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Foreword

Great things often begin in humble ways.

My 25-year-long collaboration with Jonathan and Peter Borwein began in 1985, when I read their
paper on fast methods for computing elementary constants and functions, which article is included
as the first chapter of this volume. After reading this engaging and intriguing article, I was inspired
to try to implement some of these algorithms on the computer, using a high-precision arithmetic
software package that I wrote specifically for this task. Indeed, the Borwein algorithms worked as
advertised, yielding many thousands of correct digits in just a few seconds on a state-of-the-art
computer at the time. I was particularly intrigued by the Borwein algorithm for pi. I then contacted
the Borweins to tell of my interest in their work, and, as they say, the rest is history.

As can be readily seen in the articles here, the Borweins are inarguably the world’s leading
exponents of utilizing state-of-the-art computer technology to discover and prove new and fundamental
mathematical results. They employ raw numerical computation, symbolic processing and advanced
visualization facilities in their work. The Borweins have spread this gospel in countless fascinating
and cogent lectures, as well as in numerous books and over 200 published papers. As a direct result
of the Borweins’ influence, hundreds of researchers worldwide are now engaged in “experimental”
and computationally-assisted mathematics, and the pace of mathematical discovery has measurably
quickened.

In reading through these papers, I am struck that the Borweins have also made an important
contribution to a more fundamental problem in the field: How can researchers, laboring at the
state of the art in the very difficult and demanding arena of modern mathematics, communicate
the excitement of their work to young minds who potentially will form the next generation of
mathematicians?

The Borweins have found the answer: (a) Bring computers into all aspects of the mathematical
research arena, thereby attracting thousands of young, computer-savvy students into the fold,
and letting them experience first-hand the excitement of discovering heretofore unknown facts of
mathematics; and (b) Highlight the numerous intriguing connections of this work to other fields of
mathematics, computer science and modern scientific philosophy.

These articles exemplify the exploratory spirit of truly pioneering work. They are destined to be
read over and over again for decades to come. What’s more, in most cases these papers can be read

and comprehended even by persons of modest mathematical training. Enjoy!

David H. Bailey
Lawrence Berkeley National Laboratory
September 2010






Preface

This is a representative collection of most of our writings about the nature of mathematics over
the past twenty-five years. Many are jointly authored, others are by one or the other of us with
various coauthors—often with our longtime collaborator and friend David Bailey who has generously
written a foreword to the volume. We have included more technical papers only when they form the
basis for discussion in the more general papers collected.

For each article in this selection, we have written a few paragraphs of introduction situating the
given paper in the collection and where appropriate bringing it up to date. For the most part, we
let the articles speak for themselves and suggest the reader consult the index which we have added

to improve navigation between selections.

Jonathan Borwein
Peter Borwein
September 2010
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1. The arithmetic-geometric mean and fast computation

of elementary functions

Discussion

This article was written just after we had first digested the requisite classical analysis and number
theory to understand why fast computation requires elliptic integrals. It owes much to the great
19th century analysts—especially Gauss, Legendre, Jacobi and Cayley. We found their accounting
of the theory to be both more accessible and more computationally helpful than later, more abstract
writings on the subject. The article has an equal debt to still active researchers, such as Richard
Brent, Gene Salamin and Bill Gosper.

By great good luck, the first elliptic integral computation of 7 was announced just as the article
was being completed. Thus, the theory and the practice were successfully married.

This is further detailed in the next two articles.

The objects described herein are revisited throughout the collection, thereby substantiating
Freeman Dyson’s elegant observation in his review of Nature’s Numbers by Ian Stewart (Basic Books
1995). Dyson writes:

I see some parallels between the shifts of fashion in mathematics and in music. In music,
the popular new styles of jazz and rock became fashionable a little earlier than the new
mathematical styles of chaos and complexity theory. Jazz and rock were long despised by
classical musicians, but have emerged as art-forms more accessible than classical music
to a wide section of the public. Jazz and rock are no longer to be despised as passing
fads. Neither are chaos and complexity theory. But still, classical music and classical
mathematics are not dead. Mozart lives, and so does Euler. When the wheel of fashion

turns once more, quantum mechanics and hard analysis will once again be in style.!

Source

J.M. Borwein and P.B. Borwein, “The arithmetic-geometric mean and fast computation of elementary
functions,” SIAM Review, 26 (1984), 351-366.

L American Mathematical Monthly, August-September 1996, 612.
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Chapter 1
SIAM REVIEW © 1984 Society for Industrial and Applied Mathematics
Vol. 26, No. 3, July 1984 002

THE ARITHMETIC-GEOMETRIC MEAN AND FAST COMPUTATION OF
ELEMENTARY FUNCTIONS*

J. M. BORWEINYt AND P. B. BORWEINY

Abstract. We produce a self contained account of the relationship between the Gaussian arithmetic-
geometric mean iteration and the fast computation of elementary functions. A particularly pleasant algorithm
for = is one of the by-products.

Introduction. It is possible to calculate 2" decimal places of = using only # iterations
of a (fairly) simple three-term recursion. This remarkable fact seems to have first been
explicitly noted by Salamin in 1976 [16]. Recently the Japanese workers Y. Tamura and
Y. Kanada have used Salamin’s algorithm to calculate = to 2** decimal places in 6.8
hours. Subsequently 2% places were obtained ([18] and private communication). Even
more remarkable is the fact that all the elementary functions can be calculated with
similar dispatch. This was proved (and implemented) by Brent in 1976 [5]. These
extraordinarily rapid algorithms rely on a body of material from the theory of elliptic
functions, all of which was known to Gauss. It is an interesting synthesis of classical
mathematics with contemporary computational concerns that has provided us with these
methods. Brent’s analysis requires a number of results on elliptic functions that are no
longer particularly familiar to most mathematicians. Newman in 1981 stripped this
analysis to its bare essentials and derived related, though somewhat less computationally
satisfactory, methods for computing = and log. This concise and attractive treatment may
be found in [15].

Our intention is to provide a mathematically intermediate perspective and some bits
of the history. We shall derive implementable (essentially) quadratic methods for
computing = and all the elementary functions. The treatment is entirely self-contained
and uses only a minimum of elliptic function theory.

1. 3.141592653589793238462643383279502884197. The calculation of « to great
accuracy has had a mathematical import that goes far beyond the dictates of utility. It
requires a mere 39 digits of 7 in order to compute the circumference of a circle of radius
2 x 10% meters (an upper bound on the distance travelled by a particle moving at the
speed of light for 20 billion years, and as such an upper bound on the radius of the
universe) with an error of less than 107'2 meters (a lower bound for the radius of a
hydrogen atom).

Such a calculation was in principle possible for Archimedes, who was the first person
to develop methods capable of generating arbitrarily many digits of =. He considered
circumscribed and inscribed regular n-gons in a circle of radius 1. Using n = 96 he
obtained

6336 14688

31405 - - - = 35 <" < 26735

= 3.1428.

If 1/ A4, denotes the area of an inscribed regular 2"-gon and 1/B, denotes the area of a
circumscribed regular 2"-gon about a circle of radius 1 then

Ap + B,
(1.1) A1 = VA,B,, B, = _+l—2———

*Received by the editors February 8, 1983, and in revised form November 21, 1983. This research was
partially sponsored by the Natural Sciences and Engineering Research Council of Canada.
tDepartment of Mathematics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H8.
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This two-term iteration, starting with A,:= 4 and B, := 4, can obviously be used to
calculate 7. (See Edwards [9, p. 34].) A3, for example, is 3.14159266 which is correct
through the first seven digits. In the early sixteen hundreds Ludolph von Ceulen actually
computed « to 35 places by Archimedes’ method [2].

Observe that A, := 27" cosec (/2") and B, := 27""' cotan (6/2"*") satisfy the above
recursion. So do A, := 27" cosech (6/2") and B, := 27"~ cotanh (8/2"*"). Since in both
cases the common limit is 1/6, the iteration can be used to calculate the standard inverse
trigonometric and inverse hyperbolic functions. (This is often called Borchardt’s algo-
rithm [6], [19].)

If we observe that

An+l -

1
Bn+l 2(\/;1-;/\/—3:_‘_ 1) (An Bn)
we see that the error is decreased by a factor of approximately four with each iteration.
This is linear convergence. To compute n decimal digits of =, or for that matter arcsin,
arcsinh or log, requires O(n) iterations.
We can, of course, compute = from arctan or arcsin using the Taylor expansion of
these functions. John Machin (1680-1752) observed that

1 1
=16 - - tan | —
™ arctan (5) 4 arctan (239)
and used this to compute 7 to 100 places. William Shanks in 1873 used the same formula

for his celebrated 707 digit calculation. A similar formula was employed by Leonhard
Euler (1707-1783):

1 3
« = 20 arctan (7) + 8 arctan (%)

This, with the expansion

2 24
arctan(x)=£—(1 +§y+§y2+ .. )

where y = x*/(1 + x?), was used by Euler to compute 7 to 20 decimal places in an hour.
(See Beckman [2] or Wrench [21] for a comprehensive discussion of these matters.) In
1844 Johann Dase (1824—-1861) computed = correctly to 200 places using the formula

T arctan (l) + arctan (l + arctan (1)
4 2 5 8/
Dase, an “idiot savant” and a calculating prodigy, performed this “stupendous task” in

“just under two months.” (The quotes are from Beckman, pp. 105 and 107.)
A similar identity:

57 239

was employed, in 1962, to compute 100,000 decimals of =. A more reliable “idiot savant”,
the IBM 7090, performed this calculation in a mere 8 hrs. 43 mins. [17].

There are, of course, many series, products and continued fractions for 7. However,
all the usual ones, even cleverly evaluated, require O(+Vr) operations (+, x, <+, v ) to
arrive at n digits of w. Most of them, in fact, employ O(n) operations for n digits, which is

1 1 1
7 = 24 arctan (§) + 8 arctan (—) + 4 arctan (——)
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essentially linear convergence. Here we consider only full precision operations. For a time
complexity analysis and a discussion of time efficient algorithms based on binary splitting
see [4].

The algorithm employed in [17] requires about 1,000,000 operations to compute
1,000,000 digits of w. We shall present an algorithm that reduces this to about 200
operations. The algorithm, like Salamin’s and Newman’s requires some very elementary
elliptic function theory. The circle of ideas surrounding the algorithm for = also provides
algorithms for all the elementary functions.

2. Extraordinarily rapid algorithms for algebraic functions. We need the following
two measures of speed of convergence of a sequence (a,) with limit L. If there is a constant
C, so that

lan+1 - LI = Cllan - le

for all n, then we say that (a,) converges to L quadratically, or with second order. If there
is a constant C, > 1 so that, for all n,

la, — L| = C;”

then we say that (a,) converges to L exponentially. These two notions are closely related;
quadratic convergence implies exponential convergence and both types of convergence
guarantee that a, and L will “agree” through the first O(2") digits (provided we adopt the
convention that .9999. . .9 and 1.000. . .0 agree through the required number of digits).

Newton’s method is perhaps the best known second order iterative method. Newton’s
method computes a zero of f(x) — y by

f(xn) -y
S (x)
and hence, can be used to compute f ~' quadratically from f, at least locally. For our

purposes, finding suitable starting values poses little difficulty. Division can be performed
by inverting (1/x) — y. The following iteration computes 1/y:

2.1 Xppr = Xp —

(2.2) Xap1 = 2%y — X2
Square root extraction (vy) is performed by

1 y
(2.3) x,,+1 = 5 (x,, + x_n).

This ancient iteration can be traced back at least as far as the Babylonians. From (2.2)
and (2.3) we can deduce that division and square root extraction are of the same order of
complexity as multiplication (see [S]). Let M(n) be the “amount of work™ required to
multiply two n digit numbers together and let D{(n) and S(n) be, respectively, the
“amount of work” required to invert an n digit number and compute its square root, to n
digit accuracy. Then

D(n) = O(M(n))
and
S(n) = O(M(n)).

We are not bothering to specify precisely what we mean by work. We could for example
count the number of single digit multiplications. The basic point is as follows. It requires
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O(log n) iterations of Newton’s method (2.2) to compute 1/y. However, at the ith
iteration, one need only work with accuracy O(2). In this sense, Newton’s method is
self-correcting. Thus,

logn

D(n) = 0(; M(zf)) _ O(M(n))

provided M (2°) = 2M (2°-"). The constants concealed beneath the order symbol are not
even particularly large. Finally, using a fast multiplication, see [12], it is possible to
multiply two n digits numbers in O(n log (n) log log (n)) single digit operations.

What we have indicated is that, for the purposes of asymptotics, it is reasonable to
consider multiplication, division and root extraction as equally complicated and to
consider each of these as only marginally more complicated than addition. Thus, when we
refer to operations we shall be allowing addition, multiplication, division and root
extraction.

Algebraic functions, that is roots of polynomials whose coefficients are rational
functions, can be approximated (calculated) exponentially using Newton’s method. By
this we mean that the iterations converge exponentially and that each iterate is itself
suitably calculable. (See [13].)

The difficult trick is to find a method to exponentially approximate just one
elementary transcendental function. It will then transpire that the other elementary
functions can also be exponentially calculated from it by composition, inversion and so
on.

For this Newton’s method cannot suffice since, if fis algebraic in (2.1) then the limit
is also algebraic.

The only familiar iterative procedure that converges quadratically to a transcenden-
tal function is the arithmetic-geometric mean iteration of Gauss and Legendre for
computing complete elliptic integrals. This is where we now turn. We must emphasize
that it is difficult to exaggerate Gauss’ mastery of this material and most of the next
section is to be found in one form or another in [10].

3. The real AGM iteration. Let two positive numbers a and b with a > b be given.
Let a, := a, by := b and define

(31) an+l = (an + bn)’ bn+1 = Vanbn

N

for nin N.

One observes, as a consequence of the arithmetic-geometric mean inequality, that
a,za,,,zb,,zb,forall n. It follows easily that (a,) and (b,) converge to a common
limit L which we sometimes denote by AG(a, b). Let us now set

(3.2) c,:=+at — b2 forneN.
It is apparent that
1 c3 ch
3.3 w1 = =(a, — b,) = =—,
(3.3) Gt =g @ = b) ===

which shows that (c,) converges quadratically to zero. We also observe that
(34) A, = Ay,y + Cpyy and bn =dpy1 — Cpyi

which allows us to define a,, b, and ¢, for negative n. These negative terms can also be
generated by the conjugate scale in which one starts with aj := a, and bj:= ¢, and defines
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(a,) and (b)) by (3.1). A simple induction shows that for any integer n
3.5) a,=2"a_,, b,=2""c_,, c,=27"b_,.

Thus, backward iteration can be avoided simply by altering the starting values. For future
use we define the quadratic conjugate k' .= /1 — k? for any k between 0 and 1.

The limit of (a,) can be expressed in terms of a complete elliptic integral of the first
kind,

do
.6 = [ .
(3.6) I(a, b) ~/o‘ \/az cos’ @ + b?sin’ 0
In fact
1 r. dt
(37) I(d, b) =5[w \/(az + t2)(b2 + t2)

as the substitution ¢ := a tan 6 shows. Now the substitution of u := 4 (¢ — (ab/t)) and
some careful but straightforward work [15] show that

(3.8) I(a, b) - 1((“ er b), m).

It follows that I(a,, b,) is independent of n and that, on interchanging limit and integral,
I(am bO) = lim I(am bn) = I(L’ L)'

Since the last integral is a simple arctan (or directly from (3.6)) we see that
) ™
(3.9) I(ay, by) = 2 AG(ay, by).

Gauss, of course, had to derive rather than merely verify this remarkable formula. We
note in passing that AG(-, -) is positively homogeneous.

We are now ready to establish the underlying limit formula.

PROPOSITION 1.

(3.10) klir{)l log (%) —I(1, k)] =0.

Proof. Let
k' sin 6 d6
A(k) = w/2
) fo VK + (K')* cos®

x 1 —Kk'sind
Blk) = [ ([~ SN0 gy
(k) j; 1+ k'siné
Since 1 — (k' sin 0)? = cos? @ + (k sin 0)® = (k' cos 8)> + k?, we can check that
I(1, k) = Ak) + B(K).

Moreover, the substitution u := k' cos 6 allows one to evaluate

1+k’)

and

¢ du
(3.11) A(k):=f0 ﬁ-—-hg(
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Finally, a uniformity argument justifies

/2 cos 0 do
1+sinf
and (3.11) and (3.12) combine to show (3.10). O
It is possible to give various asymptotics in (3.10), by estimating the convergence rate
in (3.12).
PROPOSITION 2. For k € (0, 1]

(3.12) lim B(k) = B(0) = fo log 2,

(3.13) = 4KAU(1, k) = 4K*(8 + |log k).

log (%) —I(1,k)

Proof. Let
4
A(k) = log (%) — I(1, k).
As in Proposition 1, for k € (0, 1],

(3.14)

2 1+ k 2] [1 — Kk'sin@ 1 —siné
AKk)I=]lo (—)—lo( )l \/ _\/
[aW)]=|log|z) —log\——] | + fo 1+ ksng VN1+sing

We observe that, since 1 — k' =1 — /1 — k* < k%,

og () - tog ()| - s ()
E\x B\"x )| 7|\ 2

Also, by the mean value theorem, for each 8 thereis a v € [0, k], so that

0= \/1 —k’sin()_\/l — sin
B 1 + k'sind 1 + sin @

0|

(3.15) =1 -k =k

- 1——(1—k2)sin0_\/1—sin0
V1 + (1 =k»sind 1 + sin 6
1+ =y)sing 2ysing |,

= —v)sing (1 + 1 —7)sin6)]
2vk - 2k?
JI—(=¥)sin \1— (1 —K)sin6

A

This yields

fvr/z \/1 — k'sinf \/1 — sin 0
0 1+ k'sinf 1+ sind

which combines with (3.14) and (3.15) to show that

|ACK) | = (1 + 242)K I(1, k) = 4K (1, k).
We finish by observing that

do

do
=2 [ —== 2
F A TR

kI(1, k) éz_zr
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allows us to deduce that

4
I(l,k)é27rk+log(z). O
Similar considerations allow one to deduce that
(3.16) |A(k) — A(B) | = 27 |k — K]

for0 <k, h<1/+2.

The next proposition gives all the information necessary for computing the elemen-
tary functions from the AGM.

PROPOSITION 3. The AGM satisfies the following identity (for all initial values):

(4
(3.17) fim 2" " log( ”") I

e n n 2

Proof. One verifies that

™

> = lim a1 (ay, by) (by (3.9))

= lim a:ll(a,—’l’ b’—n) (by (3'8))

H—>oo

= lim a:lI(Znan’ 2ncn) (by 3°5))

Now the homogeneity properties of 7(-, -) show that

2—’1
1(2'a,, 2'c,) = = 1(1, ﬁ).

n an
Thus
E = llm 2_"&1(19 &)’
2 R—*>o0 a,, n
and the result follows from Proposition 1. O

From now on we fix a,:= ay:= 1 and consider the iteration as a function of b, := k
and ¢, := k'. Let P, and Q, be defined by

4a,

: ) 0,(k) =

n

a,

b

(3.18) P, (k) = (

a,

and let P(k) := lim,_.,, P,(k), Q(k) := lim, .., Q,(k). Similarly let a := a(k) := lim,_... a,

and @' := d'(k) := lim,._,, d,,
THEOREM 1. For 0 < k < 1 one has -

(@) P(k) = exp (wQ(k)),

(b) 05 P(k) — P(k) = —2 (“—i—“)

(3.19) 1- K\ a

la - a,| +ala — a)
(@)

Proof. (a) is an immediate rephrasing of Proposition 3, while (c) is straightforward.

© 10:k) — o) = %
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To see (b) we observe that

2I—n
(3.20) m“=Pw(2“)

because 4a,,; ¢,,; = ¢, asin (3.3). Since a,,, = a, we see that

2l—-n
O=sP,-P,,= ll — (ﬂ'.tl) ]Pn < (1 _ an+l)P0’

an n
(3.21)
P,— P, = (E'L:_a"_“) P,
a
since a, decreases to a. The result now follows from (3.21) on summation. O

Thus, the theorem shows that both P and Q can be computed exponentially since (a,)
can be so calculated. In the following sections we will use this theorem to give
implementable exponential algorithms for = and then for all the elementary functions.

We conclude this section by rephrasing (3.19a). By using (3.20) repeatedly we derive
that

(3.22) p-_18 H(“"“)“.

=1—k2 n=0 a,

Let us note that

Qi G+ b, 1 ( b,,)
—_ 1
a, 2a, 2\" T a)

and x, := b, /a, satisfies the one-term recursion used by Legendre [14]

2x,
(3.23) = Rk
Thus, also
16 T (1 + x-)zH (1 +x )2‘"
.24 P, (k) = = .
(3:24) vi) - 7 L1\ -

When k := 272 k = k' and one can explicitly deduce that P(27'/%) = ¢". When k = 27!/
(3.22) is also given in [16].

4. Some interrelationships. A centerpiece of this exposition is the formula (3.17) of
Proposition 3.

1 4a,\ « a,
(4.1) 1imylog( )=—1im—,,
n—w cn n—o n
coupled with the observation that both sides converge exponentially. To approximate log x
exponentially, for example, we first find a starting value for which

4(1 172"
( ") — X.

cn
This we can do to any required accuracy quadratically by Newton’s method. Then we
compute the right limit, also quadratically, by the AGM iteration. We can compute exp

analogously and since, as we will show, (4.1) holds for complex initial values we can also
get the trigonometric functions.
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There are details, of course, some of which we will discuss later. An obvious detail is
that we require « to desired accuracy. The next section will provide an exponentially
converging algorithm for = also based only on (4.1). The principle for it is very simple. If
we differentiate both sides of (4.1) we lose the logarithm but keep the «!

Formula (3.10), of Proposition 1, is of some interest. It appears in King [11, pp. 13,
38] often without the “4” in the log term. For our purposes the “4” is crucial since without
it (4.1) will only converge linearly (like (log 4)/2"). King’s 1924 monograph contains a
wealth of material on the various iterative methods related to computing elliptic integrals.
He comments [11, p. 14}:

“The limit [(4.1) without the “4”] does not appear to be generally known, although
an equivalent formula is given by Legendre (Fonctions éliptiques, t. 1, pp. 94-101).”

King adds that while Gauss did not explicitly state (4.1) he derived a closely related
series expansion and that none of this “appears to have been noticed by Jacobi or by
subsequent writers on elliptic functions.” This series [10, p. 377] gives (4.1) almost
directly.

Proposition 1 may be found in Bowman [3]. Of course, almost all the basic work is to
be found in the works of Abel, Gauss and Legendre [1], [10] and [14]. (See also [7].) As
was noted by both Brent and Salamin, Proposition 2 can be used to estimate log given .
We know from (3.13) that, for 0 <k = 1072,

log (ﬂ) —I(1,k) l < 10k*|log k|.

k
By subtraction, for0 <x < 1,and n = 3,
4.2) |log (x) — [I(1,107") — I(1, 10™"x)]| < n 1072-D

and we can compute log exponentially from the AGM approximations of the elliptic
integrals in the above formula. This is in the spirit of Newman’s presentation [15].
Formula (4.2) works rather well numerically but has the minor computational drawback
that it requires computing the AGM for small initial values. This leads to some linear
steps (roughly log (7)) before quadratic convergence takes over.

We can use (3.16) or (4.2) to show directly that = is exponentially computable. With
k:=10"and h:= 1072 4 107" (3.16) yields with (3.9) that, forn = 1,

T 1 1
107" 1) — — — =< 1-—2n‘
log (107" + 1) — 5|\ 46110 ~ 4G, 107 ¢ 10-2")] =10
Sincellog (x + 1)/x — 1| = x/2for 0 < x < 1, we derive that
2 10" 10"
. = - - =10,
(4.3) ‘ ’AG(I, 10" AG(1, 10" + 10-2")] ‘

Newman [15] gives (4.3) with a rougher order estimate and without proof. This
analytically beautiful formula has the serious computational drawback that obtaining n
digit accuracy for = demands that certain of the operations be done to twice that
precision.

Both Brent’s and Salamin’s approaches require Legendre’s relation: for 0 < k < 1

(4.4) I(LKYJA, ) + I(LEYJ(L k) — I, K)I(LL,K) = g

where J (a, b) is the complete elliptic integral of the second kind defined by

J(a, b) = j(;ﬁz ya’ cos® 0 + b* sin” 0 df.
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The elliptic integrals of the first and second kind are related by

4.5) J(ag, by) = (a?, - %Z 2"cﬁ) I(ay, by)
n=0

where, as before, ¢ = a2 — b?and a, and b, are computed from the AGM iteration.

Legendre’s proof of (4.4) can be found in [3] and [8]. His elegant elementary
argument is to differentiate (4.4) and show the derivative to be constant. He then
evaluates the constant, essentially by Proposition 1. Strangely enough, Legendre had
some difficulty in evaluating the constant since he had problems in showing that k* log (k)
tends to zero with k [8, p. 150].

Relation (4.5) uses properties of the ascending Landen transformation and is derived
by Kingin [11].

From (4.4) and (4.5), noting that if k equals 27'/2 then so does K/, it is immediate
that

L _[2460, 27

o oo n+1,2 :
1 - n=1 2 Cn

(4.6)

This concise and surprising exponentially converging formula for = is used by both
Salamin and Brent. As Salamin points out, by 1819 Gauss was in possession of the AGM
iteration for computing elliptic integrals of the first kind and also formula (4.5) for
computing elliptic integrals of second kind. Legendre had derived his relation (4.4) by
1811, and as Watson puts it [20, p. 14] “in the hands of Legendre, the transformation
[(3.23)] became a most powerful method for computing elliptic integrals.” (See also [10],
[14] and the footnotes of [11].) King [11, p. 39] derives (4.6) which he attributes, in an
equivalent form, to Gauss. It is perhaps surprising that (4.6) was not suggested as a
practical means of calculating # to great accuracy until recently.

It is worth emphasizing the extraordinary similarity between (1.1) which leads to
linearly convergent algorithms for all the elementary functions, and (3.1) which leads to
exponentially convergent algorithms.

Brent’s algorithms for the elementary functions require a discussion of incomplete
elliptic integrals and the Landen transform, matters we will not pursue except to mention
that some of the contributions of Landen and Fagnano are entertainingly laid out in an
article by G.N. Watson entitled “The Marquis [Fagnano] and the Land Agent [Land-
en]” [20]. We note that Proposition 1 is also central to Brent’s development though he
derives it somewhat tangentially. He also derives Theorem 1(a) in different variables via
the Landen transform.

5. An algorithm for x. We now present the details of our exponentially converging
algorithm for calculating the digits of w. Twenty iterations will provide over two million
digits. Each iteration requires about ten operations. The algorithm is very stable with all

the operations being performed on numbers between !5 and 7. The eighth iteration, for
example, gives = correctly to 694 digits.
THEOREM 2. Consider the three-term iteration with initial values

Ay = \/Ea :30:= Oa 7l'0?=2+ \/5
given by

(@ + o),

=

() ayy =
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B,.+1)
B, + a,)’

1 + an+l)
1 + :3n+1 .

Then =, converges exponentially to w and

(i) By = a'ﬂ(

(i) Tprn = oo (

1
|7, — 7| = — 107"
Proof. Consider the formula
1 a Ta
. —logl4—=) - ==
(5.1 2 og( c,,) 24,

which, as we will see later, converges exponentially at a uniform rate to zero in some

(complex) neighbourhood of 1/ V2. (We are considering each of a,, b,, c,, d,, b,, c, as

being functions of a complex initial value k, i.e. by = k, by= V1 — k%, ay = ay=1.)
Differentiating (5.1) with respect to & yields

1 (a, ¢ ra,fa, a,
5.2 ey myh e
(>2) 2"( cn) 2 ai,(an a;)
which also converges uniformly exponentially to zero in some neighbourhood of 1/ V2.
(This general principle for exponential convergence of differentiated sequences of

analytic functions is a trivial consequence of the Cauchy integral formula.) We can
compute a,, b, and ¢, from the recursions

a, +5
an+1 ’
(5.3) ( \[ + b, \/‘b‘:)
1 .
cn+1 : 5 (an - bn)9

where a4 := 0, Do =1,ay:=1and b, := k.

We note that a, and b, map {z|Re(z) > 0} into itself and that @, and b, (for
sufficiently large n) do likewise.

It is convenient to set

(5.4) a, =

Q~|=Q

and ,:= -

B)
o
B)

with

ao::% and (=0

We can derive the following formulae in a completely elementary fashion from the basic
relationships for a,, b, and ¢, and (5.3):

(55 dwr — by = (J_ ‘F)( 5—)
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(5 6) 1 — ayi1 én+1 — 2(0(,, "" .Bn)

Qpi1 Cnyt (Ol,, - 1)(6)1 + 1) ’

1
(5'7) Q1 = E (Ol,l,/2 + 01;1/2),

B, + 1
(5.8) Bur1 = ) (m ,
1
(5'9) Ayl — 1= 20172 (0‘:11/2 - 1)2,

a/> (1 — a,)(Bs — o)
2 an(ﬂn + all) ’
Oyt — ﬁn+1 - (1 + a},/z)z . (an - 611)
L 1 (6n + an) (an - l) '
From (5.7) and (5.9) we deduce that o, — 1 uniformly with second order in compact

subsets of the open right half-plane. Likewise, we see from (5.8) and (5.10) that 8, — 1
uniformly and exponentially. Finally, we set

(510) Xpyy — .3n+1 =

(5.11)

1 &, — Bn
5.12 = .
(5.12) vom g (22 2)
We see from (5.11) that
(1 + /)
(5'13) ’Y'H—l = 2(3,‘ + an) 7n
and also from (5.6) that
Vn 1 an+1 én+1
5.14 = 1 — - .
( ) 1 + 6n 2n+1 ( an+1 cn+l)

Without any knowledge of the convergence of (5.1) one can, from the preceding
relationships, easily and directly deduce the exponential convergence of (5.2), in
{zl|z — 5] = ¢ < 1h}). We need the information from (5.1) only to see that (5.2) converges
to zero.

The algorithm for 7 comes from multiplying (5.2) by a,/a, and starting the iteration

at k := 272, For this value of k d, = a,, (@,) = —a,and
_1_(1 _ a"“é'iil)_,,r
2n+1 dn+1 Cni1
which by (5.14) shows that
S (S
T1+B,

Some manipulation of (5.7), (5.8) and (5.13) now produces (iii). The starting values for
a,, 8, and v, are computed from (5.4). Other values of k will also lead to similar, but
slightly more complicated, iterations for .

To analyse the error one considers

Yoer _ Yn (1 + o*)? _ 1
1 + 6n+1 1 + Bn B 2(6n + an)(l + 6n+1) (1 + ﬂn) n
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and notes that, from (5.9) and (5.10), for n = 4,

1
|O(,,— lléw and |ﬂ,,~ llél—OT;E
(One computes that the above holds for n = 4.) Hence,
Yn+1 _ Yn < 1 | I
T+ B 148, 1070
and
Vn .
-7 = —. O
‘1 + B, ”' 10°

_72n+l

In fact one can show that the error is of order 2"

If we choose integers in [§,67'], 0 <6 <!, and perform n operations
(+, —, X, +, ¥") then the result is always less than or equal to 6%, Thus, if v > 6, it is not
possible, using the above operations and integral starting values in [§, '], for every n to
compute 7 with an accuracy of O(y~%) in n steps. In particular, convergence very much
faster than that provided by Theorem 2 is not possible.

The analysis in this section allows one to derive the Gauss-Salamin formula (4.6)
without using Legendre’s formula or second integrals. This can be done by combining our
results with problems 15 and 18 in [11]. Indeed, the results of this section make
quantitative sense of problems 16 and 17 in [11]. King also observes that Legendre’s
formula is actually equivalent to the Gauss—Salamin formula and that each may be
derived from the other using only properties of the AGM which we have developed and
equation (4.5).

This algorithm, like the algorithms of §4, is not self correcting in the way that
Newton’s method is. Thus, while a certain amount of time may be saved by observing that
some of the calculations need not be performed to full precision it seems intrinsic (though
not proven) that O(log n) full precision operations must be executed to calculate = to n
digits. In fact, showing that = is intrinsically more complicated from a time complexity
point of view than multiplication would prove that = is transcendental [5].

6. The complex AGM iteration. The AGM iteration

1
Apyy = 5 (an + bn)9 bn+1 = Vanbn

is well defined as a complex iteration starting with aq, := 1, b, := z. Provided that z does not
lie on the negative real axis, the iteration will converge (to what then must be an analytic
limit). One can see this geometrically. For initial z in the right half-plane the limit is given
by (3.9). It is also easy to see geometrically that a, and b, are always nonzero.

The iteration for x, := b,/a, given in the form (3.23) as x,,,; := 2vVX,/x,, satisfies

(1 — ¥x,)?

(6.1) 1 = 1) = Tx
This also converges in the cut plane C — (—o, 0]. In fact, the convergence is uniformly
exponential on compact subsets (see Fig. 1). With each iteration the angle 6, between x,
and 1 is at least halved and the real parts converge uniformly to 1.

It is now apparent from (6.1) and (3.24) that

6.2) P(k) = (4can)zw _ (1 + xn)zn

n 1~‘xn
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Fi1G. 1.

and also,

a
k) = —

converge exponentially to analytic limits on compact subsets of the complex plane that

avoid

D= {ZEC|Z¢(——00,0] U [l,oo)}

Again we denote the limits by P and Q. By standard analytic reasoning it must be that
(3.19a) still holds for k in D.

Thus one can compute the complex exponential—and so also cos and sin—
exponentially using (3.19). More precisely, one uses Newton’s method to approximately
solve Q(k) = z for k and then computes P,(k). The outcome is €*. One can still perform the
root extractions using Newton’s method. Some care must be taken to extract the correct
root and to determine an appropriate starting value for the Newton inversion. For
example k := 0.02876158 yields Q(k) = 1 and P,(k) = e to 8 significant places. If one now
uses k as an initial estimate for the Newton inversions one can compute e'** for| 0| = «/8.
Since, as we have observed, e is also exponentially computable we have produced a
sufficient range of values to painlessly compute cos § + i sin § with no recourse to any
auxiliary computations (other than = and e, which can be computed once and stored). By
contrast Brent’s trigonometric algorithm needs to compute a different logarithm each
time.

The most stable way to compute P, is to use the fact that one may update ¢, by

e

6. = .
( 3) cn+1 4an+1

One then computes a,, b, and c, to desired accuracy and returns

(4a,,)1/2" (2(a,, + b,,))‘/z"
— or |—) .

Cn Cn

This provides a feasible computation of P,, and so of exp or log.
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In an entirely analogous fashion, formula (4.2) for log is valid in the cut complex
plane. The given error estimate fails but the convergence is still exponential. Thus (4.2)
may also be used to compute all the elementary functions.

7. Concluding remarks and numerical data. We have presented a development of the
AGM and its uses for rapidly computing elementary functions which is, we hope, almost
entirely self-contained and which produces workable algorithms. The algorithm for = is
particularly robust and attractive. We hope that we have given something of the flavour of
this beautiful collection of ideas, with its surprising mixture of the classical and the
modern. An open question remains. Can one entirely divorce the central discussion from
elliptic integral concerns? That is, can one derive exponential iterations for the elemen-
tary functions without recourse to some nonelementary transcendental functions? It
would be particularly nice to produce a direct iteration for e of the sort we have for «
which does not rely either on Newton inversions or on binary splitting.

The algorithm for # has been run in an arbitrary precision integer arithmetic. (The
algorithm can be easily scaled to be integral.) The errors were as follows:

{terate Digits correct Iterate Digits correct
1 3 6 170
2 8 7 345
3 19 8 694
4 41 9 1392
5 83 10 2788

Formula (4.2) was then used to compute 2 log (2) and log (4), using 7 estimated as
above and the same integer package. Up to 500 digits were computed this way. It is worth
noting that the error estimate in (4.2) is of the right order.

The iteration implicit in (3.22) was used to compute e” in a double precision Fortran.

Beginning with k := 2-'/2 produced the following data:
g g p g
Iterate P, —¢" a,/b, — 1
1 1.6 x 107! 1.5 x 1072
2 2.8 x 107° 2.8 x10°°
3 1.7 x 1072 9.7 x 10~"
4 < 107% 1.2 x 1072

Identical results were obtained from (6.3). In this case y, := 4a,/c, was computed by the
two term recursion which uses x,, given by (3.23), and

16 1 + x,\?
(7.1) y3:=_1_——l?’ Vi1 =( > ) ya.

One observes from (7.1) that the calculation of y, is very stable.
We conclude by observing that the high precision root extraction required in the
AGM [18], was actually calculated by inverting y = 1/x%. This leads to the iteration

3x, — x)y

(72) Xpi1 = )

for computing y ~'/%. One now multiplies by y to recapture vy. This was preferred because
it avoided division.
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2. On the complexity of familiar functions and numbers

Discussion

One of the startling observations of the latter third of the 20th century is that many, perhaps
most, mathematical objects are easy to compute. In fact, these objects can be computed far more
easily than one might have expected or one might have guessed in pre-computer days. A related
observation is that the usual computational method is rarely the best, and the best known method
is rarely ‘natural’.

This is both of interest mathematically and practically. The mathematical technology that allows
us to multiply large numbers (say 1 billion digit examples) and the mathematical technology that
allows sophisticated medical scanners to process images in real time are fundamentally the same.
Fast Fourier Transforms and their relatives are now vital in many computational contexts but they
were a curiosity when observed by people like James Cooley and John Tukey in the 1960s.

The questions that are raised in this paper are fundamental. They concern the efficient com-
putation of familiar functions and our knowledge has not changed much since we first posed these
questions. As Larry Nazareth wrote:

“A real number complexity model appropriate for this context [continuous optimization]| is
given in the recent landmark work of Blum, Cucker, Shub, and Smale.! In discussing their
motivation for seeking a suitable theoretical foundation for modern scientific computing,
where most of the algorithms are ‘real number algorithms’ the authors of this work quote
the following illuminating remarks of John von Neumann, made in 1948:
“There exists today a very elaborate system of formal logic, and specifically, of logic
applied to mathematics. This is a discipline with many good sides but also serious
weaknesses. . . Everybody who has worked in formal logic will confirm that it is one of
the technically most refractory parts of mathematics. The reason for this is that it
deals with rigid, all-or-none concepts, and has very little contact with the continuous
concept of the real or the complex number, that is with mathematical analysis. Yet
analysis is the technically most successful and best-elaborated part of mathematics.
Thus formal logic, by the nature of its approach, is cut off from the best cultivated

portions of mathematics, and forced onto the most difficult mathematical terrain,

into combinatorics.

The theory of automata, of the digital, all-or-none type as discussed up to now, is
certainly a chapter in formal logic. It would, therefore, seem that it will have to share
this unattractive property of formal logic. It will have to be, from the mathematical

point of view, combinatorial rather than analytical.”

Source

J.M. Borwein and P.B. Borwein, “On the complexity of familiar functions and numbers,” STAM

Review, 30 (1988), 589-601.

L. Blum, P. Cucker, M. Shub and S. Smale, Complezity and Real Computation, Springer-Verlag, New York, 2008
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ON THE COMPLEXITY OF FAMILIAR FUNCTIONS AND NUMBERS*

J. M. BORWEIN{ AND P. B. BORWEIN?

Abstract. This paper examines low-complexity approximations to familiar functions and numbers.
The intent is to suggest that it is possible to base a taxonomy of such functions and numbers on their
computational complexity. A central theme is that traditional methods of approximation are often very far
from optimal, while good or optimal methods are often very far from obvious. For most functions, provably
optimal methods are not known; however the gap between what is known and what is possible is often
small. A considerable number of open problems are posed and a number of related examples are presented.

Key words. elementary functions, pi, low-complexity approximation, reduced-complexity approxi-
mation, rational approximation, algebraic approximation, computation of digits, open problems

AMS(MOS) subject classifications. 68C25, 41A30, 10A30

1. Introduction. We examine various methods for evaluating familiar functions
and numbers to high precision. Primarily, we are interested in the asymptotic behavior
of these methods. The kinds of questions we pose are:

(1) How much work (by various types of computational or approximation
measures) is required to evaluate » digits of a given function or number?

(2) How do analytic properties of a function relate to the efficacy with which it
can be approximated?

(3) To what extent are analytically simple numbers or functions also easy to
compute?

(4) To what extent is it easy to compute analytically simple functions?

Even partial answers to these questions are likely to be very difficult. Some,
perhaps easier, specializations of the above are:

(5) Why is the function vx easier to compute than exp? Why is it only marginally
easier?

(6) Why is the Taylor series often the wrong way to compute familiar functions?

(7) Why is the number v2 easier to compute than e or #? Why is it only
marginally easier?

(8) Why is the number .1234567891011. . - computationally easier than = or ¢?

(9) Why is computing just the nth digit of exp (x) really no easier than computing
all the first n digits?

(10) Why is computing just the nth digit of = really no easier than computing
all the first n digits?

Answers to (7) and (10) are almost certainly far beyond the scope of current
number-theoretic techniques. Partial answers to some of the remaining questions are
available.

The traditional way to compute elementary functions, such as exp or log, is to
use a partial sum of the Taylor series or a related polynomial or rational approxima-
tion. These are analytically tractable approximations, and over the class of such

* Received by the editors February 2, 1987; accepted for publication (in revised form) September 11,
1987. The second author’s research was supported in part by the Natural Sciences and Engineering Research
Council of Canada.

