived Perceived likelihood of requiring the • Vaccination and profession
Susceptibility perceived benefits. • Age and cancer screening

Perceived Perceived seriousness of requiring but • Education and cancer screening
Severity not receiving the perceived benefits. • Sickness and loss of work

Perceived Potential difficulties and negative • Distance required to travel
Barriers aspects of accessing healthcare. • Loss of time (personal or work)

• Pain of receiving treatment
Cues to Bodily and environmental • Current symptoms
Action motivation to seek healthcare. • Media coverage

Self- An individuals confidence in their • Positive or negative
Efficacy ability to overcome the perceived reinforcement

barriers to accessing healthcare.

getting the necessary time off work, would be perceived barriers to getting regular mammograms.
Perceived barriers also includes any potential negative aspects of accessing healthcare. For example,
chemotherapy generally has a negative impact on quality of life, and many vaccines are given via a
potentially painful needle.

The element of cues to action captures both bodily and environment events that motivate
individuals to act. For example, a disease which causes a constant ache is more likely to prompt
an individual to seek help, than a disease which does not. Another major contributor to action is
media coverage.

Efficacy (’e-fi-k&-sE): the power to
produce an effect.

The element of self-efficacy captures the individuals belief in
their own personal ability to overcome the perceived barriers of ac-
cessing healthcare. This element differs from perceived barriers in
that it is focused more of the individual confidence than the individ-
ual perception of potential difficulties. For example, an individuals

self-efficacy can be greatly influenced by the positive and negative reinforcement they receive in the
various social circle of their life.

Since its inception, the hbm has undergone considerable scrutiny and analysis. As a purely
qualitative model, the vast majority of the research on the hbm has been preformed in the form of
psychological experiments. Interviews and survey data has been collected to examine the plausibility
of the hbm in practice. Not surprisingly, the hbm model has been largely supported by the collected
data.

As a Psychosocial model, the hbm is primarily designed to explain patient’s behaviour in a
psychological framework. As such, one of the primary goals in researching the hbm is to determine
strategies to alter each element of the hbm. Most of these strategies can be summarized under the
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heading of “improve patient education.”
Another goal of research in the hbm is to determine which element has the greatest impact on

a given problem. For example, if one desires to improve attendance at an immunization clinic, one
would like to know whether they should try to increase the population’s perceived susceptibility
(perhaps through media coverage), decrease the population’s perceived barriers (perhaps by pro-
viding free public transit to and from the clinic), or provide a cue to action (perhaps through flyers
reminding people of the clinic date and time). One example of this type of research is given in
Subsection 12.4.1 below.

Previous research in the hbm has left it with several drawbacks. First and foremost, as a
Psychosocial model it is incapable of forming predictions on the effect of a given policy change.
Second, past research using the hbm has only focused on a single element of the model, and
therefore the usefulness of the model as a whole has never been confirmed. And finally, attempting
to change an element in the hbm model, even for a given individual, is seldom as easy as it appears.
Nonetheless, the hbm provides an important and potentially powerful model for understanding
individual behaviour towards healthcare.

12.3.2 The Behavioural Model for Healthcare

The Behavioural Model for Healthcare first emerged in the late 1960s as an approach to understand-
ing when and why families access professional healthcare. The primary premise of the model is that
an individuals behaviour is not only a product of their environment, but also a contributing factor
to the development of that environment. Such a relationship is called a feedback loop since changes
in the system “feedback” into the system, causing further changes in the system.

Before discussing the case of healthcare, consider a simple example of population change. In
1900, there were approximately 76 million people living in the United States of America4. By
1950 this number had increased to approximately 151 million, an increase of 75 million. By 2000,
the population had increase by another 145 million to approximately 296 million. The reason for
this increase in population growth can be simply explained: more babies were born from 1950 to
2000 than from 1900 to 1950, because there were more people to have babies. Diagrammatically we
capture this idea in what is called a demand-access-utilization chain. The demand-access-utilization
chain for this example can be found in Figure 12.1.

Population Size
�

-
Births per Year

Figure 12.1: Feedback loops in a simple demand-access-utilization chain.

Figure 12.1 is a demand-access-utilization chain with just two boxes and two arrows. The
first arrow, pointing from “population” to “births,” represents the fact that the population has an
impact on the number of births per year. The second arrow, pointing from “births” to “population,”
represents the fact that the number of births has an impact on the population. Thus, the first arrow
states that the more people there are the more babies are born, while the second are states that
the more babies are born the more people there are.

4All statistics from the US census bureau.
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Returning to healthcare, the behavioural model of healthcare can be captured in a similar
demand-access-utilization chain. In Figure 12.2, we provide a version of the demand-access-utilization
chain typically used in the behavioural model of healthcare (adapted from [4]). As before each arrow
represents that the box it is pointing from has an impact on the box it is pointing to.

Environmental

Available
Resources

Cost of Access

Societal

Community Beliefs

Personal
Characteristics

Perceived Need

Health
Behaviour

Personal Health
Practices

Use of Health Services

Historical

Perceived Health
Status

Perceived Health
Service Effectiveness

Consumer Satisfaction

-

-

�

6

? ?

�

	

Figure 12.2: The feedback loops in the demand-access-utilisation chain for the behaviour model for healthcare.

The behavioural model for healthcare considers three main classification of factors that impact
the use of health services: environmental, societal, and historical. The environmental factor largely
consists of the availability of health services, and the cost accessing these services. The societal
factors include personal, family, and community beliefs about healthcare. These beliefs are weighted
against the perceived need for healthcare. The historical factors include consumer satisfaction and
the perceived effectiveness of previous uses of health services.

The category titles given in Figure 12.2
differ in various research papers. Some
common alternatives include “Population
Characteristics” instead of Societal and
“Past Outcomes” instead of Historical.

In the behavioural model of healthcare, the decision to access
or not access healthcare is contained in the health behaviour of
the individual. The health behaviour also includes personal health
practices (such as eating habits) which are not directly involved with
the use of health services.

On Figure 12.2, we see that (according to the behavioural model
of healthcare) health behaviour is impacted by all three of these fac-
tors. We also see that health behaviour has an impact on historical

factors, which in turn have an impact on the societal factors and health behaviour.
Displayed in Figure 12.2 we have shown one version of the behavioural model of healthcare.

Figure 12.2 is actually a fairly simple version, as more modern versions include to a variety of other
factors. For example, research has suggested that factors such as age, gender, personal values,
knowledge on healthcare, physician to population ratios, and health insurance might also influence
their usage of health services. Other research has evolved to consider the importance of perceived
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need for care and the perceived health status as a function of socioeconomic status. These ideas
can be incorporated into the demand-access-utilisation chain by either adding new boxes, or by
splitting pervious boxes into various parts.

Like the health belief model (Subsection 12.3.1) the behavioural model for healthcare has several
drawbacks. As with the health belief model, the behavioural model for healthcare is a Psychosocial
model. As such, it is incapable of forming predictions on the effect of a given policy change. In
fact, due to the inherent feedback loops in the behavioural model, one conclusion of the behavioural
model for healthcare is that a single policy change will cause changes at all levels of the system.
The strength of this model lies in understanding why these feedbacks occur, and how to use them
to our advantage.

12.4 Examples

12.4.1 The Impact of Self-Efficacy

In 2004, Albert Bandura published a work focused on health promotion and disease prevention
using a variant of the health belief model (hbm)[2]. His variant proposed that health behaviour was
based on the following core determinants:

1. personal health goals,

2. personal outcome expectations,

3. personal knowledge of health risks and benefits,

4. perceived self-efficacy,

5. perceived facilitators, and

6. perceived social and structural impediments to the health goal sought.

Let us begin by examining each of these in regards to the hbm.
Items 1 and 2, personal health goals and personal outcome expectations, can easily be conceived

as a perceived benefit of action. Item 3, personal knowledge of health risks and benefits, is a
regrouping of perceived susceptibility, perceived severity and perceived benefits of the hbm. Item
4, perceived self-efficacy, clearly falls into the self-efficacy element of the hbm. Items 5 and 6,
perceived facilitators perceived social and structural impediments to the health goal sought, can be
viewed as a regrouping of cues to action and perceived barriers of the hbm. Thus, Bandura’s model
can be seen as simply a new categorization of the hbm.

As the concept of self-efficacy was first
introduced in 1977 by Bandura, it is no
surprise he believes it to be a focal
determinant in health behaviour.

Bandura’s research led him to believe that an individual’s quality
of health is heavily influenced by that individual’s lifestyle habits.
As such, people are able to exercise some control over their health
by managing their lifestyle habits. It is his belief that “self-efficacy
is a focal determinant because it affects health behaviour both di-
rectly and by its influence on the other determinants”[2]. In order to
support this claim he discusses the impact of self-efficacy on several
previous studies into health behaviour.

For example, in 1987 Meyerowitz and Chaiken[3] tested what style of pamphlet would have a
greatest effect on breast self-examination. They exposed several groups of college-aged females to
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four different pamphlets regarding breast cancer. The first group was shown a pamphlet focusing
on providing information on breast cancer. The second group received a pamphlet designed to raise

Some of Bandura’s more interesting
example include:
• the effects of serial dramas on AIDS
prevention in Tanzania;
• a role-playing video game for diabetic
children; and
• a self-management program for pain
control in arthritis.
In all of these he argues that the
increased self-efficacy is key to the
success of the program.

the perceived severity of breast cancer. The third pamphlet was
designed to raise one’s perceived susceptibility, and the fourth to
raise one’s self-efficacy in regards to breast cancer. A final con-
trol group was not provided with any information on breast cancer.
Meyerowitz and Chaiken interviewed the participants both imme-
diately after the intervention and four months later. The results
of the study conclude that only measures of perceived self-efficacy
were differentially affected by the various pamphlets. That is, any
change in behaviour was due more to a change in self-efficacy than
any other tested element of the hbm.

Bandura’s work provides several other examples along these
lines. In total Bandura’s examples lend solid support to his claim
that self-efficacy is a strong determinant in health behaviour. As
such, Bandura suggests, future attempts to regulate health be-

haviour should include practices which are designed to raise an individual’s self-efficacy.

12.4.2 Refining the Behavioural Model of Healthcare

Forthcoming.

12.5 Chapter References and Related Reading

Psychosocial models have close connections to (XXX list models and chapters of note in the book
XXX).
References [1], [2], and [3] discuss various aspects of the Health Belief model. Reference [4] discusses
the behavioural model of healthcare.

1. Janz, N. K., & Becker, M. H. “The Health Belief Model: a decade later.” Health Educ. Q.
Spring; 11(1): pp. 1–47 (1984).

2. Bandura, A. “Health Promotion by social cognitive means.” Health Educ. & Behav. 31(2):
pp. 143–164 (2004).

3. Meyerowitz, B. E. & Chaiken, S. “The effect of message framing on breast self-examination
attitudes, intentions, and behavior.” J. Pers. Soc. Psychol., Mar; 52(3): pp. 500–510 (1987).
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Chapter 13

Modelling Social Interaction
It is your business when the wall next door catches fire. Horace (65 BC-8 BC)
Christianity teaches us to love our neighbour as ourselves; modern society acknowledges
no neighbour. Benjamin Disraeli (1804-1881)

Network Models and Graph Theory

13.1 Model Overview

In 1967, a prominent psychologist by the name of Stanley Milgram preformed what became an
extremely influential experiment in both pop culture and the scientific community. The experiment
began with Milgram contacting a random individual in the city of Omaha and asking them to
forward a letter to an individual in Boston1. If the Omaha knew the Bostonian on a first name
basis, then they could mail the letter directly. Otherwise, the Omaha was asked to mail the letter
to someone they knew on a first name basis whom they thought might know the Bostonian. Each
person to receive the letter was given the same instructions: if you know the Bostonian on a first
name basis mail the letter to him, otherwise mail the letter to someone you think might know the
Bostonian on a first name basis.

Not surprisingly, a significant proportion of the people refused to participate, but eventually 64
of the original 296 letters reached the Bostonian. The remarkable result of this experiment was that
of the 64 letters to arrive, the average number of people who mailed the letter was just 5.5. This
prompted the now famous “six degrees of separation” hypothesis, or the small-world property: if
we define a person as one step away from each person they know, two steps away from each person
who is known by one of the people they know, then everyone is no more than six steps away from
each person on Earth. This hypothesis has resulted in a broadway play2, a film3, a board game4,
and a growth in use of modelling techniques based on Network Theory.

Before discussing network theory, it is worth noting that there are several critiques to the six
degrees of separation experiment. For example:

1Omaha is situated near the center of the United States of America, 1400 miles (2250 km) west of Boston. Boston
lies on the East coast of the United States of America.

2“Six Degrees of Separation” by John Guare, 1990
3“Six Degrees of Separation” directed by Fred Schepisi, 1993
4“Six Degrees of Kevin Bacon” by Craig Fass, Brian Turtle and Mike Ginelli, 1994

115



116 CHAPTER 13. MODELLING SOCIAL INTERACTION

1. Since only letters which successfully reached the target were considered in the final analysis.
It is possible that the letters which did not reach the target were unconnected, or connected
via very long chains.

2. Participants mailed letters based on their best guess of a shortest path, these guesses could
be very wrong.

3. It is unlikely for the entire human population to be acquainted within six degrees of separation
because of the existence of certain populations which have had little or no contact with people
outside their own culture.

The reason we note this is that one of the primary goals of network models is to develop mathemat-
ical models which display the small-world property, and to explore how diseases travel along these
models. Therefore, if one does not believe the six degrees of separation hypothesis then network
models are not a good tool to use during the modelling process.

Network theory explores the mathematical concept of graphs. Think of a mathematical graph
as a collection of dots connected by a series of lines. Not all dots need to be connected, but to make
things interesting there should be at least two dots and one line. Mathematically the dots are called
nodes or vertices and the lines are called edges. A path is a way of getting from one node to another
node by traveling along the edges. To nodes are connected if a path exists between the two nodes.
Finally, the distance between two connected nodes is the length of the shortest path connecting the
two nodes (if the nodes are unconnected the concept of distance becomes confusing).

Network models use graphs to describe
social or physical contacts between
people.

With this set up we can mathematically chart the social structure
of the world. For each individual we create a node and for each
relationship we create an edge. That is, if Jane knows Frank on a
first name basis we draw a line connecting Jane and Frank. The
small-world property states that on this graph of the world any two
nodes can be connected via a path of length six. Of course creating

such a graph for the entire world, or even for a small city, would be an impossible task. Instead we
rely on network theory to create examples of graphs describing social or physical contact between
people. A network model is a model which uses such a graph as its underlying structure.

The application of Network models to healthcare is a relatively new phenoma. However, a good
deal of research has already been developed exploring how small-world property might impact the
spread of disease. Other applications have been slower to arise.

13.2 Common Uses

Network models are models which describe social or physical interactions between individuals in a
society. Once these interactions are described, the main application in healthcare is in describing
the spread of disearse. This leads to questions like,

• How do we expect disease to spread through the network? and

• How can we adjust the network to better control the spread of disease?

Other applications include,

• Examining how social networks impact the demand for healthcare. and [? ].

• .
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13.3 Mathematical Details

To understand network theory it is first necessary to discuss the mathematical concept of a graph.
Graphs are mathematical objects that are composed of nodes (a.k.a. vertices) and edges connecting
them. In healthcare it is easiest to think of the nodes as individuals and the edges representing
connections between individuals, however many other interpretations are possible.

The edges may be given a weight which represents the strength of this connection. For example
an edge connecting a father and his young daughter might be given a weight of 1 as they see each
other every day. Conversely, the same daughter and her classmates might be given a weight of
5/7 since they only see each other five out of every seven days. (In Section 13.1 we simplified our
discussion of graphs by assuming all weights were equal to 1.)

A path is a way of getting from one node to another node by traveling along the edges. To nodes
are connected if a path exists between the two nodes. If all nodes in the graph are connected then
the graph is usually refereed to as a network. Finally, the distance between two connected nodes is
the length of the shortest path connecting the two nodes (if the nodes are unconnected the concept
of distance is undefined).

The concepts of paths and distances can be further complicated by the introduction of directed
edges. A directed edge is an edge which connects nodes in one direction (the easiest analogy is a
one way street.) For directed graphs the concepts of connected and distance may become difficult as
the distance from node 1 to node 2 may differ from the distance from node 2 to node 1. However,
directed graphs can be very useful in certain circumstances. For example, genetic diseases can
generally only be passed toward descendants. Directed graphs can also be used as a mathematical
representation of System Dynamics models, see Chapter 10.

Given a network (or graph), one can assign to each node in the network a degree. The degree
of a node is defined as the number of edges exiting the node. In the analysis of networks one of the
first things done is often to bin the nodes by their degree and attempt to determine the probability
distribution for a node to have a given degree. This provides a first look into the behaviour of the
graph, and some information on how paths within the network behave.

To elaborate, let us denote the probability that a randomly selected node has a degree k by pk.
We say the network follows a Poisson law if

pk =
µk

k
exp(−µ),

where the constant µ is determined from the data to fit the model. While the network follows are
a power law if

pk = Ck−α exp
(
− k

κ

)
,

where the constants C, α, and κ are determined from data to fit the network model. Knowing this
information provides some insight on how the network behaves. Most importantly, if a real life
network is modelled and the probability distribution for the nodes is created, then this information
can be used to generate examples of networks which behave similarly to the real network. This
allows for one to test interventions in a more robust manner.

In Figure 13.1 we illustrate how different probability distributions generate different types of
networks.
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Figure 13.1: Types of Networks. (A) Poisson-law network, (B) Power-law network, (C) Hierarchical network

XXX check, this doesn’t look right to me. XXX
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13.4 Examples

13.4.1 EX-ONE

Hmmm, maybe something to do with spread of diseases? The flu through a school?

13.4.2 The Birthrate in Europe from 1950 to 2000

Since the “baby-boom” following world war II, birth rates in Europe have begun a steady decline5.
Although the reasons for this are unknown, many people have developed hypothesis on the matter.
For example, an increased emphasis on education has raised the age of the first time mother, thereby
decreasing the total amount of children she could conceive. Other hypotheses focus on the increased
cost of child rearing, or the decline of the “stay-at-home-Mom.”

In 2005, Michard and Bouchaud published an interesting Network model which demonstrated
that the decrease in birthrate behaved in a manner consistent with a model which uses social
pressure as one of its driving forces[? ]. More precisely, Michard and Bouchaud showed that the
decline of birthrate demonstrated the behaviour of a random field Ising model. In this example we
summarize their work and explain some of their results.

In the random field Ising model, agents choose between one of two possible choices, which we
shall label as +1 and −1 (in our case the choice is whether or not to conceive a child). This choice
is influenced by three factors:

1. personal opinion,

2. social pressure (the opinion of ones close acquaintances), and

3. external information.

The model starts by randomly generating a network model in which each node is an individual
person and each edge represents a close acquaintance between two people. The model proceeds
by randomly setting a personal opinion for each individual (node). Finally, the external public
information is a global variable which plays the role of a time-dependent driving force in the
decision-making process. Letting Si(t) represent the state of node i at time t, we next define the
rule

Si(t) = sign

φi + F (t) +
∑
j∈Ni

JijSj(t− 1)

 (13.1)

where Nj is the set of friends of agent i, F (t) is the driving force, and φi is the personal opinion
random variable. The function sign takes the value +1 if its argument is positive and −1 if it is
negative. Finally, we define S(t) =

∑
i Si(t) as the collective opinion of the model. Our primary

interest is now how S(t) changes with respect to time and various driving forces.
Equation 13.1 represents a model in which is driven by the three forces listed above (personal

opinion, social pressure, and external information). To test if the real data agrees with this hypoth-
esis we turn to the theory regarding random field Ising models. In particular, in equation (13.1),
the influence of the opinions of our friends is given by the coefficients Jij . If these values are near a
certain critical value, then collective opinion, S(t), of the society begin by changing slowly if F (t)
is increased or decrease. Moreover, if F (t) passes through 0 it will cause S(t) to change rapidly for

5CITATION
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several time steps, after which the rate of change of S(t) will slow down. In this model, the the
distribution of the slopes of the curve S(t) forms a peaked curve, similar to a Gaussian distribution.
Surprisingly, the height of this peak is related to its width by h ∝ w−

2
3 , regardless of the details of

F or φ[? ]. Thus, if we wish to test if this is an appropriate model for our problem we should next
check that actual data satisfies this property.

Michard and Bouchaud collected from Eurostat regarding 11 different countries (Belgium,
France, Germany, Greece, Italy, Netherlands, Poland, Portugal, Spain, Sweden, Switzerland, United
Kingdom), and plotted the number of births per woman of child bearing age per year with respect
to year. (A sample of these plots appears in Figure 13.2.) As can be seen from Figure 13.2, the
birth rate has been falling sharply over time. For each country, the slope of the fecundity curve
was calculated at a number of points and the result fitted to a Gaussian distribution. The natural
logarithm of the height of each of the peaks was plotted against the natural logarithm of the width
in Figure 13.3. The points cluster remarkably well around a line with slope − 2

3 , demonstrating that
the fall in birth rates is consistent with a model of this type.

Figure 13.2: Birth rates of Germany and Portugal

These curves show the drop-off in birth rate for Germany and Portugal. The drop-off rate for the other countries is

intermediate between these two examples.

Reproduced from [? ].

The initial drop in birthrate would have been caused by an external factor, such as the availability
of birth control pills. However, these results are strong evidence that once the phenomena took root,
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Figure 13.3: Peak of the Birth Rate Drop-off Rate versus the Width

The natural logarithm of the peak of the fecundity drop-off rate plotted against the natural logarithm of the width

of the fecundity drop-off. A linear regression fit gives a slope of −0.71± 0.11. The RFIM predicts a slope of − 2
3
.

Reproduced from [? ].

social pressure became a driving force. Further study should confirm or disprove this hypothesis.

13.4.3 Control of Communicable Diseases in Healthcare Facilities

The study of social networks has a long history but until recently it has been largely descriptive.
However, until recently global properties of the network, or its dynamics, have not been used to
make predictions or recommendations. In 2003, work by Meyers, Newman, Martin, and Schrag,
bridged this gap in the study of the transmission of bacterial pneumonia caused by Mycoplasma
pneuminiae[? ]. In this example we summarize examine this work and summarize the results within.

Meyers et. al.’s goal was to develope a model which could be used to determine the size
of an epidemic and test different intervention strategies. To do this they began with a network
model consisting of two types of nodes: patients and healthcare workers. The network’s edges
were directional, indicating the transfer of infection from one person to another. Furthermore, the
network was compartmental, reflecting the structure of the healthcare facility. A sample of such a
model appears in Figure 13.4.

Next, the model was overlaid with a Markov state model similar to the epidemiological S.I.R.
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Figure 13.4: A Network of Health Care Facilities

Reproduced from ? ].

(Susceptible-Infected-Recovered) model. (For further information on Markov models and on the
S.I.R. model see Chapter 15.) Accordingly, each node in the model was given one of three health
classes: healthy, infective, and previously ill people who are cured and immune. The model then
ran along the rule of disease transmission can only occur if there is a direct link between two
individuals. By setting various initial conditions and running the model over a series of time steps,
various scenarios for epidemic spread were explored. For example, in its initial stages an epidemic
can include a single infected person or several infected persons. The size of the epidemic is defined
as the number of nodes in the largest cluster of infected nodes (only one such cluster exists in the
epidemic started from a single case).

The model used three independent parameters define the size of the epidemic: the number of
wards where each care-giver works (µc), the transmission rates from care-givers to wards (τc) and
the transmission rates from wards to care-givers (τw). While the average number of served wards
per worker µc is known and can be changed as a control measure, the transmission rates are not
observable and should be derived by fitting the model to actual or simulated data. This was done
using data from the Centers for Disease Control and Prevention on a mycoplasma outbreak that
occurred in a psychiatric institution in 1999. Interestingly, although theoretically a simple Poisson
distribution for the probability of a disease transmission should be usable, this did not concur with
the data collected, so instead the binomial distribution was used.

Using the model the authors concluded that the average number of served wards per worker
appeared to be the crucial factor in controlling the epidemic. The healthcare workers were found
to be the vectors for the spread of the infection. The modelling demonstrated that limiting the
number of wards served by each care-giver and better protection for care-givers is the most effective
intervention, even for diseases with long incubation periods, such as pneumonia.

13.5 Related Reading

Network Models have close associations with ...XXX
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The science of the networks has recently became a booming field [? ]. Its scope for possible applications
is enormous. From street traffic, to epidemic spread [? ], and biochemical networks in preventive health-
care [? ], to name a few, countless systems can be studied as networks. The interdisciplinary nature of
the network science and its importance for the economy is recognized now at the highest levels of adminis-
tration. The National Research Council in the USA, for example, recommends the use of network science
in the governmental departments [? ]. Network science is promising to be a fruitful avenue to explore for
understanding a variety of issues in healthcare systems as well.

Examining how social networks impact the demand for healthcare. and [? ].
random field Ising model [? ? ]

1. reference
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Chapter 14

Dealing with Lines and Capacity
People nowadays like to be together. Not in the old-fashioned way of, say, mingling on
the piazza of an Italian Renaissance city, but, instead, huddled together in traffic jams,
bus queues, on escalators and so on. It’s a new kind of togetherness which may seem
totally alien, but it’s the togetherness of modern technology. James Graham Ballard
(1930-)

Queuing and Traffic Models

14.1 Model Overview

Bank lines, telephones and pool halls. [1]

14.2 Common Uses

Queueing theory is applicable in any situation where one is trying to model objects moving through
a system. Its two major uses are in studying wait times for the objects to travel through the system,
and to examine fluctuations in the capacity of the system. Queueing theory regarding wait time is
of great help in studying questions regarding waitlist for surgeries, or admittance rates into various
hospital departments. For example:

• How does the number of surgeons impact how long a patient waits before receiving surgery?
and

• How does hospital emergency room admittance change throughout the day?

In regards to capacity of the system, queueing theory in healthcare is often used to study the
amount of bed space available in a hospital:

• How does hospital bed usage vary throughout the day, week, month, or year?

• How do different hospital departments occupancies rates interact?

125
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14.3 Mathematical Details

Both queueing and traffic models address problems where objects or people move through a system.
The theory behind these two modelling techniques is essentially the same, and the major difference
lies in what outcome one desires to measure. In general, traffic models are focused on congestion in
dynamical systems, whereas queueing models focus on understanding wait times within the system.

In either case, the model begins with a system, and a collection of objects which seek to enter
and exit the system. In healthcare, two of the best examples are wait lists for surgery and bed
counts in hospitals.

Queueing theory and traffic theory are
two sides of the same coin.

In the first (wait lists) the system one wishes to enter (and even-
tually exit) is the operating room and the objects that wish to enter
the system are the patients waiting for surgery. In the second (bed
counts) the system one wishes to study is the number of available
beds in a hospital, and again the objects wishing to enter the system

are patients (typically post-surgery). The similarities between these two examples is obvious. In
fact the only real difference is that in wait list modelling we are interested in how long an individual
patient has to wait in order to enter the system, while in bed count modelling we are interested
in the number of beds in use at any given moment. That is, in the first we are interested in the
properties of the objects, while in the second we are interested in the properties of the system.
Since the objects and the system interaction is what determines these properties, it is clear that the
study of queueing theory and traffic theory are simply two sides of the same coin. Hence, although
the remainder of our discussion shall refer to queueing models, it should be recognized that the
theory below is equally applicable to traffic models.

14.3.1 Building a Queueing model

In order to study how the system and objects interact, we next develop the idea of a server. If the
objects are an abstraction of customers waiting in a line, then a server is a concept which abstracts
the idea of the teller that serves that line. In the case of wait list modelling, the server might
represent an open operating room slot which can be used to serve one patient from the wait list. In
the case of bed count modelling the server might represent a random event which sends a patient
home (thus making a hospital bed available for use).

To build a queue model one must define:

A the arrival pattern,

B the service pattern,

X the number of service channels,

Y the system capacity, and

Z the queue discipline.

Once these items are selected, the
constructed queues often called a A / B
/ X / Y / Z queue.

Now that we have the idea of objects, systems, and servers firmly
established, we can state that the basic ingredients of queueing (and
traffic) models are the arrival pattern, the service pattern, the num-
ber of service channels, the system capacity, and the queue discipline.
More complicated queueing models may also incorporate multiple
services stages and impatience. We will discuss each of these in
turn.

Arrival and service patterns

The arrival pattern is both the rate of how often objects enter the
queue. The arrival pattern may be either deterministic or stochastic.
If the arrival pattern is stochastic, a probability distributions must
also be selected to describe the arrival rate (most commonly this is
the poisson distribution, but occasionally others are used).
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The service pattern is the rate of objects being removed from
the queue. As with the arrival patterns, this may be either deter-
ministic or stochastic, and a variety of probability distributions can

be considered.

Number of service channels and multiple service stages

The number of service channels is the number of possible ways an object can exit the queue. In a
simple case this might be viewed as a number of parallel queues, each of which have independent
servers to allow for exiting the queue.

−→ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ −→ server 1 −→

−→ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ −→ server 2 −→

−→ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ −→ server 3 −→

If these independent queues are not interacting then each can be studying individually. More
realistically, if one has more than one server, the queue will interact in various manners. For
example, arrival patterns may dictate that a new arrival will automatically enter the shortest
queue, or if impatience is used (see below) then objects in the queue may move to shorter queues
as they become available. This later concept is called jockeying.

In some models it may also be appropriate to have multiple service stages. That is, when an
object exits one queue they are automatically placed into a following queue. This is captured in
the following diagram.

−→ ◦ ◦ ◦ ◦ ◦ −→ stage 1 server(s)−→ ◦ ◦ ◦ ◦ ◦ −→ stage 2 server(s)−→

In multiple staged queues one may wish to incorporate the idea of blocking. The idea in blocking
is that certain stages of the queues have maximum occupancy levels. Thus even if an object in an
earlier queue has been server, it may be blocked from entering a later queue.

The most complicated queueing models are multistage queues take the form of a complex network
with feedback loops.

MAKE A PICTURE

In these queues, an object exiting one level of the queue may result in a number of different possible
outcomes. It may exit the system, enter a queue, or enter a number of different queues. The process
of deciding which queue to enter next may be based on occupancy, time, or strictly random. (An
example of such a queueing model is given in Example 14.4.3.)
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System capacity

The system capacity refers to the maximum number of objects allowed in the system (queue). If
one in studying concepts of expected wait list length, it is important to define this accurately.
Conversely, if one is developing models to analyze how the capacity of the system changes, then
one may simply define the maximum system capacity as infinite, so maximum expected capacities
can be determined.

Queue discipline

Perhaps the most important aspect to developing a queueing model, is the idea of queue discipline.
Queue discipline refers to the manner in which customers are selected for service. The four most
common disciplines are:

1. First in First Out (FIFO),

2. Last in First Out (LIFO),

3. Service in Random Order (SIRO), and

4. Priority schema.

At first glance the First in First Out rule may seem like the only fair and logical rule, prompting
one to ask why the other disciplines would ever be considered. In the case of healthcare, it should
be immediately clear that sometimes priority schema will take precedence over the classical FIFO
rule. In fact, in most queueing theory textbooks, emergency room and surgery queueing are used
as the classical examples of when priority schema should be developed.

Service in Random Order queues often arise when the actual queue discipline is not under the
control of the modeller. For example, if one is modelling hospital bed counts, then the server
represents when a patient leaves the hospital, making a bed available for use. In general this is
not under the control of the doctor, but has a large random aspect involved. To clarify, although
a doctor may know several hours (or even days) before a patient leaves, what the extra departure
time will be, the doctor does cannot know the departure time of a random patient as they enter
the hospital (i.e. before diagnosis occurs). More over, the doctor can certainly not say to a healthy
patient, “I’m sorry you can’t leave yet. You see, John over there isn’t healthy yet, and he got here
before you.”

The applications of the Last in First Out rule to healthcare are more obscure. The LIFO
rule, often called the stack rule, most commonly arises in computer programming and warehouse
management, where it is easier to take off the top of the pile than the bottom. Surprisingly, LIFO
is often used in blood banks, despite the fact that storing blood for too long can cause spoilage [4].
(Perhaps this is a sign that blood banks are generally under supplied.)

Impatience

In more advanced queueing models, it may be important for the objects to exhibit impatience.
This is of particular interest when the objects being considered are people (as is often the case in
healthcare). Some examples of impatience include:

• Balking: The customer may decide not to enter the queue upon arrival, perhaps because it is
too long.
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• Jockeying: If there are multiple queues in parallel the customers may switch between them.

• Reneging: The customer may decide to leave the queue after waiting a certain time in it.

• Drop-offs: Customers may be dropped from the queue for reasons outside of their control.

Mathematically, the concepts of reneging and drop-offs can be treated as one, but it is often
easier to understand the model if these are treated separately.

The importance of incorporating impatience into queueing models is discussed in XXX.

14.3.2 Analyzing a queueing model

Having built a queueing model, one now wishes to extract from it information such as average
queue lengths, maximum queue lengths, average systems capacity, maximum system capacity, etc...
If the model is based on deterministic arrival and service rates, then this is typically a fairly simple
procedure that can be done very effectively via computer simulation. If the arrival or service rate
of the model is stochastic, as is the case with most applications in healthcare, the process becomes
more complicated.

In either case, one of the most important concepts in queueing theory is that of equilibrium.
Equilibrium is the idea that if run long enough the model may approach a point where, the length
of the queue and capacity of the system are independent of the time variable. It is worth making
it very clear that not all queues will approach an equilibrium state.

Not that not all queues will approach an
equilibrium state.

In the case of deterministic models, reaching an equilibrium state
often means that the length of the queue and capacity of the system
become constant from one time period to the next. However, it may
also mean that the length of the queue and capacity of the system
alternate between two states, or cycle through a known pattern of
states.

In the case of stochastic queueing models, the concept of equilibrium becomes much more
complicated. Instead of approaching a constant or cyclic state, the length of the queue and capacity
of the system may (if one is lucky) approach a time-independent probability distribution. This
means that at any given time period the length of the queue and capacity of the system will be
unknown, but follow a known probability distribution. (For information of probability distributions
see Chapter 5.) Since the term equilibrium is no longer sufficient, this state is usually referred to
as a statistical equilibrium.

To say a queue is approaching statistical
equilibrium, does not mean the queue
length and system capacity are
approaching a constant value, rather it
means that in the long-time limit, the
queue lengths and system capacities will
be samplings of a time-independent
probability distribution.

The mathematics required to analyze if a queue has an equi-
librium state can be very simple, or very complicated, depending
on the model developed. For simple queues it is often possible to
developed a closed form analytic solution that describes the equilib-
rium state of the queue (two examples of this are given in example
14.4.1). In more complicated cases, the queue may be solved via
simulation methods (see Chapter ??). The trouble with “solving”
queueing models via simulation methods is that, it is often difficult
to determine exactly when a state of equilibrium has been achieved;
especially if the queue is complicated and stochastic in nature. This
is often worked around by running the simulation for a “warm-up”
period before trusting the results of the simulation.
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14.4 Examples

14.4.1 Washing dishes in the hospital cafeteria

In this example we develop several artificial queueing models that simulate dish washing in a small
town hospital cafeteria1.

The object in our queue will be dirty dishes (plates), and the system will be the storage racks
used to collect the dishes. Dishes arrive into the queue after a hospital employee uses them to eat a
meal. Dishes exit the queue after the hospital’s dish washer cleans them and places them into the
clean dish racks. We will assume that the cafeteria workers follow a LIFO queueing discipline. This
means that dirty dishes are added to the top of a “pile” of dirty dishes, and the cafeteria workers
clean dishes on the top of the pile first. In our model we will assume that there is only one server
channel. This can be viewed as either lumping all the dish washers into one unit, or as a single
employee who’s job is to clean dishes.

If one replaces the dirty dishes in this
example with occupied hospital beds,
and the clean dishes with available
hospital beds, then one can easily use
this framework to develop a queueing
theory model for hospital bed count.