1 Department of Mathematics, Statistics, and Computing Science, Dalhousie University, Halifax,
Nova Scotia, Canada B3H 3J5.
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approximations are often optimal or near optimal. For example, the nth partial sums
to exp are asymptotically the best polynomial approximations in the uniform norm
on the unit disc in the complex plane, in the sense that if s, is the nth partial sum of
the Taylor expansion and p, is any polynomial of degree #n, then for large n,
llexp (Z)_sn(z)||D<l1 +%] llexp (z) = pu(2)ll -

Here | || » denotes the supremum norm over the unit disc in the complex plane (see
[5]). If the measure of the amount of work is the degree of the approximation, as it
has been from a conventional point of view, then the story for exp might end here.

Questions (1)-(3) above have a very elegant answer for polynomial approximation
in the form of the Bernstein—-Jackson theorems [11]. These, for example, tell us that
a function is entire if and only if the error in best uniform polynomial approximation
of degree n on an interval tends to zero faster than geometrically, with a similar exact
differentiability classification of a function in terms of the rate of polynomial approx-
imation.

If we wish to compute n digits of log (x) using a Taylor polynomial then we
employ a polynomial of degree n and perform O(n) rational operations, while for
exp (x) we require O(n/log n) rational operations to compute # digits. The slight
improvement for exp reflects the faster convergence rate of the Taylor series. Padé
approximants, best rational approximants and best polynomial approximants all
behave in roughly the same fashion, except that the constants implicit in the order
symbol change [5], [8].

A startling observation is that there exist rational functions that give n digits of
log, exp, or any elementary function but require only O((log n)*) rational operations
to evaluate. These approximants are of degree O(n) but can be evaluated in O((log n)*)
infinite-precision arithmetic operations. The simplest example of such a function is
x" which can be evaluated in O(log n) arithmetic operations by repeated squaring.
While we cannot very explicitly construct these low-rational-complexity approxima-
tions to exp or log, it is clear that much of their simplicity results from squarings of
intermediate terms. The moral is that it is appropriate and useful to view x” as having
the complexity of a general polynomial of degree log », not of degree n.

The existence of such approximants is a consequence of the construction of low-
bit-complexity algorithms for log and = resting on the Arithmetic-Geometric Mean
(AGM) iteration of Gauss, Lagrange, and Legendre (see §2 for definitions). These
algorithms were discovered and examined by Beeler, Gosper, and Schroeppel [3],
Brent [9], and Salamin [21] in the 1970s. A complete exposition is available in [5].
These remarkable algorithms are both theoretically and practically faster than any of
the traditional methods for extended precision evaluation of elementary functions.
The exact point at which they start to outperform the usual series expansions depends
critically on implementation; the switchover comes somewhere in the 100- to 1000-
digit range.

The main purpose of this paper is to catalogue the known results on complexity
of familiar functions. We now appear to know enough structure to at least speculate
on the existence of a reasonable taxonomy of functions based on their computational
complexity. Here we have in mind something that relates computational properties
of functions to their analytic or algebraic properties, something vaguely resembling
the Bernstein—Jackson theorems in the polynomial case.

Likewise we would like to suggest the possibility of a taxonomy of numbers based
on their computational nature. Here, we are looking for something that resembles
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Mahler’s classification of transcendendentals in terms of their rate of algebraic
approximation [15].

It is not our intention to provide a taxonomy; this must await further progress in
the field. We do hope, however, to present enough examples and pose enough
interesting questions to persuade the reader that it is fruitful to pursue such an end.

2. Definitions. We consider four notions of complexity.

(1) Rational complexity. We say that a function f has rational complexity
O... (s(n)) on a set A if there exists a sequence of rational functions R, so that

(@) [Ru(x)—f(x)| <10 " for all x€ A4;

(b) asymptotically, R, can be evaluated using no more than O(s(n)) rational
operations (i.e., infinite-precision additions, subtractions, multiplications, and divi-
sions).

That exp has rational complexity O, (log® 7) means that there is a sequence of
rational functions, the nth being evaluable in roughly log® n arithmetic operations,
giving an #n-digit approximation to exp. The subscript on the order symbol is for
emphasis.

We will sometimes use Q and Q. as the lower bound order symbols. Whenever
we talk about “n-digit precision” or “computing 7 digits” we mean computing to an
accuracy of 107",

(2) Algebraic complexity. We say that a function f has algebraic complexity
O, (s(n)) on a set A if there exists a sequence of algebraic functions 4, so that

(@) [4,(x)—f(x)|< 10" forall x€ A4;

(b) asymptotically, all the 4, can be evaluated using no more than O(s(n))
algebraic operations (i.€., infinite-precision solutions of a fixed number of prespecified
algebraic equations).

This algebraic complexity measure allows us, for example, to use square root
extractions in the calculation of the approximants and to count them on an equal
footing with the rational operations. This is often appropriate because, from a bit-
complexity point of view, root extraction is equivalent to multiplication (see §4). Note
that we allow only a finite number of additional algebraic operations—so while we
might allow for computing square roots, cube roots, and seventeenth roots, we would
not allow an infinite number of different orders of roots.

Neither of the above measures takes account of the fact that low-precision
operations are easier than high-precision operations.

(3) Bit complexity. We say that a function f has bit complexity Oy (s(n)) on a
set A if there exists a sequence of approximations B, so that

(@) [Ba(x)—f(x)| <107 forall x€ A;

(b) B, is the output of an algorithm (given input # and x) that evaluates the B,
to n-digit accuracy using O(s(n)) single-digit operations (+, —, X).

This is the appropriate measure of time complexity on a serial machine. (See [1]
for more formal definitions.)

We wish to capture in the next definition the notion of how complex it is to
compute only the nth digit of a function.

(4) Digit complexity. We say that a function f'has digit complexity Og, (s(1)) on
a set A if there exists a sequence of approximations D,, so that

(a) D.(x) gives the nth digit of f(x). By this we mean that D, (x) differs from the
n through (n + k)th digits of f(x) by at most 107" for any preassigned fixed k;

(b) D, is the output of an algorithm (given input n and x) that evaluates the D,
to k digits using O(s(n)) single-digit operations.
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This definition of agreement of nth digits takes account of the fact that sequences
of repeated nines can occur. We really want to say that .19999. .. and .2000. . - agree
in the first digit. As it stands, the definition above exactly computes only the nth digit
to a probability dependent on k.

It is also assumed that accessing the kth through nth digit of input of x is an
Owi: (max (n — k, log k)) operation, so that accessing the first #n digits is O (1) while
accessing just the #nth bit is Oy (log n).

Addition is Oy (1), Oug (1), Ouir (n), and Ogi, (log 1). Here we take the set A4,
where we seek a uniform algorithm, to be the unit square in R?. The usual addition
algorithm gives the upper bounds shown above. Addition is one of the very few cases
where we know the exact result. Trivial uniqueness considerations show that addition
is Qvie (1), and hence all the above orders are exact.

It comes as a major surprise of this side of theoretical computer science that the
usual way of multiplying is far from optimal from a bit-complexity point of view.
The usual multiplication algorithm has bit complexity Qu;; (n%). However, it is possible
to construct a multiplication which is Oy (n log n log log n). This is based on the Fast
Fourier Transform and is due to Schonhage and Strassen (see [1], [16]). The extent
to which the log terms are necessary is not known. Given a standard model of
computation the best known lower bound is the trivial one, Qu;, (7). We will denote
the bit complexity of multiplication by M(n).

3. A table of results. The state of our current knowledge is contained in
Table 1. The orders of the various measures of complexities for computing » digits
(or in the final case the nth digit) compose the columns. In each case, except addition,
the only upper bound we know for the digit complexity is the same as the bit-
complexity bound. When we deal with functions, we assume that we are on a compact
region of the domain of the given function that is bounded away from any singularities
and that contains an interval. Numbers may be considered as functions whose domain
is a singleton.

For our purposes hypergeometric functions are functions of the form

f(x)=Ya,x" wherea,/a,-,=R(n)

and R is a fixed rational function (with coefficients in Q).

TABLE 1
Type of function Ora O Oyt Qaig
(1) Addition 1 1 n logn
(2) Multiplication 1 1 nlognlog log n n
(3) Algebraic (nonlinear) log n 1 M(n) n
(4) log (complete elliptic log?n log n (log n)M(n) n
integrals)
(5) exp log® n log? n (log n)M(n) n
(6) Elementary (nonlinear) logk n logk n (log n)M(n) n
(7) Hypergeometric (over Q) n'2 n'/2* (log? n)M(n) n
(8) Gamma and zeta n'/** n'/2* n'?*M(n) n
(9) Gamma and zeta on Q nlr ni* (log? n)M(n) logn
(10) pi, log (2), T'(3) log® n log n (log n)M(n) log n
(11) Euler’s constant n'2 n (log? m)M(n) log n

(Catalan’s constant)
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Elementary functions are functions built from rational functions (with rational
coeflicients) exp and log by any number of additions, multiplications, compositions,
and solutions of algebraic equations.

A number of techniques are employed in deriving Table 1. Our intention is to
indicate the most useful of these without going into too much detail. The next four
sections outline the derivations of most of the bounds.

4. Newton’s method. The calculation of algebraic functions, given that we have
algorithms for addition and multiplication, is entirely an exercise in applying Newton’s
method to solving equations of the form f(x)—y=0. Newton’s method for
1/x — y = 0 gives the iteration

(@) Xper = 2%, — yx7,
while for x*> — y = 0 the iteration is

(b) Xpe1 1= (X0 + V/X0)/2.

These two iterations converge quadratically. Thus O(log ») iterations give n digits
of 1/y and vy, respectively, and we have given an O, (log n) algorithm for square
root extraction.

The quadratic rate of convergence is only half the story. Because Newton’s
method is self~correcting, in the sense that a small perturbation in x, does not change
the limit, it is possible to start with a single-digit estimate and double the precision
with each iteration. Thus the bit complexity of root extraction is

OM)+MQ2)+MA)+ .- - +M(n))=O(M(n)).

This leads to O (M(n)) algorithms for root extraction and division, and a similar
analysis works for any algebraic function. This explains most of (1)-(3) in Table 1.
We also have the interesting result that the computation of digits of any algebraic
number is asymptotically no more complicated than multiplication. (These results on
the complexity of algebraic functions may be found in [5] and [9].)

The approximation in (a), x,, is in fact the (2" — 1)st Taylor polynomial to 1/y
at 1. In (b), x, is in fact the (27, 2" — 1)st Padé approximant to vy at 1. (See [5] or
[11] for further material on Padé approximants.) This is one of the very few cases
where Newton’s method generates familiar approximants.

Newton’s method is also useful for inverting functions. The inverse of f is
computed from the iteration

Xn+1 7= Xn— [ (0) = Y1/ (x0).

For any reasonable f this gives the same bit complexity estimate for /' as for f.
Inverting by Newton’s method multiplies the rational and algebraic complexities by
log n.

5. The AGM. The two-term iteration with starting values ao := x€(0, 1] and
o := 1 given by

Ans1:=(a,+b,)/2, bpr1:=+(a, - by)

converges quadratically to m(1, x), where

1 _gf”/z dt
m(l,x) wJdo J1—-(1-x?sin’t’

This is the arithmetic-geometric mean iteration of Gauss, Lagrange, and
Legendre. This latter complete elliptic integral is 2K’(x)/=x and is a nonelementary
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transcendental function with complexity
Oug (log(n)), O (log? (1)), Opi(log (n)M(n)).

It is also essentially the only identifiable nonelementary limit of a quadratically
converging fixed iteration and as such is of central importance [5].

One way to get a low complexity algorithm for log is to use the logarithmic
asymptote of K’ at 0. This gives the estimate

|2/7) log x—1/m(1,10™)+ 1/m(1,x10™")| <n102""Y, n>3, x€[.5,1].

Up to computing =, this allows for the derivation of algorithms with the
complexity of entry (4) in Table 1. Algorithms for = can be derived from the same
kinds of considerations (see [4], [5], [9], [18], [21]). Probably the fastest known
algorithm for = is the quartic example given below [5], [2].

ALGORITHM. Let op:=6 — 442 and Yo = V2 —1. Let
Yo :=[1=(L=y))"1/[1+ (1 =yn) "]
and
Qa1 1= (L Y1) = 22y, (L Yot + ).
Then 1/«, tends to 7 quartically and

1
0<a,——<16-4"exp (-2 - 4"x).
(4

The exponential function may be derived from log by inverting using Newton’s
method. This continues to work for appropriate complex values. The elementary
functions are now built from log and exp and the solution of algebraic equations in
these quantities. The constant k in the rational- and bit-complexity estimates depends
on the number of these equations that require solution. This explains entries (5), (6),
and (10) in Table 1, except for I'(3). (This and a few other values of T arise as algebraic
combinations of complete elliptic integrals and pi.) (Substantial additional material
on this section is to be found in [5].)

6. FFT methods. The Fast Fourier Transform (FFT) is a way of solving the
following two problems:

(a) Given the coeflicients of a polynomial of degree n — 1, evaluate the polyno-
mial at all # of the nth roots of unity.

(b) Given the values of a polynomial of degree n — 1 at the nth roots of unity,
compute the coefficients of the polynomial.

These two problems are actually equivalent (see [1], [5], [16]). The important
observation made by Cooley and Tukey in the 1960s is that both of these problems
are solvable with rational complexity O.. (nlog n), rather than the complexity of
Qrat (7%) that the usual methods require (i.e., Horner’s method). This is an enormously
useful algorithm.

We can multiply two polynomials of degree n with complexity O, (nlog n) by
using the FFT three times. First we compute the values of the two polynomials at
2n + 1 roots of unity. Then we work out the coefficients of the polynomial of degree
2n that agrees with the product at these roots.

Variations on this technique allow for the evaluation of a rational function of
degree n at n points in O, (n log® n) and Oy (n log® n M(k)), where k is the precision
to which we are working [5].
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Fast multiplications are constructed by observing that multiplication of numbers
is much like multiplication of polynomials whose coefficients are the digits, the
additional complication being the “carries.”

How does this give reduced-complexity algorithms? We illustrate with log (1 — x).

Let
n? xk
s2(x)i=Y =—
(x) 1\;1 X
and write
n—1 n J
s2(x)= Y x*p(kn) where =Yy —.
(x) kgo p(kn) p(y) ,-g‘u gy

Now evaluate p(0), p(n), - .-, pn(n — 1) using FFT methods, and then evaluate s,.
This gives an O, (n'*(log n)?) and Oy (n'*(log n)>*M(n)) algorithm for log. At any
fixed rational value r, we get an Oy ((log n)>M(n)) for log r. For this final estimate
we must take advantage of the reduced precision possible for intermediate calculations.
This is not as good an estimate as the AGM estimates for log. It is, however, a
much more generally applicable method. We can orchestrate the calculation, much
as above, for any hypergeometric function. This is how the estimates in line (7) in
Table 1 are deduced. Schroeppel [3], [22] shows how a similar circle of ideas can be
used to give Oy (log" n M(n)) algorithms for the solutions of linear differential
equations whose coefficients are rational functions with coefficients in Q.
The gamma function, I', can be computed from the estimate
6N (_ l)k Nk

I'(x)—N* Y

-N
2k <2Ne™, x€[1,2]

(see [5] for details). The zeta function, ¢, is then computable from Riemann’s integral

[24]:
1 ® L (1—x)/2 x/2 o )
g“(x)l‘(—)zf)w‘x/z— f o+ Y e dt.
1

X(x—' 1)= t n=1

We truncate both the integral and the sum. These two formulae explain lines (8) and
(9) of Table 1.
Catalan’s constant

_w (=D
G'—n§0(2n+ 1)?

can be computed from Ramanujan’s sum

8 T i m!m!
30=3loe 2+ ‘/§)+m§0(2m+ DX2m)!’

while Euler’s constant, v, can be computed from the asymptotic expansion

e R
v=-logx ,Elk-k!

+ O(exp (—x)), x>1.

! Chudnovsky and Chudnovsky [26] provide a low-bit complexity approach to solutions of linear
differential equations in [26].
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This gives line (11) of Table 1. Some of the details may be found in [5] and [6].
A variation of the above method for computing v has been used by Brent and
McMillan [10] to compute over 29,000 partial quotients of the continued fraction of

v. From this computation it follows that if v is rational its denominator exceeds
1015.000.

7. Digit complexity. The aim of this section is to explain the last column in
Table 1. The main observation is that the digit complexity of computing the mth
digit (m = n) of the product of two n-digit numbers is Qqi, (72). This is essentially just
a uniqueness argument the details of which may be pursued in [7].

Now suppose that fis analytic around zero (C? suffices). Then

f(xX)=a+bx+cx*+0(x%)
or equivalently
ex?=f(x)—a—bx+ O(x>).

If fis of low-digit complexity then, as above, truncating after one term gives a low-
complexity algorithm for a + bx. Recall that addition is Oy, (log 7). This in turn gives
a low-digit complexity evaluation of ¢x?* in a neighborhood of zero, but evaluation of
¢x? is essentially equivalent to multiplication. Once again, the details are available in
[7]. Thus, if fis any nonlinear C* function it is Qg (#), or we would have too good
an algorithm for calculating the mth digit of multiplication.

We now have the following type of theorem.

THEOREM. Iffis a nonlinear elementary function (on an interval) then f is

Ovi (n(log n)*) and  Qai (n).

This is now close to an exact result. Actually we can say considerably more. For
example, we have the following theorem.

THEOREM. If f is a nonlinear C° function (on an interval) then the set of x for
which the digit complexity of f(x) is o(n) by any algorithm is of the first Baire category.

A set of first Baire category is small in a topological sense (see [25]).

We define the class of sublinear numbers by calling a number x sublinear if the
digit complexity of x is Ogie (n'7). Call « a sublinear multiplier if the function ax is
sublinear for all x € [0, 1] (given both « and x as input).

THEOREM. The set of sublinear multipliers is a nonempty set of the first Baire
category.

Two more definitions are useful in relation to numbers of very low digit
complexity. We say that x is sparse if x has digit complexity Og (n’) for all § >0,
and we say that « is a sparse multiplier if ax is sparse for all x €[0, 1]. Sparse
multipliers have sparse digits. Indeed, let S:= {x | #(nonzero digits of x among the
first n digits) = O(n°®) for all 6 > 0}.

THEOREM. The set of sparse multipliers is exactly the set S.

Thus there are uncountably many sparse multipliers and hence also uncountably
many sublinear multipliers.

These are base-dependent notions. The previous theorem shows that 3 is a sparse
multiplier base 2 but not base 3. We can prove directly that irrational sparse multipliers
must be transcendental. Various questions concerning these matters will be raised in
the next sections.

8. Questions on the complexity of functions. The hardest problems associated
with Table 1 of §3 concern the almost complete lack of nontrivial lower bound
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estimates. This reflects the current state of affairs in theoretical computer science. Not
only is the question of whether P = NP still open, it is still not resolved that any NP
problems are nonlinear. Friedman [13], for example, shows that we can take maxima
over the class of polynomially computable functions if and only if P =NP and that
we can integrate over this class if and only if P = #P. While these notions are somewhat
tangential to our concerns they do indicate that some of our problems are likely to
be hard.

One of the reasons for looking at the rational complexity is that it is likely to be
a little more amenable to analysis. We can show that exp and log cannot have rational
complexity o(log n). This is a consequence of the known estimates in approximating
exp and log by rational functions of degree # [5], [8]. Note that » rational operations
can generate a rational function of at most degree 2”. Thus there is only a small gap
between the known and best possible rational complexity estimates for log.

Question 1. Does log have rational complexity O,, (log n)?

The extra power of log in the rational complexity of exp over that of log is almost
certainly an artifact of the method. So at least one power of log ought to be removable.

Question 2. Show that exp has rational complexity O, (log® n). Does exp have
rational complexity O, (log n)?

The low-complexity approximants to exp and log are constructed indirectly. It
would be valuable to have a direct construction.

Question 3. Construct, as explicitly as possible, approximants to exp and log
with complexity O.,, (log" n).

There is a big difference in the rational complexity of exp and of T'. It is tempting
to speculate that this is artificial.

Question 4. Does T have rational complexity O (log" n)?

Ideally we would like to identify those functions with this complexity.

Question 5. Classify (analytic) functions with rational complexity O,y (log” n).

This last question is almost certainly very hard.

We would expect there to be little difference between rational complexity and
algebraic complexity.

Question 6. Does any of exp, log, or K have rational complexity essentially
slower than its algebraic complexity?

In the case of bit complexity, there are no nontrivial lower bounds. At best we
can say that the bit complexity is always at least that of multiplication. Thus a crucial
first step is the content of the next question.

Question 7. Show that exp, log, or any of the functions we have considered is
not Oy (M (n)).

It is easy to construct entire functions with very low bit complexity; we simply
use very rapidly converging power series. Thus there exist nonalgebraic analytic
functions with bit complexity Oy (a,M(n)), where a, is any sequence tending to
infinity. However, the following question appears to be open.

Question 8. Does there exist a nonalgebraic analytic function with bit complexity
Ovir (M(n))?

A negative answer to this question would also resolve the question preceding it.

A very natural class to examine is the class of functions that satisfy algebraic
differential equations (not necessarily linear). Almost all familiar functions arise in
this context. Even an unlikely example like the theta function

03(@):= X 4",

nez

satisfies a nonlinear algebraic differential equation, as Jacobi showed (see [20]).
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Question 9. How do solutions of algebraic differential equations fit into the
complexity table?

We end with a question on digit complexity.

Question 10. Does there exist an analytic function whose digit complexity is
essentially faster than its bit complexity? Does there exist an analytic function with
digit complexity Ogig (1)?

There exist functions of the form

Eanlx_bnl

with low-digit complexity, where a, and b, are low-digit complexity numbers. Possibly
we can construct nowhere differentiable functions that are sublinear, in the sense of
digit complexity.

9. Questions on the complexity of numbers. Questions concerning the transcend-
ence of functions tend to be easier than questions on the transcendence of individual
numbers. In much the same way, questions on the complexity of functions tend to
be easier than those on the complexity of specific numbers. The intent of this section
is to pose various problems that suggest the link between complexity and transcend-
ence. Such questions, while raised before, tend to have been concerned just with the
notion of computability rather than also considering the rate of the computation (see
[14]).

The class of sublinear numbers, defined in §7, contains all rational numbers; it
also contains known transcendents such as

«:=.12345678910111213....

However, while the rationals are in this class in a base-independent fashion, it is not
at all clear that the above number « is sublinear in bases relatively prime to 10. The
10'°th digit, base 10, is 1. What is it in base 2?
Question 11. Are there any irrational numbers that are sublinear in every base?
It is easy to generate numbers that are sublinear in particular bases. Numbers
such as

. di:=1 if i i1s a square,
a:=.did - d;»=0 otherwise,
or
bi=dids- .. di:=1 if i is a power of 2,

d;:=0 otherwise,

are sublinear in whatever base is specified. It is tempting to conjecture that the next
question has a positive answer.

Question 12. Must an irrational number that is sublinear (in all bases) be
transcendental?

Loxton and van der Poorten [17] show that a particular very special class of
sublinear numbers, namely those generated by finite automata, are either rational or
transcendental. These are numbers for which computation of the nth digit essentially
requires no memory of the preceding digits. The base dependence of these numbers
is discussed in [12].

Question 13. Is either of 7 or e sublinear (in any base)?
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Almost certainly the answer to this question is no. There is an interesting
observation relating to this. Consider the series
1= (2n\'42n+5
;_r;::o n 212n+4 *
This series due to Ramanujan [5], [19] has numerators that grow roughly, e.g., 2%,
while the denominators are powers of 2. Thus, as has been observed, we can compute
the second length n block of binary digits of 1/x without computing the first block.

Likewise, in base 10, we can compute the second block of length 7 of decimal digits
of V() from the series

ko3
\/l——'TX n=0 n '
In neither case, however, is there any reduction in the order of complexity.

It seems likely that computing the nth digit of 7 is an Qg (#) calculation. Thus,
we might make the strong conjecture that no one will ever compute the 10'°°th digit
of w. This number arises from an (over)estimate of the number of electrons in the
known universe and as such almost certainly overestimates the amount of storage
that will ever be available for such a calculation.

The set of sparse multipliers is a subset of the sublinear numbers that can be
shown directly to contain no irrational algebraics. We do not know this about sparse
numbers, though we strongly suspect it to be true.

Recall that a sparse multiplier has mostly zero digits and observe that a nonin-
tegral rational cannot possess a terminating expansion in two relatively prime bases.
This suggests the following question.

Question 14. Do there exist irrationals that are sparse multipliers in two relatively
prime bases? Do there exist irrationals whose digits are asymptotically mostly zeros
in two relatively prime bases?

Many of these questions are at least partly related to questions on normality [23].
Virtually nothing is known about the normality of familiar numbers. The following
is a somewhat related question by Mahler.

Question 15 (Mahler [15]). Does there exist a nonrational function

f(x):= go a,x"

where the a, are a bounded sequence of positive integers, that maps algebraic numbers
in the unit disc to algebraic numbers?
Suppose that such an example exists, and suppose the a, are bounded by 9. Then

£(1/1000) = ao.00a,00a; - - -

is a thoroughly nonnormal irrational algebraic. Thus, in some sense, Mahler’s question
is a very weak conjecture concerning normality. Note also that, if in such an example
the a, were sublinearly computable, we would have produced sublinearly computable
algebraic irrationalities.

Perhaps we will be able to distinguish rational numbers by their digit complexity.
What can we hope to say about algebraic numbers? A natural class to look at is the
class of numbers that are linear (in multiplication), that is, numbers with bit com-
plexity O (M(n)). This class contains all algebraic numbers in a base-independent
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fashion. It also contains numbers such as

< 1
a: Eo 37
also in a base-independent fashion.

Question 16. Can we identify the class of numbers that are linear in multiplica-
tion?

This is almost certainly hard. As is the following question.

Question 17. Are either e or « linear in multiplication?

A negative answer to the above would include a proof of the transcendence of «.
The place to start might be with the following.

Question 18. Can we construct any natural nonlinear number?

Our current state of knowledge is that v and G have bit complexity
O (log® nM(n)).

Question 19. Are v and G both Oy; (log nM(n))?

We might expect that elementary functions cannot take sublinear numbers to
sublinear numbers.

Question 20. Does there exist a number a # 0 so that both a and exp (a) are
sublinear (in some base)? Can a and exp (a) both be linear in multiplication?

It seems likely that the answer is no. Question 20 should also be asked about
other elementary transcendental functions.

For simple nonelementary functions Question 20 has a positive answer. Consider
the function F:= (2/7)K, where K is the complete elliptic integral of the first kind.
Then F satisfies a linear differential equation of order 2 and is a nonelementary
transcendental function. However, if

k(q):=q1/2( §Z qn2+n> /( gzq,#) ,

F(k(q)) =( gz q"z) ,

and b:=[[(1+37),
n=0

then

and when ¢ := 1/10%* both F(k(q)) and k(q) are linear in multiplication, at least in
base 10. (This is because the series above have particularly low complexity for g :=
1/10%F)
Note also that the function
63(a):= X g,
ne€z

which satisfies a nonlinear algebraic differential equation, takes sublinear numbers of
the form ¢ := 1/10" to sublinear numbers (base 10).

10. Conclusion. Many issues have not been touched upon at all. One such issue
is the overhead costs of these low-complexity algorithms. This amounts to a discussion
of the constants buried in the asymptotic estimates. Sometimes the theoretically low-
complexity algorithms are also of low complexity practically. This is the case for
AGM-related algorithms for complete elliptic integrals. These are probably the algo-
rithms of choice in any precision. The AGM-related algorithms for log and exp will
certainly not outperform more traditional methods in the usual ranges in which we
compute (less than 100 digits). Some of the FFT-related algorithms are probably of
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only theoretical interest, even for computing millions of digits, because the overhead
constants are so large. In other cases, such as multiplication or the computation of
w, an FFT-related method is vital for very high precision computations.

We have not succeeded in completely answering any of the questions in the
Introduction. In large part, this is because we have virtually no methods for handling
lower bounds for such problems. The questions raised in this paper seem to be
fundamental. The partial answers have provided a number of substantial surprises.
For these reasons we believe these questions are deserving of study.
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3. Ramanujan and pi

Discussion

This article and the next describe Ramanujan, his work on Pi and our own related contributions.
It is gratifying to see its diverse reprintings, which reflect the continuing general interest in both
Pi and in Ramanujan. As the computational capacity to do concrete mathematics has expanded
and its popularity has grown, the sense of Ramanujan’s strangeness has abated. At the same time,
the completion of a fully edited edition Ramanujan’s Notebooks, by Bruce Berndt, and of the Lost
Notebook, by Berndt and George Andrews, has made the magnitude of Ramanujan’s particular

genius even more apparent. In his two-part biography of Ramanujan, Allyn Jackson wrote:

In a mathematical conversation, someone suggested to Grothendieck that they should consider a
particular prime number. “You mean an actual number?” Grothendieck asked. The other person
replied, yes, an actual prime number. Grothendieck suggested, “All right, take 57.”

But Grothendieck must have known that 57 is not prime, right? Absolutely not, said David
Mumford of Brown University. “He doesn’t think concretely.” Consider by contrast the Indian
mathematician Ramanujan, who was intimately familiar with properties of many numbers, some
of them huge. That way of thinking represents a world antipodal to that of Grothendieck.
“He really never worked on examples,” Mumford observed. “I only understand things through
examples and then gradually make them more abstract. I don’t think it helped Grothendieck
in the least to look at an example. He really got control of the situation by thinking of it in
absolutely the most abstract possible way. It’s just very strange. That’s the way his mind
worked.”—Allyn Jackson!

Source

J.M. Borwein and P.B. Borwein, “Ramanujan and Pi,” Scientific American, February 1988, 112-117.
Japanese ed. April, Russian ed. April, German ed. May. Reprinted as the following;:

1. pp. 647-659 of WORLD TREASURY OF PHYSICS, ASTRONOMY, AND MATHEMATICS,
T. Ferris Ed., Little, Brown and Co, 1991.

2. pp. 60-68 of Moderne Mathematik, G. Faltings Ed., Spektrum Verlag, 1996 (with a computa-
tional update).

3. pp. 187-199 of Ramanujan: Essays and Surveys, Bruce C. Berndt and Robert A. Rankin Eds.,
AMS-LMS History of Mathematics, volume 22, 2001.

'From a two-part biography in 2004 in the Notices of the AMS.
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Ramanujan and Pi

Some 75 years ago an Indian mathematical genius developed ways
of calculating pi with extraordinary efficiency. His approach is now
incorporated in computer algorithms yielding millions of digits of pi

by Jonathan M. Borwein and Peter B. Borwein

i, the ratio of any circle’s cir-
P cumference to its diameter, was

computed in 1987 to an unprec-
edented level of accuracy: more than
100 million decimal places. Last year
also marked the centenary of the
birth of Srinivasa Ramanujan, an en-
igmatic Indian mathematical genius
who spent much of his short life in
isolation and poor health. The two
events are in fact closely linked, be-
cause the basic approach underlying
the most recent computations of pi
was anticipated by Ramanujan, al-
though its implementation had to
await the formulation of efficient al-
gorithms (by various workers includ-
ing us), modern supercomputers and
new ways to multiply numbers.

Aside from providing an arena in
which to set records of a kind, the
quest to calculate the number to mil-
lions of decimal places may seem
rather pointless. Thirty-nine places
of pi suffice for computing the cir-
cumference of a circle girdling the
known universe with an error no
greater than the radius of a hydrogen
atom. It is hard to imagine physical
situations requiring more digits. Why
are mathematicians and computer
scientists not satisfied with, say, the
first 50 digits of pi?

Several answers can be given. One
is that the calculation of pi has be-
come something of a benchmark
computation: it serves as a measure
of the sophistication and reliability of
the computers that carry it out. In ad-
dition, the pursuit of ever more ac-
curate values of pi leads mathema-
ticians to intriguing and unexpect-
ed niches of number theory. Another
and more ingenuous motivation is
simply “‘because it’s there.” In fact, pi
has been a fixture of mathematical
culture for more than two and a half
millenniums.

Furthermore, there is always the
chance that such computations will

112

shed light on some of the riddles sur-
rounding pi, a universal constant that
is not particularly well understood,
in spite of its relatively elementary
nature. For example, although it has
been proved that pi cannot ever be
exactly evaluated by subjecting posi-
tive integers to any combination of
adding, subtracting, multiplying, di-
viding or extracting roots, no one has
succeeded in proving that the digits
of pi follow a random distribution
(such that each number from 0 to 9
appears with equal frequency). It is
possible, albeit highly unlikely, that
after a while all the remaining digits
of pi are 0’s and 1’s or exhibit some
other regularity. Moreover, pi turns
up in all kinds of unexpected places
that have nothing to do with circles.
If a number is picked at random from
the set of integers, for instance, the
probability that it will have no re-
peated prime divisors is six divided
by the square of pi. No different from
other eminent mathematicians, Ra-
manujan was prey to the fascinations
of the number.

he ingredients of the recent
approaches to calculating pi are
among the mathematical treasures
unearthed by renewed interest in Ra-
manujan’s work. Much of what he
did, however, is still inaccessible to
investigators. The body of his work
is contained in his *“Notebooks,”
which are personal records written
in his own nomenclature. To make
matters more frustrating for math-
ematicians who have studied the
“Notebooks,” Ramanujan generally
did not include formal proofs for his
theorems. The task of deciphering
and editing the “Notebooks” is only
now nearing completion, by Bruce C.
Berndt of the University of Illinois at
Urbana-Champaign.
To our knowledge no mathemati-
cal redaction of this scope or difficul-
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ty has ever been attempted. The ef-
fort is certainly worthwhile. Rama-
nujan’s legacy in the “Notebooks”
promises not only to enrich pure
mathematics but also to find applica-
tion in various fields of mathematical
physics. Rodney J. Baxter of the Aus-
tralian National University, for exam-
ple, acknowledges that Ramanujan’s
findings helped him to solve such
problems in statistical mechanics as
the so-called hard-hexagon model,
which considers the behavior of a
system of interacting particles laid
out on a honeycomblike grid. Simi-
larly, CarlosJ. Moreno of the City Uni-
versity of New York and Freeman ]J.
Dyson of the Institute for Advanced
Study have pointed out that Ramanu-
jan’s work is beginning to be applied
by physicistsin superstring theory.

Ramanujan’s stature as a mathe-
matician is all the more astonishing
when one considers his limited for-
mal education. He was born on De-
cember 22, 1887, into a somewhat
impoverished family of the Brahmin
caste in the town of Erode in south-
ern India and grew up in Kumba-
konam, where his father was an ac-
countant to a clothier. His mathemat-
ical precocity was recognized early,
and at the age of seven he was given
a scholarship to the Kumbakonam
Town High School. He is said to have
recited mathematical formulas to his
schoolmates—including the value of
pi to many places.

When he was 12, Ramanujan mas-
tered the contents of S. L. Loney’s
rather comprehensive Plane Trigo-
nometry, including its discussion of
the sum and products of infinite se-
quences, which later were to figure
prominently in his work. (An infinite
sequence is an unending string of
terms, often generated by a simple
formula. In this context the interest-
ing sequences are those whose terms
can be added or multiplied to yield
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an identifiable, finite value. If the
terms are added, the resulting ex-
pression is called a series; if they are
multiplied, it is called a product.)
Three years later he borrowed the
Synopsis of Elementary Results in Pure
Mathematics, a listing of some 6,000
theorems (most of them given with-
out proof) compiled by G. S. Carr, a
tutor at the University of Cambridge.
Those two books were the basis of
Ramanujan’s mathematical training.

In 1903 Ramanujan was admitted to
a local government college. Yet total
absorption in his own mathematical
diversions at the expense of every-
thing else caused him to fail his ex-
aminations, a pattern repeated four
years later at another college in Ma-
dras. Ramanujan did set his avoca-
tion aside—if only temporarily—to
look for a job after his marriage in
1909. Fortunately in 1910 R. Rama-
chandra Rao, a well-to-do patron of
mathematics, gave him a monthly
stipend largely on the strength of fa-
vorable recommendations from vari-
ous sympathetic Indian mathemati-
cians and the findings he already had
jotted down in the “Notebooks.”

In 1912, wanting more convention-
al work, he took a clerical position
in the Madras Port Trust, where the
chairman was a British engineer, Sir
Francis Spring, and the manager was
V. Ramaswami Aiyar, the founder
of the Indian Mathematical Socie-
ty. They encouraged Ramanujan to
communicate his results to three
prominent British mathematicians.
Two apparently did not respond; the
one who did was G. H. Hardy of Cam-
bridge, now regarded as the foremost
British mathematician of the period.

Hardy, accustomed to receiving
crank mail, was inclined to dis-
regard Ramanujan’s letter at first
glance the day it arrived, January
16, 1913. But after dinner that night
Hardy and a close colleague, John
E. Littlewood, sat down to puzzle
through alist of 120 formulas and the-
orems Ramanujan had appended to
his letter. Some hours later they had
reached a verdict: they were seeing
the work of a genius and not a crack-
pot. (According to his own “pure-tal-
ent scale” of mathematicians, Hardy
was later to rate Ramanujan a 100,
Littlewood a 30 and himselfa 25. The
German mathematician David Hil-
bert, the most influential figure of the
time, merited only an 80.) Hardy de-
scribed the revelation and its conse-
quences as the one romantic incident
in his life. He wrote that some of
Ramanujan’s formulas defeated him

completely, and yet ‘“they must be
true, because if they were not true,
no one would have had the imagina-
tion to invent them.”

Hardy immediately invited Rama-
nujan to come to Cambridge. In spite
of his mother’s strong objections as
well as his own reservations, Rama-
nujan set out for England in March of
1914. During the next five years Har-
dy and Ramanujan worked together
at Trinity College. The blend of Har-
dy’s technical expertise and Rama-
nujan’s raw brilliance produced an
unequaled collaboration. They pub-
lished a series of seminal papers on
the properties of various arithmetic
functions, laying the groundwork for
the answer to such questions as: How
many prime divisors is a given num-
ber likely to have? How many ways
can one express a number as a sum
of smaller positive integers?

In 1917 Ramanujan was made a Fel-
low of the Royal Society of London
and a Fellow of Trinity College—the
first Indian to be awarded either hon-
or. Yet as his prominence grew his
health deteriorated sharply, a de-
cline perhaps accelerated by the dif-
ficulty of maintaining a strict vege-
tarian diet in war-rationed England.
Although Ramanujan was in and
out of sanatoriums, he continued to
pour forth new results. In 1919, when
peace made travel abroad safe again,
Ramanujan returned to India. Al-
ready an icon for young Indian intel-
lectuals, the 32-year-old Ramanujan
died on April 26, 1920, of what was
then diagnosed as tuberculosis but
now is thought to have been a severe
vitamin deficiency. True to mathe-
matics until the end, Ramanujan did
not slow down during his last, pain-
racked months, producing the re-

SRINIVASA RAMANUJAN, born in 1887 in India, managed in spite of limited formal
education to reconstruct almost single-handedly much of the edifice of number theory
and to go on to derive original theorems and formulas. Like many illustrious mathema-
ticians before him, Ramanujan was fascinated by pi: the ratio of any circle’s circumfer-
ence to its diameter. Based on his investigation of modular equations (see box on page
114), he formulated exact expressions for pi and derived from them approximate val-
ues. As a result of the work of various investigators (including the authors), Ramanu-
jan’s methods are now better understood and have been implemented as algorithms.
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markable work recorded in his so-
called “Lost Notebook.”

amanujan’s work on pi grew in
large part out of his investigation
of modular equations, perhaps the
most thoroughly treated subject in

PERIMETER OF
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the “Notebooks.” Roughly speaking,
a modular equation is an algebra-
ic relation between a function ex-
pressed in terms of a variable x—in
mathematical notation, f(x)—and the
same function expressed in terms of
x raised to an integral power, for ex-
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ARCHIMEDES METHOD for estimating pi relied on inscribed and circumscribed regu-
lar polygons (polygons with sides of equal length) on a circle having a diameter of one
unit (or a radius of half a unit). The perimeters of the inscribed and circumscribed poly-
gons served respectively as lower and upper bounds for the value of pi. The sine and
tangent functions can be used to calculate the polygons’ perimeters, as is shown here,
but Archimedes had to develop equivalent relations based on geometric constructions.
Using 96-sided polygons, he determined that pi is greater than 3'°/71 and less than 3/7.
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ample f(x?), f(x*) or f(x*). The “order”
of the modular equation is given by
the integral power. The simplest
modular equation is the second-or-
der one: f(x)=2Jf(x*)/[1+ f(x*)]. Of
course, not every function will satis-
fy a modular equation, but there is
a class of functions, called modular
functions, that do. These functions
have various surprising symmetries
that give them a special place in
mathematics.

Ramanujan was unparalleled in his
ability to come up with solutions to
modular equations that also satisfy
other conditions. Such solutions are
called singular values. It turns out
that solving for singular values in
certain cases yields numbers whose
natural logarithms coincide with pi
(times a constant) to a surprising
number of places [see box on page
114). Applying this general approach
with extraordinary virtuosity, Rama-
nujan produced many temarkable in-
finite series as well as single-term ap-
proximations for pi. Some of them
are given in Ramanujan’s one formal
paper on the subject, Modular Equa-
tions and Approximations to 1, pub-
lished in 1914.

Ramanujan’s attempts to approxi-
mate pi are part of a venerable tradi-
tion. The earliest Indo-European civi-
lizations were aware that the area of
a circle is proportional to the square
of its radius and that the circumfer-
ence of a circle is directly proportion-
al to its diameter. Less clear, howev-
er, is when it was first realized that
the ratio of any circle’s circumfer-
ence to its diameter and the ratio of
any circle’s area to the square of its
radius are in fact the same constant,
which today is designated by the
symbol 1. (The symbol, which gives
the constant its name, is a latecomer
in the history of mathematics, having
been introduced in 1706 by the En-
glish mathematical writer William
Jones and popularized by the Swiss
mathematician Leonhard Euler in the
18th century.)