Our first, and most basic, model will be a deterministic queue.
After some data collection we determine the hospital cafeteria sells
10,000 meals each day, and therefore produces 12,000 dirty dishes
per day. The dish washers are capable to cleaning 500 dishes per
hour. We therefore set our arrival rate to A = 12, 000/day and our
service rate as B = 500/hour. Our queue may now be modelled
as follows. Let t represent time in hours, and N(t) represent the
number of dirty dishes in the dirty dish racks at time t. Then

N(t) = max{0, A
⌊

t
24

⌋
−B btc+ N0}

= max{0, 12000
⌊

t
24

⌋
− 500 btc+ N0},

where N0 represents the number of dirty dishes at time t = 0, and the brackets b·c represent the
flooring function (i.e. round down to the nearest integer). Notice we take the maximum of the
computed number and zero, this forces the dirty dish count to always be nonnegative.

Examining this model it is easy to compute the equilibrium of the system. Since each day we
are adding 12,000 dishes to the queue, and removing (up to) 500 ∗ 24 = 12, 000 dishes from the
queue, it is clear that the queue will balance itself out every day. Thus at the beginning of each
day, the queue will jump to N0 + 12, 000 − 500 every twenty four hours, and then decease by 500
each hour until it reaching N0. Thus the equilibrium for this queue is a pattern which cycles every
24 hours.

Of course this model is naive in several manners. It is unlikely that all the dirty dishes arrive
at exactly midnight every night. Second, it is unlikely that the dish washers process exactly 500
dishes, every hour, on the hour. Basically, we have completely ignored the stochastic nature of the
problem. To correct this consider the following, more advanced, queueing model.

We assume that the arrival rate and service rate are stochastic. In particular we will set the
arrival pattern as a Poisson distribution with a mean of 10, 000 dishes/day and the service pattern
as a Poisson distribution with a mean of 500 dishes/hour. (Recall, the Poisson distribution is the
natural choice for modelling arrival rates. See Chapter 5, Subsection 5.3.3, for more information

1By artificial, we do not mean that the model is unrealistic, only that the model is calibrated with artificial data.
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on the Poisson distribution.) Our new queue can be visualized as follows.

Arrival (meal consumed) Queue (dirty dishes) Service(dishwasher)

Poisson: µen = 10000/24 −→ ◦ ◦ ◦ ◦ ◦ −→ Poisson: µex = 500

(The abbreviations en and ex refer to enter and exit respectively.)
We now seek the statistical equilibrium for this queue. We begin by defining Prn(t) as the

probability that the queue contains n elements (dirty dishes) at time t. The change is probability
from t to t + 1 can now be computed as follows:

Prn(t + 1)− Prn(t) = µen Prn−1(t) + µex Prn+1(t)− µen Prn(t)− µex Prn(t). (14.1)

Equation (14.1) can be interpreted as follows:

µen Prn−1(t) ↔ the chance a queue of length n− 1 increases to length n,
+ µex Prn+1(t) ↔ plus the chance a queue of length n + 1 decreases to length n,
− µen Prn(t) ↔ minus the chance a queue of length n increases to length n + 1,
− µex Prn(t) ↔ minus the chance a queue of length n decreases to length n− 1,

Prn(t + 1)− Prn(t) ↔ equals the change in probability from time t to time t + 1.

The first two terms (of the right hand side of equation (14.1)) are added, since they increase the
probability of a queue of length n, while the final two terms are subtracted since they decrease the
probability of a queue of length n. For the special case of n = 0 equation (14.1) is replaced by

Pr0(t + 1)− Pr0(t) = µex Pr1(t)− µen Pr0(t). (14.2)

Next we assume that for some large value of t the queue has reached statistical equilibrium,
implying Prn(t) = Prn(t + 1) = Prn. Thus, equations (14.1) and (14.2) reduce to

Pr1 = µen

µex
Pr0

Prn+1 = µen+µex

µex
Prn−µen

µex Prn−1

This system is solved by the iterative formula

Prn =
(

µen

µex

)n

Pr0 . (14.3)

To develop equation (14.3) “correctly,”
one should actually begin by developing
a series of differential equations, and
then setting the derivatives to 0.
Equations (14.1) and (14.2) provide a
discretized interpretation of this
mathematical technique.

Recalling that the probability of something happening is always
1, we note the sum of all the probabilities Prn must be 1:

1 =
∞∑

n=0

Pr
n

=
∞∑

n=0

(
µen

µex

)n

Pr
0

= Pr
0

∞∑
n=0

(
µen

µex

)n

.

This sum converges if and only if µen

µex
< 1, therefore a statistical

equilibrium can be achieved if and only if µen

µex
< 1. If µen

µex
is less

than 1, then the sum converges to
∞∑

n=0

(
µen

µex

)n

=
1

1− µen

µex

,
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which tells us Pr0 = 1 − µen

µex
, and provides (with equation (14.3)) the statical equilibrium for the

model.
From here the modeller may be satisfied, or may wish to develop this model further. Some

examples might include, adding a maximum length to the queue (representing the total number
of dishes the cafeteria owns), using multiple time-dependent arrival and departure rates which
represent different times of the day (week, month, or year), creating multiple server queues where
each dish washer works at a different rate, or creating multiple staged queues which represent
moving the dirty dishes from the table to the dish rack and then cleaning them. Once the modeller
is satisfied with the quality of the model, the model can be used to explore certain “interventions.”
For example, the impact of a cafeteria dish washer strike could be examined by running the queue
to equilibrium then dropping the departure rate to 0, while the effect of hiring more dish washers
could be examined by increasing the departure rate.

14.4.2 Hip and Knee Replacement Surgical Waitlist in British Columbia

Over the past 40 years, knee and hip replacement surgery has advanced to the point where it is the
standard approach (in Canada) for treating chronic joint pain. The improvement in techniques,
and aging population of Canada, has led to an increased demand for these procedures and, as a
direct result, increased wait list length. To understand the attributes which impact wait list length,
and to explore potential interventions, a research team at the IRMACS center developed a working
queuing theory model for hip and knee replacement surgical waitlists[2]. In this example we outline
the model, and provide some of the analytical evaluation of the model.

The basic model consisted of individuals entering the queue on a continuous basis. Individuals
can exit the queue either through surgery or by dropping out. The surgery server is assumed to be
the classic FIFO server (first-in first-out), while the drop-out server was SIRO (service in random
order). This means to have surgery an individual must wait until they are at the front of the queue,
but an individual my drop off the queue at any time. The arrival rate and surgery rate were both
assume to be continuous with rates r and s respectively (in this manner the queue can be modelled
via differential equations). The drop-off rate was also continuous, but with a rate that varied in
proportion to the current length of the queue: kN (k is the drop-out proportion, and N is the
current length of the queue).

In order to work with the queue, a discrete event simulation was developed and analytical
methods were employed. Using the discrete event simulation, the researchers were able to “tune”
the model until the parameters r, s, and k produced results similar to those found in the available
data. The available data consisted of two data sources: the discharge abstract database (DAD)
and the Surgical Wait List (SWL) registry. The DAD is a validated data set that includes hospital,
surgeon, and procedure, but no information on wait times. Conversely, the SWL registry includes
entry and exit dates for surgical waitlists, but is unvalidated data. Using common patient identifiers
(surgeon plus operation date for example), these two lists were able to be combined and the linked
cases were used for data flow analysis in preparation to the simulation.

Analytical Solution

The queue length N can be mathematically described by the differential equation

dN

dt
= r − s− kN.
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This equation states, the change in the size of the queue is proportional to the people joining the
queue, minus the number of people exiting via surgery and the number of drop-outs. Clearly, if the
rate of joining (r) is greater than the rate of surgery (s), then the queue will grow. However, the
rate of drop-off (kN) grows with N , and will eventually approach r − s. Thus, eventually the rate
of growth of the queue becomes negligible. (This was supported in the output of simulations.)

This system can be solved analytically, obtaining formulas for the queue size, waits and total
dropouts, and giving a valuable comparison. In particular, the differential equation for the queue
size has the solution

N(t) =
r − s

k
−

(
r − s

k
−N0

)
e−kt, (14.4)

where N0 is the number of individuals in the queue at time 0.
As we are further interested in the wait time for a given individual, for a fixed individual P we

define the wait time as W = tout − tin, where tin is the time the patient enters the wait list, and
tout is the time the patient enters surgery. We also define the size of the wait list in front of P at
time t as Q(t). The function Q(t) satisfies the differential equation

dQ

dt
= −s− kQ, .

when t is restricted to the time interval tin ≤ t ≤ tout. (The change in the size of the queue in front
of P is proportional to the number of people exiting via surgery and the number of drop-outs.)
This equation is solved by

Q(t) = − s

k
+

( s

k
+ Qtout

)
e−k(t−tout),

where Qtout is the number of people in front of P at time tout. As Qtout must be 0 this reduces to

Q(t) = − s

k
+

s

k
e−k(t−tout).

Finally, we link N(t) and Q(t) by noting that N(tin) = Q(tin). Thus

N(tin) = − s
k + s

ke−k(tin−tout)

N(tin) = − s
k + s

kekW

ekW = k
s

(
N(tin) + s

k

)
kW = ln

(
k
s N(tin) + 1

)
W =

ln( k
s N(tin)+1)

k .

Thus we have a closed form solution to the expected total wait time for P , provided we know the
length of the wait list at the time P enters the queue.

14.4.3 Interrelating Hospital Capacity across Departments

Both from a humanitarian and a business prospective, it is of interest to reduce inefficiencies in the
healthcare system. One approach to this is to examine the problem of bed allocation in hospitals. In
this example we summarize work of Cochran and Bharti on designing and implementing a queueing
theory model for hospital bed allocation[3].
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Cochran and Bharti’s goal was to produce an accurate queueing theory network model to de-
scribe patient flow through a hospital. Their modelling process began by interviewing staff, and
charting the patient flow in a 400 bed hospital in the United States of America. Using this informa-
tion they developed a complicated network which described possible patient flows in the hospital.
A (very) simplified version of this network can be found in Figure 14.1.

Figure 14.1: Make this picture complicated enough to look good, but easy enough to follow.

The model was tuned using statistics obtained from economic data stored by the hospital. In
particular, they required admittance rates, probability of being a elective admittance versus an
emergency room admittance, average length of stay data for each unit in their model, and (when
applicable) the relative probabilities of where a patient will move after being serviced at a given
hospital unit.

The next step in Cochran and Bharti’s analysis was to simplify the model to the point where
the model could be analytically solved. In particular this meant making the following assumptions:

• no difference was made between exiting the hospital due to recovery and exiting the hospital
due to death,

• each empty bed is available to all patients arriving in the unit (i.e. all beds are always
appropiately staffed and equipped for any patient),

• there is only one type of patient and no priority structure,

• the length of stay for each unit is exponential distributed,

• the length of stay for each unit is independent of the state of the system, and

• the relative probabilities of where a patient will move after being serviced at a given unit are
independent of the state of the system.

Although on some level each of these assumptions is wrong, together they mean that the resulting
model was what is referred to as a Jackson Network Queue. The importance of this is that,
regardless of how complicated the model is, any Jackson Network Queues can be analytically solved
to find an exact closed form statistical equilibrium. To check that the above assumptions were not
too restricting, the closed form solution for the queue was compared to actual historical hospital
occupancy rates, and a very close match was found.

Whenever an analytical closed form
solution can be created, it should be
created and used to check that the
simulation model is working properly.

The next step in Cochran and Bharti’s analysis was to develop
a discrete event simulation program for the model. This was first
done using the restricting assumptions above, and the simulation
was compared to the closed form solution. (This is an excellent
trouble shooting step, and should be preformed whenever possible.)
Next, the restricting assumptions were relaxed one at a time until
only the final two remained (the relative probabilities and length of

stay rates are independent of the state of the system). In addition, the discrete event simulation
model included blocking of patients caused by the finite bed capacities of each unit, two classes
of patients (emergency and regular patients) with emergency patients given priority for beds, and
probability distributions which varied according to the time of day and the day of the week. It was
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again checked, and confirmed, that the final simulation produced results very similar to historical
hospital data.

Having developed the simulation, Cochran and Bharti work proceeded to develop optimization
strategies for improving hospital efficiency. First they noted that there were large discrepencies in
the bed loads between different departments. Using both the analytic and simulation model the
optimal bed allocation to balance loads was calculated, and suggested reallocations were provided
to the hospital. Using the simulation model, moments of unbalance in the temporal loads was
determined, and strategies to rebalance the loads were developed. For example, they showed how
blocking could be decreased if elective procedures were conducted during off-peak times.

14.5 Related Reading

Queueing theory models have close connections to (XXX list models and chapters of note in the book
XXX).

Reference [2], contains the details omitted from Example 14.4.2.

1. “Patient Flow: The new queueing theory for healthcare.” Hall, R. W. (2006)

2. Hip and Knee Wait list report

3. Cochran, J.K. and Bharti, A. (2006) A multi-stage stochastic methodology for whole hospital bed
planning under peak loading, Int. J. Industrial and Systems Engineering, Vol. 1, Nos. 1/2, pp.836.

4. BLOOD BANKS USE SIRO
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Chapter 15

The Future Starts Now
Not the power to remember, but its very opposite, the power to forget, is a necessary
condition for our existence. Sholem Asch (1880-1957)
It is singular how soon we lose the impression of what ceases to be constantly before us.
A year impairs, a luster obliterates. Lord Byron (1788-1824)

Markov Models

15.1 Model Overview

15.2 Common Uses

Markov models explore the properties of objects in a system that move through a series of states.
The most important aspect of Markov models is the assumption that the system satisfies the Markov
property: the next state of the object is determined by a random process dependent only on the
previous state(s) of the object. In health care this assumption is well suited to modeling movement
of patients through disease states (see Example 15.4.2). In regards to disease states, Markov models
are suitable to answer questions such as:

• How do immunization rates impact the spread of disease through a population?

• How many people will be effected by diabetes in future years? and

• At what disease state is treatment most suitable to prevent disease spread?

Aside from modeling disease states, Markov models are also useful for examining if patient history
is a factor in behaviour:

• How does Doctor-Patient loyalty effect usage of the healthcare system? and

• To what level do individual’s past BMI statuses impact their future BMI status?

15.3 Mathematical Details

In Markov models we begin with a collection of objects and a list of possible states for each object.
For example, the object may be individual people which can take one of two states: healthy or

137
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sick. At each time interval, model assigns every object in the system to exactly one state from
among a fixed set of states. At the end of each time period, the objects move from one state to the
next according to transition probabilities which depend only on the current state of the system.
That the transition probabilities depend only on the current state of the system is the key aspect
of Markov models, and generally referred to as the Markov assumption.

Due to the Markov assumption, Markov models are “forgetful” in the sense that a knowledge of
the past states of the system is not required to predict the future. In spite of this, Markov models
can exhibit deep structure through the cumulative effects of repeated stochastic events.

15.3.1 Finite State Markov Chains

We begin our discussion with the simplest type of Markov models, Finite State Markov chains. The
words “Finite State” mean exactly what one would suppose them to mean, that the list of possible
states for an object is finite. The final word, “chain”, refers to the assumption that transition from
one state to the next occurs at predefined points in time. For example, in examining the spread of
disease we might decide to update each individuals state at the end each day. Alternately, states
might be updated on an irregular, but still predefined basis. For example we might be interested in
studying an individuals BMI status when they turn 16, 19, 25, 50 and 65. Whether time periods
are evenly spread or not makes no difference in the mathematics required to analyze the model.

Let S = {s1, s2, ...si, ...sN} be the list of states an object can take. Let X0 be a column vector
of length N which represents the initial state of the system. That is

X0 =



x0
1

x0
2
...

x0
i
...

x0
N


where x0

i is the number of objects in state i at time step 0. In general we shall use

Xt =



xt
1

xt
2
...
xt

i
...

xt
N


where xt

i is the number of objects in state i at time step t.
Next, let Prt(i → j) be the probability of an object moving to state sj at time t + 1 given that

the object was in state si at time t. Creating the matrix

P t =


Prt(1 → 1) Prt(2 → 1) . . . Prt(N → 1)
Prt(1 → 2) Prt(2 → 2) . . . Prt(N → 2)

...
...

. . .
...

Prt(1 → N) Prt(2 → N) . . . Prt(N → N)
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we find that the state vector for the system at time t + 1 is the matrix multiplication of Pt and the
state vector of the system at time t:

Xt+1 = P tXt.

The matrix P t is generally referred to as a transition matrix.
In order for a Markov chain model to run correctly, transition matrices must satisfy several

special properties. First, all elements of the matrix must be nonnegative. This stops objects from
flowing backwards through the model. Second, each column of the transition matrix must sum to
1. This prevents objects from disappearing from the model.1

The matrix P t is generally referred to as
a transition matrix.

In particular, the state at time t can be found via the formula

Xt = P t−1P t−2...P 1P 0X0. (15.1)

If the transition probabilities do not change over time, that is if
P t = P 0 for all t, then the Markov model is called a time homogeneous. Time homogeneous
Markov models allow for obvious simplifications to formula (15.1).

15.3.2 Higher Order Markov Models

On the surface the Markov assumption appears to create models which are extremely limited in
application. For example, if one were modelling the spread of disease through a population, then
one would be interested in the two states “uninfected” and “infected.” However, it is well known
that patients who have recovered from a virus are unlikely to become infected again from the same
disease. Therefore, if the infected state simply feeds back into the uninfected state, the model is
unlikely to provide useful information.

Even thought the Markov assumption forces some level of forgetfulness on the models, it is
nonetheless possible to build memory into a Markov model. The way this is done to to create new
states which incorporate the memory for the desired trait. For example, in the case of modelling
spread of disease through a population, one could create states labelled “susceptible,” “infected,”
and “recovered.” The recovered state now effectively contains the memory that the individual was
once infected.

Markov models which incorporate memory in this type of manner are sometimes referred to as
higher order Markov models. The order of the Markov model is one more than the level of memory
the model attempts to incorporate. For example, if the model incorporates one level of memory it
is referred to as a 2nd order Markov model (or a Markov chain of order 2), and models which do
not incorporate any memory are sometimes called 1st order Markov models. The order of a Markov
model is qualitatively descriptive only. That is, since the higher order models can always be dealt
with by adding additional states to the model, higher order Markov models can mathematically be
dealt with in the same manner as first order Markov models.

15.3.3 Testing the Markov Assumption

Higher order Markov models provide us with insight on how to test if the Markov assumption is
suitable for a given problem. The basic idea is that if the Markov assumption holds, then building
memory into the model via higher order models should have no effect on the transition probabilities.
These ideas are clarified in Figure 15.1.