Achimedes of Syracuse, the great-
est mathematician of antiquity,
rigorously established the equiva-
lence of the two ratios in his treatise
Measurement of a Circle. He also cal-
culated a value for pi based on math-
ematical principles rather than on di-
rect measurement of a circle’s cir-
cumference, area and diameter. What
Archimedes did was to inscribe and
circumscribe regular polygons (poly-
gons whose sides are all the same
length) on a circle assumed to have a
diameter of one unit and to consider



Chapter 3

39

the polygons’ respective perimeters
as lower and upper bounds for possi-
ble values of the circumference of the
circle, which is numerically equal to
pi [see illustration on opposite page).

This method of approaching a val-
ue for pi was not novel: inscribing
polygons of ever more sides in a cir-
cle had been proposed earlier by
Antiphon, and Antiphon’s contempo-
rary, Bryson of Heraclea, had added
circumscribed polygons to the proce-
dure. What was novel was Archime-
des’ correct determination of the ef-
fect of doubling the number of sides
on both the circumscribed and the in-
scribed polygons. He thereby devel-
oped a procedure that, when repeat-
ed enough times, enables one in prin-
ciple to calculate pi to any number of
digits. (It should be pointed out that
the perimeter of a regular polygon
can be readily calculated by means
of simple trigonometric functions:
the sine, cosine and tangent func-
tions. But in Archimedes’ time, the
third century B.C., such functions
were only partly understood. Archi-
medes therefore had to rely mainly
on geometric constructions, which
made the calculations considerably
more demanding than they might ap-
pear today.)

Archimedes began with inscribed
and circumscribed hexagons, which
yield the inequality 3 <1 <2+/3. By
doubling the number of sides four
times, to 96, he narrowed the range
of pi to between 3'%: and 3%, obtain-
ing the estimate T=3.14. There is
some evidence that the extant text
of Measurement of a Circle is only a
fragment of a larger work in which
Archimedes described how, starting
with decagons and doubling them six
times, he got a five-digit estimate:
T = 3.1416.

Archimedes’ method is conceptu-
ally simple, but in the absence of a
ready way to calculate trigonometric
functions it requires the extraction of
roots, which is rather time-consum-
ing when done by hand. Moreover,
the estimates converge slowly to pi:
their error decreases by about a fac-
tor of four per iteration. Neverthe-
less, all European attempts to calcu-
late pi before the mid-17th century
relied in one way or another on
the method. The 16th-century Dutch
mathematician Ludolph van Ceulen
dedicated much of his career to a
computation of pi. Near the end of his
life he obtained a 32-digit estimate
by calculating the perimeter of in-
scribed and circumscribed polygons
having 2% (some 10'®) sides. His val-
ue for pi, called the Ludolphian num-

ber in parts of Europe, is said to have
served as his epitaph.

he development of calculus,
largely by Isaac Newton and
Gottfried Wilhelm Leibniz, made it
possible to calculate pi much more
expeditiously. Calculus provides ef-
ficient techniques for computing
a function’s derivative (the rate of
change in the function’s value as its
variables change) and its integral
(the sum of the function’s-values over
a range of variables). Applying the
techniques, one can demonstrate
that inverse trigonometric functions
are given by integrals of quadratic
functions that describe the curve of a
circle. (The inverse of a trigonomet-
ric function gives the angle that cor-
responds to a particular value of the
function. For example, the inverse
tangent of 1 is 45 degrees or, equiva-
lently, /4 radians.)
(The underlying connection be-

tween trigonometric functions and
algebraic expressions can be appre-
ciated by considering a circle that
has a radius of one unit and its center
at the origin of a Cartesian x-y plane.
The equation for the circle—whose
area is numerically equal to pi—is
x?+y?=1, which is a restatement of
the Pythagorean theorem for a right
triangle with a hypotenuse equal to
1. Moreover, the sine and cosine of
the angle between the positive x axis
and any point on the circle are equal
respectively to the point’s coordi-
nates, y and x, the angle’s tangent is
simply y/x.)

Of more importance for the pur-
poses of calculating pi, however, is
the fact thataninverse trigonometric
function can be “expanded” as a se-
ries, the terms of which are comput-
able from the derivatives of the func-
tion. Newton himself calculated pi
to 15 places by adding the first few
terms of a series that can be derived

WALLIS' PRODUCT (1665)
m_2x2,4%4 6x6,8%8, .._ﬁ an?
2 1x3 3x5 5x7 7x9 4nz—1

n=1

GREGORY'S SERIES (1671)
LI D D D S B
3-173t577" _g'o 2n+1

MACHIN'S FORMULA (1706)

%: 4 arctan (1/5) — arctan (1/239),
RAMANUJAN (1914)

_ V8 i (4n)![1,103 + 26,390n}
798014~ (nN}43964n

1
™

BORWEIN AND BORWEIN (1987)

1

20
123 ¢
n=0

3 X5 X7 5 @n+1)
where arctan X = X~X?+X?—)7L+-~-=Eo(—1)" XZEH
n=
, wheren! =n x (n-1) x (n-2) x - x 1and 0! = 1

)(6n)1[212,175,710,912 V61 + 1,657145,277,365 + n(13,773,980,892,672V61 + 107,578,229,802,750)]
(n)*(3n)!(5,280(236,674 + 30,303\ 61)]iin - 321

TERMS OF MATHEMATICAL SEQUENCES can be summed or multiplied to yield values
for pi (divided by a constant) or its reciprocal. The first two sequences, discovered re-
spectively by the mathematicians John Wallis and James Gregory, are probably among
the best-known, but they are practically useless for computational purposes. Not even
100 years of computing on a supercomputer programmed to add or multiply the terms
of either sequence would yield 100 digits of pi. The formula discovered by John Machin
made the calculation of pi feasible, since calculus allows the inverse tangent (arc tan-
gent) of a number, x, to be expressed in terms of a sequence whose sum converges
more rapidly to the value of the arc tangent the smaller xis. Virtually all calculations for
pi from the beginning of the 18th century until the early 1970’s have relied on varia-
tions of Machin’s formula. The sum of Ramanujan’s sequence converges to the true val-
ue of 1/ much faster: each successive term in the sequence adds roughly eight more
correct digits. The last sequence, formulated by the authors, adds about 25 digits per
term; the first term (for which n is 0) yields a number that agrees with pi to 24 digits.
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as an expression for the inverse of
the sine function. He later confessed
to a colleague: “I am ashamed to tell
you to how many figures I carried
these calculations, having no other
business at the time.”

In 1674 Leibniz derived the formula
1-1/3+1/5-1/7...=1/4, which is
the inverse tangent of 1. (The general
inverse-tangent series was originally
discovered in 1671 by the Scottish
mathematician James Gregory. In-
deed, similar expressions appear to
have been developed independently
several centuries earlier in India.)
The error of the approximation, de-
fined as the difference between the
sum of n terms and the exact value of
/4, is roughly equal to the n+1th
term in the series. Since the denomi-
nator of each successive term in-
creases by only 2, one must add ap-
proximately 50 terms to get two-digit
accuracy, 500 terms for three-digit
accuracy and so on. Summing the
terms of the series to calculate a val-
ue for pi more than a few digits long
is clearly prohibitive.

An observation made by John Ma-

chin, however, made it practicable to
calculate pi by means of a series ex-
pansion for the inverse-tangent func-
tion. He noted that pi divided by 4 is
equal to 4 times the inverse tangent
of 1/5 minus the inverse tangent of
1/239. Because the inverse-tangent
series for a given value converges
more quickly the smaller the value
is, Machin’s formula greatly simpli-
fied the calculation. Coupling his for-
mula with the series expansion for
the inverse tangent, Machin comput-
ed 100 digits of pi in 1706. Indeed, his
technique proved to be so powerful
that all extended calculations of pi
from the beginning of the 18th centu-
ry until recently relied on variants of
the method.

wo 19th-century calculations de-

serve special mention. In 1844 Jo-
hann Dase computed 205 digits of pi
in a matter of months by calculating
the values of three inverse tangents
in a Machin-like formula. Dase was a
calculating prodigy who could mul-
tiply 100-digit numbers entirely in
his head—a feat that took him rough-

where

expression

MODULAR FUNCTIONS AND APPROXIMATIONS TO PI
A modular function is a function, \(q), that can be related through an algebraic expression
called a modular equation to the same function expressed in terms of the same variable, q,

raised to an integral power: \(gP). The integral power, p, determines the “order” of the
modular equation. An example of a modular function is

2n
Mg) = 16qﬁ (11 Ly
n=1
Its associated seventh-order modular equation, which relates A(q) to A(g7), is given by
VM@IMg) + V[T =A@l -Ag)] = 1.
Singular values are solutions of modular equations that must also satisfy additional condi-
tions. One class of singular values corresponds to computing a sequence of values, k
kp = V(e V)

and p takes integer values. These values have the curious property that the logarithmic
-2 ko
—= log( <
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coincides with many of the first digits of pi. The number of digits the expression has in

|+ q2n: 1

e Kpr

common with pi increases with larger values of p.

Ramanujan was unparalleled in his ability to calculate these singular values. One of his most
famous is the value when p equals 210, which was included in his original letter to G. H.
Hardy. It is

kyo = (V2=1)2R2-V3)(VT-VE)AB8—3VT)(V10-3)2(\V15 -~ VIa)(4 — VI5)2(6 - \/35) .

This number, when plugged into the logarithmic expression, agrees with pi through the first
20 decimal places. In comparison, k4 yields a number that agrees with pi through more
than one million digits.

Applying this general approach, Ramanujan constructed a number of remarkable series for
pi, including the one shown in the illustration on the preceding page. The general approach
also underlies the two-step, iterative algorithms in the top illustration on the opposite page.
In each iteration the first step (calculating y,) corresponds to computing one of a sequence
of singular values by solving a modular equation of the appropriate order; the second step
(calculating ,,) is tantamount to taking the logarithm of the singular value.
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ly eight hours. (He was perhaps
the closest precursor of the modern
supercomputer, at least in terms of
memory capacity.) In 1853 William
Shanks outdid Dase by publishing
his computation of pi to 607 places,
although the digits that followed
the 527th place were wrong. Shank’s
task took years and was a rather rou-
tine, albeit laborious, application of
Machin’s formula. (In what mustitself
be some kind of record, 92 years
passed before Shank’s error was de-
tected, in a comparison between his
value and a 530-place approximation
produced by D. F. Ferguson with the
aid of a mechanical calculator.)

The advent of the digital comput-
er saw a renewal of efforts to cal-
culate ever more digits of pi, since
the machine was ideally suited for
lengthy, repetitive “number crunch-
ing.” ENIAC, one of the first digital
computers, was applied to the task in
June, 1949, by John von Neumann
and his colleagues. ENIAC produced
2,037 digits in 70 hours. In 1957 G. E.
Felton attempted to compute 10,000
digits of pi, but owing to a machine
error only the first 7,480 digits were
correct. The 10,000-digit goal was
reached by F. Genuys the following
year on an IBM 704 computer. In 1961
Daniel Shanks and John W. Wrench,
Jr., calculated 100,000 digits of pi in
less than nine hours on an IBM 7090.
The million-digit mark was passed in
1973 by Jean Guilloud and M. Bouyer,
a feat that took just under a day of
computation on a CDC 7600. (The
computations done by Shanks and
Wrench and by Guilloud and Bouyer
were in fact carried out twice using
different inverse-tangent identities
for pi. Given the history of both hu-
man and machine error in these cal-
culations, it is only after such verifi-
cation that modern ‘“digit hunters”
consider arecord officially set.)

Although an increase in the speed
of computers was a major reason
ever more accurate calculations for
pi could be performed, it soon be-
came clear that there were inescap-
able limits. Doubling the number of
digits lengthens computing time by
at least a factor of four, if one applies
the traditional methods of perform-
ing arithmetic in computers. Hence
even allowing for a hundredfold in-
crease in computational speed, Guil-
loud and Bouyer’s program would
have required at least a quarter cen-
tury to produce a billion-digit value
for pi. From the perspective of the
early 1970’s such a computation did
not seemrealistically practicable.

Yet the task is now feasible, thanks
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not only to faster computers but also
to new, efficient methods for mul-
tiplying large numbers in comput-
ers. A third development was also
crucial: the advent of iterative algo-
rithms that quickly converge to pi.
(An iterative algorithm can be ex-
pressed as a computer program that
repeatedly performs the same arith-
metic operations, taking the output
of one cycle as the input for the next.)
These algorithms, some of which we
constructed, were in many respects
anticipated by Ramanujan, although
he knew nothing of computer pro-
gramming. Indeed, computers not
only have made it possible to apply
Ramanujan’s work but also have
helped to unravel it. Sophisticated
algebraic-manipulation software has
allowed further exploration of the
road Ramanujan traveled alone and
unaided 75 years ago.

One of the interesting lessons of
theoretical computer science is
that many familiar algorithms, such
as the way children are taught to
multiply in grade school, are far from
optimal. Computer scientists gauge
the efficiency of an algorithm by
determining its bit complexity: the
number of times individual digits are
added or multiplied in carrying out
an algorithm. By this measure, add-
ing two n-digit numbers in the nor-
mal way has a bit complexity that in-
creases in step with n;, multiplying
two n-digit numbers in the normal
way has a bit complexity that in-
creases as n’. By traditional methods,
multiplication is much “harder” than
addition in that it is much more time-
consuming.

Yet, as was shown in 1971 by A.
Schénhage and V. Strassen, the mul-
tiplication of two numbers can in the-
ory have a bit complexity only a little
greater than addition. One way to
achieve this potential reduction in bit
complexity is to implement so-called
fast Fourier transforms (FFT’s). FFT-
based multiplication of two large
numbers allows the intermediary
computations among individual dig-
its to be carefully orchestrated so
that redundancy is avoided. Because
division and root extraction can be
reduced to a sequence of multiplica-
tions, they too can have a bit com-
plexity just slightly greater than that
of addition. The result is a tremen-
dous saving in bit complexity and
hence in computation time. For this
reason all recent efforts to calculate
pi rely on some variation of the FFT
technique for multiplication.

Yet for hundreds of millions of dig-
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ITERATIVE ALGORITHMS that yield extremely accurate values of pi were developed
by the authors. (An iterative algorithm is a sequence of operations repeated in such a
way that the ouput of one cycle is taken as the input for the next.) Algorithm a con-
verges to 1/1t quadratically: the number of correct digits given by «, more than dou-
bles each time n is increased by 1. Algorithm b converges quartically and algorithm ¢
converges quintically, so that the number of coinciding digits given by each iteration
increases respectively by more than a factor of four and by more than a factor of five.
Algorithm bis possibly the most efficient known algorithm for calculating pi; it was run
on supercomputers in the last three record-setting calculations. As the authors worked
on the algorithms it became clear to them that Ramanujan had pursued similar meth-
ods in coming up with his approximations for pi. In fact, the computation of s, in algo-
rithm crests on a remarkable fifth-order modular equation discovered by Ramanujan.

100,000,000
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HISTORY
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NUMBER OF KNOWN DIGITS of pi has increased by two orders of magnitude (factors
of 10) in the past decade as a result of the development of iterative algorithms that can
be run on supercomputers equipped with new, efficient methods of multiplication.
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its of pi to be calculated practically a
beautiful formula known a century
and a half earlier to Carl Friedrich
Gauss had to be rediscovered. In the
mid-1970’s Richard P. Brent and Eu-
gene Salamin independently noted
that the formula produced an algo-
rithm for pi that converged quadrati-
cally, that is, the number of digits
doubled with each iteration. Between
1983 and the present Yasumasa Ka-
nada and his colleagues at the Uni-
versity of Tokyo have employed this
algorithm to set several world rec-
ords for the number of digits of pi.
We wondered what underlies the
remarkably fast convergence to pi of
the Gauss-Brent-Salamin algorithm,
and in studying it we developed gen-
eral techniques for the construction
of similar algorithms that rapidly
converge to pi as well as to other
quantities. Building on a theory out-
lined by the German mathematician

Karl Gustav Jacob Jacobi in 1829, we
realized we could in principle arrive
at a value for pi by evaluating inte-
grals of a class called elliptic inte-
grals, which can serve to calculate
the perimeter of an ellipse. (A circle,
the geometric setting of previous ef-
forts to approximate pi, is simply an
ellipse with axes of equal length.)

Elliptic integrals cannot generally

be evaluated as integrals, but they
can be easily approximated through
iterative procedures that rely on
modular equations. We found that
the Gauss-Brent-Salamin algorithm is
actually a specific case of our more
general technique relying on a sec-
ond-order modular equation. Quick-
er convergence to the value of the in-
tegral, and thus a faster algorithm for
pi, is possible if higher-order modu-
lar equations are used, and so we
have also constructed various algo-
rithms based on modular equations

Yo= V2 -1

y1 = 1=V V1 —ygd]
y2 = 1Yy 8V -y 4
V-, A +V1-y,%]

-y +V1-y3%

y3 = [1
Yo =11
V1 -y, A1+ vl
Y6 = [1-V1—ysf1+¥1 —yf]
y7 = (1Y -y 1yl
yg = [(1-V1—y 21 +V1 -y
Yo = [1-V1—yg [1-V1 -y

yio = [(1-V1-ygf[1+V1-ygd]

ys =1

yir = -V yg®1 21—y,
yiz = 1Yy 0 V-8
y13 = 1Yy A ¥ 1=y 0
yia = 1=V 8181 —y 50
yis = [1-V1-y U+ 1y

HOW TO GET TWO BILLION DIGITS OF PI
WITH A CALCULATOR*

Let

1/a45 agress with  for more than two billion decimal digits

*Of course, the calculator needs to have a two-billion-digit display; on a pocket calcu-
lator the computation would not be very interesting after the second iteration.

oy = 6-4V2

ap = (1+y )4 og—23y1(1+y;+y19)

oy = (1+y)* ay = 2%y,(1 +y,+y5?)

az = (1+y3)% 0 —27y3(1 +y3+y39)

ag = (1+ya)? a3—2%,(1 +y4+ys?)

ag = (1+y5)% ag—2"y5(1+ys+ys52)

g = (1+yg)* a5 — 2"3yg(1 +y6+ye?)

a7 = (14+y7)* ag = 25y7(1+y7 +y72)

og = (1+yg)* a7 —2"7yg(1 +yg +yg?)

ag = (1+yg)* ag—21%yg(1+yg +yg?)

agg = (1+y10)* ag—22ly49(1 +y10+y10?)
apy = (1+y)d asg =28y (1+yq +yn?)
arg = (1+y12)* ey =28y 1(1 +ya +y122)
a3 = (1+y13)* 02— 227y43(1 +y13+y139)
ag = (1+y1)% ag3—22%4(1 +y1g+y14?)

ags = (1+y15)* a1a = 231y45(1 +y15+y152)

EXPLICIT INSTRUCTIONS for executing algorithm b in the top illustration on the pre-
ceding page makes it possible in principle to compute the first two billion digits of piin
a matter of minutes. All one needs is a calculator that has two memory registers and the
usual capacity to add, subtract, multiply, divide and extract roots. Unfortunately most
calculators come with only an eight-digit display, which makes the computation moot.
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of third, fourth and higher orders.
In January, 1986, David H. Bailey of
the National Aeronautics and Space
Administration’s Ames Research
Center produced 29,360,000 decimal
places of pi by iterating one of our
algorithms 12 times on a Cray-2 su-
percomputer. Because the algorithm
is based on a fourth-order modular
equation, it converges on pi quar-
tically, more than quadrupling the
number of digits with each iteration.
A vyear later Kanada and his col-
leagues carried out one more it-
eration to attain 134,217,000 places
on an NEC SX-2 supercomputer and
thereby verified a similar computa-
tion they had done earlier using the
Gauss-Brent-Salamin algorithm. (Iter-
ating our algorithm twice more—a
feat entirely feasible if one could
somehow monopolize a supercom-
puter for a few weeks—would yield
more than two billion digits of pi.)

terative methods are best suited

for calculating pi on a computer,
and so it is not surprising that Rama-
nujan never bothered to pursue
them. Yet the basic ingredients of the
iterative algorithms for pi—modular
equations in particular—are to be
found in Ramanujan’s work. Parts of
his original derivation of infinite se-
ries and approximations for pi more
than three-quarters of a century ago
must have paralleled our own efforts
to come up with algorithms for pi. In-
deed, the formulas he lists in his pa-
per on pi and in the “Notebooks”
helped us greatly in the construction
of some of our algorithms. For exam-
ple, although we were able to prove
that an 11th-order algorithm exists
and knew its general formulation, it
was not until we stumbled on Rama-
nujan’s modular equations of the
same order that we discovered its un-
expectedly simple form.

Conversely, we were also able to
derive all Ramanujan’s series from
the general formulas we had devel-
oped. The derivation of one, which
converged to pi faster than any other
series we knew at the time, came
about with a little help from an unex-
pected source. We had justified all
the quantities in the expression for
the series except one: the coefficient
1,103, which appears in the numera-
tor of the expression [see illustration
on page 113]. We were convinced—
as Ramanujan must have been—that
1,103 had to be correct. To prove it
we had either to simplify a daunting
equation containing variables raised
to powers of several thousand or



Chapter 3

43

to delve considerably further into
somewhat arcane number theory.

By coincidence R. William Gosper,
Jr., of Symbolics, Inc., had decided in
1985 to exploit the same series of Ra-
manujan'’s for an extended-accuracy
value for pi. When he carried out the
calculation to more than 17 million
digits (arecord at the time), there was
to his knowledge no proof that the
sum of the series actually converged
to pi. Of course, he knew that mil-
lions of digits of his value coincided
with an earlier Gauss-Brent-Salamin
calculation done by Kanada. Hence
the possibility of error was vanish-
ingly small.

As soon as Gosper had finished his
calculation and verified it against
Kanada’s, however, we had what we
needed to prove that 1,103 was the
number needed to make the series
true to within one part in 1010.000,000,
In much the same way that a pair of
integers differing by less than 1 must
be equal, his result sufficed to specify
the number: itis precisely 1,103. In ef-
fect, Gosper’s computation became
part of our proof. We knew that the
series (and its associated algorithm)
is so sensitive to slight inaccuracies
thatif Gosper had used any other val-
ue for the coefficient or, for that mat-
ter, if the computer had introduced
a single-digit error during the calcu-
lation, he would have ended up
with numerical nonsense instead of
a value for pi.

Ramanujan-type algorithms for ap-
proximating pi can be shown to be
very close to the best possible. If all
the operations involved in the exe-
cution of the algorithms are totaled
(assuming that the best techniques
known for addition, multiplication
and root extraction are applied), the
bit complexity of computing n digits
of pi is only marginally greater than
that of multiplying two n-digit num-
bers. But multiplying two n-digit
numbers by means of an FrT-based
technique is only marginally more
complicated than summing two n-
digit numbers, which is the simplest
of the arithmetic operations possible
on a computer.

athematics has probably not yet

felt the full impact of Ramanu-
jan’s genius. There are many other
wonderful formulas contained in the
“Notebooks” that revolve around
integrals, infinite series and contin-
ued fractions (a number plus a frac-
tion, whose denominator can be
expressed as a number plus a frac-
tion, whose denominator can be ex-
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RAMANUJAN'S “NOTEBOOKS” were personal records in which he jotted down many
of his formulas. The page shown contains various third-order modular equations—all
in Ramanujan’s nonstandard notation. Unfortunately Ramanujan did not bother to in-
clude formal proofs for the equations; others have had to compile, edit and prove them.
The formulas in the “Notebooks” embody subtle relations among numbers and func-
tions that can be applied in other fields of mathematics or even in theoretical physics.

pressed as a number plus a fraction,
and so on). Unfortunately they are
listed with little—if any—indication
of the method by which Ramanujan
proved them. Littlewood wrote: “If
a significant piece of reasoning oc-
curred somewhere, and the total mix-
ture of evidence and intuition gave
him certainty, he looked no further.”

The herculean task of editing the
“Notebooks,” initiated 60 years ago
by the British analysts G. N. Watson
and B. N. Wilson and now being com-
pleted by Bruce Berndt, requires pro-
viding a proof, a source or an occa-
sional correction for each of many
thousands of asserted theorems and
identities. A single line in the “Note-
books” can easily elicit many pages

© 1988 SCIENTIFIC AMERICAN, INC

of commentary. The task is made all
the more difficult by the nonstandard
mathematical notation in which the
formulas are written. Hence a great
deal of Ramanujan’s work will not
become accessible to the mathemat-
ical community until Berndt's proj-
ectis finished.

Ramanujan’s unique capacity for
working intuitively with complicated
formulas enabled him to plant seeds
in a mathematical garden (to borrow
a metaphor from Freeman Dyson)
that is only now coming into bloom.
Along with many other mathema-
ticians, we look forward to seeing
which of the seeds will germinate in
future years and further beautify the
garden.
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Discussion

This article, much like the previous article, describes Ramanujan’s work and much more. Described
as a fine example of “tip of the iceberg writing,” the article won the 1993 Chauvenet prize of the
American Mathematical Society given for the “outstanding survey or expository mathematics paper”
published in a North American journal. It was also awarded the 1993 Hasse Prize of the Mathematical
Association of America given for a “noteworthy expository paper in an Association Journal one of
whose authors is younger than forty.” The Chauvenet prize has been awarded regularly since 1925'
and the winners are a group that we are honored to be counted amongst. Amusingly, despite having
worked together for a decade, we first met David Bailey in person when we accepted the award
together in San Antonio.

In his 1992 essay “The Definition of Numerical Analysis,” 2 Lloyd N. Trefethen engagingly
demolishes the conventional definition of Numerical Analysis as “the science of rounding errors.” He

explores how this hyperbolic view emerged and finishes by writing:

I believe that the existence of finite algorithms for certain problems, together with other historical
forces, has distracted us for decades from a balanced view of numerical analysis. Rounding errors
and instability are important, and numerical analysts will always be the experts in these subjects
and at pains to ensure that the unwary are not tripped up by them. But our central mission is
to compute quantities that are typically uncomputable, from an analytical point of view, and to
do it with lightning speed. For guidance to the future we should study not Gaussian elimination
and its beguiling stability properties, but the diabolically fast conjugate gradient iteration, or
Greengard and Rokhlin’s O(NN) multipole algorithm for particle simulations, or the exponential
convergence of spectral methods for solving certain PDEs, or the convergence in O(N) iteration
achieved by multigrid methods for many kinds of problems, or even Borwein and Borwein’s?
magical AGM iteration for determining 1,000,000 digits of 7 in the blink of an eye. That is the
heart of numerical analysis.

Source

J.M. Borwein, P.B. Borwein, and D.H. Bailey, “Ramanujan, modular equations, and approximations
to pi or how to compute a billion digits of pi,” MAA Monthly, 96 (1989), 201-219. Also available
online at http://www.cecm.sfu.ca/organics/papers/borwein/index.html.

1See http://www.maa.org/Awards/chauvent.html.
2 SIAM News November 1992.
3As in many cases this eponomy is inaccurate, if flattering, and really should be to Gauss-Brent-Salamin.
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Ramanujan, Modular Equations, and Approximations to Pi or
How to Compute One Billion Digits of Pi

I. M. BORWEIN aND P. B. BORWEIN
Mathematics Deparement, Dathousie University, Halifax, N.S. BIH 35 Canada

and

D. H. BarLey
NASA Ames Research Center, Moffett Field, CA 94015

Preface. The year 1987 was the centenary of Ramanujan’s birth. He died in 1920
Had he not died so young, his presence in modern mathematics might be more
immediately felt. Had he lived to have access to powerful algebraic manipulation
software, such as MACSYMA, who knows how much more spectacular his already
astonishing career might have been.

This article will follow up one small thread of Ramanujan’s work which has
found a modern computational context, namely, one of his approaches to approxi-
mating pi. Our experience has been that as we have come to understand these pieces
of Ramanujan’s work, as they have become mathematically demystified, and as we
have come to realize the intrinsic complexity of these results, we have come to
realize how truly singular his abilities were. This article attempts to present a
considerable amount of material and, of necessity, little is presented in detail. We
have, however, given much more detail than Ramanujan provided. Our intention 1s
that the circle of ideas will become apparent and that the finer points may be
pursued through the indicated references.

1. Introduction. There is a close and beautiful connection between the transfor-
mation theary for elliptic integrals and the very rapid approximation of pi. This
connection was first made explicit by Ramanujan in his 1914 paper “Maodular
Equations and Approximations to 7 [26]. We might emphasize that Algorithms 1
and 2 are not to be found in Ramanujan’s work, indeed no recursive approximation
of 7 is considered, but as we shall see they are intimately related to his analysis.
Three central examples are:

Sum 1. (Ramanujan)

V8 2 (4x)! {1103 + 26390n]
9801 ‘Zo (n)?* 3964

1
- =

Algorithm 1. Let ay:=6 — 4y2 and y,:= V2 - 1.
Let

1= (1-5)"
1+ (194"

43

and

an—Pl = (1 + yn+1)4an - 22H+3yn+l(1 + yn+1 + yn2+l..)
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Then
0 <a,— 1/m <164 24
and a, converges ta 1 /7 quartically (that is, with order four).

Algorithm 2. Let 54 = 5(V5 — 2) and o = 1/2.

Let
25
S = ?
! (z+x/z+1)%s,
where
x=75/s —1 yi={x -1} +7
and
1 1/5
z = [Ex(y + l.l'yz - 4x3)J
Let
se—5
a, ., = _g-jan—ﬁ"{ 5 + fsn(sf— 25,,-1—5}}.
Then

0<a,— ! <16 - 5%~%"
7
and «, converges to 1 /7 quintically (that is, with order five).

Fach additional term in Sum 1 adds roughly eight digits, each additional iteration
of Algorithm 1 quadruples the number of correct digits, while each additional
iteration of Algorithm 2 quintuples the number of correct digits. Thus a mere
thirteen iterations of Algorithm 2 provide in excess of one billion decimal digits of
pi. In general, for us, pth-order convergence of a sequence { &, ) to @ means that «,
tends to @ and that

|an+l - l‘:M| = C|an - alp

for some constant C > 0. Algorithm 1 is arguably the most efficient algorithm

currently known for the extended precision calculation of pi. While the rates of

convergence are impressive, it is the subtle and thoroughly nontransparent nature of

these results and the beauty of the underlying mathematics that intrigue us most.
Watson [37], commenting on certain formulae of Ramanujan, talks of

a thrifl which is indistinguishable from the thrill which I feel when I enter the
Sagrestia Nuovo of the Capella Mediet and see before me the austere beauty of
the four statues representing “Day.” “Night” “Euvening” and “Dawn™ which
Michelangelo has set over the tomb of Giuliano de’Medici and Lorenzo
de’ Mediel.

Sum 1 is directly due to Ramanujan and appears in [26]. It rests on a modular
identity of order 58 and, like much of Ramanujan’s work, appears without proof
and with only scanty motivation. The first complete derivation we know of appears
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in [11]. Algorithms 1 apnd 2 are based on modular identities of orders 4 and 5,
respectively. The underlying quintic modular identity in Algorithm 2 (the relation
for 5,) is also due to Ramanujan, though the first proof is due to Berndt and will
appear in [7].

One intention in writing this article is to explain the genesis of Sum 1 and of
Algorithms 1 and 2. It is not possible to give a short self-contained account without
assuming an unusual degree of familiarity with modular function theory. Also, parts
of the derivation involve considerable algebraic calculation and may most easily be
done with the aid of a symbol manipulation package (MACSYMA, MAPLE,
REDUCE, etc.). We hope however to give a taste of methods involved. The full
details are available in [11].

A second intention is very briefly to describe the role of these and related
approximations in the recent extended precision calculations of pi. In part this
entails a short discussion of the complexity and implementation of such calcula-
tions. This centers on a discussion of multiplication by fast Fourier transform
methods. Of considerable related interest is the fact that these algorithms for = are
pravably close to the theoretical optimum,

2. The State of Our Current Ignorance. Pi is almost certainly the most natural of
the transcendental numbers, arising as the circumference of a circle of unit diame-
ter. Thus, it is not surprising that its properties have been studied for some
twenty-five hundred years. What is surprising is how little we actually know.

We know that 7 is irrational, and have known this since Lambert’s proof of 1771
(see [5]). We have known that 7 is transcendental since Lindemann’s proof of 1882
[23]. We also know that « is not a Liouville number, Mahler praved this in 1953. An
irrational number B is Liounille if, for any n, there exist integers p and g so that

1
B"£ < —.
q g

Liouville showed these numbers are all transcendental. In fact we know that

fil 1
T — — —T (2.1)
q JREES

for p,q integral with ¢ sufficiently large. This irrationality estimate, due to
Chudnovsky and Chudnovsky [16] is certainly not best possible. It is likely that
14.65 should be replaced by 2 + ¢ for any ¢ > 0. Almost all transcendental numbers
satisfy such an inequality. We know a few related results for the rate of algebraic
approximation. The results may be pursued in [4] and [11].

We know that e” is transcendental. This follows by noting that e” = (—1)"¢ and
applying the Gelfond-Schneider theorem [4]. We know that 7 + log2 + v2log3 is
transcendental. This result is a consequence of the work that won Baker a Fields
Medal in 1970. And we know a few more than the first two hundred million digits
of the decimal expansion for = (Kanada, see Section 3).

The state of our ignorance is more profound. We do not know whether such basic
constants as 7 + e, 7 /e, or log 7 are irrational, let alone transcendental. The best
we can say about these three particular constants is that they cannot satisfy any
polynomial of degree eight or less with integer coefficients of average size less than
10° [3]. This is a consequence of some recent computations employing the

0=

g
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Ferguson-Forcade algorithm [17]. We don’t know anything of consequence about
the single continued fraction of pi, except (numerically) the first 17 million terms,
which Gosper computed in 1985 using Sum 1. Likewise, apart from listing the first
many millions of digits of #, we know virtually nothing about the decimal expan-
sion of #. It is possible, albeit not a good bet, that all but finitely many of the
decimal digits of pi are in fact 0’s and 1's. Car] Sagan’s recent navel Coniact rests on
a similar possibility. Questions concerning the normality of or the distribution of
digits of particular transcendentals such as = appear completely beyond the scope
of current mathematical techniques. The evidence from analysis of the first thirty
million digits is that they are very uniformly distributed [2]. The next one hundred
and seventy million digits apparently contain no surprises.

In part we perhaps settle for computing digits of # because there is little else we
can currently do. We would be amiss, however, if we did not emphasize that the
extended precision calculation of pi has substantial application as a test of the
“global integrity” of a supercomputer. The extended precision calculations de-
scribed in Section 3 uncovered hardware errors which had to be corrected before
those calculations could be successfully run. Such calculations, implemented as in
Section 4, are apparently now used routinely to check supercomputers before they
leave the factory. A large-scale calculation of pi is entirely unforgiving; it soaks into
all parts of the machine and a single bit awry leaves detectable consequences.

3. Matters Computational

I am ashamed 10 tell you to how many figures I carvied these calculations, having
no other business at the time.
Tsaac Newion

Newton's embarrassment at having computed 15 digits, which he did using the
arcsinlike formula
33 ( 1 1 1 1

=2
Ty

127 5-25 28.27 1228

3/3 .
£+24f"n/x—x2 dx,
4 0

is indicative both of the spirit in which people calculate digits and the fact that a
surprising number of people have succumbed to the temptation [3].

The history of efforts to determine an accurate value for the constant we now
know as 7 is almost as long as the history of civilization itself. By 2000 B.C. both the
Babylonians and the Egyptians knew « to neatly two decimal places. The Babyloni-
ans used, among others, the value 3 1/8 and the Egyptians used 3 13 /81, Not all
ancient societies were as accurate, however—nearly 1500 years later the Hebrews
were perhaps still content to use the value 3, as the following quote suggests.

Also, he made a molten sea of ten cubits from brim to brim, round in compass,
and five cubits the height thereof; and a line of thirty cubits did compass it vound
about.

Old Testamenr, 1 Kings 7.23

Despite the long pedigree of the problem, all nonempirical calculations have
employed, up to minor variations, only three techniques.
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1) The first technique duve to Archimedes of Syracuse (287-212 B.c.) is, recur-
sively, to calculate the length of circumscribed and inscribed regular 6 - 2%-gons
about a circle of diameter 1. Call these quantities a, and b,, respectively. Then
o = /3, by =3 and, as Gauss’s teacher Pfaff discovered in 1800,

2a.b,

a,41°= + b and bn-F—l = ]u'an{-].bn .

an ]

Archimedes, with »n = 4, obtained

38 < ;o< 3L
While hardly better than estimates one could get with a ruler, this is the first method
that can be used to generate an arbitrary number of digits, and to a nonnumerical
mathematician perhaps the problem ends here. Variations on this theme provided
the basis for virtually all calculations of # for the next 1800 years, culminating with

a 34 digit calculation due to Ludolph van Ceulen (1540-1610). This demands
polygons with about 2% sides and so is extraordinarily time consuming.

)} Caleulus provides the basis for the second technique. The underlying method
relies on Gregory’s series of 1671

x dt x' Xt
arctanx=-’;]1+r2=x—?+?—--- |[x] <1

coupled with a formula which allows small x to be used, like

7 1 1
— =4 arctan| — | — arctan| — |.
4 5

239

This particular formula is due to Machin and was employed by him to compute 100
digits of # in 1706. Variations on this second theme are the basis of all the
calculations done until the 1970°s including William $hanks’ menumental hand-
calculation of 527 digits. In the introduction to his book [32], which presents this
calculation, Shanks writes:

Towards the close of the year 1850 the Author first formed the design of rectifying
the circle 1o upwards of 300 places of decimals. He was fully aware at that time,
that the accomplishment of his purpose would add little or nothing to his fame as a
Mathematician though it might as a Computer, nor would it be productive of
anything in the shape of pecuniary recompense.

Shanks actually attempted to hand-calculate 707 digits but a mistake crept in at
the 527th digit. This went unnoticed until 1945, when D. Ferguson, in one of the
last “nondigital” caleulations, computed 530 digits. Even with machine calculations
mistakes occur, so most record-setting calculations are done twice—by sufficiently
different methaods.

The advent of computers has greatly increased the scope and decreased the toil of
such calculations. Metropolis, Reitwieser, and von Neumann computed and ana-
lyzed 2037 digits using Machin’s formula on ENIAC in 1949. In 1961, Dan Shanks
and Wrench calculated 100,000 digits on an IBM 7090 [31]. By 1973, still using
Machin-like arctan expansions, the mullion digit mark was passed by Guillard and
Bouyer an a CDC 7600.
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iii) The third technique, based on the transformation theory of elliptic integrals,
provides the algorithms for the most recent set of computations. The most recent
records are due separately to Gosper, Bailey, and Kanada. Gosper in 1285 calcu-
lated over 17 million digits (in fact over 17 millien terms of the continued fraction)
using a carefully orchestrated evaluation of Sum 1.

Bailey in January 1986 computed over 29 million digits using Algorithm 1 on a
Cray 2 [2]. Kanada, using a related quadratic algorithm (due in basis to Gauss and
made explicit by Brent [12] and Salamin [27]} and using Algorithm 1 for a check,
verified 33,554,000 digits. This employed a HITACHI $-810,/20, took roughly eight
hours, and was completed in September of 1986. In January 1987 Kanada extended
his computation to 2% decimal places of = and the hundred million digit mark had
been passed. The calculation took roughly a day and a half on a NEC §X2 machine.
Kanada’s most recent feat (Jan. 1988) was to compute 201,326,000 digits, which
required only six hours on a new Hitachi S-820 supercomputer. Within the next few
years many hundreds of millions of digits will no doubt have been similarly
computed. Further discussion of the history of the computation of pi may be found
in [5] and [9].

4. Complexity Concerns. One of the interesting morals from theoretical com-
puter science is that many familiar algorithms are far from optimal. In order to be
more precise we introduce the notion of bit complexity. Bit complexity counts the
number of single cperations required to complete an algorithm. The single-digit
operations we count are +,—,X. (We could, if we wished, introduce storage and
logical comparison into the count. This, however, doesn’t affect the order of growth
of the algorithms in which we are interested.) This is a good measure of time on a
serial machine. Thus, addition of two n-digit integers by the usual method has bit
complexity O(n), and straightforward uniqueness considerations show this to be
asymptotically best possible.

Multiplication is a different story. Usual multiplication of two n-digit integers
has bit complexity O(n?) and no better. However, it is possible to multiply two
n-digit integers with complexity O(n(log n)(loglogn)). This result is due to
Schénhage and Strassen and dates from 1971 [29). It provides the best bound known
for multiplication. No multiplication can have speed better than O(x). Unhappily,
more exact results aren’t available.

The originat observation that a faster than O(n?) multiplication is possible was
due to Karatsuba in 1962, Obhserve that

(a + B10") (e + d10") = ac + [(a — b)(c — d} ~ ac — bd]10" + bd107",

and thus multiplication of two 2#-digit integers can be reduced to three multiplica-
tions of n-digit integers and a few extra additions. (Of course multiplication by 10"
is just a shift of the decimal point.) If one now proceeds recursively one produces a
multiplication with bit complexity

O ( " logy 3 ) .
Note that log,3 = 158... < 2.
We denote by M(n) the bit complexity of multiplying two rn-digit integers
together by any method that is at least as fast as usual multiplication.

The trick to implementing high precision arithmetic is to get the multiplication
right. Division and root extraction piggyback off multiplication using Newton's
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method. One may use the iteration

— 2
Xear = 2% — Xy

to compute 1 /y and the iteration

1 y
A1 = G %t .
to compute /y . One may also compute 1/ VJy from

xk(3 - J’xi)
Xgr1 = _'“2—

and so avoid divisions in the computation of 1/; . Not only do these iterations
converge quadratically but, because Newton’s method is self-correcting (a slight
perturbation in x, does not change the limit), it is possible at the kth stage to work
only to precision 2% If division and root extraction are sa implemented, they both
have bit complexity O(M(n)), in the sense that a-digit input produces n-digit
accuracy in a time bounded by a constant times the speed of multiplication. This
extends in the obvious way to the solution of any algebraic equation, with the
startling conclusion that every algebraic number can be computed (to n-digit
accuracy) with bit complexity O M(1)). Writing down n-digits of v2 or 3y7 is (up
to a constant) no more complicated than multiplication.

The Schonhage-Strassen multiplication is hard to implement. However, a multi-
plication with complexity O((log #)?**n) based on an ordinary complex (floating
point) fast Founer transform is reasonably straightforward. This is Kanada's
approach, and the recent records all rely critically on some wvariations of this

technique.
To see how the fast Fourier transform may be used to accelerate multiplication,
let x = (x4, xy, Xo,..., X,_1)and ¥ = (¥, V1, Ja.---, ¥ ) be the representations

of two high-precision numbers in some radix . The radix & is usually selected to be
some power of 2 or 10 whose square is less than the largest integer exactly
representable as an ordinary floating-point number on the computer being used.
Then, except for releasing each “carry,” the product z := (z4, 2, 25,..., 25, ) of x
and y may be written as

5 = Xglg
I = Xgh t X1
Xg¥s T X0, + X2

(%]
-
]

o1 = %M1 + X1 ¥-2 + o +xn‘—~].yﬂ

Zy 3 = X1 Va2t X, aVu
‘xn-—lyn'—l

Zyu—1 = 0.

Z3p-2

Now consider x and y to have »n zeros appended, so that x, y, and z all have
length N = 2n. Then a key observation may be made: the product sequence z is
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precisely the discrete convolution C(x, »):

N-1
2, = CAx, y) = Z XV

J=0

where the subscript & — j is to be interpreted as & — j + N if & — j is negative.
Now a well-known result of Fourier analysis may be applied. Let F(x) denote
the discrete Fourier transform of the sequence x, and let F~'(x) denate the inverse
discrete Fourier transform of x:
N-1

Fk(x) = Z lee—lm'jk/N
i=0
1 N-1 .
Fk_l(X) — Z x}_eiwuk/N‘
N 5

Then the “convolution theorem,” whose proof is a straightforward exercise, states
that

F[C(x, y)] = F(x)F(y)
or, expressed another way,

C(x, y} = FT[F(x) F(y)].

Thus the entire multplication pyramid z can be obtained by performing two
forward discrete Fourier transforms, one vector complex multiplication and one
inverse transform, each of length ¥ = 2n. Once the real parts of the resulting
complex numbers have been rounded to the nearest integer, the final multiprecision
product may be obtained by merely releasing the carries modulo b, This may be
done by starting at the end of the z vector and working backward, as in ¢lementary
school arithmetic, or by applying other schemes suitable for vector processing on
more sophisticated computers.

A straightforward implementation of the above procedure would not result in
any computational savings—in fact, it would be several times more costly than the
usual “schoolboy”™ scheme. The reason this scheme is used is that the discrete
Fourier transform may be computed much more rapidly using some variation of the
well-known “fast Fourier transform™ (FFT) algorithm [13]. In particular, if N = 27,
then the discrete Fourier transform may be evaluated in only 5m2™ arithmetic
operations using an FFT. Direct application of the definition of the discrete Fourier
transform would require 2*7*? floating-point arithmetic operations, even if it is
assumed that all powers of e~ *"/¥ have been precalculated.

This is the hasic scheme for high-speed multiprecision multiplication. Many
details of efficient implementations have been omitted. For example, it is possible to
take advantage of the fact that the input sequences x and y and the output
sequence z are all purely real numbers, and thereby sharply reduce the operation
count. Also, it is possible to dispense with complex numbers altogether in favor of
performing computations in fields of integers modulo large prime numbers. Intet-
ested readers are referred to [2], [8], [13], and [22].

When the costs of all the constituent operations, using the best known tech-
niques, are totalled both Algorithms 1 and 2 compute » digits of # with bit
complexity O M(n)log n), and use O(log n) full precision operations.
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The bit complexity for Sum 1, or for # using any of the arctan expansions, is
between O((log #)>M(n)) and O(nM(#n)) depending on implementation. In each
case, one is required to sum G(n) terms of the appropriate series. Done naively, one
abtains the latter bound. If the calculation is carefully orchestrated so that the terms
are grouped to grow evenly in size (as rational numbers) then one can achieve the
former bound, but with no corresponding reduction in the number of operations.

The Archimedean iteration of section 2 converges like 1/4" so in excess of »
iterations are needed for n-digit accuracy, and the bit complexity is O(#M(n)).

Almost any familiar transcendental number such as e, v, {(3), or Catalan’s
constant (presuming the last three to be nonalgebraic) can be computed with bit
complexity O((log n)M(n)) or O((log n}>M(n)). None of these numbers is known
to be computable essentially any faster than this. In light of the previous observa-
tion that algebraic numbers are all computable with bit complexity O{M(n)), a
proof that 7 cannot be compuited with this speed would imply the transcendence of
7. It would, in fact, imply more, as there are transcendental numbers which have
complexity O(M(#n)). An example is 0.10100100001 ... .

It is also reasonable to speculate that computing the nth digit of 7 is not very
much easier than computing all the first # digits. We think it very probable that
computing the nth digit of « cannot be O(n).

5. The Miracle of Theta Functions

When I was a student, abelian functions were, as an effect of the Jacobian
tradition, considered the uncontested swmmit of mathematics, and each of us was
ambitious to make progress in this field. And now? The younger generation
hardly knows abelian functions.

Felix Klein [21]

Felix Klein's [ament from a hundred years ago has an uncomfortable timelessness
to it. Sadly, it is now possible never to see what Bochner referred to as “ the miracle
of the theta functions” in an entire university mathematics program. A small piece
of this muracle is required here [6], [11], [28]. First some standard notations. The
complete elliptic integrals of the first and second kind, respectively,

K(k):

= f’”‘w‘ﬁ— (5.1)
0 V1 — k*sin’
E(k) = [~ isintt dr. (5.2)
1]

The second integral arises in the rectification of the ellipse, hence the name elliptic
integrals, The complementary modulus is

k' =1 - k?
and the complementary integrals K’ and E’ are defined by
K'{(k)=K(k'}y and E’'(k)=E(k').

The first remarkable identity is Legendre's relation namely

and

E(IVK (k) + E'(])K(k) — K(K)K'(k) = ; (5.3)
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(for 0 < k < 1), which is pivotal in relating these quantities to pi. We also need to
define two Jacobian theta functions

=]

0,(q) = Y, gV (5.4)

H= —a0

and

(@)= ¥ o" (53)

These are in fact specializations with (¢t = 0) of the general theta functions. More
gencrally

8;(r,q) = Y g¢%e™  (imr> Q)

H= —

with similar extensions of @,. In facobi’s approach these general theta functions
provide the basic building blocks for elliptic functions, as functions of ¢ (see [11],
(39)).

The complete elliptic integrals and the special theta functions are related as
follows. For jgj < 1

K(k) = 703(4) (5.6)
and
, dK (k)
E(k) = (k) [K(k) +he—r ] (5.7)
where
2 O —
k= i(q) = gij; k) = (53)
and
q= o TR U/ K(k) (5_9)
The moduiar function A is defined by
8,(¢) ]
A1) = Mq) = K¥(g) = [@EZ;] , (5:10)

where
g= e.:'m‘

We wish to make a few comments about modular functions in general before
restricting our attention to the particular modular function A. Modular functions are
functions which are meromorphic in H, the upper half of the complex plane, and
which are invariant under a group of linear fractional transformations, G, in the
sense that

f(g(z)) =f(z) VzeG.
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[Additional growth conditions on f at certain points of the associated fundamental
region (sece below) are also demanded.] We restrict G to be a subgroup of the
modular group T where I is the set of all transformations w of the form

ar+ b
ct+d’

with a, b, ¢, d integers and ad — be = 1. Observe that I 15 a group under composi-
tion. A fundamental region F, is a set in H with the property that any element in A
is uniquely the imdge of some element in F; under the action of G. Thus the
behaviour of a modular function is uniquely determined by its behaviour on a
fundamental region.

Modular functions are, in a sense, an extension of elliptic (or doubly periodic)
functions-—functions such as sn which are mmvariant under linear transformations
and which arise naturally in the inversion of elliptic integrals.

The definitions we have given above are not complete. We will be more precise in
our discussion of A. One might bear in mind that much of the theory for A holds in
considerably greater generality.

The fundamental region F we associate with A 1s the set of complex numbers

w(z) =

Fi={imt>0} n[{jrezj<1 and
Rex1>1}ufrer= -1} U (Re+1=1}].

The A-group (or theta-subgroup) is the set of linear fractional transformations w
satisfying

at + b

t] i= ——
wir) ca+d’

where a, b, ¢, d are integers and ad — ¢ = 1, while in addition ¢ and d are odd
and b and ¢ are even. Thus the corresponding matrices are unimodular. What
makes A a A-modular function is the fact that A is meromorphic in {im ¢ > @} and
that

A(w(1)) = A1)

for all w in the A-group, plus the fact that A tends to a definite limit (possibly
infinite) as ¢ tends to a vertex of the fundamental region {one of the three points
(0, — 1), (0,0, (i, o0)). Here we only allow convergence from within the fundamental
regior.

Noaw some of the muracle of modular functions can be described. Largely because
every point in the upper half plane is the image of a point in F under an ¢lement of
the A-group, one can deduce that any A-modular function that is bounded on F is
constant. Slightly further into the theory, but relying on the above, is the result that
any two modular functions are algebraically related, and resting on this, but further
again into the field, is the following remarkable result. Recall that g is given by
(5.9).

THEOREM 1. Let z be a primitive pth root of unity for p an odd prime. Consider the
pth order modular equation for X as defined by

W,(x,A) = (x = Ag)(x = &) -+ {x = },), (5.11}
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where
A, = A{z'g"?) i<p
and
A, =2A{g").
Then the funciion W, is a polynomial in x and A (independent of q), which has integer

coefficients and is of degree p + 1 in both x and A.

The modular equation for A usually has a simpler form in the associated
variables # = x'/* and v == X/}, In this form the 5th-order modular equation is
given by

Qo(u, v) = u® — 0%+ 50 (u? — v?) + 4uv(1 — u™*). (5.12)
In particular
,(g? 0
2047) _ 2oy Bl
CHELS @,(q)

are related by an algebraic equation of degree p + 1.
The miracle is not over. The pth-order multiplier (for A) 1s defined by

K(k(4")) [@3@")}2
K(k(q)) B,(q)

and turns out to be a rational function of 4{g”) and k(q).
One is now in possession of a pth-order algorithm for K/#, namely: Let
k= k(q”). Then

2K (ko) -1 -1 -1
sz (k(]?kl)Mp (klakz)M,a (koo keg) e

T

M, (k(q).k(q%)) = (5.13)

This 1s an entirely algebraic algorithm. One needs to know the pth-order modular
equation for A to compute k,,, from k, and one needs to know the rational
multiplier M,. The speed of convergence (O(¢ #), for some ¢ < 1) is easily deduced
from (5.13) and (5.9).

The function A(z) is 1-1 on F and has a well-defined inverse, A ™}, with branch
points only at @, 1 and co. This can be used to provide a one line proof of the “big”
Picard theorem that a nonconstant entire function misses at most one value (as does
exp). Indeed, suppose g is an entire function and that it is never zero or one; then
exp(A~'(g(z))) is a bounded entire function and is hence constant.

Littlewood suggested that, at the right point in history, the above would have
been a strong candidate for a ‘one line doctoral thesis.

6. Ramanujan’s Solvable Modular Fquations. Hardy {19] commenting on
Ramanujan’s work on elliptic and modular functions says

It is here that both the profundity and limitations of Ramanujan’s knowledge
stand out most sharply.

We present only one of Ramanujan’s modular equations.



Chapter 4 59

1989] RAMANUJAN, MODULAR EQUATIONS, AND APPROXIMATIONS TO PI 213
THEOREM 2.
56 q25
59,(a7) 1+ /5 4 1375, (6.1)
B,(q)

where for i = 1 and 2

r = %X(}f + fy? - 4x3)

With

5
==M—l and y=(x—-1)"+7.
CAC)

This is a slightly rewritten form of entry 12(iii) of Chapter 19 of Ramanujan’s
Second Notebook (see [7], where Berndt's proofs may be studied). One can think of
Ramanujan’s quintic modular equation as an equation in the multiplier A, of
(5.13). The initial surprise is that it is solvable, The quintic modular relation for A,
W, and the related equation for A'/3, Q., are both nonsolvable. The Galois group of
the sixth-degree equation 5 (see (5.12)) over Q¢u) is 4, and is nonsolvable. Indeed
both Hermite and Kronecker showed, in the middle of the last century, that the
solution. of a general gquintic may be effected in terms of the solution of the
Sth-order modular equation ¢5.12) and the roots may thus be given in terms of
the theta functions.

In fact, in general, the Galois group for W, of (5.11) has order p(p + 1)}(p — 1)
and is never solvable for p = 5. The group 1s quite easy to compute, it is generated
by two permutations. If

T

g=e" then T—o7+2 and T—)m

are both elements of the A-group and induce permutations on the A; of Theorem 1.
For any fixed p, one can use the g-expansion of (5.10) to compute the effect of
these transformations on the A, and can thus easily write down the Galois group.

While W, is not solvable aver Q(A), it is salvable over Q(A, Ay). Note that A is
a root of W,. Itis of degree p + 1 because W, is irreducible. Thus the Galois group
for W, aver Q(A, A,) has order p(p — 1). For p = 5,7, and 11 this gives groups of
order 20, 42, and 110, respectively, which are obviously solvable and, in fact, for
general primes, the construction always produces a solvable group.

From (5.8) and (5.10) one sees that Ramanujan’s modular equation can be
rewritten to give A, solvable in terms of A, and A. Thus, we can hope to find an
explicit solvable relation for A, in terms of A and A,. For p = 3, W, is of degrec 4
and is, of course, solvable. For p = 7, Ramanujan again helps us out, by providing a
solvable seventh-order modular identity for the closely related eta function defined
by

Lia]
n(q) =g [101 - 4%).
The first interesting prime for which an explicit solvable form is not known is the

“endecadic” { p = 11) case. We consider only prime values because for nonprime
values the modular equation factors.
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This leads to the interesting problem of mechanically constructing these equa-
tions. In principle, and to some extent in practice, this is a purely computational
problem. Modular equations can be computed fairly easily from (3.11) and even
more easily in the associated variables 4 and o. Because one knows a priori bounds
on the size of the (integer) coefficients of the equations one can perform these
calculations exactly. The coefficients of the equation, in the variables « and o, grow
at most like 2" (See [11]) Computing the solvable forms and the associated
computational problems are a little more intricate—though still in principle entirely
mechanical. A word of caution however: in the variables u and v the endecadic
modular equation has largest coefficient 165, a three digit integer. The endecadic
modular equation for the intimately related function J (Klein's absolute invariant)
has coefficients as large as

27090964785531389931563200281035226311929052227303 x 29231952911%53,

It is, therefore, one thing to solve these equations, it is entirely another matter to
present them with the economy of Ramanujan.

The paucity of Ramanujan’s background in complex analysis and group theory
leaves open to speculation Ramanujan’s methods. The proofs given by Berndt are
difficult. In the seventh-order case, Berndt was aided by MACSYMA—a sophisti-
cated algebraic manipulation package. Berndt comments after giving the proof of
various seventh-order modular identities:

Of course, the proof that we have given is quite unsatisfactory because it is a
verification that could not have been achieved without knowledge of the result.
Ramanujan obuviously possessed a more natural, transparent, and ingenious

progf.

7. Modular Equations and Pi. We wish to connect the modular equations of
Theorem 1 to pi. This we contrive via the function alpha defined by:

. E'(k) T
afr) = X (k) — (2!('(;"())11

(7.1)

where
k=lk(q) and g=e ",

This allows one to rewrite Legendre’s equation (5.3) in a one-sided form without the
conjugate variable as

== K[WE - (¥ — a(r)K]. (7.2)

We have suppressed, and will continue to suppress, the k variable. With (5.6) and
(5.7) at hand we can write a g-expansion for «, namely,

]

. L ow(-q)"
__V{;4 ﬂ=—m00 :
i Y (—g)
a(r) = o , (7.3)

£
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and we can see that as r tends to infinity ¢ = e~ ™" tends to zero and a(r) tends to
1 /7. In fact

alr) — % = S(JF - %)e""f’_, (7.4)

The key now is iteratively to calculate . This is the content of the next theorem.

THEOREM 3. Let k= k(q), k; = k(q?) and M, = M, (ky, k;) as in (513).
Then

a(r) k2 i, M
a(pr) = 205 - ”[mz—pkh =

M, M, M,
where represents the full derivative of M, with respect to k,. In particular, « is
algebraic for rational arguments.

We know that K(k,;) is related via M, to K(k) and we know that E(k) is
related via differentiation to K. (See (5.7) and (5.13).) Note that ¢ — ¢” corre-
sponds to » = pr. Thus from (7.2) some relation like that of the above theorem
must exist. The actual derivation requires some careful algebraic manipulation. (See
[11], where it has also been made entirely explicit for p =2, 3, 4, 5, and 7, and
where numerous algebraic values are determined for a(#).) In the case p = 5 we
can specialize with some considerable knowledge of quintic modular equations to
get:

THEOREM 4. Let s :=1/M,(ky, k). Then

2
a(lSr) = sja(r) — r Q + 1/5(_5'2 — 25+ 5) )
This couples with Ramanujan’s quintic modular equation to provide a derivation of
Algorithm 2.
Algorithm 1 results from specializing Theorem 3 with p := 4 and coupling it with
a quartic modular equation. The quartic equation in question is just two steps of the
corresponding quadratic equation which is Legendre’s form of the arithmeric
geomelric mean iteration, namely:

wk
k, = .
1+ 4k
An algebraic pth-order algorithm for « is derived from coupling Theorem 3 with

a pth-order modular equation. The substantial details which are skirted here are
available in [11].

8. Ramanujan’s sum. This amazing sum,
1 V8 = (4a) [1103 + 26390x]

x 9801 =, (1) 396"

is a specialization (N = 38) of the following result, which gives reciprocal series for
o in terms of our function alpha and related modular quantities.
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THEOREM 5.

; H=0 (”!)3 Y ’ (81)
whare,
Ak (ki) (el ey
Xy g 12 - ) 1
(1+ k3)
with
ol Nyx=! V{F 12 _ o —12
4 (W) { )f - | (B8
1+ ky 4 2
and

ky =k(e), gl = (ki) (2.
Here (c),, is the vising factorial: (¢}, = c(¢ + )¢+ 2) - (¢ +n =1

Some of the ingredients for the proof of Theorem 5, which are detailed in [11],
are the following. Qur first step is to write (7.2) as a sum after replacing the E by K
and 4K /dk using (5.7). One then uses an identity of Clausen’s which allows one to
write the square of a hypergeometric function ,F, in texms of a generalized
hypergeometric , F;, namely, for all k& one has

L [2K (k) )P 131 2 *
(L + k*) - =5 21235,1,11 PR

AbIbIGRE=N

n=0 (]‘)n(l)n n!

Here g is related to & by

4}'((;(’)2 (812+g—12)_
(1+ k) 2
as required in Theorem 5. We have actually done more than just use Clausen’s
identity, we have also transformed it once using a standard hypergeometric substitu-
tion due to Kummer. Incidentally, Clausen was a nineteenth-century mathematician
who, among other things, computed 250 digits of # in 1847 using Machin’s formula.
The desired formula (8.1) is obtained on. combining these picces.
Even with Theorem 3, our work is not complete. We still have to compute

ko = k(e"""fs_s) and o = a58).

In fact

(U’QQ +5)
I
8i = q
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is a well-known invariant related to the fundamental solution to Pell’'s equation for
29 and it turns out that

gy = (@) (99v29 — 444)(992 — 70 — 13v29).

One can, in principle, and for ¥ == 58, probably in practice, solve for k, by directly
solving the Nth-order equation

Wyl(ky, 1 —ki)=0.

For N = 58, given that Ramanujan [26] and Weber [38)] have calculated g, for us,
verification by this method is somewhat easier though it still requires a tractable
form of W, Actually, more sophisticated number-theoretic techniques exist for
computing &, {(these numbers are called singular moduli). A description of such
techniques, including a reconstruction of how Ramanujan might have computed the
various singular moduli he presents in [26]; is presented by Watson in a long series
of papers commencing with [36]; and some more recent derivations are given in [11]
and [30]. An inspection of Theorem 5 shows that all the constants in Series 1 are
determined from g, Knowing « is equivalent to determining that the number 1103
is correct.

It is less clear how ane explicitly calculates a, in algebraic form, except by bruie
force, and a considerable amount of brute force is required; but a numerical
calculation to any reasonable accuracy is easily obtained from (7.3) and 1103
appears! The reader is encouraged to try this to, say, 16 digits. This presumably is
what Ramanujan observed. Ironically, when Gosper computed 17 million digits of «
using Sum 1, he had no mathematical proof that Sum 1 actually converged to 1 /7.
He compared ten million digits of the caleulation to a previous caleulation of
Kanada et al. This verification that Sum 1 is correct to ten mullion places also
provided the first complete proof that as, is as advertised above. A nice touch—that
the calculation of the sum should prove itself as it goes.

Roughly this works as follows. One knows enough about the exact algebraic
nature of the components of 4, (N) and x, to know that if the purported sum (of
positive terms) were incorrect, that before one reached 3 million digits, this sum
must have ceased to agree with 1/7. Notice that the components of Sum 1 are
related to the solution of an equation of degree 58, but virtually no irrationality
remains in the final packaging. Once again, there are very good number-theoretic
reasons, presumably unknown to Ramanujan, why this must be so (58 15 at least a
good candidate number for such a reduction). Ramanujan’s insight into this
marvellous simplification remains obscure.

Ramanujan [26] gives 14 other series for 1/7, some others almost as spectacular
as Sum 1—and one can indeed derive some even more spectacular related series.*
He gives almost no explanation as to their genesis, saying only that there are
“corresponding theories” to the standard theory (as sketched in section 5) from
which they follow. Hardy, quoting Mordell, observed that “it is unfortunate that
Ramanujan has not developed the corresponding theories.” By methods analogous

*{Added in proof) Many related series due to Barwein and Borwein and to Chudnovsky and
Chudnavsky appear in papers in Ramanujan Revisited, Academic Press, 1988,
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to those used above, all his series can be derived from the classical theory [11].
Again it is unclear what passage Ramanujan took to them, but it must in some part
have diverged from ours.

We conclude by writing down another extraordinary series of Ramanujan’s,
which also derives from the same general body of theory,

1 = 142n + 35
= 2
; = ngo( nn) 212ﬂ+4

This series is composed of fractions whose numerators grow like 29" and whose
denominators are exactly 16 - 2'?*, In particular this can be used to calculate the
second block of # binary digits of # without calculating the first n binary digits.
This beautiful observation, due to Holloway, results, disappointingly, in no intrinsic
reduction in complexity.

9, Sources. References [7), [11}, [19], [26], [36], and [37] relate directly to Ra-
manujan’s work. References [2], [8], [9], {10], [12], [22], [24], [27], [29], and [31]
discuss the computational concerns of the paper.

Material on modular functions and special functions may be pursued in [1], [6],
(9], [14], [15], [18], [20], [28], {34], [38], and {39]. Some of the number-thearetic
concerns are touched on in {3], [6], {9], {11], {16], [23], and [35].

Finally, details of all derivations are given in [11].
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5. Strange series and high precision fraud

Discussion

This article is one of the authors’ favorites. Mathematics has frequently seen alternating periods
of theory building and periods of pathology hunting. The first without the second leads to sterile
structures save for a few Grothendiecks. The second without the first runs out of steam, and one
is left only with something akin to a pre-Linnaean taxonomy, in which no structures are to be
discerned. In his wonderful article “Birds and Frogs,”! Freeman Dyson makes the same point forcibly
and elegantly. In Dyson’s terms, we are unabashed frogs who consume the droppings of friendly

birds thereby enriching the pond’s nutrients for future visiting birds:

Some mathematicians are birds, others are frogs. Birds fly high in the air and survey
broad vistas of mathematics out to the far horizon. They delight in concepts that unify
our thinking and bring together diverse problems from different parts of the landscape.
Frogs live in the mud below and see only the flowers that grow nearby. They delight in
the details of particular objects, and they solve problems one at a time. I happen to be a
frog, but many of my best friends are birds. The main theme of my talk tonight is this.
Mathematics needs both birds and frogs. Mathematics is rich and beautiful because
birds give it broad visions and frogs give it intricate details. Mathematics is both great
art and important science, because it combines generality of concepts with depth of
structures. It is stupid to claim that birds are better than frogs because they see farther,
or that frogs are better than birds because they see deeper. The world of mathematics is

both broad and deep, and we need birds and frogs working together to explore it.

Source

J.M. Borwein and P.B. Borwein, “Strange series and high precision fraud,” MAA Monthly, 99 (1992),
622-640.

!Published in the Notices of the AMS, February 2009, 212-223, the paper is available at http://www.ams.org/
notices/200902/rtx090200212p.pdf. Great frogs include von Neumann and Besicovitch, birds include Yang and
Witten.
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Strange Series and High Precision Fraud

J. M. Borwein and P. B. Borwein

INTRODUCTION. Five of the following twelve series approximations are exact,
The remaining seven are not identities but are approximations that are correct to
at least 30 digits. One in fact is correct to aver 18,000 digits and another to in
excess of a billion digits. The reader is invited to separate the true from the bagus.
(For answers se¢ the end of the introduction.) Most of these series are easily
amenable to high precision calculation in one’s favorite high precision environ-
ment, such as Maple or MACSYMA, and provide examples of “caveat computat.”
Things are not always as they appear.

Sum 1

99

= a(2") 1
L
n=1
where a(n) counts the number of odd digits in odd places in the decimal expansion

of n. (a(901) = 2, a(210) = 0, a(811) = 1, here the 1st digit is the 1st to the left of
the decimal point.)

Sum 2
“ a(n) 10
Lo T 99
n=1
where a(n) is as above.
Sum 3
oo 1 1 2542
b - _ =
;El (n)(nz (n+ 1)2) 297

where b(n) counts the number of odd digits in # (b(901) =2, b(811) = 2,
(b(406) = 0).

Sum 4
e(n) 511
20 8184

X
n=1
where c(n) := 32¢(n) — ¢,(n}/32, and ¢[{n) counts the number of nines in #,

while ¢,(n} counts the number of eights in n (¢(8199) =32 -2 — 1/32).

622 STRANGE SERIES, HIGH PRECISION FRAUD [August-September
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Sum §
( 1)3(”) (eﬁ'/Z _ e—-rr/ﬂ)
L 16%(D(n))* m’

>

where &§(n) is the number of ones in the binary expansion of n and D{n) is the
product T1; max{i8,(n), 1} where 8,(n) is the ith binary digit of n (8(1011,) = 3,
P(1011,) =4-2-1=8).

Sum 6

> e(n) 10

g a(n + 1) E log 10
where e(n) “reflects” n through the decimal point (e(123) = 321, €(90140) =
.04109).

Sum 7
= b(2%) 1
X 53

n=1

where b(n) counts the number of odd digits in # (as in Sum 3).

Sum 8
= e(2”) 3166
g 3069

where e(s) counts the number of even digits in ».

Sum 9
i [ntanh w1
E 07 81
where | | is the greatest integer function ((3.7] = 3).
Sum 10
@ [ mf163/9 I
E 2 1280640
Sum 11
i 1 Fr
_Zm 10/ 100 - 100\,‘ log 10
Sum 12

10*

H=—o

1 = 2
(_ Y e—(n’/l@“’)) =

1592] STRANGE SERIES, HIGH PRECISION FRAUD 623
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These sums break into four types. Sums 2, 3, 4, 5, and 6 are all specializations of
generating functions for digit sums, more-or-less of the type:

[T +q%)= L x"g" (1.1)
n= n={

where 8(n) counts the number of ones in the binary expansion of #. These are
treated in section 2. See also [14].

Sums 1 and 7 are related to a problem independently due to E. Levine (College
Marh Journal, Vol. 19, number 35, 1989) and to D. Bowman and T. White ( Amer.
Math, Monthly, Vol. 96 1989, p. 743), which asks if

)E g(27) _2

w0 2" 9

where g(n) counts the number of digits > 5 in n. The key to the solution we
provide is due to our colleague A. C. Thampson. See section 3.
The sums 8, ¢ and 10 revolve around the fact that

o
Z w[najqn

n=0

has a particulacly attractive and rapidly convergent generating function that is
related to the continued fraction expansion of «. This is essentially an observation
of Mahler’s [11], though the development we offer in section 4 is quite distinct. See
also [10], [3]. This is closely related to problem #£3353 in the MAA Monthly due
to H. Diamond [6].

The last section deals with series [ike Sums 11 and 12, There are consequences
of the fact that f(¢) == T2___e """ is a modular form and satisfies a simple
functional equation linking f{¢) and f(1/z).

The fradulent series are: Sum 2 {correct to 99 digits), Sum 4 {correct to 240
digits), Sum 8 (correct to 30 digits), Sum 9 (correct to 267 digits), Sum 10 {correct
to at least half a billion digits), Sum 11 (correct to at least 18,000 digits), and Sum
12 (correct to at [east 42 billion digits).

GENERATING FUNCTIONS—PART ONE. Many digit sums are generated by
the follawing type of argument.

Example 2.1. Let b(n) count the number of odd digits in »n base 10 (as in Sums 3
and 7). Then for gl < 1,
Z xb(n)qn — l_I (1 _f_’qu(.'l’l + q2'10" +xq3'll]" +q4-10" +xq5-10" +q6-10”
=0 n=1>
+xq?-ll]" + qﬁ-lﬂ" +xq9-10")

(=)

- Flrteam) o

To see this, observe that in the expansion of the product each power of g™ arises
in exactly ane way. This is just the unique expansion of m base 10. The coefficient
of g™ is just a product of x’s, one for each odd digit in m. If we differentiate (2.1)
with respect to x as Is [egitimate since B(n) = O{n} and the derivatives converge

624 STRANGE SERIES, HIGH PRECISION FRAUD [August-September
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uniformly, we get

Eo:nob(n)xb(n}—lqn ™ qu" + qﬁ-lﬂ" + qj-lCI" + q?-l(}" + qg-lﬂ'"

Z:=Oxb(n)qn = ngﬂ 11 xqmn n qg_mn 4o +q8-l(]n T xqg'lﬂ'” (22)
and at x =1
E°,Z=Ob(n)q A ql(}" +q3-10” 4o +q9-10"
E z 1" 2107 910" (2-3)
(1 -4g) acglta " ta + +g
10"
= Z
H =) 1 + q
= Z R(qmn)
H=0

where the second last equality follows on factoring each term. It is apparent from
this representation for example that

g . q'°
1 +qt 1+4g%

Y b(n)g" =

n={

+ O(q‘“o). (2.4)
We need the following observation which we encapsulate as Lemma 2.1.

Lemma 2.1. Suppose R(q) is a non-negative, measurable function on [0,1]. If b > 1

and
f(q) = iR(q”") lgl < 1
then
1f(q) b 1 R(q)
[t e
Proof:
o R A"
[l g,y May,
q q,-q q
e IR(qbn)
_,ngo q d
™ S frhid b
_ Zfl (4" )q da
n=10 a q

where S(g} = R(qﬂ)/q‘
Now set u = g®" and observe that

flf(‘?) dq z IIS("”:)

and the lemma is proved. (The interchange of sum and integral is just the
monotone convergence theorem.) ]
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From (2.3) we have

™ ™ R qlﬂ"
Y b(nyan i1 - q) = 3, 2
n="{} n= q
and with Lemma 2.1,
i 1 1 10 ,; 1
b - - =— 1 —d
,E‘l (n)(n n+1 9fol+q 7

or

= b(n) 10

2 ieg2.
Loy s

Indeed this process iterates, in the sense that we can keep dividing by g and

integrating in (2.5). This vields with some effort the following

Sum 13. For k a positive integer
= 1 1 10%
Eb(n)(—k - = )= S a(k)

where, a 15 the alternating zeta function,

- _1 n+1l
a(s) = (1= 279() = T

n=1

2.5)

(2.6)

Note that Sum 3 is just the k := 2 case of the above, while k := 1 gives (2.6).

A direct derivation of Sum 13 valid for non-integer & can be based on the fact

that:

if and only if

xﬂ.

= Y bx"

n=1

o0
Y @
n=1

This identity is now coupled with (2.3). See [18].

1+ x™

Example 2.2. The generating function for g, the number of odd digits in odd

places (as in Sums 1 and 2}, is given by

Al | )

Z xa(n)qn - I“[ r(x,qmg")

n=0 n=0
where
rHx,qy=(l+xq+q°+xq’+q*+ - +xg°)
1+ g0+ g1 g0 g g 10y

and leads, as in (2.3), to the series
100"

ngoa(n)q - 1 — g ngo 1+ qlﬂﬂ" *
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Sum 2 now appears on taking g = j; and using the first term of the above
expansion. It is apparent that the remainder is positive of size very close to
5 - 107%°. This gives the nature of the estimate in Sum 2.

In similar fashion
@ q(lﬂ")"

b 1
Y Au(n)yq" = )y
n=0

1—q, 251+

(2.8)

is the generating function for the number of odd digits in the 1st, (k + L)th,
{2k + 1xth places of k. So with & = 10, for example
*  Ay(n) 10
= — + 29
v 10,11 99 8!1 ( )
where 0 < |g,| < 2 - 10719°, and the above approximation is correct to over a
billion digits. u

Example 2.3. The number of times the digit { > 0 occurs in r has generating
function
ua i107

e 1
gog(n)q” = I u

l_qn=01+ql{]”+ +qg.mn-

So the generating function for c¢(x} in Sum 4 is just

8-10°
o 9
- | e 329710 -

L e(nya"=— ¥ 2

n=0 a,. Tl +g"" + - +q¥10"

At g == 1, the second term vanishes to give

g-10"
q

9 _
= c(n) 1 |32 32

= + O 800
HEO 2" 1—g| 1+ - +4° (@™)
511
=— +
8184 ©
where ¢ < 10724,

Example 2.4. The generating function which reverses digits, as in Sum 6, is

n);x“”q“ N nfju(l LR +x9/10n+[q9‘10ﬂ)' (2.10)
Sa
" | e %qmmr _— miﬂqg-m"
E‘oe(n)qn T 1-g4 ,Ea 1+ + o #4721 (2.11)
and as in Lemma 2.1
| ze(n)

9 010
a(n+ 1y 99 B
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There are very many analogues of these results. All have variations in different
bases. The hinary digit counting functions § has generating function

3 xugn = ]_[0(1 +xq7") (2.12)
n={ n=
and
)E 8 # ! i a” 2.13
= (n)q T e B Txq7 (2.13)
whence
i d(n
Y LICES = 2log 2. (2.14)

aop nln+1)

(See the Putnam examinations of 1981, 1984 and 1987.) As in Example 2.1 we have
Sum 14

Sum 14. Let §{n) denote the sum of the binary digits of #. Then

hd 1 1 25
Za(n)(—k— )ﬂ (zk_l)c»(k)

et n (n+ 1)"

where a(k) is the alternating zeta function.
The sum of the decimal digits of # denoted s(xn)} has generating function

Z x.r{n)qrz = H (1 + xqw" +x2q2'm" PR +x9q9.10n) (2.15)
n=0 n={
from which we deduce that

S 19 log 10 2.16
———— = — log 10. )
aoy B(n + 1) g ¢ (216)
Loxton and van der Poorten [10] and Mahler [11] treat transcendence questions for
functions, with power series expansions at zero which satisfy functional equations.
From these results, one knows that if f, holomorphic at zero and not an algebraic
function, satisfies a function equation of the form

fFa™) = f(q) + R(q) (2.17)

where m is an integer and R is a rational function, then f(a) is transcendental for
algebraic @. From this we deduce that the exact answers it Sum 2, Sum 4 and Sum
8, are transcendental. Thi3 can also be deduced easily from Roth's Theorem [8].

GENERATING FUNCTIONS-—PART TWO. A second type of digit function arises
as follows.

Example 3.1. Let 8(n) as before, denote the sum of the binary digits of n, and let
p(n) == I'l{S;: ith binary digit of n # 0} and p0) = 1, where S, is a given sequence
and the product is taken over those binary digits of # which equal ane. Then
formally

] xﬁ(ﬂ)qﬂ

- ﬁ(1 S qﬁ“) (3.1)

n=0 p(ﬂ) n={ Sn+1
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and

Example 3.2. Let 8(n) denote the sum of the binary digits of #, and let

D(n) =TI

where the product is taken over those i where the ith binary digit of »# is non-zero
(asin Sum 5). So, if 0 <n < n, < -+ <ny,

D2 42"+ oo 42%) = (n, 4+ D)(ny + 1) <+ (n, + 1),

Then as in Example 3.1, starting with
2

F(x) =x ﬁ (1 - %qzn_]] =x ﬁ (1 — —"—:t—?qz"] (3.2)

=1 n="0{ (n—l— 1

we have, for x| < 1,

( _ 1)6(ﬂ)x26(n)+ !

Fx) - = ¥ (33)
T WS [
and at x = 1
2 on (_ 1)3(”)
e e (34)
T alo 4 D(n)]
Similarly, starting with
(sin 7x)(sinh wx) . x*
= 1 - — 3.5
o x nl:[l e (3.5)
e (_ 1)5(ﬂ)x46(n)+2
= X —
n=0 [D(H)]
we have, at x = 3,
eﬂ-/Z - e—«/z o (_1)501)
N ——] = _—, 3.6
( 7’ ) ,Eﬂ 1650 p(n)]* (34)

which is Sum 3.

Example 3.3. Let 1{n) := 2, where the sum is taken over the non-zero digits on n
base 2. So 1(1011,) =4+ 0+ 2+ 1 = 7. Then

I—I (1 _xn+lq2") _ E (_l)ﬁ(n)x:(n}qn. (3.?)
n=10 n=0
Sa
L™ =TT (-2 = E(-)@2 (38
n=10 n= —m
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on using Fuler’s pentagonal number theorem [2] and on integrating, from zera to
one,

(G )f (-1

z(n )+ 1 “ 3t +n+ 2

(3.9)

4. CONTINUED FRACTION EXPANSIONS. The identities of this section are
based on the two functions

G,(z,w) =Y z'winl (4.)
n=1
and

|ne]

F(z,w) = Zz ): w™ (4.2)

n=1

where & Is a non-negative real number and | r«] is the integer part of ne, while z
and w are complex with modulus so as to ensure convergence. The function F,
was studied by Mahler [11] and is obviously related to G, by

F(z,w) + L_vaﬂ(z,w) = ( (4.3)

ZW
1 -2)1-w)
for |z|, |w| < 1. Van der Poorten [10} comments that Mahler’s paper has been
largely averloaked. In (3] we explore these matters further. Note that for positive z
and w, F, is strictly increasing as a function of a.
For irrational & we will use the infinite continued fraction approximations
generated by

1

(a) Drtt = Py t Py po=ag=lal, p_;=1
(b) vt ™= Gulprr v 4uy qq =1, g_,=0 (4.4)
for n = 0 where
o =[Gy, @y s Qs Brgys ]
1
=a,+ ;
a; + 1
+
a?_ 0.3 =+ -

so that each a;, is integral, a, > 0 and a, > 1 for n = 1. Then for n 2 0 p,, /47,
increases to « whlle Ponit/Don+t decreases to a and
L D
S V.
er(qn + qn+1) qn
All of this is standard and may be found in [8], (9], or [16]. We will avoid using

finite continued fractions which arise only for rational «. Let us write g,&@ — p, as
¢,. By (4.5) and (4.4}

1
qnqu+l ‘

(4.5)

1
aryl < n < le,| < <L

] qr1+]. qn-hl

le
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A key lemma is:

Lemma 4.1. For irrational « > 0 and n, Nin N
(a) [ra + ey = [na] for n < gy,

{b) |na + eyn| = |ra| +(_1)N forn =q,,,.

Proof Suppose N is even (the odd case is entirely parallel). Then g, > 0 and (a)
fails when
na + ey > m > na for some m in N. (4.6)

ASs @ > py/qy, we have an integer k£ with
(n+qN)£N>qu—npN=k> 0.

If k > 2then n + ¢, >2/ey> 2ay,y and 1> gy, .
If &k = 1 we have

Paiy — by =0, Pyidy —dnetPy =L
so that the linear Diophantine equation mgq, — np, = 1 has genera] solution
M= Py TSPy B = gy, + Sqy fOr s Integer. However, n + gy > 1 /ey > gy
so that s is non-negative. This establishes (a}. For # = qp,; we have

AN+1€ <DPyiy <Gne@ &y <Py T 1

since py.q, > guera and 0 < gy, + £y < 1. This yields (b). [
Theorem 4.1.

(a) For rational a = p/q (reducible or irveducible)
- q
(1 — z9wP)G,(2,w) = ) ziwlir/dl,
i=1
(b) For irrational o and N > (
(1 = 2w )G, (z,w)

G w— 1
= Y zfwlrel 4 (_UN(__—)ZGNWFNZGNHWHNH + Rp(z,w)
n=1 w

with
|Z|QN+1+‘4’N+1
Ry(z,w)| <]t —w|————————
| N( E )| i | 1—|Z|
Proof:
] L)
(a) Gz,w)= Y Y zaHiyteriie/ql
ch=0j=1
o= L
=¥ (zqu)k Y ziwlie/al
k=0 i=1
aw
(b) (1 — 29%w?NG (2, w) — E Sryylne)

n=1

Il
s

Zn+q~{ wltn+an)a) _ wPN“"L"“]}
1

H

zn+qu[naj+pN{ w[na+£N]—me] — 1} .