1A few texts consider transition matrices as the transposition of the above approach; in this case, the sum of each
row totals to one.
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State A1

State A2

State B State C

State A1

State A2

State A1B

State A2B

State C

P(b,c)

P(a1b,c)

P(a2b,c)

Figure 15.1: Testing the Markov Assumption

One method to test if the Markov holds is to turn a 1st order Markov model into a 2nd order Markov model and

check if the transition probabilities are effected. In the 1st order model above (top) we have two states, A1 and

A2 which feed into a state B which then feeds into state C. To create a second order model (bottom), we expand

state B into two states: state A1B and state A2B. If the probability of moving from A1B to C is the same as the

probability of moving from A2B to C (i.e. P (b, c) = P (a1b, c) = P (a2b, c)) then the Markov assumption holds, and

a 1st order model suffices. Otherwise, one should test if the 2nd order model satisfies the Markov assumption.

15.3.4 Infinite State Markov Models

For Markov chains with a finite number of states, the transition probabilities may be represented
as a transition matrix (see Subsection 15.3.1). If the number of states is infinite, then this property
does not apply. Instead, the transitions must be described in terms of functions. Recall, for finite
chains we used Prt(i → j) to represent the probability of an object moving to state sj at time t+1
given that the object was in state si at time t. If there are an infinite number of states, the indices
i and j are no longer integers, and so building the matrix P t is no longer possible. Instead one
creates a function

f(i, j, t) = Prt(i → j).

Various mathematical techniques have been developed to study such functions, most of which focus
on the question of whether there is a state si which has a high probability of being occupied
regardless of starting conditions. These techniques are beyond the scope of this book.

15.3.5 Markov Processes and Semi-Markov Processes

The Markov models discussed above were Markov chains, meaning that all state transitions occur
at fixed predefined time intervals. In the 1920s a more general class of models, called Markov
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processes, in which transitions occur at arbitrary times was also developed XXX citation XXX.2 In
these models, time is viewed as a continuous variable, so time steps can occurs at any point. One
classic example of such a process is the “random walk of a drunkard,” in which a point stumbles
in a random direction for a random distance. In this case the concept of time is incorporated into
distance, as so the point can be thought to be traveling in a random direction for a random length
of time. In literature, the random walk of a drunkard is usually referred to as a Wiener process or
Brownian motion. XXX citation XXX

Another generalization of Markov chains are semi-Markov processes. In a semi-Markov process,
the transition probabilities depend not only on the current state of the system, but also on the time
that it has spent in that state. The time that the system spends in each state is assumed to vary
stochastically according to a probability distribution. Semi-Markov models have wide applicability
in queueing theory, reliability modelling, and operations research. Recently, they are also being
applied to the modelling of chronic diseases, such as HIV. XXX citation XXX

15.4 Examples

15.4.1 A Simple Doctor-Patient Loyalty

To demonstrate the mathematics behind a simple time homogenous Markov chain consider a drop-
in-clinic with three doctors. In a drop-in-clinics no appoint is necessary, so patients may not see
the same doctor on every visit. However, the patient (when returning to the clinic) may request
to a specific doctor. If the doctor is available that day, the patient’s wait time increases but
considerations are usually made.

We assume that a patient’s preference for a doctor is completely determined by the doctor that
they visited in their last visit, and the random factor of when that doctor will be available. The
probabilities of visiting a given doctor, given the doctor seen during the previous visit is found in
Table 15.1. Notice that some doctors inspire more patient loyalty than others.

Previous Next Visit Next Visit Next Visit
Visit Sees Doctor 1 Sees Doctor 2 Sees Doctor 3

Saw Doctor 1 0.72 0.09 0.21
Saw Doctor 2 0.18 0.85 0.15
Saw Doctor 3 0.10 0.06 0.64

Table 15.1: Transistion probablityble

Suppose the clinic has 300 patients which return on a regular basis, and we wish to see how
these patients impact each doctors work load. We begin by assume each doctor will see 100 of these

patients, so X0 =

100
100
100

. The transition matrix for this Markov chain will be unchanging with

time, and equal to

P =

0.72 0.09 0.21
0.18 0.85 0.15
0.10 0.06 0.64

 for all t.

2Norbert Wiener and Andrei Kolmogorov in the 1920’s and 1930’s.
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Simple matrix-vector multiplication yields

X1 =

102
118
80

 , X2 =

100.86
130.66
68.48

 , X3 =

 98.7594
139.4878
61.7528

 . . . X20 =

 89.6613
158.9361
51.4026

 .

This might lead us to conjecture that in the long run doctor 1 will have approximately 90 patients,
doctor 2 will have approximately 159 patients and Doctor 3 will have approximately 51 patients.
To confirm this more mathematically, we are interested in the equilibrium distribution of X:

lim
t→∞

Xt = lim
n→∞

P × P × P × . . .× PX0 = lim
n→∞

PnX0.

Diagonalizing P , we obtain P = QD Q−1, where

Q ≈

−0.583 −0.867 −0.481
0.820 0.154 −0.854
−0.237 0.713 −0.276

 and D ≈

0.680 0 0
0 0.531 0
0 0 1.00

 .

Therefore,

lim
n→∞

PnX0 = lim
n→∞

QDQ−1QDQ−1 . . . QDQ−1X0

= lim
n→∞

QDnQ−1X0

= Q

0 0 0
0 0 0
0 0 1

 Q−1X0

≈

0.30 0.30 0.30
0.53 0.53 0.53
0.17 0.17 0.17

100
100
100

 =

 90
159
51


Thus, mathematically confirming our predictions for this model. More importantly, if we repeat

this analysis with an arbitary X0 =

x0
1

x0
2

x0
3

 with x0
1 + x0

2 + x0
3 = 300 notice that

lim
n→∞

PnX0 =

0.30 0.30 0.30
0.53 0.53 0.53
0.17 0.17 0.17

x0
1

x0
2

x0
3

 =

0.30(x0
1 + x0

2 + x0
3)

0.53(x0
1 + x0

2 + x0
3)

0.17(x0
1 + x0

2 + x0
3)

 =

0.30(300)
0.53(300)
0.17(300)

 =

 90
159
51


So regardless of initial conditions, the resulting distribution of patients will be the same.

This model illustrates a key feature of many Markov models, that the model will eventually
approach an equilibrium or “steady-state”. This means that the distribution of patients among the
physicians will eventually approach an equilibrium distribution, which is independent of the initial
distribution. In this case 30% of the patients will see Dr. One, 53% will see Dr. Two, and 17% will
see Dr. Three.

15.4.2 Slowing the spread of HIV/AIDS via earlier treatment

Azadeh and Krisz’s happy model.
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15.4.3 A Mover-Stayer Model for Problemic Drug Use: A Compartmen-
tal Markov Model

Standard Markov models assume that the same transition matrices apply uniformly to the entire
population. However, it is often the case in epidemiological modelling that the population is divided
into different compartments according to their susceptibility or infectiousness. The model then
describes how the size of these compartments change over time by means of equations describing
the disease dynamics. A common approach to compartmental modelling is to use a mixed Markov
processes, which consist of a superposition or mixture of different Markov chains with independent
transition matrices. In this example we review a compartmental mixed Markov model used to
analyze Heroin addiction[3].

The basic model views the population as consisting of two types of people. Those who are
susceptible to becoming problematic drug users and those who are “prudent” and hence not at risk
of becoming drug users. Thus the compartmental Markov model consist of two subgroups, which
we will call “movers” and “stayers.” The movers represent the people who are susceptible to drug
abuse, and can therefore move about the various states of drug use. Conversely, stayers represent
the people who are not at risk of becoming drug users.

In the model of [? ], movers can become drug users either by coming contact with other drug
users or by contact with drug dealers. The diagram in Figure 15.2 is a compartmental representation
of the model. In this figure the straight line represent possible state changes of the movers, and the
curves represent the possible interactions between drug users and people susceptible to drug users
(movers) in the population.

As shown in the diagram, this model uses several compartments to model the phenomenon.
If a mover becomes a drug user, then they initially pass through a phase of light use. After a
period of light use, they then move on to a phase of heavy but invisible use. When usage becomes
problematic, they become visible as heavy drug users and begin their interaction with the health
care system and social services. Finally, addictive use of drugs leads to possible reform and a
possible recidivist phase.

In order understand the spread of drug and build a model that can be used to test the effec-
tiveness of different types of interventions, such as treatment programs or law enforcement, we use
the diagram in Figure 15.2 to write a set of eight coupled difference equations that describe the
evolution of the system (see Table 15.2). In evolving the system, it is assumed that the lengths
of stay in each of the compartments are exponential distributed. To implement the model, a com-
puter program is written to evaluate the time evaluation of the difference equations. Since the
computer program evaluates the difference equation using a series of predetermined time steps, this
mathematically is a Markov model.

In order to implement the model, it is necessary to obtain values for the various parameters in the
model. In this model, µ01, µ10 and π17 are demographic parameters, which may be obtained from
census data. The parameters µ23 and µ34 are parameters describing the prevalence of problemic
drug use and may be obtained from studies of the incidence of drug use. The parameters π27

through π67 may be obtained from studies of the mortality rate among drug users. The parameters
µ45, µ46, µ54, µ56, µ65 and µ61 are the most difficult to obtain; however they may be estimated from
therapy data. (In [3], values for these parameters are estimated for heroin use in Italy from 1980
to 2000.)

Using this model, the authors explored the effect of both primary and secondary preventive
interventions[3]. A primary intervention is one which is applied directly to the susceptible popu-
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X(t + ∆t) = (1 + µ01 − µ10 − π17)X(t)
− [1− S(t)][µ12 + ν12Y1(t) + ν13Y2(t)
+ ν15W1(t)]X(t) + µ61W2(t)

Y1(t + ∆t) = (1− µ23 − µ26 − π27)Y1(t) + [1− S(t)][µ12

+ ν12Y1(t) + ν13Y2(t) + ν15W1(t)]X(t)
Y2(t + ∆t) = (1− µ34 − π37)Y2(t) + µ32Y1(t)
Z(t + ∆t) = (1− µ45 − µ46 − π47)Z(t) + µ34Y2(t) + µ45W1(t)

W1(t + ∆t) = (1− µ54 − µ56 − π57)W1(t) + [µ65

+ ν26Y1(t) + ν36Y2(t) + ν56W1(t)] + µ45Z(t)
W2(t + ∆t) = (1− µ61 − π67)W2(t)

− [µ65 + ν26Y1(t) + ν36Y2(t) + ν56W1(t)]W2(t)
+ µ26Y1(t) + µ46Z(t) + µ56W1(t)

D(t + ∆t) = D(t) + π27Y1(t) + π37Y2(t) + π47Z(t) + π57W1(t)
+ π67W2(t)

S(t + ∆t) = S(t)
(1− µ10 − π17)X(t)

X(t + ∆t)
+ S0

µ01X(t) + µ61W2(t)
X(t + ∆t)

X(t) size of the susceptible population at time t
S(t) proportion within the susceptible population

who are “stayers” at time t
S0(t) proportion of the new population entering the

susceptible population who are stayers at time
t

Y1(t) population of light drug users at time t
Y2(t) population of hard drug users at time t
Z(t) population whose drug use has made them

known to the healthcare system at time t
W1(t) recidivist drug users at time t
W2(t) temporary holding population for users in

transition at time t
D(t) number of deaths at time t (cumulative)

Table 15.2: Coupled difference equations represented by Figure 15.2.
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Figure 15.2: System dynamics diagram of mover-stayer model epidemic drug use. The parameters µIj

represent flow of movers from one state to other, the parameters νij represent interactions between the different

components in the model, and the parameters πi7 represent mortality from each of the components.

lation. It is said to have an effectiveness P , if a proportion P of the movers in the susceptible
population become stayers. The effect of secondary preventive interventions can be evaluated by
modifying the ν and µ parameters. For example, the consequence of increased law enforcement
would primarily be to decrease the parameter µ12. Safe injection sites would primarily have an af-
fect on the parameters ν56 and µ56. The impact of health care policies on drug use would primarily
be on the parameters µ45 and µ54.

The model supports the statement that primary interventions are more effective than secondary
interventions. However, there is substantial latency in the system and after a program of primary
intervention is initiated. That is, there would be no sign of any positive response for a significant
period of time. In the case of the model applied to heroin drug addiction in Italy, this response
latency would likely be about 6 years and possible as long as 8 years. However, when the system
does respond to the intervention it does so rapidly and in a highly non-linear fashion. This result
is important, as many intervention programs would be abandoned as “failures” if no improvement
was seen for 5 years.
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15.5 Related Reading

Markov models are closely related to XXX
[1] outlines a Markov model approach to predicting future rates of diabetes.
[2] develops mixed compartmental Markov models.
[3] contains detail of Example 15.4.3

1. honeycutt03

2. Goodman61

3. rossi 04



Chapter 16

Finding the “Best” Intervention
The man who is a pessimist before 48 knows too much; if he is an optimist after it, he
knows too little. Mark Twain (1835-1910)
I am an optimist. It does not seem too much use being anything else. Winston Churchill
(1874-1965)

Optimization

16.1 Model Overview

After modeling, one uses the model to find something out. Sometimes they use it to make predic-
tions, other times they use it to test interventions or possible scenarios. In this later case one often
wishes to determine which intervention creates the best outcome. That’s optimization!

In mathematics (and in this book), the
term optimization refers to the study of
how to find the minimum or maximum of
a function over an allowed set.
In computer science the term
optimization refers to modifying a piece
of software in order to make it (or some
part of it) run more efficiently.

Some more babble, and then we move on to the stuff below...
XXX

16.2 Common Uses

Strictly speaking Optimization is not a modelling technique so much
as a method of examining models to determine what intervention
will have the “best ” effect. Most commonly optimization problems
consider techniques to minimize cost under some given constraint.
For example

• What combination of drugs minimize the cost of pharmaceu-
ticals while producing the desired effect?

• Where should we build a new hospital to minimize cost given
that everybody should be able to reach it in less than 30 min-
utes? and

• How should be schedule nurses to minimize cost given that cer-
tain staffing constraints and hospital service constraints must
be meet?
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148 CHAPTER 16. FINDING THE “BEST” INTERVENTION

are all examples of optimization problems. Each of these problems can be posed in the dual form,
which examines how to maximize the impact given a fixed budget:

• What combination of drugs provides the maximal impact given we can only afford a fixed
budget?

• Given a fixed budget, where is the best place to build a new hospital in order to minimize
transportation times?

• How to we maximize our patient service in terms of nursing coverage given a fixed budget?

Many other problems can be posed as optimization problems. In most cases, the first step to solving
such a problem is to develop a model of the problem upon which optimization techniques can be
applied. Because of this it is important to know what styles of problems are easily solved by today’s
optimization tools, and what styles of problems are intractable using todays optimization tools.

16.3 Mathematical Details

Optimization is not so much a modelling technique as a method of examining models to determine
what intervention will have the “best ” effect. In order to answer this question it is clear that
one must begin by defining what is meant by the word best. In order to answer this question
via optimization techniques, one must define the term best in regards to a quantitative objective
function. A quantitative objective function is a function with the property that for every input the
function must return a real number or the value +∞, and must take on a non-infinite value in at
least one location. Mathematically, functions with these properties are called proper.

Let f(x) be a proper function from IRn to IR and S be a non-empty set in IRn. Optimization is
the field of study interested in solving the problem

min{f(x) : x ∈ S},

or (in English) minimize the objective function f(x) such that x lies in the constraint set S. By
minimize we mean find a point x̄ such that f(x̄) ≤ f(x) for all other x in S. Before we discuss the
role of the constraint set, let us note that should one be interested in maximizing a function,

max{f(x) : x ∈ S},

then one can always create a minimization problem by applying the following theorem:

Let f(x) be a proper function from IRn to IR and S be a non-empty set in IRn. Then,
any point which maximizes f(x) over S also minimizes −f(x) over S, and vice versa.
Consequently,

max{f(x) : x ∈ S} = −min{−f(x) : x ∈ S}.

The addition of the constraint set can make similar optimization problems behave very differ-
ently. To see this consider the following three problems:

min{x2 − x : x ∈ IR}, (16.1)
min{x2 − x : x = −2,−1, 0, 1, or 2}, and (16.2)

min{x2 − x : x =
m

3n
for some m,n = 1, 2, ...}. (16.3)
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(In problems (16.1), (16.2), and (16.3), we have S := IR, S := {x : x = m
3n for some m,n = 1, 2, ...},

and S := {−2,−1, 0, 1, 2} respectively.) In each of the above problems the objective function is
the same, however the problems are very different. It is not difficult to show that the problem
(16.1) is solved at x = 0.5 and gives an objective value of −0.25. Problem (16.2) is easier, but
comes with a twist. Since there are only 5 options for x it is a simple matter to check each and
determine the minimum value is 0. However, this value occurs at both x = 0 and x = 1, so the
problem has multiple solution points. Finally, in problem (16.3) we have the strangest situation.
By selecting m and n carefully one can construct points with objective function values arbitrary
close to −0.25, but one can never achieve this value as it only occurs when x = 0.5 (which can
never be created as a fraction with the denominator being odd). Thus this optimization problem
is technically unsolvable.

In order to get around the issues arising in problem (16.3), mathematicians usually search for
the infimum (alternately supremum) of a problem instead of the minimum (alternately maximum).
The infimum of f over a set S, inf{f(x) : x ∈ S}, is the highest lower bound for the problem. That
is, a minimum value that does not necessarily have to be obtained.

In order to solve an optimization problem it is important to classify what type of problem it is.
To begin we differentiate between two important classes of optimization problems: continuous and
discrete.

In many optimization problems the constraint takes the form of intervals in IR or simple shapes in
IRn. The important point of this is that the constraint set does not consist of a list of isolated points,
but instead consists of a type of continuum of points. Such problems are refereed to as continuous
optimization problems. Problem (16.1) is a continous optimization problem. Conversely, in some
optimization problems the constraint set takes the form of a list of possible solutions. This list may
be finite, or infinite in length, but in either case elements are distinct in nature. Such problems are
referred to as discrete optimization problems. Problems (16.2) and (16.3) are discrete optimization
problems.