=
—

1
1 {1
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By the proof of Lemma 4.1, the first non-zero term in this last express-

jon is (= D)¥(w — 1) /w)z 9+ upPuton+t while the other terms are dominated by

21”13 — wl with # > g + gy |
For fixed a > 0 we write

dw
= 2ozmwiel Q=1 - 2wy

and observe that Theorem 4.1 shows that
P W - 1 ZQ'NWPNZ‘?N+IWPN+I
6.~ g = (-" (]
N Qu

for @ irrational (while G, = P,/Q, for rational a). Thus as a function of z
Py/Q is the main diagonal Padé approximation to G, of order g,,.

+ O(z%T W+ 1) (4.7)

Corollary 4.1. For irrational a > 0
zwﬂ{l 1 — o zqnwpnzqn+lwpn+l

GQ(Z,W) = 1 — - E ('_1) zq,,wp")(l _ zﬁnﬂwpnﬂ) ‘

zwpﬂ

(4.8)

Proof: Let Ay =Py Gy — @y, Py Then A, is a polynomial of degree at
most g, + gy in 2. From (4.7) we sce that

PN+1 PN A ( ) ( -1 ){zqupwqu+1pr+l }
QN+1 QN QNQN+1 W OnvQni1 '
On summing from zero to infinity we produce (4.8). [ |
This is derived by Mahler for & € (0, 1) in [11].
Corollary 4.2. For irrational o > () and forw # 1
W 1 — wra o (- l)nzqnwpnzqn-h[wpn+l
F(z,w)= + .
{2 = T T =) T=awr 2 (T = 2owr) (1 = zrwns)
(4.9)
In particular | for w = 1, the spectrum of « [7] is generated by
p Z‘}nz‘?n-}-l
+ —1 . 4.10
E lnan ( ) ngo( (1 — 24")(1 — zq“-g) ( )

Proof: Equation (4.9) follows from (4.8) and (4.3). Equation (4.10) is now obtained
by letting w tend to 1. ’ [ ]

If F, denotes the truncation of the right-hand side of (4.9)
aw 1 —wfa
+ 1
(1 _ Z)(]. _ zwﬂu) ( ]_ — ) Z ( ) z‘?nwpn)(]_ — ZQ‘»+Lan+1)
we observe that (4.7) and (4.3) show that

(1 fw)[ZQN_ (1 —z)By]
(1 —z}(1 — z9w#w)

Zp P g dntipp Prrr

Fy = (4.11)
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and some manipulation shows that, for g, > 1, the numerator may be rewritten as

an wliet el _ lne] 1 — woo
B. i= n + 1 — z9NweN 4.12
e B el e

so that B, is a very simple integer polynomial in w and z (of degree ¢, + 1 in z),
while

F& —_ FN — O(ZQN+¢IN+1)_
Note that F,, is especially simple for w:=1and 0 < & < L.
Example 4.1. (a) Let o == 7/2 in (4.11) or (4.10). As
=[1,1,1,31, ...]

m

2
we have po=1, p =2, po=3, p,=1l, p,=38and g, =1, 9, =1, g, = 2,
g, =17, g, = 219. Thus

T
Fﬂ/ﬁ(‘z‘l) = E En’ z"
n=1
z z? z3
= ; P 2
(127 (1-z2¢ (-2)(1-2)
29 £2%6

i (1 —22)(1~27) - (1 —27)(1 -z T
and the approximation F, is also expressible as
2(27 + 28+ 22542 + 22 + 22+ 22+ 1)
(1 -2z0(1 - 2)

and has an error like z?2, In particular

w
rfn . 339

2" 127

n=1

with error less than 1079,
(b) Sum 9 follows from using (4.10) for tanh(7) = [0, 1, 267, ...}]. This produces

ZZ 2269

Y |ntanh 7|z = — +
n=ll 2% (1-2z)" (1 —2}1~-2°%)

(c) Sum 10 follows similarly from (4.10) with one of our favorite transcendental
numbers o = e"V193/? = [640320, 1653264929, ...].

(d) Let & :=log,(2)=1[0,3,3,9,...] Then (4.11) with N =3, z:= 3 and
w = 1 gives
i |nlog,(2)] . 146
2" 1023

to 30 places since g, = 1, g, = 3, g, = 10, g, = 93. Thus, as the number of even
digits in 2" is [n log((2)] + 1 less the number of odd digits in 27, the “false” Sum
8§ follows from Sum 7 and this “false” identity. In fact, see below, Sum 8§ is
transcendental while Sum 7 is rational. [ ]
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Other lovely approximations follow from
logo(6) = [0,1,3,1,1,32,...]
tanh(1) = [1,3,7,9,11,...]
e —1
2

and other simple transcendental numbers. Thus

= [nL(3)] . &4
El 2 3]

= [0,1,6,10,14,...]

to 30 places.

Example 4.2, Many other related sums can be derived from (4.8) and (4.9). We

indicate some classes.
{a) For irrational o > 0

-]

1 —w
= e = | —— | F 1
Ga(lﬂw) le ( W ] l/a(w‘r ):

n=

and more generally
1 —w
Ga(sz) = (T)Fl/ar(w! Z).

This follows either from the elementary identity in [11]

Flz,w) + F,(w,2) =

or from Theorem 2 in [13], when z = 1.

(b) Letting w := —1 in (4.9) produces a Lambert-like series for ¥, qaa 2" As

an example,
1 114
Y {gllength(?) even} = TS

to 30 places.
(¢) Observe that

k[M

M (1)
Y

k=0 (1-w

)M - ngl

sa that on letting w tend to-unity we obtain the approximation

A% z)
(1 = z)(1 — zam)™

glmj’“’zﬂ =

where A% is an integer polynomial in z of degree MgN + 1. In particular

w zqn+‘i‘n+l

i [najzz" = ):

oo (1 - zqn)z(l _ z‘?n+l)2

X{(2p, + 2P,y — 1) — 2% 2%
- (2p, = 1)z~ (2,4, — 2%}
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for 0 < a < 1, @ irrational. Thus

o ([ength(é”)) 196669
§ T 37303

to 88 places.
{d) Similarly, if w i3 a primitive Nth root of unity

N

= Lo | =M (mod N)

[compare (b)]. Thus
1 3554

E - =
3L log g 2] 3 7381

ta 50 places. _
(e} Let w = (8 real) in (4.9). We obtain

E COS([ ) o COS(lnﬂje)Z“ — Eiil COS(pN — lﬂﬂ’jﬂ)z“*‘m
A 2 =
=1 @ 1 — 229 cas( py8) + 229

+ O(ZGN"'"INd—I)j

with a similar expression for sin replacing cos. [ |

The rational counterpart to (4.13) is
- 2% *
Fp/q(z,w) +Fq/p(w,z) = T =2)(1 < w) + vy

{4.14)

for p and g relatively prime.

We consider F(a) == F (z,w) as a function of «, and observe that F(a) is
continuous at each irrational. Moreover, lim,, | , ,, (@) = F(p /q). Thus, on using
(4.13) and (4.14) limmp/q Fla)=F(p/q) — 2%w? /(1 — 27w?). In consequence,
F is discontinuous at every rational and F(1)}) — F(0) = Xy.,,, . AF(p/q) -
F(Z — )} so that dF is a “pure jump measure” on the rationals in [0, 1]. [This
observation was made by H. Diamond.] Explicitly the jumps are expressed as

=]
=Y X
s=1 l=r=x

(r,s)=1

2w’

1 — 29w’

=3 Y Y wk (4.13)
k=1rs=1 (r,51=1
lzr=s

Now, on setting # = sk, this yields

fzk{z v w(r/.c)n}'

n=1 s/n (v 5)=1
l=r=zs

Equation (16.2.3) in [8] applies with F(w) := w” and shows that the bracketed
term is just 17 w™. Hence J=17_,2"L% _ w™ = F(z,w) as clajmed. This is
valid for [z] < 1, [w] < 1. [}
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We have also shown, using Theorem 4.1(a) and [na| = (#(py /gy ) for 1 < g4,
that for 0 <a <1

Feray N even

Fy = VWP (4.16)
FDN/GN - m N odd,

Clearly F: @ — Q. In [10], [11] (4.9) is used to obtain transcendence estimates
by functional equation methods. For w = +1 and z:= 1/b, b= 2,3,4,... we
can get very accessible estimates for F, or G, from Roth’s theorem [2], [9], (15].

First, observe that Corollary 4.2 shows F, is irrational when « is irrational and
w, z are rational. It is convenient to introduce

s = s(a) = limsup 4,.
n—m
Thus s is infinite when & has unbounded continued fraction coefficients. For b
and w as above, we have from (4.12)

Py 1
F(a) - _N Bantan- =0 Qﬂ"’fluﬂ)’qm

for integers Py and @, := (b — 1)(b% — wP¥). Hence, Roth’s theorem shows
F(a) is transcendental when

0 < (4.17)

<o

Ay +1

[im sup > 1,

now G
and clearly @ is Liouville when s{a) = «. Since almost all numbers have un-
botinded coefficients, F{a) is Liouville in almost all cases and F maps Liouville
numbers to Liouville numbers as they have s = infinity. When s(a) is finite, we
have gy, < Sqy + gy_; < (s + 1)gy eventually and so infinitely often

2+s+1
s+ 1

and (4.17) shows F{a) is approximable to order at least (s + 1) + (1 /(s + 1P =
5/2. If s =1 then a is equivalent to (/S + 1)}/2. In every other case F(a) is
approximable to order 10/3. In summary F{a) is never algebraic, indeed never has
the expected rate of rational approximation and is vsually Liouville ([2], [8], [15]).
In fact almost all irrationals have only finjtely many solutions to
P ‘ 1

- —| < ———.
2] q*(logg)'”

Onry Z8Gn t Gy 2 ay

Example 4.3. {(a) Arguiné similarly from Example 4.2 we see that for almast all o,
z p(|nal)

)y
n=1 b"
is a Liouville number, for any integer polynomial p,
It is hard to find explicit numbers with unbounded continued fraction coeffi-
cjents but e and tanh(1)} are two examples:
i p(|ne])
=1 b*

is Liouville for all p and b.
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{b) Correspondingly, =5 _, p(lne|) /b™ is approximable to order at least
1+ s(a)
“deg(p)
|

For irrational 0 < & < 1, F {(z,w) may be computed entirely from the contin-
ued fraction expansion via

F z,w) = -1 " Znprt
Lzw) = (D"

2,)(1 = 2,.4)

where z,,, = z2+‘z, |, 2, =2z, z_, = w. This follows from (4.9) and an easy
induction.
We conclude with some remarks about iterates of F(a) = L5 _;|na|27". For

a=p/q9 0 <a < 1)we have
i u(n + 1)— J p“w"‘“’/‘mz"
n= q

F(z,w) =zw 0~ 2)(1— 27 (4.18)

either by direct computation or from (4.11) and (4.16). We now set z == 3, w = 1

and observe that
p 1
P{=)+Fl1 - 5) -1+ .
q q 29— 1
In particular F(3} = . Moreover, (4.18) shows that
1 1
Fl1——-]=1- )
q 29 -1
Let g, = 2 and ¢, == 1/(2% — 1} to deduce that
Fw( - ] P
2 Gyt
and so converges to 1. Similar analysis shows that

1 2 I
Fl—| = < —_—,
q 29 -1 2972

1 1 18 1
F("’(E) — 0, because F(i)(—) = =

and so that

[ < .

3 127 7

Note that o = 1 implies F*a) = F®)(}) and a < 3 implies F"* Mg} =0

for 0 <« < 1. For rational @, the entire sequence is rational, otherwise it is
entirely transcendental, usually Liouville.

3, RATIONAL DIGIT SUMS. This section is based an the following Lemma
whose proof we owe to A. C. Thompson.

Lemma 5.1. For & < g < 1 and integer m > 1

>

| m7q | (mod m)

(5.1)
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Proof: Consider the base m expansion of g

sl

ay
g= 3, — O0=a, <m
k=1
where when ambiguous we take the terminating expansion. Then
n—1]
m'g= 3y m" *a, +a, +8,
k=1

for some 6, in [0,1[. Thus a, is the remainder of |m"g | modulo m, and (5.1}
follows. ]

Let F(g) = L% _,c,q™ be any formal power series.

Theorem 5.1. For } < g < l/limsupﬁ_micnlu",

Flg)= T ff;)

n=1

where

f(ny =%, ck(lm”qk] mod m).

k=1

Proof: From Lemma 5.1

F(q) = kiCka= chi
=1

[m™g* ]| mod m

[
7

on exchanging order of summation, as is valid within the radius of convergence
of F. |

Theorem 5.1 can be extended so as to replace m” by I'T;_,r, where r, are
integers > 2, and where the remainder is computed modulo 7,.

If we specialize Thearem 5.1 to the case where g:= 1/b and b is an integer
divisible by m we may observe that | m” /b*| mod m coincides with the coefficient
(mod m) of b* in the base b expansion of m" (the (k + 1)* digit).

Specializing further so that m = 2 and b is even we have

3} 542

where

Fo(n) = L {e,127 has (k + 1)™ digit odd base b}.

Example 5.1. (a) Let F(g) = q/(1 — g). Then f,{(n) counts the number of odd
digits in 2" base b. Sum 7 is established on setting b == 10.

(b) Sum 1 corresponds to taking F(q) = 42/{1 — g*) and ¢ = 1/10.

(c) Let F(qg)=4q/(1 — q - g?%). Now F is the generating function of the
Fibonacci numbers (F, = 1, F, = 1, F,,, = F, + F,_|). Again with g := 1 /10, we
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abtain for
f(ny = L {F.l2" has (k + 1)" digit odd},

as in Bowman and White [4], that

= f(n) 10
Lo "5
n=1
_ _ ) qa-q°
The generating function for F; is and so for

1~-2g-2¢"+4°
f(n) = L {FZ2" has (k + 1)™ digit odd]

= f(n) 90
ngl 2" B E
(d) Let
= Oi{q)—1
F(q) = Zq”=73(; :
n=1
Then

1
f fln) 93( 10) !
2 2
where f(n) counts the number of odd digits of 2" in square positions (the second,
fifth, tenth digits etc.).
(e) If we apply Theorem 5.1 to F(g) := g/(1 — g) with b == 10 and m := 5 we
deduce that again

= f(r) 1
L5 T3
n=1
where f(n) sums the digits (mod 5) of 5% base 10 {e.g. f(3125) = 6). [ ]

6. THETA FUNCTION EXAMPLES. The underlying idt‘érltity for this section is
really just 2 modular transformation of 8,(q):= L%__.q"". (See [2].)

Lemma 6.1. For a, 8 > 0 with a3 = 2

Ja E e—aZHE/Z]:\/E[ i e—ﬁ%&/:}

n= —ro H=—ao

Example 6.1. From the Lemma, with s = 2/8% so a? = 27

Vs — Y e/ = 2fmse 7 4 O™ ) (6.1)

n=—m
~ 2]/'7; 10—(4.2863..,)5‘
Now with s = 10" we get

t N
‘/"?_(W L ”‘”)

nH=—om

< 10—4.2-1{]“” (62)

which is Sum 12.

1992] STRANGE SERIES, HIGH PRECISION FRAUD 639



Chapter 5

86 Strange series and high precision fraud
If we set
1 N
§ = =
log 10V log 10
we get

Nao = 1 N
— —_— D 10‘—(1.861"‘ W 6.3
log 10 2:,,, 107 /W V log 10 (63)

and with N = 10* we get Sum 11.

Similarly we have

T _ % . 2] S g rtastena, (6.4)
logg = g7 log g
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6. The amazing number 7

Discussion

As mentioned below, this text accompanies an address given at the celebration to replace the lost
tombstone of Ludolph van Ceulen at the Pieterskerk (St. Peter’s Church) in Leiden on the fifth of
July, 2000.

The authors are reasonably sure that they will never give another lecture in a packed cathedral
from their pulpit. Another singular feature was that the very urbane crown prince of the Netherlands
was in the audience. This reflects one of the “amazing” features of the number pi. It has entered the
public imagination in a way that few pieces of mathematics have or for that matter ever can.

One of the things we hope to illustrate in this article, and in others in this collection, is that
there is a meaningful and mathematically interesting story to be told. But the cultural side of the
story holds its own interest and has found itself in unusual places such as in movies (Pi the movie)
and novels (Contact and Life of Pi) to name a few.

Physics has its quarks and black holes to capture the public imagination. There are few places
where mathematics has a similar popular appeal. We would suggest that while the average educated
person knows no more about black holes than about P, it is possible to have a metaphorical
understanding of physics in a way that is very hard in mathematics. The story of pi is an exception.

As a forcible example, imagine the following excerpt from Eli Mandel’s 2002 Booker Prize winning

novel Life of Pi being written about another transcendental number:

“My name is
Piscine Molitor Patel

known to all as Pi Patel.

For good measure I added ‘m = 3.14” and I then drew a large circle which I sliced in

two with a diameter, to evoke that basic lesson of geometry.”

At the end of the novel, Piscine (Pi) Patel writes

I am a person who believes in form, in harmony of order. Where we can, we must give things
a meaningful shape. For example—I wonder—could you tell my jumbled story in exactly one
hundred chapters, not one more, not one less? T’ll tell you, that’s one thing I hate about my
nickname, the way that number runs on forever. It’s important in life to conclude things properly.

Only then can you let go.

We may well not share the irrational sentiment, but we should celebrate that Pi knows 7 to be

irrational.

Source

P. Borwein, “The amazing number 7,” Nieuw Arch. Wiskd., (5)1 (2000), 254-258.
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The amazing number 7t

This text accompanies an address given
at the celebration to replace the lost
tombstone of Ludolph van Ceulen at the
Pieterskerk (St. Peter’s Church) in Leiden on
the fifth of July, 2000. It honours the partic-
ular achievements of Ludolph as well as the
long and important tradition of intellectual
inquiry associated with understanding the
number 7z and numbers generally.

The history of 7r parallels virtually the en-
tire history of Mathematics. At times it
has been of central interest and at times
the interest has been quite peripheral (no
pun intended). Certainly Lindemann’s
proof of the transcendence of 77 was one of
the highlights of nineteenth century math-
ematics and stands as one of the semi-
nal achievements of the millennium (very
loosely this result says that 77 is not an easy
number). One of the low points was the
Indiana State legislature’s attempt to leg-
islate a value of 7r in 1897; an attempt as
plausible as repealing the law of gravity.

Why 7?
The amount of human ingenuity that has
gone into understanding the nature of 7
and computing its digits is quite phenom-
enal and begs the question “why 7?”. Af-
ter all there are more numbers than one
can reasonably contemplate that could get
a similar treatment. And 7 is just one
of the very infinite firmament of num-
bers. Part of the answer is historical. It is
the earliest and the most naturally occur-
ring hard number (technically, hard means
transcendental which means not the so-
lution of a simple equation). Even the
choice of label ‘transcendental’ gives it
something of a mystical aura.

What is pi? First and foremost it is
a number, between 3 and 4 (3.14159...).
It arises in any computations involving
circles: the area of a circle of radius 1
or equivalently, though not obviously, the
perimeter of a circle of radius 1/2. The
nomenclature 77 is presumably the Greek
letter “p” in periphery. The most basic

properties of 71 were understood in the pe-
riod of classical Greek mathematics by the
time of the death of Archimedes in 212 BC.

Ruler and compass

The Greek notion of number was quite dif-
ferent from ours, so the Greek numbers
were our whole numbers: 1, 2, 3... In
Greek geometry the essential idea was not
number but continuous magnitude, e.g.
line segments. It was based on the no-
tion of multiplicity of units and, in this

Bill No. 246, 1897. State of Indiana

“Be it enacted by the General Assembly of
the State of Indiana: It has been found
that the circular area is to the quadrant of
the circumference, as the area of an equi-
lateral rectangle is to the square on one
side.”
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sense, numbers that existed were num-
bers that could be drawn with just an un-
marked ruler and compass. The rules
allowed for starting with a fixed length
of 1 and seeing what could be construct-
ed with straight edge and compass alone.
(Our current notion is much more based
on counting.) The question of whether 7
is a constructible magnitude had been ex-
plicitly raised as a question by the sixth
century BC and the time of the Pythagore-
ans. Unfortunately 7t is not constructible,
though a proof of this would not be avail-
able for several thousand years. In this
context there isn’t a more basic question
than “is 7r a number?" Of course, our more
modern notion of number embraces the
Greek notion of constructible and doesn’t
depend on construction. The existence of
7t as a number given by an infinite (albeit
unknown) decimal expansion poses little
problem.

Very early on the Greeks had hypoth-
esized that 77 wasn’t constructible, Aristo-
phanes already makes fun of “circle squar-
ers” in his fifth century BC play “The
Birds.”

Lindemann’s proof of the transcen-
dence of 7 in 1882 settles the issue that 7
is not constructible by the Greek rules and
a truly marvelous proof was given a few
years later by Hilbert. Not that this has
stopped cranks from still trying to con-
struct 7.

Does this tell us everything we wish
to know about 77? No, our ignorance is
still much more profound than our knowl-
edge! For example, the second most nat-
ural hard number is e which is provably
transcendental. But what about 7 + ¢?
This embarrassingly easy question is cur-
rently totally intractable (we don’t even
know how to show that 77 + e is irrational).
The number 7 is a mathematical apple
and e is a mathematical orange and we
have no idea how to mix them.

The need for
Why compute the digits of 7? Some-
times it is necessary to do so, though hard-
ly ever more than the 6 or so digits that
Archimedes computed several thousand
years ago are needed for physical applica-
tions. Even far fetched computations like
the volume of a spherical universe only
require a few dozen digits. There is al-
so the ‘Everest Hypothesis’ (‘because it’s
there’). Probably the number of people
involved and the effort in time has been
similar in the two quests. A few thou-
sand people have reached the computa-
tional level that requires the carrying of
oxygen — though so far I know of no
7 related fatalities. There has been sig-
nificant knowledge accumulated in this
slightly quixotic pursuit. But this knowl-
edge could have been derived from com-
puting a host of other numbers in a variety
of different bases. Once again the answer
to “why 71" is largely historical and cultur-
al. These are good but not particularly sci-
entific reasons. Pi was first, pi is hard and
pi has captured the educated imagination.
(Have you ever seen a cartoon about log 2
— a number very similar to 7?)

Whatever the personal motivations, 7
has been much computed and a surprising
amount has been learnt along the way.

The mathematics involved
In constructing the all star hockey team
of great mathematicians, there seems to
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be pretty wide agreement that the front
line consists of Archimedes, Newton, and
Gauss. Both Archimedes and Newton
invented methods for computing 7. In
Newton’s case this was an application of
his newly invented calculus. I know of
no such calculation from Gauss though his
exploration of the Arithmetic-Geometric
Mean iteration laid the foundation of the
most successful methods for doing such
calculations. There is less consensus about
who comes next. I might add Hilbert and
Euler next (on defense). Both of these
mathematicians also contribute to the sto-
ry of 7r. Perhaps von Neumann is in goal
— certainly he is a candidate for the most
versatile and smartest mathematician of
the twentieth century. One of the first cal-
culations done on ENIAC (one of the first
real computers) was the computations of
roughly a thousand digits of 77 and von
Neumann was part of the team that did
the calculation.

One doesn’t often think of a problem
like this having economic benefits. But as
is often the case with pure mathematics
and curiosity driven research the rewards
can be surprising. Large recent records de-
pend on three things: better algorithms for
m; larger and faster computers; and an un-
derstanding of how to do arithmetic with
numbers that are billions of digits long

The better algorithms are due to a vari-
ety of people including Ramanujan, Brent,
Salamin, the Chudnovsky brothers and
ourselves (the Borwein brothers, NAW).
Some of the mathematics is both beauti-
ful and subtle. (The Ramanujan type se-
ries listed in the appendix are, for me, of
this nature.)

The better computers are, of course, the
most salient technological advance of the
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second half of the twentieth century.
Understanding arithmetic is an inter-
esting and illuminating story in its own
right. A hundred years ago we knew how
to add and multiply — do it the way we
all learned in school. Now we are not
so certain except that we now know that
the “high school method” is a disaster
for multiplying really big numbers. The
mathematical technology that allows for
multiplying very large numbers togeth-
er is essentially the same as the mathe-

Acknowledgment

matical technology that allows image pro-
cessing devices like CAT scanners to work
(FFTs). In making the record setting algo-
rithms work, David Bailey tuned the FFT
algorithms in several of the standard im-
plementations and saved the US economy
millions of dollars annually. Most recent
records are set when new computers are
being installed and tested. (Recent records
are more or less how many digits can be
computed in a day — a reasonable amount
of test time on a costly machine.) The com-
putation of 71 seems to stretch the machine
and there is a history of uncovering subtle
and sometimes not so subtle bugs at this
stage.

Patterns in =

What do the calculations of 7 reveal and
what does one expect? One expects that
the digits of 7r should look random — that
roughly one out of each ten digits should
be a 7 et cetera. This appears to be true
at least for the first few hundred billion.
But this is far from a proof — an actu-

al proof of this is way out of the reach
of current mathematics. As is so often
the case in mathematics some of the most
basic questions are some of the most in-
tractable. What mathematicians believe is
that every pattern possible eventually oc-
curs in the digits of 77 — with a suitable
encoding the Bible is written in entirety in
the digits, as is the New York phone book
and everything else imaginable.

The question of whether there are sub-
tle patterns in the digits is an interesting
one. (Perhaps every billionth digit is a
seven after a while. While unlikely this
is not provably impossible. Or perhaps
7 is buried within 7 in some predictable
way.) Looking for subtle patterns in long
numbers is exactly the kind of problem
one needs to tackle in handling the hu-
man genome (a chromosome is just a large
number written in base 4, at least to a
mathematician). L

The author would like pay tribute to the mathematical community of the Netherlands on the occasion of its honouring one of its founding fathers, the
mathematician Ludolph van Ceulen (1540-1610).

Appendices
T have included two appendices. One is from David H. Bailey, Jonathan M. Borwein, Peter B. Borwein, and Simon Plouffe, “The Quest for Pi,” (June, 1996)
The Mathematical Intelligencer. It is a chronology of the computation of digits of 77. The second is taken from: Lennert Berggren, Jonathan M. Borwein
and Peter B. Borwein, Pi: A Source Book, Springer—Verlag 1988. It is a list of significant mathematical formulae related to 7. These are reproduced with
permission from Springer-Verlag New York.

The previously mentioned chronology is of the problem of computing all of the initial digits of 7. There is also a shorter chronology of computing
just a few very distant bits of 7. The record here is 40 trillion and is due to Colin Percival using the methods described in the last reference above. It is
surprising that this is possible at all.
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Appendix la. A computational chronology for pi Appendix Ib.
History of 7 calculations (pre 20th century) History of 7 calculations (20th century)
Babylonians 2000? BCE 1 3.125(3}) Ferguson 1946 620
Egyptians 2000? BCE 1 3.16045 (4(%)?) Ferguson Jan. 1947 710
China 1200? BCE 1 3 Ferguson and Wrench Sep. 1947 808
Bible (1 Kings 7:23) 5507 BCE 1 3 Smith and Wrench 1949 1,120
Archimedes 250? BCE 3 3.1418 (ave) Reitwiesner et al. (ENIAC) 1949 2,037
Hon Han Shu 130 AD 1 3.1622(=+107?) Nicholson and Jeenel 1954 3,092
Ptolemy 150 3 3.14166 Felton 1957 7,480
Chung Hing 250? 1 3.16227 (v/10) Genuys Jan. 1958 10,000
Wang Fau 250? 1 315555 (42 Felton May 1958 10,021
Liu Hui 263 5 3.14159 Guilloud 1959 16,167
Siddhanta 380 3 3.1416 Shanks and Wrench 1961 100,265
Tsu Ch'ung Chi 480? 7 3.1415926 Guilloud and Filliatre 1966 250,000
Aryabhata 499 4 3.14156 Guilloud and Dichampt 1967 500,000
Brahmagupta 640? 1 3.162277 (= /10) Guilloud and Bouyer 1973 1,001,250
Al-Khowarizmi 800 4 31416 Miyoshi and Kanada 1981 2,000,036
Fibonacci 1220 3 3.141818 Guilloud 1982 2,000,050
Al-Kashi 1429 14 Tamura 1982 2,097,144
Otho 1573 6 3.1415929 Tamura and Kanada 1982 8,388,576
Viete 1593 9  3.1415926536 (ave.) Kanada, Yoshino and Tamura 1982 16,777,206
Romanus 1593 15 Ushiro and Kanada Oct. 1983 10,013,395
Van Ceulen 1596 20 Gosper 1985 17,526,200
Van Ceulen 1610 35 Bailey Jan. 1986 29,360,111
Newton 1665 16 Kanada and Tamura Sep. 1986 33,554,414
Sharp 1699 71 Kanada and Tamura Oct. 1986 67,108,839
Seki 1700? 10 Kanada, Tamura, Kubo, et al. Jan. 1987 134,217,700
Kamata 1730? 25 Kanada and Tamura Jan. 1988 201,326,551
Machin 1706 100 Chudnovskys May 1989 480,000,000
De Lagny 1719 127 (112 correct) Chudnovskys Jun. 1989 525,229,270
Takebe 1723 41 Kanada and Tamura Jul. 1989 536,870,898
Matsunaga 1739 50 Kanada and Tamura Nov. 1989 1,073,741,799
Vega 1794 140 Chudnovskys Aug. 1989 1,011,196,691
Rutherford 1824 208 (152 correct) Chudnovskys Aug. 1991 2,260,000,000
Strassnitzky and Dase 1844 200 Chudnovskys May 1994 4,044,000,000
Clausen 1847 248 Takahashi and Kanada Jun. 1995 3,221,225,466
Lehmann 1853 261 Kanada Aug. 1995 4,294,967,286
Rutherford 1853 440 Kanada Oct. 1995 6,442,450,938
Shanks 1874 707 (527 correct) Kanada Jun. 1997  51,539,600,000
Kanada Sep. 1999  206,158,430,000

Appendix Il. Selected formulae for pi
Archimedes (ca. 250 BC)
Letay := 2/3, by := 3 and

a L 2a,by
n+1 -— ﬂn"!‘bn

and  by41 = \ap+1bn.

Then a, and b, converge linearly to 7 (with an error O(47").)

Francois Viéte (ca. 1579)

+11
2V2

N
—_

1 /1
2V2

T V2

N[ =
N[ =
N —
N[ —

John Wallis (ca. 1650)

T 2:2:4-4-6-6-8-8--
2 1.3.3.5.5.7.7-9...
William Brouncker (ca. 1650)
4
T = 1+
2+—2+%

Madhava, James Gregory, Gottfried Wilhelm Leibnitz (1450-1671)
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1

1
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4 3
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Isaac Newton (ca. 1666)

3f+24 2 1.1 1
4 3.23 5.25 28.27 72.29

Machin Type Formulae (1706-1776)

1
arctan(=——

1
—4 2y =
arctan(S) 739

1
= arctan(= ) + arctan(=
2 3

1 1
= Zarctan(i) — arctan(;)

Ll B B I R

1 1
= Zarctan(g) + arctan(;)

Leonard Euler (ca. 1748)

Lo S NV T
6 22 32 42 52
”—471+i+l+i+l+
90 24 0 34 44 54
2 00
1
%:32 2 (2m
m:lm(m)

1 & (2n\342n+5
;*2 n 212n+4 °

1 VB & (4n)![1103 + 26390n]
T 9801 E (71!)4 39641

Each additional term of the latter series adds roughly 8 digits.

Louis Comtet (1974)

™ 36 1

%0 17 2 (3

Eugene Salamin, Richard Brent (1976)

Setao=1,b0=1/ﬁandso:1/2.Fork:1,2,3,~~~c0mpute
Ap_q1 + by_
- 12 k=1

by

A/ Ak—1br—1

_ 2 32
cp = ap — by

Sk = Sk—1 — 2ka
2a£
Pk = 5t

Then py converges quadratically to 7.

Jonathan Borwein and Peter Borwein (1991)
Setay =1/3 and sp = (\/5— 1)/2. Iterate

3

7 =
HUT T 0 EE

_ 1 — 1
Skbl = T 5

_ 2 k(.2
A1 = ek — 3 (g — 1)

Then 1/ay converges cubically to 7.

[1985] Set ag = 6 — 44/2 and Yo = V2 — 1. Tterate

(1 y4)1/4
Ye+1 = 1+(1 i/

_ 22k+3

a1 = ap(1+ yk+1)4 Vi1 (1 + Vi1 + vq)

Then ay, converges quartically to 1/ .

David Chudnovsky and Gregory Chudnovsky (1989)

6n) 13591409 + 1545140134
— =12 1)’
E (- 3(3n)!  (640320%)1+1/2

Each additional term of the series adds roughly 15 digits.

Jonathan Borwein and Peter Borwein (1989)

] "(6n)! (A 4+ nB)
B 2 n| (3n)! Cn+1/2

where
A = 212175710912v/61 + 1657145277365
B := 13773980892672+/61 + 107578229802750
C := [5280(236674 + 30303v/61)]3.

Each additional term of the series adds roughly 31 digits.

[1985] The following is not an identity but is correct to over 42
billion digits:

Roy North (1989)
Gregory'’s series for 7, truncated at 500,000 terms gives to forty
places

500, OOO
£ 3

= 3.141590653589793240462643383269502884197.

1)k71
Zk -1

Only the underlined digits are incorrect.

David Bailey, Peter Borwein and Simon Plouffe (1996)

nf‘”i(4_2_1_1)
*;0161‘ 8i+1 8i+4 8i+5 B8i+6
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Discussion

This article is the first of several in the collection—motable selections 10 and 13—which at the
invitation of various editors have attempted to place in context and to popularize the methods of
experimental mathematics. Over the past twenty years, the term has gone from sounding oxymoronic
to being a commonplace. That said, we remain mindful of sentiments, such as the following two

given by Richard Feynman in 1964:

Another thing I must point out is that you cannot prove a vague theory wrong.

Also, if the process of computing the consequences is indefinite, then with a little skill

any experimental result can be made to look like the expected consequences.!

In similar fashion, it is refreshing to read David Avnir’s assessment that:

The common situation is this: An experimentalist performs a resolution analysis and
finds a limited-range power law with a value of D smaller than the embedding dimension.
Without necessarily resorting to special underlying mechanistic arguments, the experi-
mentalist then often chooses to label the object for which she or he finds this power law

a “fractal”. This is the fractal geometry of nature.?

Source

D.H. Bailey and J.M. Borwein, “Experimental Mathematics: Recent Developments and Future
Outlook,” pp. 51-66 in Volume I of Mathematics Unlimited—200l and Beyond, B. Engquist and W.
Schmid (Eds.), Springer-Verlag, 2000.

!Quoted by Gary Taubes in “The (Political) Science of Salt,” Science August 14, 1998, 898-907.
2Avnir et al in “Is the geometry of nature fractal?” Science January 2, 1998, 39-40. Their review of all articles
from 1990 to 1996 in Physical Reviews suggested very little substance for claims of ‘fractility’.
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! Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA,
dhbailey@lbl.gov.” **

2 Gordon M. Shrum Professor of Science, Centre for Experimental and
Constructive Mathematics, Simon Fraser University, Burnaby, BC,
Canada, jborwein@cecm.sfu.ca.’

1 Introduction

While extensive usage of high-performance computing has been a staple
of other scientific and engineering disciplines for some time, research
mathematics is one discipline that has heretofore not yet benefited to the
same degree. Now, however, with sophisticated mathematical computing
tools and environments widely available on desktop computers, a growing
number of remarkable new mathematical results are being discovered
partly or entirely with the aid of these tools. With currently planned
improvements in these tools, together with substantial increases expected
in raw computing power, due both to Moore’s Law and the expected
implementation of these environments on parallel supercomputers, we
can expect even more remarkable developments in the years ahead.

This article briefly discusses the nature of mathematical experiment.
It then presents a few instances primarily of our own recent computer-
aided mathematical discoveries, and sketches the outlook for the future.
Additional examples in diverse fields and broader citations to the liter-
ature may be found in [16] and its references.

2 Preliminaries

The crucial role of high performance computing is now acknowledged
throughout the physical, biological and engineering sciences. Numerical
experimentation, using increasingly large-scale, three-dimensional simu-
lation programs, is now a staple of fields such as aeronautical and elec-
trical engineering, and research scientists heavily utilize computing tech-
nology to collect and analyze data, and to explore the implications of
various physical theories.

*** Bailey’s work supported by the Director, Office of Computational and Tech-

nology Research, Division of Mathematical, Information, and Computa-
tional Sciences of the U.S. Department of Energy, under contract number
DE-AC03-76SF00098.

 Borwein’s work supported by the Natural Sciences and Engineering Research
Council of Canada and the Networks of Centres of Excellence programme.
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However, “pure” mathematics (and closely allied areas such as theo-
retical physics) only recently has begun to capitalize on this new technol-
ogy- This is ironic, because the basic theoretical underpinnings of modern
computer technology were set out decades ago by mathematicians such
as Alan Turing and John Von Neumann. But only in the past decade,
with the emergence of powerful mathematical computing tools and en-
vironments, together with the growing availability of very fast desktop
computers and highly parallel supercomputers, as well as the pervasive
presence of the Internet, has this technology reached the level where the
research mathematician can enjoy the same degree of intelligent assis-
tance that has graced other technical fields for some time.

This new approach is often termed experimental mathematics, namely
the utilization of advanced computing technology to explore mathemati-
cal structures, test conjectures and suggest generalizations. And there is
now a thriving journal of Experimental Mathematics. In one sense, there
is nothing new in this approach — mathematicians have used it for cen-
turies. Gauss once confessed, “I have the result, but I do not yet know
how to get it.” [2]. Hadamard declared, “The object of mathematical
rigor is to sanction and legitimize the conquests of intuition, and there
was never any other object for it.” [34]. In recent times Milnor has stated
this philosophy very clearly:

If T can give an abstract proof of something, I’'m reasonably
happy. But if I can get a concrete, computational proof and ac-
tually produce numbers I’'m much happier. I’'m rather an addict
of doing things on computer, because that gives you an explicit
criterion of what’s going on. I have a visual way of thinking, and
T’'m happy if I can see a picture of what 'm working with. [35]

What is really meant by an experiment in the context of mathemat-
ics? In Advice to a Young Scientist, Peter Medawar [31] identifies four
forms of experiment:

1. The Kantian experiment is one such as generating “the classi-
cal non-Euclidean geometries (hyperbolic, elliptic) by replacing
Euclid’s axiom of parallels (or something equivalent to it) with
alternative forms.”

2. The Baconian experiment is a contrived as opposed to a nat-
ural happening, it “is the consequence of ‘trying things out’ or
even of merely messing about.”

3. The Aristotelian experiment is a demonstration: “apply elec-
trodes to a frog’s sciatic nerve, and lo, the leg kicks; always pre-
cede the presentation of the dog’s dinner with the ringing of a
bell, and lo, the bell alone will soon make the dog dribble.”

4. The Galilean experiment is “a critical experiment — one that
discriminates between possibilities and, in doing so, either gives
us confidence in the view we are taking or makes us think it in
need of correction.”
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The first three are certainly common in mathematics. However, as
discussed in detail in [15], the Galilean experiment is the only one of the
four forms which can make experimental mathematics a truly serious
enterprise.

3 Tools of the Trade

The most obvious development in mathematical computing technology
has been the growing availability of powerful symbolic computing tools.
Back in the 1970s, when the first symbolic computing tools became avail-
able, their limitations were quite evident — in many cases, these pro-
grams were unable to handle operations that could be done by hand.
In the intervening years these programs, notably the commercial prod-
ucts such as Maple and Mathematica, have greatly improved. While
numerous deficiencies remain, they nonetheless routinely and correctly
dispatch many operations that are well beyond the level that a human
could perform with reasonable effort.

Another recent development that has been key to a number of new
discoveries is the emergence of practical integer relation detection algo-
rithms. Let 2 = (21,22, -+ ,Z,) be a vector of real or complex numbers.
x is said to possess an integer relation if there exist integers a;, not all
zero, such that aixy + asxs + --- + apx, = 0. By an integer relation
algorithm, we mean a practical computational scheme that can recover
the vector of integers a;, if it exists, or can produce bounds within which
no integer relation exists. The problem of finding integer relations was
studied by numerous mathematicians, including Euclid and Euler. The
first general integer relation algorithm was discovered in 1977 by Fer-
guson and Forcade [24]. There is a close connection between integer
relation detection and finding small vectors in an integer lattice, and
thus one common solution to the integer relation problem is to apply
the Lenstra-Lenstra-Lovasz (LLL) lattice reduction algorithm [30]. At
the present time, the most effective scheme for integer relation detection
is Ferguson’s “PSLQ” algorithm [23,6].

Integer relation detection, as well as a number of other techniques
used in modern experimental mathematics, relies heavily on very high
precision arithmetic. The most advanced tools for performing high preci-
sion arithmetic utilize fast Fourier transforms (FFTs) for multiplication
operations. Armed with one of these programs, a researcher can often
effortlessly evaluate mathematical constants and functions to precision
levels in the many thousands of decimal digits. The software products
Maple and Mathematica include relatively complete and well-integrated
multiple precision arithmetic facilities, although until very recently they
did not utilize FFTs, or other accelerated multiplication techniques. One
may also use any of several freeware multiprecision software packages
[3,22] and for many purposes tools such as Matlab, MuPAD or more
specialized packages like Pari-GP are excellent.
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High precision arithmetic, when intelligently used with integer re-
lation detection programs, allows researchers to discover heretofore un-
known mathematical identities. It should be emphasized that these nu-
merically discovered “identities” are only approximately established. Nev-
ertheless, in the cases we are aware of, the results have been numerically
verified to hundreds and in some cases thousands of decimal digits be-
yond levels that could reasonably be dismissed as numerical artifacts.
Thus while these “identities” are not firmly established in a formal sense,
they are supported by very compelling numerical evidence. After all,
which is more compelling, a formal proof that in its full exposition re-
quires hundreds of difficult pages of reasoning, fully understood by only
two or three colleagues, or the numerical verification of a conjecture to
100,000 decimal digit accuracy, subsequently validated by numerous sub-
sidiary computations? In the same way, these tools are often even more
useful as a way of excluding the possibility of hoped for relationships, as
in equation (1) below.

v

#

Wy

FIGURE 1(A-D): -1/1 POLYNOMIALS (TO BE SET IN COLOR)

We would be remiss not to mention the growing power of visualization
especially when married to high performance computation. The pictures
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in FIGURE 1 represents the zeroes of all polynomials with +1 coefficients
of degree at most 18. One of the most striking features of the picture,
its fractal nature excepted, is the appearance of different sized “holes”
at what transpire to be roots of unity. This observation which would be
very hard to make other than pictorially led to a detailed and rigorous
analysis of the phenomenon and more [17,27]. They were lead to this
analysis by the interface which was built for Andrew Odlyzko’s seminal
online paper [32].

One additional tool that has been utilized in a growing number of
studies is Sloane and Plouffe’s Encyclopedia of Integer Sequences [36]. As
the title indicates, it identifies many integer sequences based on the first
few terms. A very powerful on-line version is also available and is a fine
example of the changing research paradigm. Another wonderful resource
is Stephen Finch’s “Favorite Mathematical Constants,” which contains
a wealth of frequently updated information, links and references on 125
constants, [25], such as the hard hexagon constant k = 1.395485972
for which Zimmermann obtained a minimal polynomial of degree 24 in
1996.

In the following, we illustrate this — both new and old — approach
to mathematical research using a handful of examples with which we
are personally familiar. We will then sketch some future directions in
this emerging methodology. We have focussed on the research of our
own circle of direct collaborators. We do so for resaons of fmailiarity
and because we believe it is representative of broad changes in the way
mathematics is being done rather than to claim primacy for our own
skills or expertise.

4 A New Formula for Pi

Through the centuries mathematicians have assumed that there is no
shortcut to determining just the n-th digit of 7. Thus it came as no small
surprise when such a scheme was recently discovered [5]. In particular,
this simple algorithm allows one to calculate the n-th hexadecimal (or
binary) digit of 7 without computing any of the first n—1 digits, without
the need for multiple-precision arithmetic software, and requiring only a
very small amount of memory. The one millionth hex digit of = can be
computed in this manner on a current-generation personal computer in
only about 30 seconds run time.

This scheme is based on the following remarkable formula, whose
formal proof involves nothing more sophisticated than freshman calculus:

_ii 4 2 11
C & 168 [8k+1  8k+4  8k+5  8k+6

This formula was found using months of PSLQ computations, after cor-
responding but simpler n-th digit formulas were identified for several

! See http://www.mathsoft.com/asolve/constant/square/square.html.
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other constants, including log(2). This is likely the first instance in his-
tory that a significant new formula for = was discovered by a computer.

Similar base-2 formulas are given in [5,21] for a number of other
mathematical constants. In [20] some base-3 formulas were obtained,
including the identity

Wz_zil 243 405 8l
27 £ 729k (12k+1)2  (12k+2)2  (12k +4)?

w79
(12k+5)2  (12k+6)2  (12k + 7)2
9 5 1
+

T (126 +8)2  (12k+10)2 ' (12k + 11)2

In [8], it is shown that the question of whether 7, log2 and certain
other constants are normal can be reduced to a plausible conjecture
regarding dynamical iterations of the form z¢ = 0,

T = (bTp_1 + 7r,) mod 1

where b is an integer and 7, = p(n)/q(n) is the ratio of two nonzero
polynomials with deg(p) < deg(q). The conjecture is that these iterates
either have a finite set of attractors or else are equidistributed in the
unit interval. In particular, it is shown that the question of whether 7 is
normal base 16 (and hence base 2) can be reduced to the assertion that
the dynamical iteration

_ 120n* — 89n + 16 q1
n = (16‘”"‘1 * 512n% — 1024n% 1 T12n% — 206 1 21) o
is equidistributed in [0, 1). There are also connections between the ques-
tion of normality for certain constants and the theory of linear con-
gruential pseudorandom number generators. All of these results derive
from the discovery of the individual digit-calculating formulas mentioned

above. For details, see [8].

5 Identities for the Riemann Zeta Function

Another application of computer technology in mathematics is to deter-
mine whether or not a given constant «, whose value can be computed to
high precision, is algebraic of some degree n or less. This can be done by
first computing the vector z = (1,a,a2,---,a™) to high precision and
then applying an integer relation algorithm. If a relation is found for z,
then this relation vector is precisely the set of integer coefficients of a
polynomial satisfied by a. Even if no relation is found, integer relation
detection programs can produce bounds within which no relation can
exist. In fact, exclusions of this type are solidly established by integer
relation calculations, whereas “identities” discovered in this fashion are
only approximately established, as noted above.
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Consider, for example, the following identities, with that for ¢(3) due
to Apéry [10,14]:

5= (=1)F!
3 —
@=52 6
36w 1
4 —
R PR

where ((n) = >°, k™™ is the Riemann zeta function at n. These results
have led many to hope that

z=con Yy 1)
k=1 k5 ( k )

might also be a simple rational or algebraic number. However, compu-
tations using PSLQ established, for instance, that if Z5 satisfies a poly-
nomial of degree 25 or less, then the Euclidean norm of the coefficients
must exceed 2 x 1037. Given these results, there is no “easy” identity, and
researchers are licensed to investigate the possibility of multi-term iden-
tities for ¢(5). One recently discovered [14], using a PSLQ computation,
was the polylogarithmic identity

o (=1)kH —[ 1 L | o
N G =2(3)+80) | o — g | P
2k
= B o L@k k)
4 8
- gL5 + gL3¢(2) +4L2((3)
where L = log(p) and p = (v/5 — 1)/2. This illuastrates neatly that one
can only find a closed form if one knows where to look.

Other earlier evaluations involving the central binomial coefficient
suggested general formulas [12], which were pursued by a combination
of PSLQ and heavy-duty symbolic manipulation. This led, most unex-
pectedly, to the identity

1

= 4k _
;C(4k+3)z =D B AT

1M

(—1)k—1 P
k3 (2) (1 — 24/ k%) H 1— 24 /mt

|
N | Ot
M8

k

1 m=1

Experimental analysis of the first ten terms showed that the rightmost
above series necessarily had the form

5 (1)FIP(2)
2 ;::1 k3 (%) (1= 2*/k4)
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where

k—1 .
1+ 42%/44
Puz) =] 1+427/5%

— A4
]:11 z4/j

Also discovered in this process was the intriguing equivalent combinato-
rial identity

(0) - L

This evaluation was discovered as the result of an serendipitous error
in an input to Maple?>— the computational equivalent of discovering
penicillin after a mistake in a Petri dish.

With the recent proof of this last conjectured identity, by Almkvist
and Granville [1], the above identities have now been rigorously estab-
lished. But other numerically discovered “identities” of this type appear
well beyond the reach of current formal proof methods. For example, in
1999 British physicist David Broadhurst used a PSLQ program to re-
cover an explicit expression for ((20) involving 118 terms. The problem
required 5,000 digit arithmetic and over six hours computer run time.
The complete solution is given in [6].

6 Identification of Multiple Sum Constants

Numerous identities were experimentally discovered in some recent re-
search on multiple sum constants. After computing high-precision nu-
merical values of these constants, a PSLQ program was used to deter-
mine if a given constant satisfied an identity of a conjectured form. These
efforts produced empirical evaluations and suggested general results [4].
Later, elegant proofs were found for many of these specific and general
results [13], using a combination of human intuition and computer-aided
symbolic manipulation. Three examples of experimentally discovered re-

2 Typing ‘infty’ for ‘infinity’ revealed that the program had an algorithm when
a formal variable was entered.
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sults that were subsequently proven are:

> 1 1\2 _ 37
k; (1+5+---+E) (k+1)~* = mﬂﬁ—CQ(?’)
> 1 1\?* _ 197 1
> (”5*"'*%) (k+1)70 = (3) + 5y €(9) + 57%(7)
7
1557 C6) — 7T ((3)
i (1 _1 4ot (_1)k+11>2 (k+1)"3 =4Li (1) - i1n5(2)
2 2 k DT,
17 11
—3—2C(5) - %w“ In(2)

+ ;C(3) In?(2) + 11—871'2 In(2)
R

where again ((n) = 372, j~" is a value of the Riemann zeta function,
and Li,(z) = Z;; 27 j~™ denotes the classical polylogarithm function.

More generally, one may define multi-dimensional Euler sums (or
multiple zeta values) by

k k
817 82 PP ST‘ o 0-11 0.22 . G'fr
01,09+ Op BTk R

k1>ko>->kr>0

where 0; = £1 are signs and s; > 0 are integers. When all the signs are
positive, one has a multiple zeta value. The integer r is the sum’s depth
and s1 + s2 + - -- + s, is the weight. These sums have connections with
diverse fields such as knot theory, quantum field theory and combina-
torics. Constants of this form with alternating signs appear in problems
such as computation of the magnetic moment of the electron.

Multi-dimensional Euler sums satisfy many striking identities. The
discovery of the more recondite identities was facilitated by the develop-
ment of Hélder convolution algorithms that permit very high precision
numerical values to be rapidly computed. See [13] and a computational
interface at www.cecm.sfu.ca/projects/ezface+/. One beautiful gen-
eral identity discovered by Zagier [37] in the course of similar research
is

1 27'['4"
3,1,3,1,...,3,1) = 2,2,...,2) = ——
C(; 39y Ly [d) ) C(a y 3 ) (4n+2)!

2n+1

where there are n instances of ‘(3,1)’ and ‘2’ in the arguments to ((-).
This has now been proven in [13] and the proof, while entirely conven-
tional, was obtained by guided experimentation. A related conjecture
for which overwhelming evidence but no hint of a proof exists is the
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“identity”

8”((_2i } _zi }’:::’_Qi i) =((2,1,2,1,...,2,1).

Along this line, Broadhurst conjectured, based on low-degree numer-
ical results, that the dimension of the space of Euler sums with weight
w is the Fibonacci number F 1 = F, + Fy,_1, with F; = F;, = 1. In
testing this conjecture, complete reductions of all Euler sums to a basis
of size F,41 were obtained with PSLQ at weights w < 9. At weights
w = 10 and w = 11 the conjecture was stringently tested by application
of PSLQ in more than 600 cases. At weight w = 11 such tests involve
solving integer relations of size n = Fip + 1 = 145. In a typical case,
each of the 145 constants was computed to more than 5,000 digit accu-
racy, and a working precision level of 5,000 digits was employed in an
advanced “multi-pair” PSLQ program. In these problems the ratios of
adjacent coefficients in the recovered integer vector usually have special
values, such as 11! = 39916800. These facts, combined with confidence
ratios typically on the order of 1073% in the detected relations, render
remote the chance that these identities are spurious numerical artifacts,
and lend substantial support to this conjecture [6].

7 Mathematical Computing Meets Parallel
Computing

The potential future power of highly parallel computing technology has
been underscored in some recent results. Not surprisingly, many of these
computations involve the constant 7, underscoring the enduring interest
in this most famous of mathematical constants. In 1997 Fabrice Bellard
of INRIA used a more efficient formula, similar to the one mentioned
in section three, programmed on a network of workstations, to compute
150 binary digits of 7 starting at the trillionth position. Not to be out-
done, 17-year-old Colin Percival of Simon Fraser University in Canada
organized a computation of 80 binary digits of 7 beginning at the five
trillionth position, using a network of 25 laboratory computers. He an
many others are presently computing binary digits at the quadrillionth
position on the web [33]. As we write, the most recent computational
result was Yasumasa Kanada’s calculation (September 1999) of the first
206 billion decimal digits of 7. This spectacular computation was made
on a Hitachi parallel supercomputer with 128 processors, in little over a
day, and employed the Salamin-Brent algorithm [10], with a quartically
convergent algorithm from [10] as an independent check.

Several large-scale parallel integer relation detection computations
have also been performed in the past year or two. One arose from the
discovery by Broadhurst that

a630 _1=
(a315 _ 1)(a210 _ 1)(a126 _ 1)2(a90 _ 1)(0[3 _ 1)3(a2 _ 1)5((1 _ 1)3
(0435 _ 1)(a15 _ 1)2(a14 _ 1)2(a5 _ 1)6a68
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where @ = 1.176280818... is the largest real root of Lehmer’s polyno-
mial [29]

0=1+a—-a®-at-a®-af —a"+a° +a'°
The above cyclotomic relation was first discovered by a PSLQ com-
putation, and only subsequently proven. Broadhurst then conjectured
that there might be integers a, b, c; such that

al(17) = Zb 729 (log a)'7=27 4+ Z cx Lirz (a™F)

keD(S)

where the 115 indices k are drawn from the set, D(S), of positive integers
that divide at least one element of

S = {29,47,50,52,56, 57,64, 74,75,76, 78, 84, 86,92, 96, 98, 108, 110, 118,
124,130,132, 138, 144, 154, 160, 165, 175, 182, 186, 195, 204, 212, 240,
246, 270, 286, 360, 630}.

Indeed, such a relation was found, using a parallel multi-pair PSLQ
program running on a SGI/Cray T3E computer system at Lawrence
Berkeley Laboratory. The run employed 50,000 decimal digit arithmetic
and required approximately 44 hours on 32 processors. The resulting
integer coefficients are as large as 10292, but the “identity” nonetheless
was confirmed to 13,000 digits beyond the level of numerical artifact [7].

8 Connections to Quantum Field Theory

In another surprising recent development, David Broadhurst has found,
using these methods, that there is an intimate connection between Euler
sums and constants resulting from evaluation of Feynman diagrams in
quantum field theory [18,19]. In particular, the renormalization proce-
dure (which removes infinities from the perturbation expansion) involves
multiple zeta values. As before, a fruitful theory has emerged, including
a large number of both specific and general results [13].

Some recent quantum field theory results are even more remarkable.
Broadhurst has now shown [20], using PSLQ computations, that in each
of ten cases with unit or zero mass, the finite part the scalar 3-loop
tetrahedral vacuum Feynman diagram reduces to 4-letter “words” that
represent iterated integrals in an alphabet of seven “letters” comprising
the one-forms 2 := dz/z and wy, := dz/(A~* — ), where A := (1 +
v/=3)/2 is the primitive sixth root of unity, and k runs from 0 to 5. A
4-letter word is a 4-dimensional iterated integral, such as

= ((QPwswp) =

/ dwl/Z1d.q;2/ - 1_m3 /Ozs (1%1‘"‘;4):‘Z (_Jlg#

7>k>0
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There are 7* such four-letter words. Only two of these are primitive terms
occurring in the 3-loop Feynman diagrams: U, above, and

V := Real[((2%wsw:)] = Z (_D%;gw_
J>k>0

The remaining terms in the diagrams reduce to products of constants
found in Feynman diagrams with fewer loops. These ten cases as shown
in Figure 1. In these diagrams, dots indicate particles with nonzero rest
mass. The formulas that have been found, using PSLQ, for the cor-
responding constants are given in Table 2. In the table the constant

C = 4sosin(rk/3)/k.

LALALNLNEN
LALNNENL

Fig. 1. The ten tetrahedral cases

Vi =6¢(3) +3¢(4)

Vaa = 6¢(3) — 5¢(4)

Van = 6¢(3) — 22¢(4) — 8U

Var = 6¢(3) — 9¢(4)

Vas = 6((3) — 5((4) —4C?

Var = 6¢(3) — 12¢(4) — 6C?

Vaa = 6((3) — 13¢(4) — 6C*

Van = 6¢(3) — 14¢(4) — 16U

Vs =6((3)—22¢(4)+ 2C* — 16V
Ve =6((3)—13¢(4) —8U —4C?

Table 1. Formulas found by PSLQ for the ten cases of Figure 1
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9 A Note of Caution

In spite of the remarkable successes of this methodology, some caution
is in order. First of all, the fact that an identity is established to high
precision is not a guarantee that it is indeed true. One example is

i [ntanhn] 1
1on 81
n=1

which holds to 267 digits, yet is not an exact identity, failing in the 268’th
place. Several other such bogus “identities” are exhibited and explained
in [11].

More generally speaking, caution must be exercised when extrapo-
lating results true for small n to all n. For example,

Psin(z) 0w

©sin(z) sin(z/3) , o«

/0 z z/3 do = 2

/°° sin(z) sin(z/3)  sin(z/13) dr =T
0 x z/3 z/13 2

yet

/°° sin(z) sin(z/3) sin(z/15)
.. dz
0 x z/3 z/15
467807924713440738696537864469
9356158494406409073105217500007T'

When this fact was recently observed by a researcher using a mathemat-
ical software package, he concluded that there must be a “bug” in the
software. Not so. What is happening here is that

/°° sin(z) sin(z/h1)  sin(z/hy) do —
0 x $/h1 m/hn

s
2

only so long as 1/h; + 1/hy + --- + 1/hy, < 1. In the above example,
1/3+1/5+4 ---+1/13 < 1, but with the addition of 1/15, the sum
exceeds 1 and the identity no longer holds [9]. Changing the h,, lets this
pattern persist indefinitely but still fail in the large.

10 Future Outlook

Computer mathematics software is now becoming a staple of university
departments and government research laboratories. Many university de-
partments now offer courses where the usage of one of these software
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packages is an integral part of the course. But further expansion of these
facilities into high schools has been inhibited by a number of factors,
including the fairly high cost of such software, the lack of appropriate
computer equipment, difficulties in standardizing such coursework at a
regional or national level, a paucity of good texts incorporating such
tools into a realistic curriculum, lack of trained teachers and many other
demands on their time.

But computer hardware continues its downward spiral in cost and
its upward spiral in power. It thus appears that within a very few years,
moderately powerful symbolic computation facilities can be incorporated
into relatively inexpensive hand calculators, at which point it will be
much easier to successfully integrate these tools into high school cur-
ricula. Thus it seems that we are poised to see a new generation of
students coming into university mathematics and science programs who
are completely comfortable using such tools. This development is bound
to have a profound impact on the future teaching, learning and doing of
mathematics.

A likely and fortunate spin-off of this development is that the com-
mercial software vendors who produce these products will likely enjoy
a broader financial base, from which they can afford to further en-
hance their products geared at serious researchers. Future enhancements
are likely to include more efficient algorithms, more extensive capabili-
ties mixing numerics and symbolics, more advanced visualization facili-
ties, and software optimized for emerging symmetric multiprocessor and
highly parallel, distributed memory computer systems. When combined
with expected increases in raw computing power due to Moore’s Law —
improvements which almost certainly will continue unabated for at least
ten years and probably much longer — we conclude that enormously
more powerful computer mathematics systems will be available in the
future.

We only now are beginning to experience and comprehend the po-
tential impact of computer mathematics tools on mathematical research.
In ten more years, a new generation of computer-literate mathemati-
cians, armed with significantly improved software on prodigiously pow-
erful computer systems, are bound to make discoveries in mathematics
that we can only dream of at the present time. Will computer mathemat-
ics eventually replace, in near entirety, the solely human form of research,
typified by Andrew Wiles’ recent proof of Fermat’s Last Theorem? Will
computer mathematics systems eventually achieve such intelligence that
they discover deep new mathematical results, largely or entirely with-
out human assistance? Will new computer-based mathematical discovery
techniques enable mathematicians to explore the realm, proved to exist
by Godel, Chaitin and others, that is fundamentally beyond the limits
of formal reasoning?
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11 Conclusion

We have shown a small but we hope convincing selection of what the
present allows and what the future holds in store. We have hardly men-
tioned the growing ubiquity of web based computation, or of pervasive
access to massive data bases, both public domain and commercial. Nei-
ther have we raised the human/computer interface or intellectual prop-
erty issues and the myriad other not-purely-technical issues these raise.

Whatever the outcome of these developments, we are still persuaded
that mathematics is and will remain a uniquely human undertaking. One
could even argue that these developments confirm the fundamentally hu-
man nature of mathematics. Indeed, Reuben Hersh’s arguments [26] for
a humanist philosophy of mathematics, as paraphrased below, become
more convincing in our setting:

1. Mathematics is human. It is part of and fits into human culture. It
does not match Frege’s concept of an abstract, timeless, tenseless,
objective reality.

2. Mathematical knowledge is fallible. As in science, mathematics can
advance by making mistakes and then correcting or even re-correcting
them. The “fallibilism” of mathematics is brilliantly argued in Lakatos’
Proofs and Refutations [28].

3. There are different versions of proof or rigor. Standards of rigor
can vary depending on time, place, and other things. The use of
computers in formal proofs, exemplified by the computer-assisted
proof of the four color theorem in 1977, is just one example of an
emerging nontraditional standard of rigor.

4. Empirical evidence, numerical experimentation and probabilistic proof
all can help us decide what to believe in mathematics. Aristotelian
logic isn’t necessarily always the best way of deciding.

5. Mathematical objects are o special variety of a social-cultural-historical
object. Contrary to the assertions of certain post-modern detractors,
mathematics cannot be dismissed as merely a new form of literature
or religion. Nevertheless, many mathematical objects can be seen as
shared ideas, like Moby Dick in literature, or the Immaculate Con-
ception in religion.

Certainly the recognition that “quasi-intuitive” analogies can be used to
gain insight in mathematics can assist in the learning of mathematics.
And honest mathematicians will acknowledge their role in discovery as
well.

We look forward to what the future will bring.
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8. Visible structures in number theory

Discussion

Videre est credere—Seeing is believing. This ancient dictum is, like most folk wisdom, both right
and wrong. Seeing is both believing and a caution against believing. At best, like Figure 11 of the
accompanying paper, subtle and interesting phenomena are suggested and patterns are seen that
can’t be found by paper and pencil. However, patterns and pictures can also be highly misleading.
(See Figures 9 and 10.)

Mathematics is a highly logical field, and the process of presentation and proof is very structured
with well-defined rules. But few if any mathematicians discover mathematics in a highly structured
way, and many mathematicians (as Hadamard suggests) approach mathematics in an unstructured
visual way. It is only recently with sophisticated mathematical tools like Mathematica or Maple or
Matlab that it has become possible to visually explore the complicated worlds of things like fractals.

Learning how to “see mathematics” is, we would suggest, an exciting new direction in mathematics.
With the sophisticated computational and visualization tools now available, the reemergence of the
experimental side of mathematics is given extraordinary currency and vibrancy.

Additionally, as John Edensor Littlewood wrote long before the current fine graphic, visualization

and geometric tools were available:

A heavy warning used to be given [by lecturers| that pictures are not rigorous; this has
never had its bluff called and has permanently frightened its victims into playing for
safety. Some pictures, of course, are not rigorous, but I should say most are (and I use
them whenever possible myself).!(1885-1977).

Source

P. Borwein and L. Jérgenson, “Visible structures in number theory,” MAA Monthly, 108 (2001),
897-910. Featured in the Math Forum newsletter (Feb. 26, 2001).

"From Littlewood’s Miscellany (p. 35 in 1953 edition).
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Visible Structures in Number Theory

Peter Borwein and Loki Jorgenson

1. INTRODUCTION.

I see a confused mass. —Jacques Hadamard (1865-1963)

These are the words the great French mathematician used to describe his initial
thoughts when he proved that there is a prime number greater than 11 [11, p. 76]. His
final mental image he described as “...a place somehere between the confused mass
and the first point”. In commenting on this in his fascinating but quirky monograph,
he asks “What may be the use of such a strange and cloudy imagery?”.

Hadamard was of the opinion that mathematical thought is visual and that words
only interfered. And when he inquired into the thought processes of his most distin-
guished mid-century colleaugues, he discovered that most of them, in some measure,
agreed (a notable exception being George Polya).

For the non-professional, the idea that mathematicians “see” their ideas may be sur-
prising. However the history of mathematics is marked by many notable developments
grounded in the visual. Descartes’ introduction of “cartesian” co-ordinates, for ex-
ample, is arguably the most important advance in mathematics in the last millenium. It
fundamentally reshaped the way mathematicians thought about mathematics, precisely
because it allowed them to “see” better mathematically.

Indeed, mathematicians have long been aware of the significance of visualization
and made great effort to exploit it. Carl Friedrich Gauss lamented, in a letter to Hein-
rich Christian Schumacher, how hard it was to draw the pictures required for making
accurate conjectures. Gauss, whom many consider the greatest mathematician of all

time, in reference to a diagram that accompanies his first proof of the fundamental
theorem of algebra, wrote

It still remains true that, with negative theorems such as this, transforming personal convictions
into objective ones requires deterringly detailed work. To visualize the whole variety of cases,
one would have to display a large number of equations by curves; each curve would have to be
drawn by its points, and determining a single point alone requires lengthy computations. You
do not see from Fig. 4 in my first paper of 1799, how much work was required for a proper
drawing of that curve. —~Carl Friedrich Gauss (1777-1855)

The kind of pictures Gauss was looking for would now take seconds to generate on a
computer screen.

Newer computational environments have greatly increased the scope for visualizing
mathematics. Computer graphics offers magnitudes of improvement in resolution and
speed over hand-drawn images and provides increased utility through color, anima-
tion, image processing, and user interactivity. And, to some degree, mathematics has
evolved to exploit these new tools and techniques. We explore some subtle uses of in-
teractive graphical tools that help us “see” the mathematics more clearly. In particular,
we focus on cases where the right picture suggests the “right theorem”, or where it in-

dicates structure where none was expected, or where there is the possibility of “visual
proof”.
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For all of our examples, we have developed Internet-accessible interfaces. They
allow readers to interact and explore the mathematics and possibly even discover new
results of their own—visit www.cecm.sfu.ca/projects/numbers/.

2. IN PURSUIT OF PATTERNS.

Computers make it easier to do a lot of things, but most of the things they make it easier to do
don’t need to be done.

—Andy Rooney
Mathematics can be described as the science of patterns, relationships, generalized
descriptions, and recognizable structure in space, numbers, and other abstracted enti-

ties. This view is borne out in numerous examples such as [16] and [15]. Lynn Steen
has observed [19]:

Mathematical theories explain the relations atong patterns; functions and maps, operators
and morphisms bind one type of pattern to another to yield lasting mathematical structures.
Application of mathematics use these patterns to “explain” and predict natural phenomena that
fit the patterns. Patterns suggest other patterns, often yielding patterns of patterns.

This description conjures up images of cycloids, Sierpinski gaskets, “cowboy hat”
surfaces, and multi-colored graphs. However it isn’t immediately apparent that this
patently visual reference to patterns applies throughout mathematics. Many of the
higher order relationships in fields such as number theory defy pictorial representa-
tion or, at least, they don’t immediately lend themselves intuitively to a graphic treat-
ment. Much of what is “pattern” in the knowledge of mathematics is instead encoded
in a linear textual format born out of the logical formalist practices that now dominate
mathematics.

Within number theory, many problems offer large amounts of “data” that the human
mind has difficulty assimilating directly. These include classes of numbers that satisfy
certain criteria (e.g., primes), distributions of digits in expansions, finite and infinite
series and summations, solutions to variable expressions (e.g., zeroes of polynomials),
and other unmanageable masses of raw information. Typically, real insight into such
problems has come directly from the mind of the mathematician who ferrets out their
essence from formalized representations rather than from the data. Now computers
make it possible to “enhance” the human perceptual/cognitive systems through many
different kinds of visualization and patterns of a new sort emerge in the morass of
numbers.

However the epistemological role of computational visualization in mathematics is
still not clear, certainly not any clearer than the role of intuition where mental visu-
alization takes place. However, it serves several useful functions in current practice.
These include inspiration and discovery, informal communication and demonstration,
and teaching and learning. Lately though, the area of experimental mathematics has
expanded to include exploration and experimentation and, perhaps controversially, for-
mal exposition and proof. Some carefully crafted questions have been posed about how
experiment might contribute to mathematics [5]. Yet answers have been slow to come,
due in part to general resistance and, in some cases, alarm [11] within the mathemat-
ical community. Moreover, experimental mathematics finds only conditional support
from those who address the issues formally [7], [9].

The value of visualization hardly seems to be in question. The real issue seems
to be what it can be used for. Can it contribute directly to the body of mathematical
knowledge? Can an image act as a form of “visual proof”? Strong cases can be made
to the affirmative [7], [3] (including in number theory), with examples typically in
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Figure 1. A simple “visual proof” of Y o0 ($)¥ = §

the form of simplified, heuristic diagrams such as Figure 1. These carefully crafted

examples call into question the epistemological criteria of an acceptable proof.
Establishing adequate criteria for mathematical proof is outside the scope of this

paper; interested readers can visit [20], a repository for information related to reason-

ing with visual representations. Its authors suggest that three necessary, but perhaps
not sufficient, conditions may be:

* reliability: the underlying means of arriving at the proof are reliable and the result is
unvarying with each inspection

* conmsistency: the means and end of the proof are consistent with other known facts,
beliefs, and proofs

* repeatibility: the proof may be confirmed by or demonstrated to others

Each requirement is difficult to satisfy in a single, static visual representation. Most
criticisms of images as mathematical knowledge or tools make this clear [8], [13].

Traditional exposition differs significantly from that of the visual. In the logical
formal mode, proof is provided in linearly connected sentences composed of words
that are carefully selected to convey unambiguous meaning. Each sentence follows the
previous, specifying an unalterable path through the sequence of statements. Although
error and misconception are still possible, the tolerances are extremely demanding and
follow the strict conventions of deductivist presentation [12].

In graphical representations, the same facts and relationships are often presented
in multiple modes and dimensions. For example, the path through the information is
usually indeterminate, leaving the viewer to establish what is important (and what is
not) and in what order the dependencies should be assessed. Further, unintended infor-
mation and relationships may be perceived, either due to the unanticipated interaction

of the complex array of details or due to the viewer’s own perceptual and cognitive
processes.
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As a consequence, successful visual representations tend to be spartan in their de-
tail. And the few examples of visual proof that withstand close inspection are limited
in their scope and generalizability. The effort to bring images closer to conformity

with the prevailing logical modes of proof has resulted in a loss of the richness that is
intrinsic to the visual.

3. IN SUPPORT OF PROOF.
Computers are useless. They can only give you answers. —Pablo Picasso (1881~1973)

In order to offer the reliability, consistency, and repeatability of the written word
and still provide the potential inherent in the medium, visualization needs to offer
more than just the static image. It too must guide, define, and relate the information
presented. The logical formalist conventions for mathematics have evolved over many
decades, resulting in a mode of discourse that is precise in its delivery. The order of
presentation of ideas is critical, with definitions preceding their usage, proofs separated
from the general flow of the argument for modularity, and references to foundational
material listed at the end.

To do the same, visualization must include additional mechanisms or conventions
beyond the base image. It isn’t appropriate simply to ape the logical conventions and
find some visual metaphor or mapping that works similarly (this approach is what
limits existing successful visual proofs to very sirnple diagrams). Instead, an effective
visualization needs to offer several key features

dynamic: the representation should vary through some parameter(s) to demonstrate
arange of behaviours (instead of the single instance of the static case)

guidance: to lead the viewer through the appropriate steps in the correct order, the

representation should offer a “path” through the information that builds the case for
the proof

fexibility: it should support the viewer’s own exploration of the ideas presented,
including the search for counterexamples or incompleteness

openness: the underlying algorithms, libraries, and details of the programming lan-
guages and hardware should be available for inspection and confirmation

With these capabilities available in an interactive representation, the viewer could then
follow the argument being made visually, explore all the ramifications, check for coun-
terexamples, special cases, and incompleteness, and even confirm the correctness of
the implementation. In fact, the viewer should be able to inspect a visual representa-
tion and a traditional logical formal proof with the same rigor.

Although current practice does not yet offer any conclusions as to how images and
computational tools may impact mathematical methodologies or the underlying epis-
temology, it does indicate the direction that subsequent work may take. Examples offer

some insight into how emerging technologies may eventually provide an unambiguous
role for visualization in mathematics.

4. THE STRUCTURE OF NUMBERS. Numbers may be generated by a myriad
of means and techniques. Each offers a very small piece of an infinitely large puzzle.
Number theory identifies patterns of relationship between numbers, sifting for the sub-
tle suggestions of an underlying fundamental structure. The regularity of observable
features belies the seeming abstractness of numbers.
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Figure 2. The first 1600 decimal digits of = mod 2.

Binary Expansions. In the 17th century, Gottfried Wilhelm Leibniz asked in a letter
to one of the Bernoulli brothers if there might be a pattern in the binary expansion of
7. Three hundred years later, his question remains unanswered. The numbers in the
expansion appear to be completely random. In fact, the most that can now be said of
any of the classical mathematical constants is that they are largely non-periodic.

With traditional analysis revealing no patterns of interest, generating images from
the expansions offers intriguing alternatives. Figures 2 and 3 show 1600 decimal digits
of m and 22/7 respectively, both taken mod 2. The light pixels are the even digits and
the dark ones are the odd. The digits read from left to right, top to bottom, like words
in a book.

What does one see? The even and odd digits of & in Figure 2 seem to be dis-
tributed randomly. And the fact that 22/7 (a widely used approximation for =) is ra-
tional appears clearly in Figure 3. Visually representing randomness is not a new idea;
Pickover [18] and Voelcker [22] have previously examined the possibility of “seeing
randomness”. Rather, the intention here is to identify patterns where none has so far
been seen, in this case in the expansions of irrational numbers.

These are simple examples but many numbers have structures that are hidden both
from simple inspection of the digits and even from standard statistical analysis. Figure
4 shows the rational number 1/65537, this time as a binary expansion, with a period
of 65536. Unless graphically represented with sufficient resolution, the presence of a
regularity might otherwise be missed in the unending string of 0’s and 1’s.

Figures 5 a) and b) are based on similar calculations using 1600 terms of the simple
continued fractions of 7 and e respectively. Continued fractions have the form
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Figure 3. The first 1600 decimal digits of 22/7 med 2.

Figure 4. The first million binary digits of 1/65537 reveal the subtle diagonal structure from the periodicity.
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Figure 5. The first 1600 values of the continued fraction for a) m and b) e, both mod 4
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In these images, the decimal values have been taken mod 4. Again the distribution of
the a; of w appears random though now, as one would expect, there are more odds
than evens. However for ¢, the pattern appears highly structured. This is no surprise on
closer examination, as the continued fraction for e is

2,1,2,1,1,4,1,1,6,1,1,8,1,1,10, 1,1, 12,...]

and, if taken as a sequence of digits, is a rational number mod 4. It is apparent from the
images that the natures of the various distributions are quite distinct and recognizable.
In contrast no such simple pattern exists for exp(3) mod 4.

Presumably this particular visual representation offers a qualitative characteriza-

tion of the numbers. It tags them in an instantly distinguishable fashion that would be
almost impossible to do otherwise.

Sequences of Polynomials.

Few things are harder to put up with than the annoyance of a good example.
—Mark Twain (1835-1910)

In a similar vein, structures are found in the coefficients of sequences of polyno-
mials. The first example in Figure 6 shows the binomial coefficients (:1) mod 3, or
equivalently Pascal’s Triangle mod 3. For the sake of what follows, it is convenient
to think of the ith row as the coefficients of the polynomial (1 + x)’ taken mod three.
This apparently fractal pattern has been the object of much careful study [10].

Figure 7 shows the coefficients of the first eighty Chebyshev polynomials mod 3
laid out like the binomial coefficients of Figure 6. Recall that the nth Chebyshev poly-
nomial 7,,, defined by 7, (x) := cos(n arccos x), has the explicit representation

n A (n—k—-D! _
T.(x) = E ;(—1)1{‘];!—(”—_2—1()!—(236) 2k,

and satisfies the recursion

T.(xy=2xT,_1(x) —T,_o(x), n=2,3,....

Figure 6. Eighty rows of Pascal’s Triangle mod 3
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Figure 7. Eighty Chebyshev Polynomials mod 3

The expression for 7, (x) resembles the (:;) form of the binomial coefficients and its
recursion relation is similar to that for the Pascal’s Triangle.

Figure 8 shows the Stirling numbers of the second kind mod 3, again organized as
a triangle. They are defined by

1 m
Str,m) = — 3 (’:) (—1)™*"

" k=0

and give the number of ways of partitioning a set of n elements into m non-empty
subsets. Once again the form of (;’l) appears in its expression.

The well-known forms of the polynomials appear distinct. Yet it is apparent that the
polynomials are graphically related to each other. In fact, the summations are variants
of the binomial coefficient expression.

It is possible to find similar sorts of structure in virtually any sequence of polyno-
mials: Legendre polynomials; Euler polynomials; sequences of Padé denominators to
the exponential or to (1 — x)“ with ¢ rational. Then, selecting any modulus, a distinct

Figure 8. Eighty rows of Stirling Numbers of the second kind mod 3
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pattern emerges. These images indicate an underlying structure within the polynomi-
als themselves and demand some explanation. While conjectures exist for their origin,
proofs for the theorems suggested by these pictures do not yet exist. And when there
finally is a proof, might it be offered in some visual form?

Quasi-Rationals.

For every problem, there is one solution which is simple, neat, and wrong.
—H.L. Mencken (1880-1956)

Having established a visual character for irrationals and their expansions, it is inter-
esting to note the existence of “quasi-rational” numbers. These are certain well-known
irrational numbers whose images appear suspiciously rational. The sequences pictured
in Figures 9 and 10 are {im}!%P mod 2 and {ie}}P mod 2, respectively. One way of
thinking about these sequences is as binary expansions of the numbers

i [ma] mod 2
n=1 2
where « is, respectively,  or e.

The resulting images are very regular. And yet these are transcendental numbers;
having observed this phenomenon, we were subsequently able to explain this behavior
rigorously from the study of

Figure 9. Integer part of {in}}golo mod 2; note the slight irregularities in the pseudo-periodic pattern.
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Figure 10. Integer part of {ie}giqo mod 2; note the slight irregularities in the pseudo-periodic pattern.

which is transcendental for all irrational «:. This follows from the remarkable continued
fraction expansion of Béhmer [4]

i[ma]z” = i S
n=1 B (1 - an)(l — an+1) '

n=0

Here (g,) is the sequence of denominators in the simple continued fraction expansion
of a.

Careful examination of Figures 9 and 10 show that they are only pseudo-periodic;
slight irregularities appear in the pattern. Rational-like behaviour follows from the
very good rational approximations evidenced by the expansions. Or put another way,

there are very large terms in the continued fraction expansion. For example, the ex-
pansion of

i [mn]mod 2
n=1
is
[0, 1,2, 42, 638816050508714029100700827905, 1, 126, .. .],

with a similar phenomenon for e.

This behaviour makes it clear that there is subtlety in the nature of these numbers.
Indeed, while we were able to establish these results rigorously, many related phe-
nomena exist whose proofs are not yet in hand. For example, there is no proof or
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explanation for the visual representation of

o0

Z [mm]mod 2

n=1 3,
Proofs for these graphic results might well offer further refinements to their represen-
tations, leading to yet another critical graphic characterization.

Complex Zeros. Polynomials with constrained coefficients have been much stud-
ied [2], [17], [6]. They relate to the Littlewood conjecture and many other problems.
Littlewood notes that “these raise fascinating questions” [14].

Certain of these polynomials demonstrate suprising complexity when their zeros
are plotted appropriately. Figure 11 shows the complex zeros of all polynomials

Pn(Z)=ao+alz+a2z2+~-~+anz"

of degree n < 18, where a; = {—1, +1}. This image, reminiscent of pictures for poly-
nomials with all coefficients in the set {0, 41} [17], does raise many questions: Is the
set fractal and what is its boundary? Are there holes at infinite degree? How do the
holes vary with the degree? What is the relationship between these zeros and those of
polynomials with real coefficients in the neighbourhood of {—1, +1}?

Some, but definitely not all, of these questions have found some analytic an-
swer [17], [6]. Others have been shown to relate subtly to standing problems of some
significance in number theory. For example, the nature of the holes involves a old
problem known as Lehmer’s conjecture [1]. It is not yet clear how these images con-
tribute to a solution to such problems. However they are provoking mathematicians to
look at numbers in new ways.

Figure 11. Roots of Littlewood Polynomials of degree at most 18 for coefficients 1.
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5. CONCLUSION. Visualization extends the natural capacity of the mathematician,
to envision his subject, to see the entities and objects that are part of his work with

the aid of software and hardware. Since graphic representations are firmly rooted in

verifiable algorithms and machines, the images and interfaces may also provide new

forms of exposition and possibly even proof. Most important of all, like spacecraft,

diving bells, and electron microscopes, visualization of mathematical structures takes

the human mind to places it has never been and shows the mind’s eye images from a

realm previously unseen.

Readers are encouraged to review this paper in full color on-line [21].
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Discussion

This article was encouraged and nurtured by colleagues in mathematical education. Despite three
decades of significant failures and only modest successes, we remain convinced of the power of the
computer and mathematical software to revitalize and enliven the teaching of school and college
mathematics. We do wish that prior attempts had been mindful of the good business advice that
“one should always under-promise but over-deliver,” rather than dumping mediocre software and
unmaintained equipment in the classroom and ignoring the teacher.