We now give descriptions of some of the more commonly arising types of optimization problems.
In the simplest cases we actually describe how to solve the problem, but in most cases we only
discuss how to recognize the type of problem, and then reference appropriate algorithms or computer
software for the given problem.

16.3.1 Analytically Solvable

Continuous Problems: In the simplest case, f(x) is differentiable and S is IR or a closed interval
in IR, one can often resort to first year calculus. To solve these problems, first recall that the
derivative of f(x) at the point x represents the slope of the function at x. If the function is at a
minimum (or maximum) then the slope at that point must be zero. Therefore, to solve the problem
one can simply differentiate f(x) to get d

dxf(x), find all the points where d
dxf(x) = 0, and compare

the function values at these point. If S is a closed interval in IR then one must also remember to
check the endpoint of the interval as possible locations for the minimum.

For illustration let us apply this to min{x2 − x : 1 ≤ x ≤ 7}. First f(x) = x2 − x, so
d
dxf(x) = 2x− 1. Since 2x− 1 = 0 only when x = 0.5, we must check 0.5 as a possible location of
the minimum. Since x must be in the closed interval 1 ≤ x ≤ 7 we must also check the endpoints
1 and 7. Checking these we find

f(0.5) = −0.25, f(1) = 0, and f(7) = 42.
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Although the minimum value in this list is −0.25, the point x = 0.5 is not feasible for the problem
(as x must be greater or equal to 1). Therefore the minimum objective value is 0 and occurs at
x = 1.

The mathematics described above can also be preformed in multiply dimensions. Basically,
points are replaced with vectors and derivatives are replaced with gradients. However, in higher
dimensions one must be more careful with the edges of the constraint set, as they will not be just
two points.
Discrete Problems: The other case where analytical methods may sometimes be applied is when
the constraint set is a finite list of elements. If the list is small enough then one can simply preform
an exhaustive search to determine the optimal answer. With the aid of a computer the exhaustive
search can generally be automated, so even large finite lists can be approached in this manner.
However, in practice discrete optimization problems have so many elements in the finite list that
an exhaustive search would take years to complete.

16.3.2 Numerical Methods for Continuous Optimization Problems

Suppose now that although the optimization problem is continuous in nature, it is complicated
enough to work with the solving the problem analytically is not an option. This might result, from
working with a high number of dimensions, the objective function involving integrals, or constraint
set taking a complicated form, or the objective function being non-differentiable (amongst many
other possible reasons). In this case one must turn to numerical solving methods. Which method
to select depends on the form of the problem.

Linear Problems

One of the simplest forms for a continuous optimization problem is that of a Linear Program1. A
linear program is an optimization problem of the form

min{c>x : Ax = b} (16.4)

or
max{b>y : A>y ≤ c} (16.5)

where b and c are column vectors and A is a matrix (> denotes the transposition operation). For
example,

min

5x1 + x3 :
[

2 1 −1
0 3 2

] x1

x2

x3

 =

 0
1
1

 ,

is a linear program with

x =

 x1

x2

x3

 , A =
[

2 1 −1
0 3 2

]
, b =

 0
1
1

 , and c =

 5
0
1

 .

Mathematically, problem (16.4) is called the primal problem and problem (16.5) is called the dual
problem.

1The word program instead of problem is historical dating back to world war II. The phrase Linear Problem is
perfectly acceptable, but not often used by mathematicians.
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The interesting thing about linear programs is that if A, b, and c are fixed and the problem
(16.4) has a solution then its solution has the same objective function values at problem (16.5). In
fact, if x and y can be found where problem (16.4) and problem (16.5) take on the same value, then
this is necessarily the solution.

This amazing fact is called duality theory and has resulted in some very powerful algorithms
for solving linear programs. Using todays computers, linear programs with millions of variables
can be solved in just hours. Commercial software for solving linear programs includes XXX, non-
commerical software for solving linear programs includes XXX2.

Semi-definite Problems

The theory and abilities of linear programming can be extended to a much broader class of problems
refereed to as Semi-definite programs3. In semi-definite programming the linear problem (16.4) is
generalized in a manner which replaces the optimization of the vector x with optimization over a
matrix X contained in the “semi-definite cone”. Understanding the full meaning of this sentence
is generally a graduate level course in mathematics, so well beyond the scope of this book. The
important part is that many of the powerful optimization algorithms from linear programming have
been generalized to this setting. In particular, this allows for easy solving of problems which involve
quadratic objective functions or quadratic constraints (along with many other problems).

Commercial software for solving semi-definite programs includes XXX, non-commerical software
for solving semi-definite programs includes XXX4.

Differentiable Convex Problems

Let us return now to the more general structure of an optimization problem

min{f(x) : x ∈ S}.

We shall define the set S to be convex if any two points contained in S can be joined by a straight
line which never leaves S. That is, if x1 ∈ S and x2 ∈ S then λx1 +(1−λ)x2 ∈ S for all 0 ≤ λ ≤ 1.
We shall call the objective function convex if by drawing the function and shading in the area above
the function one creates a convex set. That is, f is convex if {(x, α) : α ≥ f(x)} is a convex set.
(The set {(x, α) : α ≥ f(x)} is called the epi-graph of f .)

Suppose the function f and the set S are both convex. Further suppose that f is differentiable
and the gradient of f is readily available. Under these conditions one can solve the optimization
problem min{f(x) : x ∈ S} using a wide variety of well studied methods. Some generalized examples
follow:

Steepest Descent: At any point x the gradient of f , ∇f(x), represent the direction which
is directly “up-hill” from x. As such, to find the minimum one can repeatedly take steps in
the direction −∇f(x). This is called steepest descent.

Newton’s Method: If the point x is a minimum for f then necessarily ∇f(x) = 0. If one
can find a second derivative of f (or even just approximate a second derivative of f), then
one can apply Newton’s root finding method to the function g = ∇f .

2requires XXX to operate
3Like in linear programming, the word program is tradition. The phrase Semi-definite Problem is perfectly

acceptable, but not often used by mathematicians.
4requires XXX to operate
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Bundle Methods: By finding the function value f and the gradient value ∇f at a point x,
one knows roughly what the function looks like very close to x. By using these approximations
for a large collection of points, one can create a piecewise linear approximation to the function
f which can be easily optimized. By refining the approximation function one can quickly hone
in on the minimum of the function.

All of these methods are well studied, and proves of convergence exist in many forms. Most
of these methods are simple to program and many non-commercial codes exist. However, most of
these codes are not user friendly, so figuring out how to use them can be a difficult task.

Differentiable Non-convex problems

If the function f or the set S is non-convex (that is, does not satisfy the above definitions), then
optimization is faced with a difficult challenge. In particular, convex problems have the very
satisfying property that if ∇f(x) = 0 then the point x is a minimum for f . Non-convex problems
do not satisfy this property, so it is very easy to find a point x which appears to be a minimum but
is not. This problem is highlighted in Figure 16.1

XXX

Figure 16.1: In a nonconvex problem one can often locate points which appear to minimize the function but in

reality do not.

There are many suggested methods for dealing with this problem, but mathematically it is
impossible to guarantee optimality for nonconvex problems. In practice one of the best methods to
deal with non-convex problems is to pretend they are convex. This is done by randomly generating
a large collection of starting points and then running convex optimization methods on the problem
starting at each point. Each starting point will result in convergence to one possible minimum, and
taking the best of these results in a good guess at the optimal solution.

Non-differentiable problems

If the function f is not differentiable (or the gradient of f is not readily available) then the above
methods cannot be applied. In these cases one usually resorts to a form of pattern search. Pattern
search is basically a formalized method for trial and error. One begins by selecting a number of
points, and determining the objective function value for each. One then uses this information to
determine where to generate a new selection of points.

One of the most famous pattern search methods is the Nelder-Mead algorithm CITE(1965).
More recent pattern search methods include XXX.

16.3.3 Numerical Methods for Discrete Optimization Problems

When decision variables can assume only discrete values from a specified set, the problem is a called
a discrete optimization problem. When the specified variable set is a set of integers, we deal call
it an integer program. When the specified set consists of combinatorial structures (sets, subsets,
permutations, partitions, Hamiltonian paths, or subgraphs), the problem is called a combinatorial
optimization problem. Most combinatorial optimization problems may be formulated as integer
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programs, however, this often results in the integer program formulation having an exponential
number of constraints, so is usually avoided.

On the surface discrete optimization problems may sound easier than continuous optimization
problems, as there are less possible answers, but in practice they are much more difficult. The
difficultly lay in the fact that one can no longer lean on the mathematical power of functional
analysis to help solve the problem. The result is that most optimization methods for discrete
problems are based more on heuristical approaches than proven algorithms. However there are a
few exact solution methods for discrete optimization problem. We discuss these next, and then turn
our attention to some of the heuristical approaches.

Exact Solutions

One of the most powerful theorems of calculus is the fact that the minimum of a function occurs
at a point where the derivative is 0. This theorem is inapplicable in discrete optimization, as the
discontinuity of the constraint set does not allow for the taking of derivatives. As a result, there are
very few optimization algorithms for discrete optimization which are actually proven to converge.

The most basic method that must work is to test every possible element in the constraint set.
If the constraint set is finite and small then this can be done quite easily with the assistance of
a computer. However, in the majority of discrete optimization problems the constraint sets have
an exponential number of elements. What this means is that solving the problem with n variables
requires checking a multiple of 2n solutions. Consider for example, a problem with 2n elements in
the constraint set, and suppose we can check one point every microsecond (1/1000 of a second). If
we try the problem with ten variables we require just 1024 microseconds, approximately 1 second. If
we try the problem with 20 variables, this number raises to 17 minutes. For 30, 40, and 50 decision
variables the time jumps to 12 days, 34 years, and 3500 years respectively. By the time you reach 75
decision variables checking all feasible solutions would require longer than the scientifically accepted
age of the earth.

To make matters worse, some problems have n! elements in the constraint set. Under the same
circumstances (each solution requires one microsecond to check), instances with just 5, 10, or 20
decision variables would require 1/10 of a second, 1 hour, and 70 million years, respectively.

Luckily, there are methods and techniques that avoid explicit exploration of all feasible solu-
tions. The branch and bound method explores only a portion of the set of feasible solutions yet
still guarantees the correct answer (when run to completion). To do this, the branch and bound
algorithm generates subproblems by fixing the values of one variable. Each subproblem is relaxed
so that a continuum of elements exist in the constraint set. These relaxed problems can then be
solved by one of the above methods for continuous optimization, thus determining a lower bound
for the best solution possible with the fixed variable as it is. All subproblems whose lower bound
is greater than the best solution found so far may be pruned from the system. In this manner
many variables can be solved without solving the original problem, thereby reducing the size of the
original problem.

A great deal of research is continued to be generated regarding exact methods for discrete
optimization problems. Some commercial software is available, including XXX. Non-commerical
software for solving discrete optimization problems includes XXX.
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Heuristics

A heuristic is a reproducible method for improving ones knowledge on a problem. In optimization
this means an algorithm which, when run on an optimization problem will find a solution no worse
than the best known solution. Good heuristical methods are those which usually produce sufficiently
good results when applied in commonly occurring conditions.

Heuristics can be divided into construction heuristics and improvement heuristics. A construc-
tion heuristic builds a feasible solution to a problem in small steps, usually by “growing” a series
of partial solutions to the problem. Improvement heuristics improve a feasible solution in a series
of iterative steps.

Many of the improvement methods are local search methods. These are methods that iteratively
search solutions near the best known feasible solution seeking some improvement. The disadvantage
of this method is that after reaching a local optimum, local search heuristics get stuck. The
stopping criteria for the algorithm is when there is no improving solution in the neighbourhood
of the current solution. To overcome being stuck in a local optimum, new techniques have been
developed that propose mechanisms for moving out of the local optimum. Some of these modern
heuristical methods include tabu search, simulated annealing, evolutionary algorithms (also known
as genetic algorithms), and ant colony algorithms.

Tabu Search: Tabu search heuristics differ from other methods .... move out from a local
optimum by moving to a new solution in the neighbourhood even if this causes a move to a
worse solution. In order to avoid cycling, the previously visited solution and the solutions
similar to it are proclaimed tabu for a certain number of iterations.

Empirical studies have shown that many heuristics may be very successful. More importantly,
for many discrete optimization algorithms heuristical methods are the only practical option.

16.3.4 Dynamic Optimization Problems

At times, the optimization problems arising in healthcare may have dynamic components (i.e. the
data changes with time) and should be modelled by a dynamic optimization problem. A dynamic
optimization problem is a problem where the problem changes as new data becomes available. At
each time step the optimizer must provide a solution to the problem that provides a good level of
optimization and allows for flexibility for when new data arrives. A prime healthcare example is
emergency vehicle dispatching (ambulances must be dispatched in a manner that retrieves patients
in a somewhat optimal time, but reserve the flexibility for new calls to change dispatch priorities).

This is a relatively new field of optimization so little can be said about the best methods to
approach such problems. Many researchers solve dynamic optimization problems using what are
called online algorithms. These algorithms are typically a blend of exact and heuristical methods.
Another option include the idea of solving a problem over a limited rolling time horizon[? ].



16.4. EXAMPLES 155

16.4 Examples

16.4.1 Nurse Scheduling as a Linear Program

The nurse (physician, surgeon, etc...) scheduling problem deals with finding the minimum number
of nurses required in a department so that patient needs are met. In this example we demonstrate
how nurse scheduling can be approached as a linear program.

Assume that the resources needed in the department are constant over successive intervals of 4
hours each, and that particular needs involve the following: 4 nurses are needed in the department
between 8 am and noon, 8 between noon and 4 pm, 10 between 4 pm and 8 pm, 7 between 8 pm
and midnight, 12 between midnight and 4 am, and 4 between 4 am and 8 am.

Consider first a situation in which there is a three-shift schedule (8 am–4 pm, 4 pm–midnight,
and midnight–8 am). After introducing decision variables x1, x2, and x3 that represent the number
of nurses in each of the three shifts, the optimization problem becomes:

min x1 + x2 + x3

subject to x1 ≥ 8
x2 ≥ 10

x3 ≥ 12

Examining this problem it is easy to see that the optimal solution is obtained when x1 = 10, x2 = 8,
and x3 = 12. Thus the minimum number of nurses required is 30.

It is interesting to observe that if we model the same nurse scheduling problem by a slightly
different mathematical programming formulation, we may be able to achieve a better solution.
Specifically, let us allow for a six-shift schedule where the starting shift times can be 8 am, 12 pm,
4 pm, 8 pm, 12 am, or 4 am, and all shifts are 8 hours long. The new optimization problem is:

min x1 + x2 + x3 + x4 + x5 + x6

subject to x1 + x6 ≥ 4 (8am− 4pm shift)
x1 + x2 ≥ 8 (12pm− 8pm shift)

x2 + x3 ≥ 10 (4pm− 12am shift)

x3 + x4 ≥ 7 (8pm− 4am shift)

x4 + x5 ≥ 12 (12am− 8am shift)

x5 + x6 ≥ 4 (4am− 12pm shift)

This problem is slightly more difficult to solve, but it can be easily checked that x1 = 0, x2 =
10, x3 = 0, x4 = 12, x5 = 0, and x6 = 4 is a feasible solution to the problem (in fact this is the
optimal solution). Notice this only requires 26 nurses, so rewriting the problem has saved 4 nurses.

In both of these examples the optimal solution was fortunately formed of integers (we never
had to employ half a nurse). This is a result of the artificial nature of the example. Realistic
problem parameters (number of nurses required during the day) would likely result in a non-integer
optimal solution. Various remedies for this exist, one of which is to consider the problem as discrete
optimization problem.
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16.4.2 Shared Transportation Problem

In this example, we consider the problem of how to deliver transportation services to disabled
and elderly people. This is an example of the shared transportation problem, sometimes called the
dial-a-ride problem.

In this problem we assume each a healthcare program has been put in place to help disabled
and elderly people meet there transportation needs. The program is accessed by a patient phoning
in a request to be picked up and transported to a health client at a certain time. To save costs,
transportation is shared, and consists of a fleet of buses serving transport requests. The overall
optimal schedule can be maintained even if some trips have to follow longer routes, as long as
customers are picked up and dropped off on time.

The problem can be modelled by the pickup and delivery problem with time windows (PDPTW).
The PDPTW is a vehicle routing problem that deals with finding an optimal set of routes for a fleet
of vehicles in order to serve a set of transportation requests. A transportation request is defined by
a pair of locations: a person or a package has to be picked up at the pickup location and delivered
at the delivery location. Each location is associated with a specific time interval allocated for the
visit to that location.. This interval is known as the time window of the location. Each vehicle
has a capacity constraint. The solution to the problem consists of a set of routes and schedules. A
route is a sequence of locations to be served by one vehicle. A schedule for a route is the sequence
of times when each location on the route will be serviced.

More formally, the problem may be described as follows. Assuming that there are n customers,
the pickup location of customer i is labelled by i and his/her delivery location is labelled by n + i.
Let P+ denote the set of all pickup locations, P− the set of all delivery locations, and P = P+∪P−.
The set V is the set of vehicles. The starting and ending positions of vehicle v are s(v) and e(v),
respectively. Starting and ending locations are usually called depots. The set N includes P and
all starting and ending vehicle locations. The load at customer i is li units. The time window at
location i is [ai, bi]. For each two distinct stop locations, ti,j and ci,j represent direct travel time
and travel cost from location i to location j.