Self-indulgent neglect by mathematical educators—aided and abetted by governments and com-
puter vendors—is more than a little to blame. The related current semiotic malaise in mathematical

education is cleanly dissected by Tony Brown:

So to summarise, according to the citation count, in order of descent, the authors
are listening to themselves, dead philosophers, other specialists in semiotic work in
mathematics education research, other mathematics education research researchers
and then just occasionally to social scientists but almost never to other education
researchers, including mathematics teacher education researchers, school teachers and
teacher educators. The engagement with Peirce is being understood primarily through
personal engagements with the original material rather than as a result of working
through the filters of history, including those evidenced within mathematics education
research reports in the immediate area. The reports, and the hierarchy of power relations
implicit in them, marginalise links to education, policy implementation or the broader

social sciences.t

Source

J.M. Borwein, “The Experimental Mathematician: The Pleasure of Discovery and the Role of Proof,”
International Journal of Computers for Mathematical Learning, 10 (2005), 75-108. [CECM Preprint
02:178; 264]. A counterpart presentation online at www.cecm.sfu.ca/personal/jborwein/proof.
pdfs, published in CMESG25 Proceedings, 2002.

'From “Signifying ‘students’, ‘teachers’ and ‘mathematics’ a reading of a special issue.” Published online: at
http://www.springerlink.com/content/x51838k6367w416g/, May 2008.
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THE EXPERIMENTAL MATHEMATICIAN: THE PLEASURE
OF DISCOVERY AND THE ROLE OF PROOF

‘...where almost one quarter hour was spent, each beholding the other with
admiration before one word was spoken: at last Mr. Briggs began “My Lord, I
have undertaken this long journey purposely to see your person, and to know by
what wit or ingenuity you first came to think of this most excellent help unto
Astronomy, viz. the Logarithms: but my Lord, being by you found out, I wonder
nobody else found it out before, when now being known it appears so easy.” *!

ABSTRACT. The emergence of powerful mathematical computing environments, the
growing availability of correspondingly powerful (multi-processor) computers and the
pervasive presence of the internet allow for mathematicians, students and teachers, to
proceed heuristically and ‘quasi-inductively’. We may increasingly use symbolic and nu-
meric computation, visualization tools, simulation and data mining. The unique features
of our discipline make this both more problematic and more challenging. For example,
there is still no truly satisfactory way of displaying mathematical notation on the web; and
we care more about the reliability of our literature than does any other science. The
traditional role of proof in mathematics is arguably under siege — for reasons both good
and bad.

AMS Classifications: 00A30, 00A35, 97C50

KEY WORDS: aesthetics, constructivism, experimental mathematics, humanist philosophy,
insight, integer relations, proof

1. EXPERIMENTAL MATH: AN INTRODUCTION

“There is a story told of the mathematician Claude Chevalley (1909-1984), who,
as a true Bourbaki, was extremely opposed to the use of images in geometric
reasoning.

He is said to have been giving a very abstract and algebraic lecture when he got
stuck. After a moment of pondering, he turned to the blackboard, and, trying to
hide what he was doing, drew a little diagram, looked at it for a moment, then
quickly erased it, and turned back to the audience and proceeded with the
lecture. ..
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... The computer offers those less expert, and less stubborn than Chevalley, access
to the kinds of images that could only be imagined in the heads of the most gifted
mathematicians, ...” (Nathalie Sinclair®)

For my coauthors and I, Experimental Mathematics (Borwein and
Bailey, 2003) connotes the use of the computer for some or all of:

. Gaining insight and intuition.

. Discovering new patterns and relationships.

. Graphing to expose math principles.

. Testing and especially falsifying conjectures.

. Exploring a possible result to see if it merits formal proof.
. Suggesting approaches for formal proof.

Computing replacing lengthy hand derivations.

. Confirming analytically derived results.

I e Y N S N

This process is studied very nicely by Nathalie Sinclair in the context
of pre-service teacher training.> Limned by examples, I shall also raise
questions such as:

What constitutes secure mathematical knowledge? When is com-
putation convincing? Are humans less fallible? What tools are
available? What methodologies? What about the ‘law of the small
numbers’? How is mathematics actually done? How should it be?
Who cares for certainty? What is the role of proof?

And 1 shall offer some personal conclusions from more than
twenty years of intensive exploitation of the computer as an adjunct
to mathematical discovery.

1.1. The Centre for Experimental Math

About 12 years ago I was offered the signal opportunity to found the
Centre for Experimental and Constructive Mathematics (CECM) at
Simon Fraser University. On its web-site (www.cecm.sfu.ca) I wrote

“At CECM we are interested in developing methods for exploiting mathematical
computation as a tool in the development of mathematical intuition, in hypotheses
building, in the generation of symbolically assisted proofs, and in the construction
of a flexible computer environment in which researchers and research students can
undertake such research. That is, in doing ‘Experimental Mathematics.””

The decision to build CECM was based on: (i) more than a dec-
ade’s personal experience, largely since the advent of the personal
computer, of the value of computing as an adjunct to mathematical
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insight and correctness; (ii) on a growing conviction that the future of
mathematics would rely much more on collaboration and intelligent
computation; (iii) that such developments needed to be enshrined in,
and were equally valuable for, mathematical education; and (iv) that
experimental mathematics is fun.

A decade or more later, my colleagues and I are even more convinced
of the value of our venture — and the ‘mathematical universe is
unfolding” much as we anticipated. Our efforts and philosophy are
described in some detail in the recent books (Borwein and Bailey, 2003;
Borwein et al., 2004) and in the survey articles (Borwein et al., 1996;
Borwein and Carless, 1999; Bailey and Borwein, 2000; Borwein and
Borwein, 2001). More technical accounts of some of our tools and
successes are detailed in (Borwein and Bradley (1997) and Borwein
and Lison€k (2000). About 10 years ago the term ‘experimental
mathematics’ was often treated as an oxymoron. Now there is a highly
visible and high quality journal of the same name. About 15 years ago,
most self-respecting research pure mathematicians would not admit to
using computers as an adjunct to research. Now they will talk about the
topic whether or not they have any expertise. The centrality of infor-
mation technology to our era and the growing need for concrete im-
plementable answers suggests why we had attached the word
‘Constructive’ to CECM — and it motivated my recent move to Dal-
housie to establish a new Distributed Research Institute and Virtual
Environment, D-DRIVE (www.cs.dal.ca/ddrive).

While some things have happened much more slowly than we
guessed (e.g., good character recognition for mathematics, any sub-
stantial impact on classroom parole) others have happened much
more rapidly (e.g., the explosion of the world wide web®, the quality
of graphics and animations, the speed and power of computers).
Crudely, the tools with broad socictal or economic value arrive
rapidly, those interesting primarily in our niche do not.

Research mathematicians for the most part neither think deeply
about nor are terribly concerned with either pedagogy or the phi-
losophy of mathematics. Nonetheless, aesthetic and philosophical
notions have always permeated (pure and applied) mathematics. And
the top researchers have always been driven by an aesthetic impera-
tive:

“We all believe that mathematics is an art. The author of a book, the lecturer in a
classroom tries to convey the structural beauty of mathematics to his readers, to his
listeners. In this attempt, he must always fail. Mathematics is logical to be sure,
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each conclusion is drawn from previously derived statements. Yet the whole of it,
the real piece of art, is not linear; worse than that, its perception should be
instantaneous. We have all experienced on some rare occasions the feeling of ela-
tion in realizing that we have enabled our listeners to see at a moment’s glance the
whole architecture and all its ramifications.” (Emil Artin, 1898-1962)°

Elsewhere, I have similarly argued for aesthetics before utility
(Borwein, 2004, in press). The opportunities to tie research and
teaching to aesthetics are almost boundless — at all levels of the
curriculum.® This is in part due to the increasing power and sophis-
tication of visualization, geometry, algebra and other mathematical
software. That said, in my online lectures and resources,” and in
many of the references one will find numerous examples of the utility
of experimental mathematics.

In this article, my primary concern is to explore the relationship
between proof (deduction) and experiment (induction). I borrow
quite shamelessly from my earlier writings.

There is a disconcerting pressure at all levels of the curriculum to
derogate the role of proof. This is in part motivated by the aridity of
some traditional teaching (e.g., of Euclid), by the alternatives now
being offered by good software, by the difficulty of teaching and
learning the tools of the traditional trade, and perhaps by laziness.

My own attitude is perhaps best summed up by a cartoon in a
book on learning to program in APL (a very high level language).
The blurb above reads Remember 10 minutes of computation is worth

10 hours of thought. The blurb below reads Remember 10 minutes of

thought is worth 10 hours of computation. Just as the unlived life is not
much worth examining, proof and rigour should be in the service of
things worth proving. And equally foolish, but pervasive, is encour-
aging students to ‘discover’ fatuous generalizations of uninteresting
facts. As an antidote, In Section 2, I start by discussing and illus-
trating a few of George Polya’s views. Before doing so, I review the
structure of this article.

Section 2 discusses some of George Polya’s view on heuristic
mathematics, while Section 3 visits opinions of various eminent
mathematicians. Section 4 discusses my own view and their genesis.
Section 5 contains a set of mathematical examples amplifying the
prior discussion. Sections 6 and 7 provide two fuller examples of
computer discovery, and in Section 8 I return to more philosophical
matters — in particular, a discussion of proof versus truth and the
nature of secure mathematical knowledge.
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2. POLYA ON PICTURE-WRITING

“[{Intuition comes to us much earlier and with much less outside influence than
formal arguments which we cannot really understand unless we have reached a
relatively high level of logical experience and sophistication.” (Geroge Polya)®

Polya, in his engaging eponymous 1956 American Mathematical
Monthly article on picture writing, provided three provoking exam-
ples of converting pictorial representations of problems into gener-
ating function solutions:

1. In how many ways can you make change for a dollar?
This leads to the (US currency) generating function

& - 1
;ka/ = (1 _ xl)(l — x5)(1 _ xlO)(l _ x25)(1 — x50)’

which one can easily expand using a Mathematica command,
Series [1/((1—x) x (1 —x5) x (I —x"10) x (1 —x"25) x (1 —x"50)),
{x,0,100}]

to obtain Pyoy = 292 (243 for Canadian currency, which lacks a
50 cent piece but has a dollar coin). Polya’s diagram is shown in
Figure 1.°

To see why we use geometric series and consider the so-called
ordinary generating function

1
m:1+x10+x20+x30+"'

+

® + OO
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-
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Figure 1. Polya’s illustration of the change solution.
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for dimes and

1
1_7)(25:1+x25+x50+x75+"'

for quarters, etc. If we multiply these two together and compare
coefficients, we get

1

_ 10 20 25 30 35
l—xloxl—x25_1+x + X7+ x7 +x7 +x

+ X% 4 x® 2x0 5 2x0

and can argue that the coefficient of x®° on the right is precisely
the number of ways of making 60 cents out of identical dimes and
quarters.

This is easy to check with a handful of change or a calculator and
the more general question with more denominations is handled
similarly. I leave it to the reader to decide whether it is easier to
decode the generating function from the picture or vice versa. In
any event, symbolic and graphic experiment can provide abun-
dant and mutual reinforcement and assistance in concept forma-
tion.

. Dissect a polygon with n sides into n — 2 triangles by n — 3 diagonals

and compute D, the number of different dissections of this kind.
This leads to the fact that the generating function for D3 =1,
Dy=2,Ds=5 Ds=14, D; =42, ...

.
D(x) =Y Dpx*
k=1

satisfies

D(x) = x[1 + D(x),

whose solution is therefore

_1—2x—\/1—4x

D) -

and D, . 5 turns out to be the n-th Catalan number (2’7 ) /(n+1).
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3. Compute T, the number of different (rooted) trees with n knots.
The generating function of the 7, becomes a remarkable result
due to Cayley:

T(x) =Y Tex* =x[J(1 -7, (1)
k=1

k=1

where remarkably the product and the sum share their coeffi-
cients. This produces a recursion for T, in terms of Ty, T>,...,
Tn—l> which starts: T1 =1, T2: 1, T3 :2, T4:4, T5 :9,
Te = 20,...

In each case, Polya’s main message is that one can usefully draw
pictures of the component elements — (a) in pennies, nickels dimes
and quarters (plus loonies in Canada and half dollars in the US), (b)
in triangles and (c) in the simplest trees (e.g., those with the fewest
branches).

“In the first place, the beginner must be convinced that proofs deserve to be
studied, that they have a purpose, that they are interesting.” (George Polya)'”

While by ‘beginner’ George Polya largely intended young school
students, I suggest that this is equally true of anyone engaging for the
first time with an unfamiliar topic in mathematics.

3. GAUSS, HADAMARD AND HARDY’S VIEWS

Three of my personal mathematical heroes, very different men from
different times, all testify interestingly on these points and on the
nature of mathematics.

3.1. Carl Friedrich Gauss
Carl Friedrich Gauss (1777-1855) wrote in his diary'’

“I have the result, but I do not yet know how to get it.”

Ironically I have been unable to find the precise origin of this quote.

One of Gauss’s greatest discoveries, in 1799, was the relationship
between the lemniscate sine function and the arithmetic-geometric
mean iteration. This was based on a purely computational
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observation. The young Gauss wrote in his diary that the result “will
surely open up a whole new field of analysis.”

He was right, as it prised open the whole vista of 19th century
elliptic and modular function theory. Gauss’s specific discovery,
based on tables of integrals provided by Stirling (1692—-1770), was
that the reciprocal of the integral

)2 /‘ dt
TJo V1I—1*
agreed numerically with the limit of the rapidly convergent iteration
given by ag:= 1, by := /2 and computing

ay+b
Api1 = . ) n7 bl‘l+1 =V Anby.

The sequences a,, b, have a common limit
1.1981402347355922074. ..

Which object, the integral or the iteration, is more familiar, which
is more elegant — then and now? Aesthetic criteria change: ‘closed
forms’” have yielded centre stage to ‘recursion’, much as biological
and computational metaphors (even ‘biology envy’) have replaced
Newtonian mental images with Richard Dawkin’s ‘blind watch-
maker’.

This experience of ‘having the result’ is reflective of much research
mathematics. Proof and rigour play the role described next by
Hadamard. Likewise, the back-handed complement given by Briggs
to Napier underscores that is often harder to discover than to explain
or digest the new discovery.

3.2. Jacques Hadamard

A constructivist, experimental and aesthetic driven rationale for
mathematics could hardly do better than to start with:

“The object of mathematical rigor is to sanction and legitimize the conquests of
intuition, and there was never any other object for it.” (J. Hadamard'?)

Jacques Hadamard (1865-1963) was perhaps the greatest mathe-
matician to think deeply and seriously about cognition in mathe-
matics'®. He is quoted as saying ... in arithmetic, until the seventh
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grade, I was last or nearly last” which should give encouragement to
many young students.

Hadamard was both the author of “The psychology of invention
in the mathematical field” (1945), a book that still rewards close
inspection, and co-prover of the Prime Number Theorem (1896):

“The number of primes less than n tends to o as does n/log n.”

This was one of the culminating results of 19th century mathematics
and one that relied on much preliminary computation and experi-
mentation.

One rationale for experimental mathematics and for heuristic
computations is that one generally does not know during the course
of research how it will pan out. Nonetheless, one must frequently
prove all the pieces along the way as assurance that the project re-
mains on course. The methods of experimental mathematics, alluded
to below, allow one to maintain the necessary level of assurance
without nailing down all the lemmas. At the end of the day, one can
decide if the result merits proof. It may not be the answer one sought,
or it may just not be interesting enough.

3.3. Hardy’s Apology

Correspondingly, G. H. Hardy (1877-1947), the leading British ana-
lyst of the first half of the 20th century was also a stylish author who
wrote compellingly in defense of pure mathematics. He noted that

“All physicists and a good many quite respectable mathematicians are contemp-
tuous about proof.”

in his apologia, “A Mathematician’s Apology”. The Apology is a
spirited defense of beauty over utility:

“Beauty is the first test. There is no permanent place in the world for ugly math-
ematics.”

That said, his comment that
“Real mathematics. . .is almost wholly ‘useless’.”

has been over-played and is now to my mind very dated, given the
importance of cryptography and other pieces of algebra and number
theory devolving from very pure study. But he does acknowledge that
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“If the theory of numbers could be employed for any practical and obviously
honourable purpose, ...”

even Gauss would be persuaded.

The Apology is one of Amazon’s best sellers. And the existence of
Amazon, or Google, means that I can be less than thorough with my
bibliographic details without derailing a reader who wishes to find the
source.

Hardy, on page 15 of his tribute to Ramanujan entitled Raman-
ujan, Twelve Lectures ..., gives the so-called ‘Skewes number’ as a
“striking example of a false conjecture”. The integral

. *odt
i x= —
o logt
is a very good approximation to m(x), the number of primes not
exceeding x. Thus, li 10® =5, 762, 209.375... while n(10%) = 5,
761,455.

It was conjectured that

li x > 7n(x)

holds for all x and indeed it so for many x. Skewes in 1933 showed
the first explicit crossing at 10! . This has by now been now re-
duced to a relatively tiny number, a mere 10''%7_ still vastly beyond
direct computational reach or even insight.

Such examples show forcibly the limits on numeric experimen-
tation, at least of a naive variety. Many will be familiar with the
‘Law of large numbers’ in statistics. Here we see what some
number theorists call the ‘Law of small numbers’: all small numbers
are special, many are primes and direct experience is a poor guide.
And sadly or happily depending on one’s attitude even 10''°® may
be a small number. In more generality one never knows when the
initial cases of a seemingly rock solid pattern are misleading.
Consider the classic sequence counting the maximal number of
regions obtained by joining n points around a circle by straight
lines:

1,2,4,8,16,31,57, ...

(see entry A000127 in Sloane’s Encyclopedia).
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4. RESEARCH GOALS AND MOTIVATIONS

As a computational and experimental pure mathematician my
main goal is: insight. Insight demands speed and increasingly
parallelism as described in Borwein and Borwein (2001). Extraor-
dinary speed and enough space are prerequisite for rapid verifi-
cation and for wvalidation and falsification (‘proofs and
refutations’). One can not have an ‘aha’ when the ‘a’ and ‘ha’
come minutes or hours apart.

What is ‘easy’ changes as computers and mathematical software
grow more powerful. We see an exciting merging of disciplines, levels
and collaborators. We are more and more able to marry theory &
practice, history & philosophy, proofs & experiments; to match ele-
gance and balance to utility and economy; and to inform all math-
ematical modalities computationally — analytic, algebraic, geometric
& topological.

This has lead us to articulate an Experimental Mathodology,'* as a
philosophy (Borwein et al., 1996; Borwein and Bailey, 2003) and in
practice (Borwein and Corless, 1999), based on: (i) meshing compu-
tation and mathematics (intuition is often acquired not natural,
notwithstanding the truth of Polya’s observations above); (ii) visu-
alization (even three is a lot of dimensions). Nowadays we can exploit
pictures, sounds and other haptic stimuli; and on (iii) ‘caging’ and
‘monster-barring’ (Imre Lakatos’ and my terms for how one rules out
exceptions and refines hypotheses). Two particularly useful compo-
nents are:

e Graphic checks. comparing y—y* and y*—y* to —y* In(y) for
0 < y < 1 pictorially (as in Figure 2) is a much more rapid way
to divine which is larger than traditional analytic methods. It is
clear that in the later case they cross, it is futile to try to prove one
majorizes the other. In the first case, evidence is provided to
motivate a proof.

e Randomized checks. of equations, linear algebra, or primality can
provide enormously secure knowledge or counter-examples when
deterministic methods are doomed.

All of these are relevant at every level of learning and research. My
own methodology depends heavily on: (i) (High Precision) compu-
tation of object(s) for subsequent examination; (ii) Pattern Recogni-
tion of Real Numbers (e.g., using CECM'’s Inverse Calculator and
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Figure 2. Graphical comparison of y—y* and y*—y* to -y In(y) (red).

‘RevEng’."®) or Sequences (e.g., using Salvy & Zimmermann’s ‘gfun’

or Sloane and Plouffe’s Online Encyclopedia); and (iii) extensive use
of Integer Relation Methods: PSLQ & LLL and FFT.'® Exclusion
bounds are especially useful and such methods provide a great test
bed for ‘Experimental Mathematics’. All these tools are accessible
through the listed CECM websites and those at www.expmath.info.
To make more sense of this it is helpful to discuss the nature of
experiment.

4.1. Four Kinds of Experiment

Peter Medawar usefully distinguishes four forms of scientific experi-
ment.

1. The Kantian example: Generating “‘the classical non-Euclidean
geometries (hyperbolic, elliptic) by replacing Euclid’s axiom of
parallels (or something equivalent to it) with alternative forms.”

2. The Baconian experiment is a contrived as opposed to a natural
happening, it “‘is the consequence of ‘trying things out’ or even of
merely messing about.”

3. Aristotelian demonstrations: “apply electrodes to a frog’s sciatic
nerve, and lo, the leg kicks; always precede the presentation of the
dog’s dinner with the ringing of a bell, and lo, the bell alone will
soon make the dog dribble.”

4. The most important is Galilean: “a critical experiment — one that
discriminates between possibilities and, in doing so, either gives us
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confidence in the view we are taking or makes us think it in need
of correction.”

The first three forms are common in mathematics, the fourth is
not. It is also the only one of the four forms which has the promise to
make Experimental Mathematics into a serious replicable scientific
enterprise.'’

5. FURTHER MATHEMATICAL EXAMPLES

The following suite of examples aims to make the case that modern
computational tools can assist both by encapsulating concepts and by
unpacking them as needs may be.

5.1. Two Things About V2.,

Remarkably one can still find new insights in the oldest areas:

5.1.1. Irrationality
We present graphically, Tom Apostol’s lovely new geometric
proof'® of the irrationality of v/2. Earlier variants have been pre-
sented, but I like very much that this was published in the present
millennium.

PROOF. To say v/2 is rational is to draw a right-angled isoceles
triangle with integer sides. Consider the smallest right-angled isoceles

Figure 3. Root two is irrational (static and dynamic pictures).
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triangle with integer sides — that is with shortest hypotenuse. Cir-
cumscribe a circle of radius the vertical side and construct the tangent
on the hypotenuse, as in the picture in Figure 3. Repeating the pro-
cess once more produces an even smaller such triangle in the same
orientation as the initial one.

The smaller right-angled isoceles triangle again has integer sides. . . QED

This can be beautifully illustrated in a dynamic geometry
package such as Geometer’s SketchPad, Cabri or Cinderella, as
used here. We can continue to draw smaller and smaller integer-
sided similar triangles until the area palpably drops below 1/2. But
I give it here to emphasize the ineffably human component of the
best proofs.

A more elaborate picture can be drawn to illustrate the irratio-
nality of \/n for n = 3,5,6,. ..

5.1.2. Rationality
V2 also makes things rational:

V2
(xfz'ﬁ> E A, )
Hence by the principle of the excluded middle

Either v2** € Q or fzﬁ¢@.

In either case we can deduce that there are irrational numbers o
and B with o” rational. But how do we know which ones? This is not
an adequate proof for an Intuitionist or a Constructivist. We may
build a whole mathematical philosophy project around this. Compare
the assertion that

a:=v2 and f:=2Iny(3) yield o =3

as Maple confirms. This illustrates nicely that verification is often
easier than discovery (similarly the fact multiplication is easier than
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factorization is at the base of secure encryption schemes for e-com-
merce).
There are eight possible (ir)rational triples:

of =y

and finding examples of all cases is now a fine student project.

5.2. Exploring Integrals and Products

Even Maple ‘knows’ n # 22/7 since

P —x)*xt 22
°</0 T2 =7

though it would be prudent to ask ‘why’ it can perform the evaluation
and ‘whether’ to trust it?

In this case, asking a computer algebra system to evaluate the
indefinite integral

t 4y,4
(1 —x%)x 1, 2, 5 45
~——dx ==t — =t r—=t r— tan(z
/0 0 ) =2 3 + 3 + 4t — 4 arctan(¢)

and differentiation proves the formula completely — after an appeal to
the Fundamental theorem of calculus.

The picture in Figure 4 illustrates Archimedes’ inequality in
Nathalie Sinclair’s Colour calculator micro-world in which the digits
have been coloured modulo 10. This reveals simple patterns in 22/7,
more complex in 223/71 and randomness in 7. Many new approaches

Archimedes: 223/71 <w < 22/7

Figure 4. A colour calculator.
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to teaching about fractions are made possible by the use of such a
visual representation.

In contrast, Maple struggles with the following sophomore’s
dream:"

/lld il
—dax = J—
Oxx n:lnn,

and students asked to confirm this, typically mistake numerical val-
idation for symbolic proof.
Similarly

is rational, while the seemingly simpler (n = 2) case

< 2 —1 7
11 = (3)

5n?+ 1 sinh(n)

is irrational, indeed transcendental. Our Inverse Symbolic Calcula-
tor can identify the right-hand side of (3) from it numeric value
0.272029054. .., and the current versions Maple can ‘do’ both
products, but the student learns little or nothing from this unless the
software can also recreate the steps of a validation — thereby
unpacking the identity. For example, (2) may be rewritten as a
lovely telescoping product, and an attempt to evaluate the finite
product

ﬂnz—l (@)
n:2n2 +1

leads to a formula involving the Gamma function, about which
Maple’s Help files are quite helpful, and the student can be led to
an informative proof on taking the limit in (4) after learning a few
basic properties of I'(x). Explicitly, with ‘val:=proc(f) f = value(f)
end proc;’
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> P2:=N->Product((n~2-1)/(n"2+1),n=2..N):

> val(P2(infinity));
infinity

n -1 GAMMA(N) GAMMA(N + 2) GAMMA(2 - I) GAMMA(2 + I)

2 2 GAMMA(N + (1 - I)) GAMMA(N + (1 + I))
n=2 n +1
> simplify(%);

N
[ 2 2
[ n -1 I GAMMA(N) N (N + 1) Pi
[ =
[ 2 GAMMA(N + (1 - I)) GAMMA(N + (1 + I)) sin((2 + I)Pi)
n=2 n +1
> evalc();
N
’ [ 2 2
Il I n -1 GAMMA(N) N (N + 1) Pi
[ =
[ 2 GAMMA(N + (1 - I)) GAMMA(N + (1 + I)) sinh(Pi)
n=2 n +1

5.3 Self-Similarity in Pascal’s Triangle

In any event, in each case so far computing adds reality, making
concrete the abstract, and making some hard things simple. This is
strikingly the case in Pascal’s Triangle: www.cecm.sfu.ca/interfaces/
which affords an emphatic example where deep fractal structure is
exhibited in the elementary binomial coefficients

1,1,2,1,1,3,3,1,1,4,6,4,1,1,5,10, 10,5, 1
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becomes the parity sequence

1,1,0,1,1,1,1,1,1,0,0,0,1,1,1,0,0, 1, 1

and leads to the picture in Figure 5, in which odd elements of the
triangle are coloured purple. Thus, as in the v/2 example notions of
self-similarity and invariance of scale can be introduced quite early

and naturally in the curriculum.

One can also explore what happens if the coefficients are colored
modulo three or four — four is nicer. Many other recursive sequences

exhibit similar fractal behaviour.?°

5.4. Berlinski on Mathematical Experiment

David Berlinski?' writes

“The computer has in turn changed the very nature of mathematical experience,
suggesting for the first time that mathematics, like physics, may yet become an
empirical discipline, a place where things are discovered because they are seen.”

As all sciences rely more on ‘dry experiments’, via computer si-
mulation, the boundary between physics (e.g., string theory) and
mathematics (e.g., by experiment) is delightfully blurred. An early

exciting example is provided by gravitational boosting.

Figure 5. Drawing Pascal’s triangle modulo two.
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Figure 6. First, second, third and seventh iterates of a Sierpinski triangle.

Gravitational boosting. “The Voyager Neptune Planetary Guide”
(JPL Publication 89-24) has an excellent description of Michael
Minovitch’ computational and unexpected discovery of gravitational
boosting (otherwise known as slingshot magic) at the Jet Propulsion
Laboratory in 1961.

The article starts by quoting Arthur C. Clarke “Any sufficiently
advanced technology is indistinguishable from magic.” Until Min-
ovitch discovered that the so-called Hohmann transfer ellipses were
not the minimum energy way of getting to the outer planets, ““‘most
planetary mission designers considered the gravity field of a target
planet to be somewhat of a nuisance, to be cancelled out, usually by
onboard Rocket thrust.” For example, without a gravitational
boost from the orbits of Saturn, Jupiter and Uranus, the Earth-
to-Neptune Voyager mission (achieved in 1989 in little more than a
decade) would have taken more than 30 years! We should still be
waiting.
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5.5. Making Fractal Postcards

And yet, as we have seen, not all impressive discoveries require a
computer. Elaine Simmt and Brent Davis describe lovely construc-
tions made by repeated regular paper folding and cutting — but no
removal of paper — that result in beautiful fractal, self-similar, “pop-
up” cards.”> Nonetheless, in Figure 6, we show various iterates of a
pop-up Sierpinski triangle built in software by turning those paper
cutting and folding rules into an algorithm. Note the similarity to the
triangle in Figure 7. Any regular rule produces a fine card. The pic-
tures should allow the reader to start folding.

Recursive Maple code is given below.

sierpinski :=proc ( n: nonnegint)

local pl, p2, ql, 92, rl, r2, plotout;
pl:= [1.,0.,0.]; q1:= [-1.,0.,0.]; r1:= [0.,0.,1
p2:= [1.,1.,0.]; q2:= [-1.,1.,0.]; r2:= [0.,1.,1
plotout:= polys(n, pl, p2, rl, r2, qi, q2);
return PLOT3D( plotout, SCALING(CONSTRAINED),
AXESSTYLE(NONE), STYLE(PATCHNOGRID), ORIENTATION(90,45) );
end:

)

.]
.1

polys:= proc( n::nonnegint, pl, p3, rl, r3, ql, g3 )
local p2, g2, r2, s1, s2, s3, t1, t2, t3, u2, u3;
if n=0 then return POLYGONS([p1,p3,r3,r1], [ql,q3,r3,r1]) fi;

p2:= (p1+p3)/2; q2:= (ql+q3)/2; r2:= (ri+r3)/2;
sl:= (pl+r1)/2; s2:= (p2+r2)/2; s3:= (p3+r3)/2;
tl:= (ql+rl)/2; t2:= (q2+r2)/2; t3:= (q3+r3)/2;
u2:= (p2+q2)/2; ul:= (p3+q3)/2;

return polys(n-1, p2, p3, s2, s3, u2, u3),
polys(n-1, s1, s2, rl, r2, t1, t2),
polys(n-1, u2, u3, t2, t3, 92, q3),
POLYGONS([p1,p2,s2,s1], [q1,q92,t2,t1]); end:

And, as in Figure 7, art can be an additional source of mathe-
matical inspiration.

5.6. Seeing Patterns in Partitions

The number of additive partitions of n, p(n), is generated by

0 1
1 +;p(n)q - anl(l _ qn) :
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Figure 7. Self similarity at Chartres.

Thus, p(5) = 7 since

5=44+1=3+2=34+14+1=24+2+1
=24+1+1+1=1+1+1+1+1.

Developing (5) is a nice introduction to enumeration via generating
functions of the type discussed in Polya’s change example.

Additive partitions are harder to handle than multiplicative fac-
torizations, but again they may be introduced in the elementary
school curriculum with questions like: How many ‘trains’ of a given
length can be built with Cuisenaire rods?

A more modern computationally driven question is How hard is
p(n) to compute?

In 1900, it took the father of combinatorics, Major Percy Mac-
Mahon (1854-1929), months to compute p(200) using recursions
developed from (5). By 2000, Maple would produce p(200) in seconds
if one simply demands the 200th term of the Taylor series. A few
years earlier it required one to be careful to compute the series for
[L,>(1 —¢") first and then to compute the series for the reciprocal of
that series! This seemingly baroque event is occasioned by Euler’s
pentagonal number theorem

o)

H(l _ qn) _ Z (_l)nq(3n+1)n/2

n>1 n=-—00
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The reason is that, if one takes the series for (5) directly, the
software has to deal with 200 terms on the bottom. But if one takes
the series for [],.,(1 —¢"), the software has only to handle the 23
non-zero terms in series in the pentagonal number theorem. This
expost facto algorithmic analysis can be used to facilitate indepen-
dent student discovery of the pentagonal number theorem, and like
results.

If introspection fails, we can find the pentagonal numbers occurring
abovein Sloane and Plouffe’s on-line ‘Encyclopedia of Integer Sequences’
www.research.att.com/personal/njas/sequences/eisonline.html.

Ramanujan used MacMahon’s table of p(n) to intuit remarkable
and deep congruences such as

p(5n+4) =0 mod 5
p(7n+5)=0 mod7

and

p(11n+6) =0 mod 11,
from relatively limited data like

P(q)=1+q+2¢"+3¢ +5¢*+ 74>+ 11¢° +15¢" +-22¢° +30¢°
+42q10+56ql]+ﬁq12+mql3+@ql4+176q15+231q16
+297¢"7+385¢" +4904" + 6274 b+ 7924 +10024>
+---4p(200)4*®... (6)

The exponents and coefficients for the cases 5n + 4 and 7n + 5 are
highlighted in formula (6). Of course, it is much easier to heuristically
confirm than to discover these patterns.

Here we see very fine examples of Mathematics: the science of
patterns as is the title of Keith Devlin’s 1997 book. And much more
may similarly be done.

The difficulty of estimating the size of p(n) analytically — so as to
avoid enormous or unattainable computational effort — led to some
marvellous mathematical advances by researchers including Hardy
and Ramanujan, and Rademacher. The corresponding ease of com-
putation may now act as a retardant to mathematical insight. New
mathematics is discovered only when prevailing tools run totally out
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of steam. This raises a caveat against mindless computing: will a
student or researcher discover structure when it is easy to compute
without needing to think about it? Today, she may thoughtlessly
compute p(500) which a generation ago took much, much pain and
insight.

Ramanujan typically found results not proofs and sometimes went
badly wrong for that reason. So will we all. Thus, we are brought full
face to the challenge, such software should be used, but algorithms
must be taught and an appropriate appreciation for and facility with
proof developed.

For example, even very extended evidence may be misleading.
Indeed.

5.7. Distinguishing Coincidence and Fraud

Coincidences do occur. The approximations

S i10g(640320)

V163
and
9801
TRV2On

occur for deep number theoretic reasons — the first good to 15 places,
the second to eight. By contrast

e" — 1 =19.999099979189475768 . ..

most probably for no good reason. This seemed more bizarre on an
eight digit calculator. Likewise, as spotted by Pierre Lanchon re-
cently, in base-two

e =10.1011011111100001010100010110001010.. ..

7 =11.001001000011111101101010100010001 . . .

have 19 bits agreeing — with one read right to left.



154

The experimental mathematician:
The pleasure of discovery and the role of proof

Chapter 9

98 JONATHAN M. BORWEIN

More extended coincidences are almost always contrived, as in the
following due to Kurt Mahler early last century. Below ‘[x]" denotes
the integer part of x. Consider:

i[n tanh(n)] » 1
L« 1008l

is valid to 268 places; while

i[n tanh(%)] » 1
o 0" 81
is valid to 12 places. Both are actually transcendental numbers.

Correspondingly, the simple continued fractions for tanh(m) and
tanh(§) are respectively,

[0,1,267,4,14,1,2,1,2,2,1,2,3,8,3,1,.. ]
and
[0,1,11,14,4,1,1,1,3,1,295,4,4,1,5,17,7,..].

This is, as they say, no coincidence! While the reasons (Borwein
and Bailey, 2003) are too advanced to explain here, it is easy to
conduct experiments to discover what happens when tanh(x) is re-
placed by another irrational number, say log(2).

It also affords a great example of fundamental objects that are
hard to compute by hand (high precision sums or continued frac-
tions) but easy even on a small computer or calculator. Indeed, I
would claim that continued fractions fell out of the undergraduate
curriculum precisely because they are too hard to work with by hand.
And, of course the main message, is again that computation without
insight is mind numbing and destroys learning.

6. COMPUTER DISCOVERY OF BITS OF =

Bailey, P. Borwein and Plouffe (1996) discovered a series for 7 (and
corresponding ones for some other polylogarithmic constants) which
somewhat disconcertingly allows one to compute hexadecimal digits
of @ without computing prior digits. The algorithm needs very little
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memory and no multiple precision. The running time grows only
slightly faster than linearly in the order of the digit being computed.
Until that point it was broadly considered impossible to compute
digits of such a number without computing most of the preceding
ones.

The key, found as described above, is

n—iik 4 2 11
- 4=\16) \8k+1 8k+4 8k+5 8k+6)

Knowing an algorithm would follow they spent several months
hunting by computer using integer relation methods (Bailey and
Borwein, 2000; Borwein and Lisonék, 2000; Dongarra and Sullivan,
2000) for such a formula. Once found, it is easy to prove in Math-
ematica, in Maple or by hand — and provides a very nice calculus
exercise. This discovery was a most successful case of REVERSE
MATHEMATICAL ENGINEERING.

The algorithm is entirely practicable, God reaches her hand deep
into 7: in September 1997 Fabrice Bellard (INRIA) used a variant of
this formula to compute 152 binary digits of x, starting at the tril-
lionth position (10'?). This took 12 days on 20 work-stations working
in parallel over the Internet.

In August 1998 Colin Percival (SFU, age 17) finished a similar
naturally or “embarrassingly parallel” computation of the five tril-
lionth bit (using 25 machines at about 10 times the speed of Bellard).
In hexadecimal notation he obtained

07E45733CCT790B5B5979.

The corresponding binary digits of « starting at the 40 trillionth place
are

00000111110011111.
By September 2000, the quadrillionth bit had been found to be ‘0
(using 250 cpu years on 1734 machines from 56 countries). Starting at

the 999, 999, 999, 999, 997th bit of n one has

111000110001000010110101100000110.
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Why should we believe this calculation? One good reason is that it
was done twice starting at different digits, in which case the algorithm
performs entirely different computations. For example, computing 40
hexadecimal digits commencing at the trillionth and trillion-less-tenth
place, respectively, should produce 30 shared hex-digits. The proba-
bility of those coinciding by chance, at least heuristically, is about

1
1630 ~ 103623

a stunning small probability. Moreover, since many different ma-
chines were engaged no one machine error plays a significant role. I
like Hersh — as we shall see later — would be hard pressed to find
complex proofs affording such a level of certainty.

In the final mathematical section we attempt to capture all of the
opportunities in one more fleshed-out, albeit more advanced, example.

7. A SYMBOLIC-NUMERIC EXAMPLE

I illustrate more elaborately some of the continuing and engaging
mathematical challenges with a specific problem, proposed in the
American Mathematical Monthly (November, 2000), originally dis-
cussed in Borwein and Borwein (2001) and Borwein and Bailey
(2003).

10832. Donald E. Knuth, Stanford University, Stanford, CA.
Evaluate

(L)
£ \klek  \/2nk)

1. A very rapid Maple computation yielded —0.08406950872765600
... as the first 16 digits of the sum.

2. The Inverse Symbolic Calculator has a ‘smart lookup’ feature*
that replied that this was probably —(2/3) — {(3)/ V2.

3. Ample experimental confirmation was provided by checking this
to 50 digits. Thus within minutes we knew the answer.

4. As to why? A clue was provided by the surprising speed with
which Maple computed the slowly convergent infinite sum. The
package clearly knew something the user did not. Peering under
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the covers revealed that it was using the LambertW function, W,
which is the inverse of w = z exp(z).**

5. The presence of ((1/2) and standard Euler—MacLaurin tech-
niques, using Stirling’s formula (as might be anticipated from the
question), led to

(7)

i( RO > _ )
—\\2nk 2(k— ny Vo’
where the binomial coefficients in (7) are those of (1/v2 —2z).

Now (7) is a formula Maple can ‘prove’.
6. It remains to show

= kk 1 (l)k—l _ _g
;<W‘ﬁ<kz— 1)!) R ®)

_Aklk

7. Guided by the presence of W and its series )~ “—5—, an
appeal to Abel’s limit theorem lets one deduce the need to eval-
uate

d z 1 2
I}Lrll(dZ (= Z)+ 2_22>_§ ®

Again Maple happily does know (9).
Of course this all took a fair amount of human mediation and insight.
It will be many years before such computational discovery can be
fully automated.

~—

8. PROOF VERSUS TRUTH

By some accounts Colin Percival’s web-computation of 7% is one of
the largest computations ever done. It certainly shows the possibility
to use inductive engineering-like methods in mathematics, if one
keeps ones eye on the ball. As we saw, to assure accuracy the algo-
rithm could be run twice starting at different points — say starting at
40 trillion minus 10. The overlapping digits will differ if any error has
been made. If 20 hex-digits agree we can argue heuristically that the
probability of error is roughly 1 part in 10%.
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While this is not a proof of correctness, it is certainly much less
likely to be wrong than any really complicated piece of human
mathematics. For example, perhaps 100 people alive can, given en-
ough time, digest all of Andrew Wiles’ extraordinarily sophisticated
proof of Fermat’s Last Theorem and it relies on a century long pro-
gram. If there is even a 1% chance that each has overlooked the same
subtle error?® — probably in prior work not explicitly in Wiles’ cor-
rected version — then, clearly, many computational based ventures are
much more secure.

This would seem to be a good place to address another common
misconception. No amount of simple-minded case checking consti-
tutes a proof (Figure 8). The 1976-1967 ‘proof’ of the Four Colour
Theorem®’ was a proof because prior mathematical analysis had
reduced the problem to showing that a large but finite number of
potentially bad configurations could be ruled out. The proof was
viewed as somewhat flawed because the case analysis was inelegant,
complicated and originally incomplete. In the last few years, the
computation has been redone after a more satisfactory analysis.”® Of
course, Figure 7 is a proof for the USA.

Though many mathematicians still yearn for a simple proof in
both cases, there is no particular reason to think that all elegant true
conjectures have accessible proofs. Nor indeed given Goedel’s or
Turing’s work need they have proofs at all.