Three types of variables are used in this mathematical formulation: binary flow variables Xv
i,j ,

time variables Ti, and load variables Li. The binary flow variable Xv
i,j has value 1 if vehicle v

travels from node i to node j. The time variable Ti is the time when node i is serviced, and the
load variable Li is equal to the load in the vehicle after servicing node i.
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The optimization problem for this PDPTW the integer program given below.

minimise
∑
v∈V

∑
i,j∈N

ci,jX
v
i,j (16.6)

subject to
∑
v∈V

∑
j∈N

Xv
i,j = 1, i ∈ P+ (16.7)

∑
j∈N

Xv
i,j −

∑
j∈N

Xv
j,i = 0, i ∈ P, v ∈ V (16.8)

∑
j∈P+

Xv
s(v),j = 1, v ∈ V (16.9)

∑
i∈P−

Xv
i,e(v) = 1, v ∈ V (16.10)

∑
j∈N

Xv
i,j −

∑
j∈N

Xv
j,n+i = 0, i ∈ P+, v ∈ V (16.11)

T v
i + tvi,n+i ≤ T v

n+i, i ∈ P+, v ∈ V (16.12)

Xv
i,j = 1 ⇒ T v

i + tvi,j ≤ T v
j , i, j ∈ P, v ∈ V (16.13)

Xv
s(v),j = 1 ⇒ T v

s(v) + tvs(v),j ≤ T v
j , j ∈ P+, v ∈ V (16.14)

Xv
i,e(v) = 1 ⇒ T v

i + tvi,e(v) ≤ T v
e(v), i ∈ P−, v ∈ V (16.15)

ai ≤ T v
i ≤ bi, i ∈ P, v ∈ V (16.16)

as(v) ≤ T v
s(v) ≤ bs(v), v ∈ V (16.17)

ae(v) ≤ T v
e(v) ≤ be(v), v ∈ V (16.18)

Xv
i,j = 1 ⇒ Lv

i + lj = Lv
j , i ∈ P, j ∈ P+, v ∈ V (16.19)

Xv
i,j = 1 ⇒ Lv

i − lj−n = Lv
j , i ∈ P, j ∈ P−, v ∈ V (16.20)

Xv
s(v),j = 1 ⇒ Lv

s(v) + lj = Lv
j , j ∈ P+, v ∈ V (16.21)

Lv
s(v) = 0, v ∈ V (16.22)

li ≤ Lv
i ≤ Qv, i ∈ P+, v ∈ V (16.23)

Xv
i,j ∈ {0, 1}, i, j ∈ N, v ∈ V (16.24)

(16.25)

Constraints (16.9) and (16.10) assure that each route location starts with a pickup location and
ends with a delivery location, not counting depots. Constraint (16.8) means that the number of
vehicles coming to location j is equal to the number of vehicles leaving location j. Constraint
(16.7) states that each pickup location is left by exactly one vehicle. Constraint (16.11), called
the pairing constraint, deals with the fact that each pickup location and its corresponding delivery
location have to be served by the same vehicle. Less formally, a patient will be driven by one
vehicle. Constraint (16.12), called precedence constraint, assures that each pickup site is located
before its corresponding delivery location — in other words, patients have to be picked up before
they can be dropped off. Constraints (16.13)–(16.15) represent compatibility between routes and
schedules and constraints (16.16)–(16.18) are time window constraints assuring that each location
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is served within its own time window. Constraints (16.19)–(16.21) represent compatibility between
routes and vehicle capacity and constraints (16.22)–(16.23) are capacity constraints assuring that
no vehicle is filled above capacity.

The above problem is extremely complicated, and clearly cannot be solved by hand. Research
by XXX has shown that branch and bound methods can been successfully employed to solve this
problem[? ].

16.4.3 Dispatching Ambulance Vehicles

The development of new telecommunication and computer technologies now allows for the collection
of real-time data and allows for the solving of dynamic vehicle routing and dispatching problems
of practical dimensions. The positions of vehicles are always available through a Geographic Po-
sitioning System (GPS) and can be reported on a computerized map managed by a Geographic
Information System (GIS).

The efficiency of emergency medical services in reducing mortality is strongly related to the
time needed by a paramedic team to arrive at the scene. This time depends on decisions made
in solving allocation problems and redeployment problems. The allocation problem consists of
determining which ambulance should be sent to answer a call, while the redeployment problem
consists of relocating available ambulances to potential location sites when calls are received.

This problem is studied in [? ]. In this example we provide a broad stroke overview of this
work.

The redeployment problem differs from the standard ambulance location problem in several
respects. While location problems are usually solved at the strategic level, redeployment problems
are operational and are solved dynamically in real time, as the emergency medical service managers
must make almost instantaneous and simultaneous decisions regarding allocation and redeployment.
Some of the problem constraints include:

• a limited number of ambulances can be positioned at each site;

• only a limited number of ambulances can be moved when a redeployment occurs;

• vehicles moved in successive redeployments cannot be always the same;

• repeated round trips between two location sites must be avoided;

• long trips between the initial and final location sites must be avoided;

• an assignment to a call should be avoided near the end of a working shift;

• at the end of a shift, the ambulance has to be moved closer to the central service point where
the vehicles are based; and

• the breaks of paramedic teams have to be taken into account.

This problem has been solved by a parallel tabu search heuristic. The main component of this
algorithm is the pre-computation of redeployment scenarios that allows immediate decision-making
when calls are received. Simulations based on real data confirm the efficiency of the proposed
approach. XXX this example needs considerable more flesh XXX
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16.5 Related Reading

XXX
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Appendix A

Glossary

Agent-based simulation
Models behaviours specific to individuals or agents rather than the average behaviour of a
population or system.

Algorithm
A sequence of steps for solving a problem.

Analytical method
Solution method derived from pure or applied mathematics used for mathematical models.

Attractors
A set of physical properties to which a dynamical system tends to evolve.

Attributable risk
The fraction of the incidence of a disease in the population that can be attributed to a specific
risk factor. Also called the aetiological fraction.

Bayes’ theorem
A theorem in statistics which relates conditional probabilities to marginal probabilities. Specif-
ically, it states that

Pr(A | B)
Pr(B | A)

=
Pr(A)
Pr(B)

.

Boolean logic
A branch of mathematics in which variables may take only one of two possible values: true or
false, which are sometimes also denoted as 1 or 0. The primary operations of Boolean logic
are AND, OR, and NOT.

Branch and bound method
An exact method for solving a discrete optimisation problem.

Branch and cut method
An exact method for solving a discrete optimisation problem.
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Case-control study
This is a type of epidemiological study in which suspected aetiological factors in the history
of patients with a disease is compared to the history of control patients, who do not have the
disease.

Catastrophe theory
Deals with those dynamical systems that respond with sudden, large changes in dynamics to
small changes in the state of the system.

Causality
The relationship of causes to effects they produce.

Centipede game
A game in which two players take turns choosing either taking part in a slightly larger share
of a slowly increasing pot, or passing the pot to the other player.

Chaos
The unpredictable behaviour of deterministic and often nonlinear, dynamical systems.

Chronic disease
A disease that develops and lasts over a long period of time.

Cohort study
A cohort study is a study which collects data about a given set of individuals over a period
of time.

Communicable disease
A disease that is contagious and which can be transmitted from one source to another by
infectious bacteria or viral organisms.

Compartmental model
A mathematical model used in epidemiology, which divides hosts into different compartments,
according to their infectious state.

Complex system
Systems consisting usually of a large number of components, that are interrelated through
non-linear relationships.

Complexity theory
An approach to understanding the behaviour of systems that exhibit non-linear dynamics, or
novel, unexpected behaviours produced by adaptive systems.

Conceptual model
A mental image of an object, system or process that describes the functional relationships
among components.

Conditional probability
The probability that an event happens, given the occurrence of another event.

Congestion
The state of a transmission system when a constraint on the system’s transfer capacity is
reached so that no further transactions can be carried out.
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Constraint
A binding limit which is expressed as an equality or inequality within an optimisation problem
to define the set of allowed values for a given variable.

Consumer theory
A theory of economics, which relates preferences, indifference curves and budget constraints.

Count data
Data representing counts or the number of observations in each category.

Decision variable
A variable within an optimisation problem. Different values of a decision variable define
different solutions to the optimisation problem.

Deterministic
Having no random or probabilistic aspects, but proceeds in a fixed and predictable fashion.

Difference equation
An equation that describes how something changes in discrete time steps.

Differential equation
The mathematical formulation corresponding to a continuous model, involving derivatives.

Discrete event simulation
A method of simulation based on discrete time-steps used to observe the dynamic behaviour
of systems.

Discrete variable
A variable that takes values in a discrete set such as the integers.

Dynamic
A theory or model that describes the time-dependent effects of forces on a system.

Dynamical system
A mathematical model describing the changing state of a system.

Econometrics
The application of statistical and mathematical methods in the field of economics to describe
the numerical relationships between key economic forces such as capital, interest rates, and
labour.

Econophysics
The application of computational methods from theoretical physics in economics. This ap-
proach is mostly commonly used for models with strongly interacting agents.

Eilenberg-MacLane space
An Eilenberg-MacLane space K(G, n) is a topological space whose homotopy groups are
πn(K(G, n)) = G and πi(K(G, n)) = 0, for i 6= n.

Elective surgery
Any surgery that is not considered as an emergency case.
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Endogenous variable
A variable which is determined by the internal dynamics within the model. This terminology
is most common in the economics modelling literature.

Epidemiology
The scientific study of factors affecting the health and illness of individuals and populations.

Equilibrium state
A stable balanced situation where forces cancel out each other.

Event independence
Events are independent if the probability that one event occurs is not influenced by the
occurrence of the other event.

Exact methods
Analytical or numerical methods for solving equations that produce an exact solution rather
than an approximation.

Exclusion process
A non-equilibrium model in statistical physics describing the movement of particles as they
hop along on a lattice of discrete sites, which has been applied to the study of congestion in
transportation and other fields.

Exogenous variable
A variable in a model which is determined externally to the model. Such variable are usually
determined through data analysis and then inputted into the model. This terminology is most
common in the economics modelling literature.

Fecundity index
A measure of the birthrate in a country. It is defined as the annual number of births per
woman of child-bearing age.

Feedback loop
A process whereby some proportion of the output signal of a system is passed (fed back) to
the input.

Fuzzy logic
A mathematical discipline that deals with fuzzy sets and operations defined on fuzzy sets.

Game theory
A branch of applied mathematics that studies strategic situations where players choose dif-
ferent actions in an attempt to maximise their returns.

Generalised method of moments
The classical method of moments estimates the probability distribution function for a sample
by equating the first m moments of the probability distribution function with the moments
calculated from the data. The generalised method of moments is an extension of this method
which incorporates conditions on the moments that follow from the statistical model.

Graph theory
A branch of mathematics that studies graphs and networks.
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Group theory
A branch of mathematics dealing with symmetries and how they are classified in terms of
objects called groups.

Hamiltonian cycle
A cycle in a graph that visits each vertex exactly once.

Health belief model
This is a psychosocial model of the role played by beliefs, motivations, and perceptions in an
individuals decision to seek healthcare.

Health care burden
The impact of a disease or condition on the health care system.

Health care system
The organisation by which health care is provided.

Health care utilisation
The amount and rate at which patients/consumers use health care services.

Heuristics
A inexact solution method that seeks to finds a good solution for an optimisation problem.
Efficient heuristics are able to find solutions close to optimal.

Homotopy group
The homotopy group, πi(X), of a topological space, X, is a mathematical group constructed
from all maps from the i-dimensional sphere to X.

Household production theory
A theory suggesting that households purchase market goods and use them in household pro-
duction processes that generate utility.

Human capital theory
A theory of the act of investment in human resources in the form of training and education
with a view on raising the productivity of an individual.

Hurdle models
Statistical models that divide the response variable into classes of 0 and non-zero values and
then predict the probability of 0 data and analyse the non-zero data separately.

Incidence
In epidemiology, incidence refers to the number of new events, such as cases of a disease or
accidents, that occur in a population during a specified period of time.

Intelligent agent
A software agent that exhibits some form of artificial intelligence.

Lagrange multiplier method
A method for calculating local extrema for functions in the presence of constraints. The
Lagrange multipliers are additional parameters incorporated into the problem to handle the
constraints. In economics, Lagrange multipliers are often called shadow prices.
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Latent class models
A statistical model representing subtypes of related cases, also called latent classes, in multi-
variate categorical data.

Linear
A model or a function where the input and output are proportional.

Linear programming
A branch of mathematics that uses linear inequalities to solve decision-making problems
involving maximums and minimums.

Linear programming problem
An optimisation problem whose objective function and constraints are linear.

Long-term care
Medical, social, and personal care services, such as nursing home care, home and community
based care, hospice care, or respite care, required over a long period of time by a person with
a chronic illness or disability.

Management science
The discipline of using mathematics, and other analytical methods, to help make better
business decisions.

Markov chain
A stochastic process with a finite number of states in which the probability of occurrence of
a future state is conditional only upon the current state.

Mathematical model
A collection of equations describing the measurable quantities in a particular setting (both
constants and variables) and their interrelationships.

Mean field theory
An approximation used in theoretical physics in which the behaviour of a complicated dy-
namical system is approximated by the average or mean behaviour of the system.

Model
An abstract or conceptual object used in the creation of a predictive formula.

Model boundary
The boundary of a model is the point or points beyond which no values or processes are
considered or defined.

Model implementation
The process of generating output from input entered into a mathematical or computation
representation of a conceptual model.

Moral hazard problem
In insurance theory, the moral hazard problem refers to an unintended increase in the risk of
“immoral” behaviour resulting from an insurance contract. For example, the moral hazard
problem of health insurance is that if insurance decreases the cost of medical care, an increase
in unnecessary use of medical services may result.
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Mover-stayer model
An extension of Markov chain models for dealing with two specific classes of unobserved
heterogeneity in the population, including movers that follow a Markov process of change
and the stayers with a probability of change of 0.

Negative binomial distribution
A distribution which is parameterised by a mean m and an aggregation parameter k which is
large when aggregation is small.

Network
A set of nodes or vertices, connected by edges.

Network theory
A branch of applied mathematics and physics, involving the study of graphs as a representation
of either symmetric relations or, more generally, of asymmetric relations between discrete
objects.

Numerical method
Iterative methods of solving problems on a computer, which may have an analytical basis or
may involve heuristics.

Object-oriented programming
A computer programming paradigm widely used in software development which views pro-
grams as a collection of individual units or objects that act on each other, rather than as a
set of functions or instructions.

Objective function
The function that is to be optimised in an optimisation problem.

Operations research
The discipline of applying mathematical methods to applied optimisation problems. It has
wide applications to decision-making in business.

Optimal value
This is either the maximal or minimal value of the objective function, in a maximisation or
minimisation problem, respectively.

Optimal solution
The solution for which the objective function reaches the optimal value.

Optimisation
A process that searches for the optimal solution to a model or problem.

Optimisation problem
The problem of finding among all feasible solutions the best one according to some criterion.

Panal data
Panel data consists of a series of cross-sectional samplings of a population, or multiple phe-
nomena, at a sequence of time intervals. Such a data set may be termed two-dimensional,
because it has extent in both the cross-sectional direction and the time direction.
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Parameter
A value which is usually unknown and has to be estimated to represent a certain population
characteristic.

Poisson distribution
A one-parameter, discrete frequency distribution giving the probability that n events will
occur in an interval x, provided that these events are individually independent and that
the number occurring in a subinterval does not influence the number occurring in any other
non-overlapping subinterval

Polytope
The generalisation to any dimension of a polygon in two dimensions, and a polyhedron in
three dimensions.

Population health
An approach to health that aims to improve the health of the population as a whole.

Potential impact fraction
This is the proportional reduction in the number of incident cases of a disease in a population,
resulting from a change in the distribution of a risk factor. It is also called the generalised
impact fraction.

Primary health care
Essential health care made accessible at a cost which the country and community can afford,
with methods that are practical, scientifically sound and socially acceptable.

Principal-agent problem
The principal-agent problem occurs when an agent is acting on behalf of a principal, in a
situation where the agent possesses an information advantage over the principal. The issue
is how to ensure that the agent acts in the best of interests of the principal. In healthcare,
a potential principal-agent problem occurs in the patient-physician relationship, with the
patient as the principal and the physician as the agent.

Prisoner’s dilemma
A type of non-zero-sum game in which two players try to get rewards from a banker by
cooperating with or betraying the other player.

Probability distribution
The mathematical description of a random variable in terms of its admissible values and the
probability associated, in an appropriate sense, with each value.

PYLG
An acronym for the potential years of life gained by a death avoided.

PYLL
An acronym for the potential years of life lost resulting from a death.

QALY
An acronym for the quality adjusted life years, which is a measure based on the PYLG times
a measure of health status during the years gained.
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Queueing theory
The theoretical study of waiting lines, expressed in mathematical terms, including components
such as the number of waiting lines, number of servers, average wait time, number of queues
or lines, and either increasing or decreasing probabilities of queue times.

Random field Ising model
A model from physics that was originally developed to explain certain properties of magnetism.
It has since been applied to modelling the effect of social pressure on decision-making.

Random variable
A variable characterised by random behaviour in assuming its different possible values.

Regression
A form of statistical analysis assessing the association between two variables.

Relative risk
In epidemiological risk analysis, the ratio of disease incidence among those exposed to the
risk to the incidence among those not exposed. Also called the incidence density ration.

Representative agent approximation
This approximation is commonly used in economic models. It assumes that the macro-
economic behaviour is approximated by a single agent, whose utility function encapsulated
all of the micro-economic behaviour in the system. Although widely used, this approximation
may not accurately reflect the system, especially when there are strong interactions between
agents or when the system is strongly heterogeneous.

Response latency
The measure of time elapsing between the onset of a stimulus and the beginning of the
response to it.

Self-organisation
The ability of certain non-equilibrium systems to develop structures and patterns in the
absence of external control or manipulation.

Sensitivity testing
A testing method for estimating continuous parameters that can not be measured in practice.

Shadow price
For a constrained optimisation problem in economics, the shadow price is the rate at which
the optimal value of the objective functions changes under relaxation of the constraint. Math-
ematically, this corresponds to the Lagrange multiplier associated with the constraint. The
shadow price is also called the marginal value.

Simplex method
A general technique for solving linear programming problems by an iterative process.

Simulation
The use of a mathematical model to recreate a situation, often repeatedly, so that the likeli-
hood of various outcomes can be estimated.
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Social capital
This is the capacity of individuals to command scarce resources by virtue of their membership
in networks or broader social structures.

Social networks
A map of the relationships between individuals, indicating the ways in which they are con-
nected through various social familiarities.

Soft operations research
A qualitative method related to system dynamics for thinking about complex systems.

Social organisation strategy
This is a framework in sociology which uses a dynamic social network approach to under-
standing human behaviour.

Solution space
This is the set of all solutions to a given mathematical problem.

Static
The opposite of dynamical; not changing.

Statistical association
The effect arising from the relationship between variables but which does not imply causation.

Statistical model
A statistical model is a tree-structured model format that contains and persists arbitrary
statistical data.

Stochastic
A process with an indeterminate or random element as opposed to a deterministic process
that has no random element.

Strange attractor
An attracting subset of the solution space of a dynamical system, which has zero volume, but
fractal dimension greater than 0.

Strategic planning
The process of developing long range strategies to reach a defined objective.

Symmetry
An attribute of a shape or relation characterised by the exact reflection of form on opposite
sides of a dividing line or plane.

Synergetics
An interdisciplinary science explaining the formation of patterns and structures in natural
and social systems.

System
An assemblage of elements comprising a whole with each element related to other elements.
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System dynamics
A field of study that includes a methodology for constructing computer simulation models to
achieve better understanding of social and corporate systems.

System thinking
A school of thought that focuses on recognising the interconnections between the parts of a
system and synthesising them into a unified view of the whole.

Tabu search
A heuristic method used in operations research. It is a local search method that uses memory
structures to improve efficiency.

Tactical planning
The process of developing medium-term strategies.

Tertiary medical care
Medical and related services provided at specialist hospitals or regional centres equipped with
advanced diagnostic and treatment facilities.

Travelling salesman problem
This is a combinatorial optimisation problem, in which a “travelling salesman” must find the
shortest route which visits each city in a given set of cities exactly once.

Utility function
A mathematical expression that assigns a value to all possible choices.

Validation
Verification that something is correct or conforms to a certain standard.

Variance
A measure of the average distance between each of a set of data points and their mean value;
equal to the sum of the squares of the deviation from the mean value.

Wait list
A list of patients who are waiting for a medical procedure.
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Appendix B

Sources of Healthcare Data

The focus of this chapter is to review a number of large-scale data projects that have been or can be
used for mathematical modelling. Two of the projects considered — POHEM and ARCHIMEDES
— are integrated with microsimulation software. A third, MORBIDAT, is an extensive Belgian
database system, which is a good example of a large repository of health and disease information.
Plans for broad implementation of electronic health records in Canada offer an unprecedented
opportunity for obtaining health information, and it is included in this review for this reason.
The final section describes data sources from surveys that have been used for health care studies,
particularly for the study of health care utilisation and demand.

B.1 The POHEM Population Health Model

Statistics Canada assembles large linked socio-economic and health data sets. These can be anal-
ysed to assess the health status of the population [? ]. To complement its existing programme,
Statistics Canada developed a Population Health Model (POHEM) which interfaces the data with
a microsimulation component.

An important motivation behind the POHEM project was a need for complete and compre-
hensive information on health outcomes. While available information on resource utilisation was
deemed adequate, data on individual and population health status was lacking or considered in-
sufficient. Illness care and medical interventions were heavily emphasised in the data, and this did
not reflect the growing trend in public health approaches in health care, which focus primarily on
the determinants of health and involve disease prevention and health promotion interventions [?
]. Furthermore, a general lack of standard definitions for components across data sets impeded
coherent analyses and interpretations of the available information.

Although POHEM is considered to be a model, it represents a different approach from those
discussed so far in this report. The method bears some resemblance to risk modelling but it is
essentially a “modelless” simulation, based on data, and its primary output is synthetic data. In
other words, POHEM, and similar microsimulation methods, represent models of data. POHEM
does not specify the structure of the system explicitly, nor does it provide insight into the mechanics
of the system. In contrast, system models discussed in other parts of this report are implementations
of conceptual models for the study of principles governing the behaviour of complex systems. They
rely on high quality data for calibration, validation and forecasting but the basic model structure
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is not rooted in data.
One of POHEM’s main objectives is to generate longitudinal data sets and thereby fill in gaps

in existing data. Simulations can also be used to evaluate alternate policy scenarios, to assess the
impact of public health interventions or the burden of disease, and to make cost projections for
treatment options or longterm management of disease.

POHEM has proven to be a useful tool to policy makers. There is a growing body of literature
on applying POHEM to evaluate population health and health care issues. The integration of
data with microsimulation has also resulted in improved data quality. POHEM and other similar
projects showcase the importance and potential utility of extensive, high quality data in informing
health policy decisions.

The microsimulation component of POHEM is built on a higher-order Markov process, which
incorporates continuous time in the simulation. The virtual, synthetic, longitudinal data produced
represents the full life cycle of a birth cohort. Synthetic individuals are generated and allowed to
age using a Monte Carlo simulation. This is achieved using a random number generator to simulate
specific events through a comparison of the results of random draws to known distributions. The
process integrates information on demographics, risk factors, disease onset and progression, resource
utilisation, and cost of care, for example, to create cohorts that match real counterparts in detail.
The resulting virtual population data have been analysed primarily to evaluate cost-effectiveness
of intervention alternatives and to study population-level health outcomes [? ].

The last published use of POHEM involved an evaluation of the national colorectal screening
program which informed policy decisions by the National Committee on Colorectal Cancer Screen-
ing. As of September 2006, developmental work is underway for an osteoarthritis model and a
diabetes model is in its planning stages. A less detailed but more comprehensive model for esti-
mating and projecting the population health impacts of disease, injury and risk factors is in its
beginning to be developed in the program of The Population Health Impact of Disease in Canada.
This model will incorporate much less detail on individual disease but includes many more diseases
to study overall population impact. The project is an extension of WHO research on the burden of
disease [? ].

The following overview provides representative examples involving lung cancer, breast cancer
and colorectal cancer, where POHEM has been employed.

B.1.1 Lung Cancer

Several studies investigated cost and treatment effectiveness for lung cancer. In one of these, cost
effectiveness of alternative chemotherapies was evaluated [? ]. Stage-specific survival data was
extracted from clinical trials and incorporated into POHEM. Various chemotherapy interventions
were simulated and cost-analysis was carried out on the simulated results. The cost of treatment
for toxicity, in addition to the actual cost of the treatment, was incorporated in the analyses to
provide a more comprehensive estimate of costs. The therapy options could then be ranked based
on cost-effectiveness.

In another model a hypothetical cohort of people with demographic and labour force charac-
teristics, risk factor exposures, and health histories typical of Canadians was generated. The lung
cancer sub-model assigned individuals to a particular histological cell type and stage based on data
collected from the Canadian Cancer Registry, the Alberta Cancer Board and the Ontario Cancer
Registry. Treatment, disease progression, and survival characteristics were assigned to the cohort
based on clinical data, information from national physician surveys and expert opinion. Finally,
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costs were allocated to the various components of care appropriate for cell type and stage of disease,
from the time of initial diagnosis to terminal care. Direct medical cost associated with chemother-
apeutic treatment of metastatic non-small-cell lung cancer (NSCLC) was assessed and compared
to the costs of best supportive care from the perspective of a provincial government payer in a
universal health care system [? ].

A different study of lung cancer [? ] used the distribution of cancer stage at diagnosis for the
reference year of 1992 in the POHEM model to demonstrate that lung cancer treatment in Canada
is effective from an economic point of view.

B.1.2 Breast Cancer

In a model of breast cancer, the potential savings in the acute care setting were evaluated for a
strategy to reduce length of hospital stay (LOS) for breast cancer surgery. The strategy combines
reduced LOS with increased investment in the home care setting [? ]. Again, stage of breast cancer,
treatment type, disease progression and survival statistics were assigned to simulated individuals.
Appropriate Canadian costs were incorporated in the model. The reduction in hospitalisation costs
was estimated to be about 30%. However, the authors point out that the cost-analysis does not
consider any change in the quality of care for patients in such an eary-discharge program, implying
that results of the model – and other similar models – have to be considered in a broader context
in reaching policy decisions.

Healthcare costs associated with lifetime management of breast cancer were estimated in a
model of a cohort of over 170,000 women who were diagnosed with breast cancer in 1995 [? ].
Another study using POHEM evaluated a strategy of administering preventive Tamoxifen therapy
to women at high risk for breast cancer [? ]. The model, which incorporated data on breast cancer
prevention trials, was used to show that no overall population health benefit would be gained from
preventative Tamoxifen therapy.

B.1.3 Colorectal Cancer

Colorectal cancer is the second leading cause of cancer-related mortality among Canadians. A
Canadian colorectal cancer (CRC) model of incidence and progression was implemented in POHEM
in 2000, including disease incidence by age, sex, and site (colon or rectum), disease progression to
local recurrence, metastasis, death, treatment options and cost [? ]. POHEM was used to simulate
a screening programme with two identical cohorts, including a reference cohort and a screen cohort.
Life histories for the cohorts were identical. The screen cohort was subjected to the modelled
screening protocol and the impact of screening was evaluated by comparing outcomes for the two
cohorts. The model results showed that biennial screening of 67% of individuals aged 50 to 74 in
the year 2000 resulted in an estimated 10-year CRC mortality reduction of 16.7%.

In another study direct lifetime costs were estimated for colorectal cancer (CRC) using POHEM
[? ]. The POHEM model in this study was calibrated using Statistics Canada’s person-oriented
hospital discharge database and the Canadian Cancer Registry, along with some provincial and
regional databases. POHEM was used to simulate the disease progression in a year 2000 cohort
of patients newly diagnosed with colorectal cancer. The result of the simulation are shown in
Table B.1.
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Figure B.1: The POHEM Simulation of the Average Breakdown of Future Lifetime Healthcare Costs

for Patients Diagnosed with Colorectal Cancer. Note that this simulation carried out by ? ] predicts that

hospitalization would account for 65% of the cost for colon cancer patients and 61% of the cost for rectal cancer

patients.

Reproduced from ? ].

The POHEM simulation of the future disease course for patients with colorectal cancer may
be used to determine the future demands that would be placed on the healthcare system by these
patients. As an example, the breakdown of average lifetime healthcare costs for patients diagnised
with colorectal cancer is given in Figure B.1.
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B.2 ARCHIMEDES

ARCHIMEDES is a proprietary stochastic microsimulation model developed by the US company
Kaiser Permanente [? ]. It is used to address complex questions in health care. The model is a
discrete event simulator that creates detailed virtual models of the physiology of diseases, patients
and and health care systems. As POHEM, ARCHIMEDES simulates individual life histories rather
than modelling dynamical systems of populations, but unlike POHEM, ARCHIMEDES incorporates
an extraordinarily high number of variables at all levels and uses a Monte Carlo method to assign
events to individuals. The large and complex model is accessible through the consulting services
offered by the company.

The Diabetes PHD (Personal Health Decisions) risk assessment tool is available online from the
American Diabetes Association and demonstrates the level of detail used in the model [? ].

One of the main uses of Archimedes is in conducting simulated clinical trials. David Eddy,
founder of the Archimedes company, has evaluated the model by comparing 74 actual and simulated
trials. In 71 out of the 74 cases no statistically significant differences were found between the results
of the clinical trials and their simulated counterparts [? ].

B.3 MORBIDAT

MORBIDAT1 is a sophisticated database system of morbidity and health-related behaviours and the
corresponding regulations in Belgium. It is a product developed, in collaboration with the Flemish
and the French Communities, by the Scientific Institute of Public Health’s Unit of Epidemiology
at the Centre of Operational Research of Public Health (CORPH). The main objective of CORPH
is to optimise the management of health information to evaluate and to follow the state of health
of the population. In addition to the MORBIDAT project, CORPH is responsible for collection of
vital statistics, gathering information on health indicators, carrying out health interview surveys
and integrating the informations in review documents to support public health policy development.

Currently MORBIDAT consists of three inventories

• the Inventory of Existing Databases on Morbidity and Disability;

• the Inventory of Existing Databases on Lifestyle Variables;

• the Database of Morbidity Situation Sketches for Several Disorders Important from a Public
Health Perspective.

For the Inventory of Morbidity Databases, a list of the main morbidity categories was
established based on the WHO Health for All in the Year 2000 campaign. There are 17 categories
of disorders or events, including

1. The elderly
2. Occupational diseases
3. Cardio-vascular disorders
4. Digestive disorders
5. Endocrinological disorders

6. Infectious diseases
7. Disabilities
8. Cancer
9. Mental disorders

10. Mother-child pathology
1The MORBIDAT website [? ] has an introduction in English. The rest of the information in this section was

translated from Dutch by Alexa van der Waall (IRMACS, SFU).
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11. Oral and dental disorders
12. Primary morbidity
13. Musculoskeletal disorders
14. Accidents

15. Eye disorders

16. Respiratory disorders

17. Urological disorders

Each category contains anonymous individual data on patients and results of various analyses.
For example, the category of endocrinological disorders currently contains the following registries
and programs: Diabetes (Belgian Diabetes Registry; Epidemiological Survey of Medically Treated
Diabetes Melitus; Registry of Diabetes Cases (from GPs)); Pathology of the Thyroid Gland (Pathol-
ogy of the Thyroid Gland (from GPs)). For each program, additional information is recorded (such
as contact details for administrators, objectives and registered parameter, and available data and/or
publications).

The Inventory of Lifestyle Databases includes 11 categories, also based on the WHO Health
for All by the Year 2000 strategy. It is organised similarly to the Inventory of Morbidity Databases
and its categories are:

1. Tobacco use
2. Alcohol abuse
3. Illegal drug abuse
4. Abuse of prescription drugs
5. Nutrition
6. Physical activity

7. Leisure activity
8. Social behaviour
9. Sexual behaviour

10. Health supporting knowledge and activi-
ties

11. Work environment

The Database of Morbidity Situation Sketches for Several Disorders of MORBIDAT
is devoted to describing current knowledge on a selection of important disorders. Overviews are
provided with short summaries, a list of the determinants and an epidemiological description with
international comparisons. The overview includes prevention options and statistical data when
available. Complete sketches are available for the following disorders:

1. Asthma and air pollution
2. Screening of breast cancer in women be-

tween 40 and 49 years of age
3. Cerebro-vascular disorders
4. Cervical cancer
5. Chronic aspecific respiratory disorders
6. Colon- and rectum cancer
7. Dementia
8. Depression
9. Diabetes mellitus

10. Ischemic heart disease
11. Cancer – general
12. Lung cancer
13. Accidents in the home
14. Osteoporosis and hip fractures
15. Prostate cancer
16. Tuberculosis
17. Traffic accidents
18. Suicide attempts

Information in this database is collected from existing Belgian and international sources. Birth
and death information is supplied by three main registries: The national Institute for Statistics
(NIS), The Ministry of the Flemish community, and the Health Observatory of Brussels Gewest.
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Figure B.2: The Structure of an Electronic Health Record system

The HL7 suite of protocols provides a common interface for all components in the system.

B.4 Electronic Health Records

In Canada, a drive for standardisation of health records is being headed by the Canada Health
Infoway. Standardised health records will automatically ensure that any data originating from EHR
will be of high quality. This has the potential to bring tremendous benefits to studies employing
mathematical modelling and health data analyses.

[
8]quotecolour3.6inIn attempting to arrive at the truth, I have ap-

plied everywhere for information, but in scarcely an instance have
I been able to obtain hospital records fit for any purpose of com-
parison. If they could be obtained, they would enable us to decide

many other questions...
— Florence Nightingale — Health Level 7 (HL7) is the broadest EHR standard under development
and plans are in place to implement this standard in British Columbia. The HL7 standard has
been accredited by the American National Standards Institute (ANSI). “Level seven” refers to the
highest level communications model defined by the International Organisation for Standardisation
(ISO).

There are a number of other EHR standards, which address the specialised needs of a specific
department. Many of these standards predate HL7. Examples of such standards include Digital
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Imaging and Communications in Medicine (DICOM) for diagnostic imaging, Systematised Nomen-
clature of Medicine (SNOMED) for clinical records, and Logical Observation Identifiers Names and
Codes (LOINC) for laboratory results. HL7 provides an umbrella standard that incorporates more
specialised standards, creating the concept of a vocabulary of coding systems, in other words a
meta-vocabulary. Some existing coding systems that are compatible and can be integrated into
HL7 include Systematised Nomenclature of Medicine (SNOMED) for clinical terms, the MEDCIN
clinical coding system, the Logical Observation Identifiers Names and Codes (LOINC) for labora-
tory results, the International Classification of Diseases, version 10 (ICD-10). ICD-10 is a coding
system used for epidemiological and many health management purposes and include terms for the
analysis of population health status, monitoring of the incidence and prevalence of diseases and
other health problems in relation to socioeconomic and other variables.

In an integrated EHR system (with HL7 version 3 at its centre), a system can be envisaged
which provides fully standardised data system spanning all areas within the health care system
(Figure B.2). Such a system would not only vastly improve efficiency of the health care system,
but would tremendously facilitate its study through the availability of high quality data to address
a wide range of questions.

B.5 Survey Data

In health care research surveys are commonly used to collect information from a group through
interviews or questionnaires. Surveys may be cross-sectional or longitudinal. In cross-sectional
surveys observations on subjects are collected at a single point in time. In longitudinal surveys,
observations are collected at several points over a period of time. The sample of subjects in lon-
gitudinal studies will be representative of the same population, but they may not necessarily be
the same individuals. Panel data is a special subset of longitudinal data, where the same group of
individuals is followed over the study period.

Cross-sectional data is easier to collect but will provide limited insight into the population
dynamics which tends to evolve over time. The time component in studies of health care demand
and utilisation is important because it is desirable to study changes in preferences influenced by
patient characteristics.

The accuracy of survey data is often a source of major concern. It is extremely difficult to
control for biases. For example, it was noted in ? ] that there are differences between the way that
people respond to written surveys versus oral surveys. This is generally attributed to people being
more candid about sensitive questions in an written surveys. Furthermore, it was found that the
survey results depended on the order in which the questions were asked. This was attributed the
people “learning” about their health status through the course of the questionnaire.

In spite of the difficulties in collecting accurate survey data, there is clearly a role for surveys
in understandings attitudes and perceptions about healthcare demand and other aspects of the
healthcare system. However, great care should be taken to use as large a sample size as possible
and to collected the data in a consistent fashion throughout the survey. Studies based on pooling of
data from different surveys are questionable, because of the difficulty in controlling for the varying
biases within the dataset.

Surveys of self-reported health status are commonly used to assess correlations between so-
cioeconomic status and health. However, this raises the important question, “Is there a correlation
between socioeconomic status and how people assess their health?” If there were such a correlation,
then it would introduce a bias into surveys of this nature. This question was addressed in ? ]. They



182 APPENDIX B. SOURCES OF HEALTHCARE DATA

compared the results of a health status survey with mortality data in the Swedish Survey of Living
Conditions for 1975–1997. They did not find a strong correlation between socioeconomic status and
self-reported health status. Therefore, properly conducted surveys of self-reported health status are
generally valid as a measure of the link between socioeconomic status and health.



Appendix C

Mathematical Programming
Packages for Computers

C.1 Mathematical Software

There are a large number of software packages which are designed to aid in mathematical analysis.
A few of the more popular ones are listed below.

XXX rewrite in more generic terms (get away from the ODE kick) XXX
XXX add at least three stats packages XXX

Berkeley Madonna: Berkeley Madonna is an all purpose numerical differential equation solver.
It is able to solve systems of differential equations rapidly and graphically display the system
evolution at run time. It was developed at the University of California at Berkeley and is available
for both Microsoft Windows and Mac OS X.

Maple: Originally developed at the University of Waterloo, Maple is now one of the pre-eminent
software packages in mathematics. It is capable of both symbolic and numerical analysis of systems
of differential equations. It is also a general purpose computer algebra system, with support for
most branches of mathematics. Maple is available for Microsoft Windows, Linux, and Mac OS X.

Mathematica: Mathematica from Wolfram Research is a full featured suite for the mathematical
sciences. It has extensive capabilities in both computer algebra calculations and numerical analysis.
It is available for Microsoft Windows, Mac OS X, Linux, Solaris, and most other unix operating
systems.

MATLAB: MATLAB is one of the most widely used software packages for numerical analysis in
applied mathematics, science, and engineering. MATLAB has superior numerical algorithms and
contains Maple as its symbolic manipulation tool. It has a large number of toolkits supporting a
wide range of mathematical specialisations. It is developed and supported by MathWorks and is
available for Linux, Solaris, Mac OS X, and Microsoft Windows.

183
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C.2 Simluarion and Modelling Codes

ANML: (Another Modelling Language) is a general purpose modelling language for describing
various systems such as communication networks. The language, which is object-oriented, consists
of three general constructs: models, schemas and databases. Models are descriptions of specific
system scenarios, schemas specify the rules for creating models and databases serve as a repository
of components for easy reuse in different models. ANML is based on the Domain Modelling Lan-
guage (DML), which was developed as part of the Scalable Simulation Framework (SSF) and the
Extensible Markup Language (XML). ANML was developed at the University of Calgary. Their
ANML processor is open source and freely available.

dML: dML (deX Modelling Language) is an object-oriented based upon C++, which is part of
the deX modelling package. dML is designed to facilitate the development of parallel simulations,
either on multi-processor systems or on clusters.

GPSS: This was the first simulation programming language. It was developed at IBM and
appeared in 1961. Strictly speaking, GPSS is not a complete programming language, but rather a set
of FORTRAN routines. GPSS programs follow a block-diagram representations, which represents
the process flow in the simulation. It is particularly well-suited to modelling queueing problems
remains popular to this day. A commercial GPSS compiler is currently available from Wolverine
Software. In addition, a MATLAB toolkit is available for processing GPSS simulations in MATLAB.

PARSEC: Developed by the Parallel Computing Laboratory at UCLA, it is an acronym for
“PARallel Simulation Environment for Complex systems”. It is a C-based discrete-event simulation
language that adopts the process interaction approach to discrete-event simulation. PARSEC pro-
vides support for executing a discrete-event simulation model using several different asynchronous
parallel simulation protocols on a variety of parallel architectures. As such, it is well-suited for de-
ploying discrete event simulations on computer clusters. PARSEC is freely available for academic
use.

SHIFT: This is a programming language for describing dynamic networks of hybrid automata,
which may exhibit both discrete and continuous behaviour. The components interact via a network,
which may itself evolve in time. Shift is well-suited to applications such as automated highway
systems, air traffic control systems, robotic shopfloors, and similar systems whose operation cannot
be captured easily by conventional models. Shift was developed by the California PATH (California
Partners for Advanced Transit and Highways) Project at the University of California, Berkeley and
both a compiler and a run-time system are freely available.

SIMSCRIPT I/II/III: Simscript is an “english-like” high level simulation language designed
for discrete-event and hybrid discrete/continuous modelling. The first version, SIMSCRIPT I, was
developed by the RAND Corporation for the U. S. Air Force and released in 1962. This initial ver-
sion was implemented as a FORTRAN preprocessor, producing FORTRAN code which was then
subsequently compiled with a FORTRAN compiler. SIMSCRIPT II, which was also developed by
the RAND Corporation, was released in 1968. The CACI Products company currently sells and sup-
ports a commercial version called SIMSCRIPT II.5. They have also recently released SIMSCRIPT
III, which extends SIMSCRIPT II to provide full support for object-oriented programming.
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Simula: First released in 1965, Simula is a full-featured object oriented programming language
designed for discrete event simulations. It introduced object-oriented concepts it has had great
influence on all modern class-based object-oriented programming languages. Simula remains in
use today and Cim is a currently available compiler for it. Cim is implemented as a Simula to C
converter, followed by compilation of the C code using a C compiler. It is open-source and licensed
under the GPL. It should run under most unix-like operating systems.

SLX: SLX is a new simulation language from Wolverine Software. It utilises a layered approach-
ing, starting with the SLX kernel at the bottom, a traditional simulation language in the middle,
and more application-specific dialects at the top. Thus, simulation programmers may construct
models using the upper layers of language and are not required to delve into the lower-lever de-
tails. However, models requiring features not available at the upper level may still be modelled by
using lower-level programming to build new higher-level constructs. In addition to its multilayered
structure, another focus of SLX is to provide support for DES models with parallel processes. SLX
syntax is C-like and it is not an object-oriented language. However, it does have object-based
features.

Libraries and Application Program Interfaces

baseSim: baseSim is a simulation library for Borland Delphi. It supports a variety of discrete
event simulation models, including Monte Carlo simulation models. It is sold and supported by
iBright Ltd.

C++Sim: This is an object-oriented C++ simulation library developed at the University of New-
castle upon Tyne. It provides SIMULA-like simulation routines, random number generators, queue-
ing algorithms, and thread package interfaces. This library is freely available for teaching and
research use.

CSIM: CSIM is a commercial library of simulation routines for C or C++. It provides routines
for discrete-event simulation models of complex systems. CSIM is a product of Mesquite Software.

DESMO-J: DESMO-J is an object-oriented framework targeted at programmers developing sim-
ulation models in Java. It provides support for building models with a graphical user interface.
The acronym DESMO-J stands for “Discrete-Event Simulation and Modelling in Java”. Developed
at the University of Hamburg, DESMO-J is part of the larger Eclipse project for developing open
source modelling and simulation tools. DESMO-J is licensed under the Apache License.

DSOL: DSOL is a Java-based suite for continuous and discrete event simulation. The focus of
DSOL is to view simulation as a set of loosely-coupled, web-enabled services. As such, DSOL
focuses on the development of simulation models with web-based interfaces. DSOL was developed
at the Delft University of Technology and is open source.

RedShift: RedShift is a simulation library written in Ruby and C. Its syntax is based on that of
SHIFT and Lambda-SHIFT. RedShift is open source and freely available.
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Simulación 4.0: Simulación 4.0 is a visual basic library designed to provide support for simple
simulations within Microsoft Excel. Simulación 4.0 is freely available.

SimPy: SimPy is an object-oriented, process-based discrete-event simulation library for Python.
It provides the modeller with components of a simulation model including processes (for active
components such as customers, messages, and vehicles) and resources (for passive components such
as servers, checkout counters, and tunnels). It also provides monitor variables to aid in gathering
statistics. SimPy is an acronym for “Simulation in Python”. It is open source and released under
the Lesser GNU Public Licence.

SSF: SSF (Scalable Simulation Framework) is an open standard for a discrete-event simulation
application program interface (API). SSF SSF is designed to support parallel simulations that
support very large collections of simulation entities running on a computational cluster. Implemen-
tations of SSF in both C++ and Java are freely available. Furthermore, the SSF specification is
defined in an abstract manner, allowing it to function as a model for high-level modelling languages
or graphical modelling environments. Associated with SSF is the Domain Modelling Language
(DML), which is an open standard for defining model configurations.

Simulation Engines

JiST: JiST is a high-performance discrete event simulation engine that runs over a standard Java
virtual machine. JiST is an acronym for “Java in Simulation Time”. The JiST system architecture
consists of four distinct components: a compiler, a byte-code rewriter, a simulation kernel and a
virtual machine. JiST simulations are written in standard Java and compiled to byte-code using a
regular Java language compiler. These compiled classes are then modified by JiST using a byte-code-
level rewriter to run over a simulation kernel. This architecture provides exceptional performance
and also allows for efficient parallelisation execution on large clusters. JiST was developed at Cornell
University and is freely available for academic use.

SimKit: The SimKit engine is based on an object-oriented logical-process view of discrete-event
simulation. In a SimKit simulation, each physical process is characterised by a logical process. The
logical processes communicate by exchanging messages called events. SimKit implementations in
both C++ and Java are available. It is open source and was developed at the University of Calgary.

WARPED: WARPED is a highly parallel simulation engine, implemented in C++. WARPED
makes extensive use of the object-oriented structure of C++ and it defines a number of specialised
classes for simulation. A variety of libraries are also available. Included with WARPED is KUE, a
library for building queueing models. WARPED was developed at the University of Cincinnati and
has been released into the public domain.

Simulation Packages

AnyLogic: AnyLogic is a Java-based simulation package from XJ Systems. It has support for
stochastic modelling, interactive 2D and 3D animation, as well as optimisation. A number of
different modelling paradigms are available with AnyLogic, including process flow diagrams, system



C.2. SIMLUARION AND MODELLING CODES 187

dynamics, agent-based modelling, and state charts. AnyLogic runs under Microsoft Windows 2000
or Windows XP.

Arena: Arena is based on the SIMAN simulation language. However, its user interface is com-
pletely graphical. Models are built from graphical objects called modules. Modules are then or-
ganised into structures called templates. A number of standard templates are included with Arena.
Arena is developed and supported by Rockwell Automation, Inc. It is available for Microsoft Win-
dows 98, Windows Me, Windows 2000, Windows Server 2003, and Windows XP. In addition to
Arena, Rockwell Automation also offers OptQuest, an optimisation suite for Arena.

AutoMod: Automod is a graphical modelling package that provides provides true to scale 3-D
virtual reality animation, making simulation models easy to understand and explain. It uses CAD-
like features to define the physical layout of manufacturing, material handling, and distribution
systems. Although primarily designed for operations analysis of manufacturing systems, it may
also be applied to a variety of other types of simulation modelling. AutoMod is available from
Brooks Software and it runs under Microsoft Windows 2000 or XP.

eM-Plant: This package focuses on the modelling and simulating of production systems and
processes. It provides the capability to optimise material flow, resource utilisation and logistics.
It takes an object-oriented approach to model design and has extensive features for visualisation
and animation of models. eM-Plant is developed and supported by UGS. It runs under Microsoft
Windows.

Enterprise Dynamics: This is an object-oriented dynamic analysis and control package, avail-
able from Incontrol Enterprise Dynamics. Model design is based on blocks and templates. It
supports both two-dimension flowchart animation and three-dimensional models. Enterprise Dy-
namics runs under Microsoft Windows 98, 2000, and XP.

Extend: This simulation suite from Imagine That Inc. supports both discrete event simulation
and numerical solutions of systems of differential equations. In 1988, Extend was the first simulation
package to introduce a graphical graphical interface utilising a block-diagram approach to model
building. There is also support for animation of the process flow diagram. A C-like programming
environment is available for defining new blocks. Extend runs under the Microsoft Windows NT
family (Windows XP, 2000, NT 4.0+) and Mac OS X.

iThink and Stella: iThink and Stella from ISEE Systems use take a graphical systems dynamics
approach to model design. The models are designed graphically using flow diagrams to show
process flow and feedback loops. iThink and Stella are similar packages, with iThink focused more
on business applications and Stella focused more towards education and research. Both packages
run under Microsoft Windows and Mac OS X.

JSIM This a Java-based simulation and animation environment, which focuses on web-based
simulation. It is developed at the University of Georgia. Simulation models may be built using
either the event package (event-scheduling paradigm) or the process package (process-interaction
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paradigm). In addition, a graphical design interface allows process models to be be rapidly built
graphically. JSIM is open source and licensed under a BSD-style license. It requires Java 5.0.

MATLAB and SimuLink: These software packages are products of MathWorks, which is one of
the leaders in developing software for scientific and engineering research. Employed extensively on
large scale numerical research projects, MathWorks software is noted for its reliability and minimal
number of bugs. MATLAB is a high-level language and interactive environment for performing
computationally intensive modelling. Simulink is a graphical environment for developing models
of dynamical systems. It essentially provides a graphical interface to MATLAB. SimEvents is an
extension to SimuLink, which is specialised for discrete event simulation. A large number of other
special purpose extensions for both MATLAB and SimuLink are also available. MATLAB and
SimuLink are available for Linux, Solaris, Mac OS X, and Microsoft Windows.

MicroSaint: MicroSaint is graphical discrete event simulation package from Micro Analysis and
Design, Inc. It provides two graphical views of the simulation: a network flow diagram and a two-
dimensional animation of the model. Support for optimisation is also provided by the OptQuest
module, which is included with the package. The package runs under Microsoft Windows 98, 2000,
ME, XP, and Server 2003.

OMNeT++: This is a discrete event simulation package with strong GUI support. It’s utilises
a modular open-architecture, making it flexible and easy to extend. Its initial application area was
the simulation of communication networks; however, it is now widely used to simulate queueing
networks, IT systems, and business processes. A variety of examples are included with the software
distribution. OMNeT++ runs under most versions of unix-like operating systems, including Linux,
Mac OS X, and FreeBSD, as well as under Microsoft Windows. It is open-source and free for
academic use. Commercial use requires a license from SimulCraft, Inc.

Ptolemy Project: Based at the University of California at Berkeley, this project is developing an
open-source software system for modelling, simulation, and design of concurrent, real-time systems.
Their main focus is on models which have concurrently executing components, which interact
with each other. Ptolemy has a graphical interface for constructing simulation models using block
diagrams. It supports supports data-flow, discrete-event simulation, process networks, and finite-
state machine models of computation. Ptolemy is written in C++ and compiles using gcc on most
unix-like operating systems. A followup Java-based system called Ptolemy II is under development.

SansGUI: This is modelling and simulation environment for developing and deploying scientific
and engineering simulators without the need for writing any graphical user interface code. SansGUI
supports the development of graphical interfaces for models which are implemented in Microsoft
Visual C/C++, Compaq Visual Fortran 6.1, or any programming language or environment that can
generate Win32 DLLs callable by Microsoft Visual C/C++. This includes simulations implemented
in MATLAB. SansGUI is available from ProtoDesign, Inc. It runs under Microsoft Windows 95,
98, ME, NT 4.0, 2000, or XP.

SDX: This is a Fortran based problem solving environment for both continuous and discrete dy-
namical systems. Typical applications include aerospace, applied mathematics, biological systems,
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and control systems. It is available from Eclipse Software and runs under Microsoft Windows 95,
98, NT, 2000, and XP.

ShowFlow This is a simulation software package that places a strong emphasis on graphically
representing the simulation from a systems dynamics perspective. It is developed by Webb Systems
Ltd. and runs under Microsoft Windows.

Simile: This is a simulation package for complex dynamical systems in the earth, environmental
and life sciences. It is developed and supported by Simulistics Ltd. Models are developed graphically
using a system dynamics approach. Simile then converts the graphical representations into C++

code which is compiled and executed. Simile runs under Microsoft Windows (98, ME, NT, 2000
and XP), Mac OS X, Linux, and FreeBSD.

SIMPROCESS: This is an integrated process-based simulation software package based on SIM-
SCRIPT II.5. It provides a graphical interface for constructing a discrete event simulation model
using processes, activities, entities, resources, and connectors. SIMPROCESS is available from
CACI Products. It runs under Microsoft Windows, Linux, and Solaris.

SIMUL8: The focus of SIMUL8 is to provide a simulation package that is easy to use for non-
experts. It relies heavily on a graphical interface, with models being constructed by assembling
graphical building blocks. Templates are used to allow a variety of common simulation scenarios
to be developed easily. The simulation model and data are saved in XML, allowing it to be easily
accessed by other programs or web interfaces.

Traffic: This is a suite of programs for analysis of queue models. It is distributed and supported
by Erlang Software. A source code license may be purchased. The Traffic programs run under
Microsoft Windows, Linux, and Solaris. With a source code license, it should compile under most
unix-like operating systems.

WITNESS: This package uses a graphical interface with modules and templates for model de-
sign. The Lamner Group offers two versions of witness — one focused on the modelling in the
service sector and the other focused on the manufacturing sector. The models may be displayed in
two-dimensional animation. A variety of extension modules are available, supporting extra capabil-
ities such as three-dimensional animation, CAD design, and optimisation. WITNESS runs under
Microsoft Windows.

Packages for Agent-Based Simulation

Brahms: This is a modelling language, composer, compiler, virtual machine, and simulation
viewer for agent-based simulations. This system is distributed by Agent Solutions and licensed to
NASA. It is free for academic and research use. It is currently not available for commercial use.
Brahms runs under Microsoft Windows 2000/XP, Linux, Solaris, and Mac OS X.

Ps-i: This is a Tcl/Tk based environment for agent-based simulations. It has built-in routine
optimisation for improving simulation performance, plus the ability to change model parameters
while the simulation is running. Ps-i is open source and licensed under the GNU Public License.
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SeSAm: Developed at the Universität Würzburg, the Shell for Simulated Agent Systems (SeSAM)
provides a generic environment for agent-based simulation. It provides easy visual agent modelling,
flexible environment and situation definitions, an integrated graphical simulation analysis, and the
ability to run distributed simulations on a cluster. Furthermore, SeSAM is a full programming
language. SeSAm agents consist of a body, that contains a set of state variables and a behaviour
that is implemented in the form of uniform modelling language (UML) style diagram. The package
is able to deal with complex multi-agent systems (MAS) simulations for complex models with
flexible agent behaviour and interactions. SeSAM is open-source and licensed under the Less GNU
Public License. It requires Java 5.0 or better.

SimWalk: This is an agent-based simulation package primarily targeted at modelling pedestrian
flows in complex environments. However, it can also be used for marketing scenarios and other
types of modelling social interactions.