Figure 8. A four colouring of the continental USA.
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8.1. The Kepler Conjecture

Kepler’s conjecture that The Densest Way to Stack Spheres is in a
Pyramid is the oldest problem in discrete geometry. It is also the
most interesting recent example of computer-assisted proof. Pub-
lished in the elite Annals of Mathematics with an “only 99%
checked” disclaimer, this has triggered very varied reactions. While
the several hundred pages of computer related work is clearly very
hard to check, I do not find it credible that all other papers
publizsghed in the Annals have exceeded such a level of verifica-
tion.

The proof of the Kepler Conjecture, that of the Four Colour The-
orem and Clement Lams’ computer-assisted proof of The Non-exis-
tence of a Projective Plane of Order 10, raise and answer quite distinct
philosophical and mathematical questions — both real and specious.
But one thing is certain such proofs will become more and more
common.

8.2. Kuhn and Planck on Paradigm Shifts

Much of what I have described in detail or in passing involves
changing set modes of thinking. Many profound thinkers view such
changes as difficult:

“The issue of paradigm choice can never be unequivocally settled
by logic and experiment alone. - - - in these matters neither proof
nor error is at issue. The transfer of allegiance from paradigm to
paradigm is a conversion experience that cannot be forced.”
(Thomas Kuhn’?)

and

“... a new scientific truth does not triumph by convincing its
opponents and making them see the light, but rather because its
opponents die and a new generation grows up that’s familiar with
it.”” (Albert Einstein quoting Max Planck®")

8.3. Hersh’s Humanist Philosophy

However hard such paradigm shifts and whatever the outcome of
these discourses, mathematics is and will remain a uniquely human
undertaking. Indeed Reuben Hersh’s arguments for a humanist
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philosophy of mathematics, as paraphrased below, become more
convincing in our setting:

1. Mathematics is human. It is part of and fits into human culture. It
does not match Frege’s concept of an abstract, timeless, tenseless,
objective reality.

2. Mathematical knowledge is fallible. As in science, mathematics can
advance by making mistakes and then correcting or even re-cor-
recting them. The “fallibilism” of mathematics is brilliantly ar-
gued in Lakatos’ Proofs and Refutations.

3. There are different versions of proof or rigor. Standards of rigor
can vary depending on time, place, and other things. The use of
computers in formal proofs, exemplified by the computer-assisted
proof of the four color theorem in 1977, is just one example of an
emerging nontraditional standard of rigor.

4. Empirical evidence, numerical experimentation and probabilistic
proof all can help us decide what to believe in mathematics.
Aristotelian logic isn’t necessarily always the best way of
deciding.

5. Mathematical objects are a special variety of a social-cultural-his-
torical object. Contrary to the assertions of certain post-modern
detractors, mathematics cannot be dismissed as merely a new
form of literature or religion. Nevertheless, many mathematical
objects can be seen as shared ideas, like Moby Dick in literature,
or the Immaculate Conception in religion.*?

To this I would add that for me mathematics is not ultimately
about proof but about secure mathematical knowledge. Georg
Friedrich Bernhard Riemann (1826-1866) was one of the most
influential thinkers of the past 200 years. Yet he proved very few
theorems, and many of the proofs were flawed. But his conceptual
contributions, such as through Riemannian geometry and the Rie-
mann zeta function, and to elliptic and Abelian function theory, were
epochal. The experimental method is an addition not a substitute for
proof, and its careful use is an example of Hersh’s ‘nontraditional
standard of rigor’.

The recognition that ‘quasi-intuitive’ methods may be used to gain
mathematical insight can dramatically assist in the learning and
discovery of mathematics. Aesthetic and intuitive impulses are shot
through our subject, and honest mathematicians will acknowledge
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their role. But a student who never masters proof will not be able to
profitably take advantage of these tools.

8.4. A Few Final Observations

As we have already seen, the stark contrast between the deductive
and the inductive has always been exaggerated. Herbert A. Simon, in
the final edition of The Sciences of the Artificial,® wrote:

“This skyhook-skyscraper construction of science from the roof down to the yet
unconstructed foundations was possible because the behaviour of the system at
each level depended only on a very approximate, simplified, abstracted charac-
terization at the level beneath.'? 734

“This is lucky, else the safety of bridges and airplanes might depend on the cor-
rectness of the “Eightfold Way” of looking at elementary particles.”

It is precisely this ‘post hoc ergo propter hoc’ part of theory
building that Russell so accurately typifies that makes him an artic-
ulate if surprising advocate of my own views.

And finally, I wish to emphasize that good software packages can
make very difficult concepts accessible (e.g., Mathematica, MatLab
and SketchPad) and radically assist mathematical discovery. None-
theless, introspection is here to stay.

In Kieran Egan’s words, “We are Pleistocene People.” Our minds
can subitize, but were not made for modern mathematics. We need all
the help we can get. While proofs are often out of reach to students or
indeed lie beyond present mathematics, understanding, even cer-
tainty, is not.

Perhaps indeed, “Progress is made ‘one funeral at a time’.”*> In
any event, as Thomas Wolfe put it “You can’t go home again.”
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NOTES

Henry Briggs is describing his first meeting in 1617 with Napier whom he had travelled
from London to Edinburgh to meet. Quoted from H.W. Turnbull’s The Great
Mathematicians, Methuen, 1929.

Chapter in Making the Connection: Research and Practice in Undergraduate Mathe-
matics, MAA Notes, 2004 in Press.

Ibid.

CECM now averages well over a million accesses a month, many by humans.
Quoted by Ram Murty in Mathematical Conversations, Selections from The Mathe-
matical Intelligencer, compiled by Robin Wilson and Jeremy Gray, Springer-Verlag,
New York, 2000.

My own experience is principally at the tertiary level. An excellent middle school
illustration is afforded by Nathalie Sinclair. (2001) ““The aesthetics is relevant,” for the
learning of mathematics, 21: 25 — 32.

E.g, www.cecm.sfu.ca/personal/jborwein/talks.html,
www.cs.dal.ca//, /jborwein, and personal/loki/
Papers/Numbers/.

In Mathematical Discovery: On Understanding, Learning and Teaching Problem Solv-
ing, 1968.

Illustration courtesy the Mathematical Association of America.

Ibid.

See Isaac Asimov (1988) book of science and nature quotations. In Isaac Asimov and
J.A. Shulman (Eds), New York: Weidenfield and Nicolson, p. 115.

In E. Borel, “Lecons sur la theorie des fonctions,” 1928, quoted by George Polya
(1981) in Mathematical discovery: On understanding, learning, and teaching problem
solving (Combined Edition), New York: John Wiley, pp. 2-126.

Others on a short list would include Poincaré and Weil.

I originally typed this by mistake for Methodology.

ISC space limits have changed from 10 Mb being a constraint in 1985 to 10 Gb being
‘easily available’ today. A version of ‘Reveng’ is available in current versions of Maple.
Typing ‘identify(v/2.0 + v/3.0) will return the symbolic answer v/2 ++/3 from the
numerical input 3.146264370.

Described as one of the top ten “Algorithm’s for the Ages,” Random Samples, Sci-
ence, Feb. 4, 2000, and [10].

From Peter Medawar’s wonderful Advice to a Young Scientist, Harper (1979).

MAA Monthly, November 2000, 241-242.

In that the integrand and the summand agree.

Many examples are given in P. Borwein and L. Jorgenson, “Visible Structures in
Number Theory”, www.cecm.sfu.ca/preprints/1998pp.html.
A quote I agree with from his “A Tour of the Calculus,” Pantheon Books, 1995.
Fractal Cards: A Space for Exploration in Geometry and Discrete Mathematics,
Mathematics Teacher 91 (198), 102-108.

Alternatively, a sufficiently robust integer relation finder could be used.

A search for ‘Lambert W function’ on MathSciNet provided 9 references — all since
1997 when the function appears named for the first time in Maple and Mathematica.
Along with Toy Story 2.

And they may be psychologically predisposed so to do!
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Every planar map can be coloured with four colours so adjoining countries are never

the same colour.

This is beautifully described at www.math.gatech.edu/personal/

thomas/FC/fourcolor.html.

2 See “In Math, Computers Don’t Lie. Or Do They?” New York Times, April 6, 2004.

30 In Ed Regis, Who got Einstein’s Office? Addison-Wesley, 1986.

3 From F.G. Major, The Quantum Beat, Springer, 1998.

32 From “Fresh Breezes in the Philosophy of Mathematics,” American Mathematical
Monthly, August—September 1995, 589—-594.

3 MIT Press, 1996, page 16.

3 Simon quotes Russell at length . ..

13 « .. More than fifty years ago Bertrand Russell made the same point about the

architecture of mathematics. See the “Preface” to Principia Mathematica **. . . the chief

reason in favour of any theory on the principles of mathematics must always be

inductive, i.e., it must lie in the fact that the theory in question allows us to deduce

ordinary mathematics. In mathematics, the greatest degree of self-evidence is usually

not to be found quite at the beginning, but at some later point; hence the early

deductions, until they reach this point, give reason rather for believing the premises

because true consequences follow from them, than for believing the consequences

because they follow from the premises.” Contemporary preferences for deductive

formalisms frequently blind us to this important fact, which is no less true today than

it was in 1910.”

This harsher version of Planck’s comment is sometimes attributed to Niels Bohr.

All journal references are available at www.cecm.sfu.ca/preprints/.

28
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10. Experimental mathemadtics:

Examples, methods and implications

Discussion

This article continues in the vein of Chapter 7, which was written five years earlier. Notable in
this article is the growing presence of pictures. This presence reflects both the increasing ease of
producing rich mathematical images and their growing importance in our own process of discovery.
This process of discovery is at least as rewarding as its fruits. No one has said this better than has
Carl Friedrich Gauss:

It is not knowledge, but the act of learning, not possession but the act of getting there,
which grants the greatest enjoyment. When I have clarified and exhausted a subject,
then I turn away from it, in order to go into darkness again; the never-satisfied man is so
strange if he has completed a structure, then it is not in order to dwell in it peacefully,
but in order to begin another. I imagine the world conqueror must feel thus, who, after

one kingdom is scarcely conquered, stretches out his arms for others.!

Source

D.H. Bailey and J.M Borwein, “Experimental Mathematics: Examples, Methods and Implications,”
Notices Amer. Math. Soc., 52 No. 5 (2005), 502-514.

!Carl Friedrich Gauss, 1777-1855, in an 1808 letter to his friend Farkas Bolyai (the father of Janos Bolyai).
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erimental
Mathematics:
Examples, Methods and
Implications

David H. Bailey and Jonathan M. Borwein

The object of mathematical rigor is to
sanction and legitimize the conquests
of intuition, and there was never any
other object for it.

—Jacques Hadamard!

If mathematics describes an objective
world just like physics, there is no rea-
son why inductive methods should not
be applied in mathematics just the same
as in physics.

—Kurt Godel?

Introduction

Recent years have seen the flowering of “experi-
mental” mathematics, namely the utilization of
modern computer technology as an active tool in
mathematical research. This development is not

David H. Bailey is at the Lawrence Berkeley National
Laboratory, Berkeley, CA 94720. His email address is
dhbailey@lb1.gov. This work was supported by the
Director, Office of Computational and Technology Re-
search, Division of Mathematical, Information, and Com-
putational Sciences of the U.S. Department of Energy,
under contract number DE-AC03-76SF00098.

Jonathan M. Borwein is Canada Research Chair in Col-
laborative Technology and Professor of Computer Science
and of Mathematics at Dalhousie University, Halifax, NS,
B3H 2W5, Canada. His email address is
jborwein@cs.dal.ca. This work was supported in part
by NSERC and the Canada Research Chair Programme.

1Quoted at length in E. Borel, Lecons sur la theorie des
fonctions, 1928.

2 Kurt Gédel, Collected Works, Vol. TII, 1951.
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limited to a handful of researchers nor to a
handful of universities, nor is it limited to one
particular field of mathematics. Instead, it involves
hundreds of individuals, at many different insti-
tutions, who have turned to the remarkable new
computational tools now available to assist in their
research, whether it be in number theory, algebra,
analysis, geometry, or even topology. These tools
are being used to work out specific examples,
generate plots, perform various algebraic and
calculus manipulations, test conjectures, and ex-
plore routes to formal proof. Using computer tools
to test conjectures is by itself a major timesaver
for mathematicians, as it permits them to quickly
rule out false notions.

Clearly one of the major factors here is the
development of robust symbolic mathematics
software. Leading the way are the Maple and Math-
ematica products, which in the latest editions are
far more expansive, robust, and user-friendly than
when they first appeared twenty to twenty-five
years ago. But numerous other tools, some of which
emerged only in the past few years, are also play-
ing key roles. These include: (1) the Magma com-
putational algebra package, developed at the
University of Sydney in Australia; (2) Neil Sloane’s
online integer sequence recognition tool, available
at http://www.research.att.com/njas/
sequences; (3) the inverse symbolic calculator (an
online numeric constant recognition facility), avail-
able at http://www.cecm.sfu.ca/projects/ISC,
(4) the electronic geometry site at http://www.
eg-models.de; and numerous others. See

VOLUME 52, NUMBER 5
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http://www.experimentalmath.info for a more
complete list, with links to their respective websites.

We must of course also give credit to the com-
puter industry. In 1965 Gordon Moore, before he
served as CEO of Intel, observed:

The complexity for minimum compo-
nent costs has increased at a rate of
roughly a factor of two per year. ... Cer-
tainly over the short term this rate can
be expected to continue, if not to in-
crease. Over the longer term, the rate of
increase is a bit more uncertain, al-
though there is no reason to believe it
will not remain nearly constant for at
least 10 years. [29]

Nearly forty years later, we observe a record of
sustained exponential progress that has no peer in
the history of technology. Hardware progress alone
has transformed mathematical computations that
were once impossible into simple operations that
can be done on any laptop.

Many papers have now been published in the ex-
perimental mathematics arena, and a full-fledged
journal, appropriately titled Experimental Mathe-
matics, has been in operation for twelve years.
Even older is the AMS journal Mathematics of Com-
putation, which has been publishing articles in the
general area of computational mathematics since
1960 (since 1943 if you count its predecessor).
Just as significant are the hundreds of other recent
articles that mention computations but which oth-
erwise are considered entirely mainstream work.
All of this represents a major shift from when the
present authors began their research careers, when
the view that “real mathematicians don’t compute”
was widely held in the field.

In this article, we will summarize some of the
discoveries and research results of recent years, by
ourselves and by others, together with a brief de-
scription of some of the key methods employed.
We will then attempt to ascertain at a more fun-
damental level what these developments mean for
the larger world of mathematical research.

Integer Relation Detection

One of the key techniques used in experimental
mathematics is integer relation detection, which in
effect searches for linear relationships satisfied
by a set of numerical values. To be precise, given
a real or complex vector (x1,X», - - - ,X,), an inte-
ger relation algorithm is a computational scheme
that either finds the n integers (a;), not all zero,
such that a;x; + da>x> + - - - apx, = 0 (to within
available numerical accuracy) or else establishes
that there is no such integer vector within a ball
of radius A about the origin, where the metric
is the Euclidean norm: A = (a? + a3 + - - - + a2)V/2.
Integer relation computations require very high

May 2005

precision in the input vector x to obtain numeri-
cally meaningful results—at least dn-digit precision,
where d = log,, A. This is the principal reason for
the interest in very high-precision arithmetic in
experimental mathematics. In one recent integer re-
lation detection computation, 50,000-digit arith-
metic was required to obtain the result [9].

At the present time, the best-known integer
relation algorithm is the PSLQ algorithm [26] of
mathematician-sculptor Helaman Ferguson, who,
together with his wife, Claire, received the 2002
Communications Award of the Joint Policy Board
for Mathematics (AMS-MAA-SIAM). Simple formu-
lations of the PSLQ algorithm and several variants
are given in [10]. The PSLQ algorithm, together
with related lattice reduction schemes such as LLL,
was recently named one of ten “algorithms of the
century” by the publication Computing in Science
and Engineering [4]. PSLQ or a variant is imple-
mented in current releases of most computer al-
gebra systems.

Arbitrary Digit Calculation Formulas

The best-known application of PSLQ in experi-
mental mathematics is the 1995 discovery, by
means of a PSLQ computation, of the “BBP” formula
for r:

1)

i ( 4 2 11 )
Py 8k+1 8k+4 B8k+5 8k+6/°

This formula permits one to directly calculate bi-
nary or hexadecimal digits beginning at the n-th
digit, without needing to calculate any of the first
n — 1 digits [8], using a simple scheme that re-
quires very little memory and no multiple-precision
arithmetic software.

It is easiest to see how this individual digit-
calculating scheme works by illustrating it for a sim-
ilar formula, known at least since Euler, for log 2:

00

1
log?2 = .
n; n2n

Note that the binary expansion of log 2 beginning
after the first d binary digits is simply {29log 2},
where by {-} we mean fractional part. We can write

R e P N
{éZ""modn} { HZ{:H}’

where we insert “mod n” in the numerator of
the first term of (2), since we are interested only
in the fractional part after division by n. Now the
expression 29" mod n may be evaluated very
rapidly by means of the binary algorithm for ex-
ponentiation, where each multiplication is reduced

(2)
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Figure 1. Ferguson’s “Figure
Eight Knot Complement”

modulo n. The entire scheme
indicated by formula (2) can be
implemented on a computer using
ordinary 64-bit or 128-bit arith-
metic; high-precision arithmetic
software is not required. The re-
sulting floating-point value, when
expressed in binary format, gives
the first few digits of the
binary expansion of log 2 begin-
ning at position d + 1. Similar
calculations applied to each of the
four terms in formula (1) yield a
similar result for 7r. The largest
computation of this type to date
is binary digits of 7 beginning at
the quadrillionth (10'>-th) binary
digit, performed by an interna-

sculpture. tional network of computers

organized by Colin Percival.

The BBP formula for 7 has even found a prac-
tical application: it is now employed in the g95
Fortran compiler as part of transcendental function
evaluation software.

Since 1995 numerous other formulas of this
type have been found and proven using a similar
experimental approach. Several examples include:

“Figure Eight Knot Complement”;3 see Figure 1),
which is given by

\/_ o0 1 2n-1 1
V =2V3 -
rgll n(znn) k=n k

= 2.029883212819307250042405108549...,

has been identified in terms of a BBP-type formula
by application of Ferguson’s own PSLQ algorithm.
In particular, British physicist David Broadhurst
found in 1998, using a PSLQ program, that

RSNy

V‘9§0 27n
[1871872476+2]
6n+12 (6n+22 6Gn+3)2 (Gn+42 ©GN+52]

This result is proven in [15, Chap. 2, Prob. 34].

Does Pi Have a Nonbinary BBP Formula?

Since the discovery of the BBP formula for 7 in
1995, numerous researchers have investigated, by
means of computational searches, whether there
is a similar formula for calculating arbitrary digits
of 1T in other number bases (such as base 10). Alas,
these searches have not been fruitful.

Recently, one of the present authors (JMB), to-

gether with David Borwein (Jon’s father) and William
Galway, established that there is no degree-1 BBP-
type formula for 1 for bases other than powers of

n\/§=gii(16 8 2 1)’

2 4k \6k+1 6k+2 6k+4 6k .
325 647 A0k + Ok + Ok Ok +5 two (although this does not rule out some other
“@) ) scheme for calculating individual digits). We will
N S 1 [ 44 216 72 54 9 } sketch this result here. Full details and some related
8 & 64k [ (6k+1)2  (6k+2)2  (6k+32 (6k+4)2 ' (6k+52

results can be found in [20].
In the following, R(z) and J(z) denote the real
and imaginary parts of z, respectively. The integer
, 231 243 405 81 27 b > 1 is not a proper power if it cannot be written
=57 gﬂ 729k [(12k +1)2  (12k+2)2  (12k+4)2  (12k +5)2 as ¢ for any integers c and m > 1. We will use the
) ) notation ord,(z) to denote the p-adic order of the

72 9 9 5 1 rational z € Q. In particular, ord,(p) = 1 for prime
TU2k+6)2  (12k+ 77  (12k+8)2  (12k+102 & (12k+ 11)2}' p, while ordy,(q) =0 for primes g+ p, and
ord,(wz) = ord,(w) + ordy(z). The notation v,(p)

will mean the order of the integer b in the multi-

©) 73 amtan( V3 ) _ i Lk <L . ;) plicative group of the integers modulo p. We will

7] 27 \3k+1 3k+2 say that p is a primitive prime factor of b™ — 1 if

(7) m is the least integer such that p|(b™ — 1). Thus p

25 781 (57 — 55 V5 ® 1 5 1 is a primitive prime factor of b™ —1 prOVidEd

- log [ﬁ (57 + 5\/§> ] - goﬁ (m * m) vy(p) = m. Given the Gaussian integer z € Q[i] and

Formulas (3) and (4) permit arbitrary-position
binary digits to be calculated for 1m+/3 and 7r°.
Formulas (5) and (6) permit the same for ternary
(base-3) expansions of 72 and /3 arctan(~/3/7).
Formula (7) permits the same for the base-5 ex-
pansion of the curious constant shown. A com-
pendium of known BBP-type formulas, with
references, is available at [5].

One interesting twist here is that the hyperbolic
volume of one of Ferguson’s sculptures (the

NOTICES OF THE AMS

the rational prime p = 1 (mod 4), let 6,,(z) denote
ord,(z) — ordy(z), where p and p are the two con-
jugate Gaussian primes dividing p and where we
require 0 < J(p) < R(p) to make the definition of
0, unambiguous. Note that

®) 0,(wz) = 0,(w) + 0,(2).

Given Kk € R, with 2 < b € Z and b not a proper
power, we say that k has a Z-linear or Q -linear

3Reproduced by permission of the sculptor.
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Machin-type BBP arctangent formula to the base b
if and only if k can be written as a Z-linear or Q -
linear combination (respectively) of generators of
the form

1 i
arctan (b—m> = Jlog (1 + b—m)
- (=1)*
— m
® =b go b2mk(2k + 1)

We shall also use the following result, first proved
by Bang in 1886:

Theorem 1. The only cases where b™ — 1 has no
primitive prime factor(s) are whenb = 2, m =6,
pMm—1=32-7orwhenb=2N—-1,Ne Z, m=2,
pm_1 = 2N+1(2N—1 _ 1)_

We can now state the main result:

Theorem 2. Given b > 2 and not a proper power,
there is no Q -linear Machin-type BBP arctangent for-
mula for Tr.

Proof: It follows immediately from the definition
of a Q -linear Machin-type BBP arctangent formula
that any such formula has the form

M
(10) ™= % > ny,Jlogb™ - i),
m=1

wheren >0¢e Z,n, € Z,and M > 1, ny + 0. This
implies that

M
(11) (b™ —i)y'm € "TQ* = QX

m=1
For any b > 2 and not a proper power, it follows
from Bang’s Theorem that b*M — 1 has a primitive
prime factor, say p. Furthermore, p must be odd,
since p = 2 can only be a primitive prime factor of
b™ — 1 when b is odd and m = 1. Since p is a prim-
itive prime factor, it does not divide b* — 1, and
so p must divide b*™ + 1 = (bM + )M —i). We
cannot have both p|b™ + i and p|b™ — i, since this
would give the contradiction that p|(bM +i)—
(bM — j) = 2i. Tt follows that p = 1 (mod 4) and that
p factors as p = pp over Z[i], with exactly one of
p, P dividing b — i. Referring to the definition of
0, we see that we must have 6,(b™ — i) = 0. Fur-
thermore, for any m < M, neither p nor p can di-
vide b™ — i, since this would imply p | b*™ -1,
4m < 4M, contradicting the fact that p is a primi-
tive prime factor of b*™ — 1. So for m < M, we have
0,(b™ — i) = 0. Referring to equation (10) and using
equation (8) and the fact that n,, = 0, we get the
contradiction

0 + ny 0,(b™ — i)

(12) M
= > Npm0,(b™ - 1) = 0,(Q) = 0.
m=1

May 2005

Thus our assumption that there was a b-ary Machin-
type BBP arctangent formula for 7 must be false.

Normality Implications of the BBP Formulas

One interesting (and unanticipated) discovery is that
the existence of these computer-discovered BBP-
type formulas has implications for the age-old
question of normality for several basic mathe-
matical constants, including  and log 2. What’s
more, this line of research has recently led to a full-
fledged proof of normality for an uncountably in-
finite class of explicit real numbers.

Given a positive integer b, we will define a real
number « to be b-normal if every m-long string of
base-b digits appears in the base-b expansion of
« with limiting frequency b~™. In spite of the ap-
parently stringent nature of this requirement, it is
well known from measure theory that almost all real
numbers are b-normal, for all bases b. Nonetheless,
there are very few explicit examples of b-normal
numbers, other than the likes of Champernowne’s
constant 0.123456789101112131415.... In par-
ticular, although computations suggest that virtu-
ally all of the well-known irrational constants of
mathematics (such as ,e,y,log?2,/2, etc.) are
normal to various number bases, there is not a
single proof—not for any of these constants, not
for any number base.

Recently one of the present authors (DHB) and
Richard Crandall established the following result.

Let p(x) and g(x) be integer-coefficient polyno-
mials, with degp < degg, and g(x) having no
zeroes for positive integer arguments. By an equidis-
tributed sequence in the unit interval we mean a
sequence (x,) such that for every subinterval (a, b),
the fraction #[x, € (a,b)]/n tends to b — a in the
limit. The result is as follows:

Theorem 3. A constant « satistying the BBP-type
formula

is b-normal if and only if the associated sequence
defined by xo=0 and, for n>=1, x,=
{bxn-1+pn)/q(n)} (where {-} denotes fractional
part as before), is equidistributed in the unit in-
terval.

For example, log 2 is 2-normal if and only if the
simple sequence defined by xo=0 and
{xn = 2x,_1 + 1/n} is equidistributed in the unit in-
terval. For 11, the associated sequence is xo = 0 and

120n° — 89n + 16
512n% —1024n3 + 712n% — 206n + 21 } :

Xn = {lﬁx,,,l +

Full details of this result are given in [11] [15,
Section 3.8].

It is difficult to know at the present time whether
this result will lead to a full-fledged proof of nor-
mality for, say, 7t or log 2. However, this approach

NOTICES OF THE AMS
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has yielded a solid normality proof for another
class of reals: Given r € [0, 1), let r, be the n-th
binary digit of r. Then for each r in the unit inter-
val, the constant

ad 1

Z 3nD3M+m

(13) oy =

n=1
is 2-normal and transcendental [12]. What’s more,
it can be shown that whenever v # s, then &, # ;.
Thus (13) defines an uncountably infinite class of
distinct 2-normal, transcendental real numbers. A
similar conclusion applies when 2 and 3 in (13) are
replaced by any pair of relatively prime integers
greater than 1.

Here we will sketch a proof of normality for one
particular instance of these constants, namely
Xo = > -1 1/(3"23™). Tts associated sequence can be
seen to be xo =0 and x, = {2x,-1 + ¢}, where
¢y, = 1/n if nis a power of 3, and zero otherwise.
This associated sequence is a very good approxi-
mation to the sequence ({2"y}) of shifted binary
fractions of og. In fact, [{2"xy} — x| < 1/(2n). The
first few terms of the associated sequence are

no
~
no
~N
no
~
no
~
no
~
no
~
no
~
)
~
no
~

and so forth. The clear pattern is that of triply re-
peated segments, each of length 2 - 3™, where the
numerators range over all integers relatively prime
to and less than 3™*!,

Note the very even manner in which this se-
quence fills the unit interval. Given any subinter-
val (c, d) of the unit interval, it can be seen that this
sequence visits this subinterval no more than
3n(d — c) + 3 times, among the first n elements,
provided that n > 1/(d — c). It can then be shown
that the sequence ({27 «}) visits (¢, d) no more than
8n(d — c) times, among the first n elements of this
sequence, so long as n is at least 1/(d — c)?. The 2-
normality of «, then follows from a result given
in [28, p. 77]. Further details on these results are
given in [15, Sec. 4.3], [6], [12].

Euler’s Multi-Zeta Sums

In April 1993, Enrico Au-Yeung, an undergraduate
at the University of Waterloo, brought to the at-
tention of one of us (JMB) the curious result

o 2
Z(1+l+---+l) k2
= 2 k

(14)
17m?

360

 4.59087... ~ %;(4) -
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where C(s) = >,., n* is the Riemann zeta func-
tion. Au-Yeung had computed the sum in (14) to
500,000 terms, giving an accuracy of five or six dec-
imal digits. Suspecting that his discovery was
merely a modest numerical coincidence, Borwein
sought to compute the sum to a higher level of pre-
cision. Using Fourier analysis and Parseval’s equa-
tion, he wrote

(15)

AT 10620 sin Dy dr = S
5 L (r — t)°log (28m2)dt_,§‘1

(ke )’
(n+1)2"°

The series on the right of (15) permits one to eval-
uate (14), while the integral on the left can be com-
puted using the numerical quadrature facility of
Mathematica or Maple. When he did this, Borwein
was surprised to find that the conjectured identity
(14) holds to more than 30 digits. We should add
here that by good fortune, 17/360 = 0.047222...
has period one and thus can plausibly be recognized
from its first six digits, so that Au-Yeung’s nu-
merical discovery was not entirely far-fetched.

Borwein was not aware at the time that (14) fol-
lows directly from a 1991 result due to De Doelder
and had even arisen in 1952 as a problem in the
American Mathematical Monthly. What’s more, it
turns out that Euler considered some related sum-
mations. Perhaps it was just as well that Borwein
was not aware of these earlier results—and indeed
of a large, quite deep and varied literature [21]—
because pursuit of this and similar questions had
led to a line of research that continues to the pre-
sent day.

First define the multi-zeta constant

k
> IInYe™,

ni>np>--->n>0  j=1

C(s1,82,- -+ ,8K) 1=

where the s, S$>,...,8 are nonzero integers and
the o; := signum(s;). Such constants can be con-
sidered as generalizations of the Riemann zeta
function at integer arguments in higher dimen-
sions.

The analytic evaluation of such sums has relied
on fast methods for computing their numerical
values. One scheme, based on Hélder Convolution,
is discussed in [22] and implemented in EZFace+,
an online tool available at http://www.cecm.sfu.
ca/projects/ezface+. We will illustrate its ap-
plication to one specific case, namely the analytic
identification of the sum

(16)

© 2
Soa= Y (1 . (—1)’<+11) k+1)°,
2173 k

Expanding the squared term in (16), we have
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(_1)i+j+1
(17) Z —5— =-2C3,-1,-1)+C(3,2).
0<i,j<k le
k>0

Evaluating this in EZFace+, we quickly obtain

S>3 =10.1561669333811769158810359096879
8819368577670984030387295752935449707
5037440295791455205653709358147578....

Given this numerical value, PSLQ or some other
integer-relation-finding tool can be used
to see if this constant satisfies a rational
linear relation of certain constants. Our experi-
ence with these evaluations has suggested
that likely terms would include: 1°, *log(2),
m3log®(2), m2log*(2), mlog*(2), log’(2), m2L(3),
mlog(2)(3), log*2)C(3), T(5), Lis(1/2). The
result is quickly found to be:

Al 1 17
Sus = 4Lis (f) - s log’ () - 57 2(5)

2
S 7 2
72077 log(2) + 4C(3)log 2)
1 o030y 12
+ 18” log”(2) 81T C(3).

This result has been proven in various ways, both
analytic and algebraic. Indeed, all evaluations of
sums of the form C(+a,,+ay,---,+a,) with
weight w := >, an, for k < 8, as in (17) are estab-
lished.

One general result that is reasonably easily ob-
tained is the following, true for all n:

(18) C({3}n) = T2, 1}p).
On the other hand, a general proof of
(19) T2, 1}n) = 22" T({-2,11,)

remains elusive. There has been abundant evidence
amassed to support the conjectured identity (19)
since it was discovered experimentally in 1996.
The first eighty-five instances of (19) were recently
affirmed in calculations by Petr Lisonék to 1000 dec-
imal place accuracy. Lisonek also checked the case
n = 163, a calculation that required ten hours run
time on a 2004-era computer. The only proof known
of (18) is a change of variables in a multiple inte-
gral representation that sheds no light on (19) (see
[21]).

Evaluation of Integrals

This same general strategy of obtaining a high-
precision numerical value, then attempting
by means of PSLQ or other numeric-constant
recognition facilities to identify the result as an
analytic expression, has recently been applied
with significant success to the age-old problem of
evaluating definite integrals. Obviously Maple and
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Mathematica have some rather effective integration
facilities, not only for obtaining analytic results
directly, but also for obtaining high-precision
numeric values. However, these products do have
limitations, and their numeric integration facili-
ties are typically limited to 100 digits or so, beyond
which they tend to require an unreasonable amount
of run time.

Fortunately, some new methods for numerical
integration have been developed that appear to
be effective for a broad range of one-dimensional
integrals, typically producing up to 1000 digit
accuracy in just a few seconds’ (or at most a few
minutes’) run time on a 2004-era personal computer,
and that are also well suited for parallel process-
ing [13], [14], [16, p. 312]. These schemes are based
on the Euler-Maclaurin summation formula [3,
p- 180], which can be stated as follows: Let m > 0
and n > 1 be integers, and define h = (b — a)/n
and x; = a + jh for 0 < j < n. Further assume that
the function f(x) is at least (2m + 2)-times contin-
uously differentiable on [a, b]. Then

b n
[ fwax=n roxp -3 g + Foy
a j=0

(20) .
hZIBZi
(20)!

VR

(f(Zi—l)(b) _ f(Zi—l)(a)) — E(h),

i=1

where B»; denote the Bernoulli numbers, and

h2"2(b — a)Bom.of > *(8)
(2m +2)!

E(h) =

for some & € (a, b). In the circumstance where the
function f(x) and all of its derivatives are zero at
the endpoints a and b (as in a smooth, bell-shaped
function), the second and third terms of the Euler-
Maclaurin formula (20) are zero, and we conclude
that the error E(h) goes to zero more rapidly than
any power of h.

This principle is utilized by transforming the in-
tegral of some C*® function f(x) on the interval
[—1,1] to an integral on (— o0, c0) using the change
of variable x = g(t). Here g(x) is some monotonic,
infinitely differentiable function with the property
thatg(x) = 1 asx — o and g(x) - -1 as x — —o0,
and also with the property that g’'(x) and all higher
derivatives rapidly approach zero for large positive
and negative arguments. In this case we can write,
for h > 0,

1 [
L F(x)dx = J Fg()g' (1) dt

=h > wif(x;)+E(h),

J==oo
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where x; = g(hj) and w; = g'(hj) are abscissas and
weights that can be precomputed. If g'(t) and its
derivatives tend to zero sufficiently rapidly for
large t, positive and negative, then even in cases
where f(x) has a vertical derivative or an integrable
singularity at one or both endpoints, the resulting
integrand f(g(t))g’(t) is, in many cases, a smooth
bell-shaped function for which the Euler-
Maclaurin formula applies. In these cases, the error
E(h) in this approximation decreases faster than
any power of h.

Three suitable g functions are g;(t) = tanht,
g»(t) = erf t, and g3(t) = tanh(1r/2 - sinh t). Among
these three, g;(t) appears to be the most effective
for typical experimental math applications. For
many integrals, “tanh-sinh” quadrature, as the re-
sulting scheme is known, achieves quadratic con-
vergence: reducing the interval h in half roughly
doubles the number of correct digits in the quad-
rature result. This is another case where we have
more heuristic than proven knowledge.

As one example, recently the present authors,
together with Greg Fee of Simon Fraser University
in Canada, were inspired by a recent problem in the
American Mathematical Monthly [2]. They found by
using a tanh-sinh quadrature program, together
with a PSLQ integer relation detection program, that
if C(a) is defined by

Cla) =

Jl arctan(v/x2 + a?) dx
0 VEr@RRE+1)
then

C0)=1log2/8+ G/2,

C(1) = 11/4 — 11/2/2 + 3 arctan(~/2)/+/2,

C(2) = 512/96.

Here G = Y.o(-1)*/(2k + 1)?> is Catalan’s con-
stant—the simplest number whose irrationality is
not established but for which abundant numerical
evidence exists. These experimental results then led

to the following general result, rigorously estab-
lished, among others:

J"" arctan(v/x2 + a?) dx
0 VXx2+a2(x2+1)

™ :

N [2 arctan(va? — 1) — arctan(vVa* — 1)] .

As a second example, recently the present au-
thors empirically determined that

X+1 X = 37648

+29852550L3(7)log 3 — 1632960L3(6)7r> + 27760320L3(5)Z(3)
—275184L3(4)r* + 36288000L3(3)C(5) — 30008L3(2)7r®
—57030120L3(1)C(7) 1,

2 ! log®(x) arctan[x+/3/(x — 2)] 1
= JO [-229635L5(8)
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where  L3(s)=>,_;[1/3n—2)* —1/(3n - 1)*].
Based on these experimental results, general results
of this type have been conjectured but not yet rig-
orously established.

A third example is the following:

24 (T2 tant + /7 ?
21 — ———|dt=L_;(2
(1) 77 Juss tant — /7 7(2)
where

0 1 1 1
e Ty
(7n+4¢  (7n+5¢ (Tn+6p )

The “identity” (21) has been verified to over 5000
decimal digit accuracy, but a proof is not yet known.
It arises from the volume of an ideal tetrahedron
in hyperbolic space, [15, pp. 90-1]. For algebraic
topology reasons, it is known that the ratio of the
left-hand to the right-hand side of (21) is rational.

A related experimental result, verified to 1000
digit accuracy, is

0 2 275 —2J3—2Ju+2J10+2J11 +3J12 +3J13 + J1a — Ji5
=Jie = Jiz = Jis — Jig + Joo + Jo1 — Jo22 — Jo3 + 2J0s,

where J, is the integral in (21), with limits nrr/60
and (n + 1)17/60.

The above examples are ordinary one-
dimensional integrals. Two-dimensional integrals
are also of interest. Along this line we present a
more recreational example discovered experimen-
tally by James Klein—and confirmed by Monte
Carlo simulation. It is that the expected distance
between two random points on different sides of
a unit square is

11 11
%Jo Jos/xz-s-yzdxdy-s-%jo J’O\/1+(u—v)2dudv

1 5 2

= gV2+glogV2+ 1)+ 5,

and the expected distance between two random
points on different sides of a unit cube is

4 1 1 1 1
7[ J J J \/mdwdxdydz
5Jo Jo Jo Jo

17l lpl

rJ I J J L+ = w2 +(z - w) dudw dy dz

5JoJo Jo Jo

4 17 2 4
SRR ACREAC

+%log(1+\/§) + %log(7+4\/§>.

See [7] for details and some additional examples.
It is not known whether similar closed forms exist
for higher-dimensional cubes.
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Ramanujan’s AGM Continued Fraction
Given a,b,n > 0, define
a
172
4a?
N 9b?
n n+

R,(a,b) =

n+
n+

This continued fraction arises in Ramanujan’s Note-
books. He discovered the beautiful fact that

Ry(a,b) + R, (b,a) a+b
; = Ry (%57 ab).

The authors wished to record this in [15] and
wished to computationally check the identity. A first
attempt to numerically compute R; (1, 1) directly
failed miserably, and with some effort only three
reliable digits were obtained: 0.693.... With hind-
sight, the slowest convergence of the fraction oc-
curs in the mathematically simplest case, namely
when a = b. Indeed R, (1,1) =log2, as the first
primitive numerics had tantalizingly suggested.
Attempting a direct computation of R;(2,2)
using a depth of 20000 gives us two digits. Thus
we must seek more sophisticated methods. From
formula (1.11.70) of [16] we see thatfor 0 < b < a,

== Z —sech (nTrK(k,)>
= K*(k) + a*n*m? K(k)
where k = b/a = 03/05,k’ = /1 — k2. Here 0,03
are Jacobian theta functions and K is a complete
elliptic integral of the first kind.
Writing the previous equation as a Riemann
sum, we have

Ri(a,b)
(22)

R(a):= Ry(a,a) = L w

B hd 1)k+1
B § 1+(2k—1)

dx
(23)

where the final equality follows from the Cauchy-
Lindelof Theorem. This sum may also be written

as R(a) = lzfaF (— + 5 1, 2t s —1) The latter

form can be used in Maple or Mathematica to
determine

R(2) = 0.974990988798722096719900334529....

This constant, as written, is a bit difficult to
recognize, but if one first divides by /2, one can
obtain, using the Inverse Symbolic Calculator, an
online tool available at the URL http://www.
cecm.sfu.ca/projects/ISC/ISCmain.html, that
the quotient is /2 —log(1 + +/2). Thus we con-
clude, experimentally, that
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{;j

Figure 2. Dynamics and attractors of various
iterations.

= V2[1r/2 = log(1 + V2)].
Indeed, it follows (see [19]) that

tl/a
R(a) = 2J dt.

Note that R(1) = log 2. No nontrivial closed form
is known for R(a, b) with a # b, although

V2 (1 1\) sech(nr)
® (b (3 s (5 1)) =3 3 T
nez

is close to closed. Here 8 denotes the classical Beta
function. It would be pleasant to find a direct proof
of (23). Further details are to be found in [19], [17],
[16].

Study of these Ramanujan continued fractions
has been facilitated by examining the closely related
dynamical system tp = 1,t; = 1, and
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— even
— pdd
— aven There are some exceptional cases. Jacobsen-
75 —— odd Masson theory [17], [18] shows that the even/odd
6 fractions for R,(i, i) behave “chaotically”; neither
converge. Indeed, when a = b = i, (t,(i, i) exhibit a
5 fourfold quasi-oscillation, as n runs through val-
5 4 ues mod 4. Plotted versus n, the (real) sequence t,(i)
£ T exhibits the serpentine oscillation of four sepa-
% 34 rate “necklaces”. The detailed asymptotic is
?‘ tn(i,i)=1lgcosh%%<1+O<%))
y <I(1)”/2 cos(0 —log(2n)/2) nis even

iteration

1] -
-1 P\\/ 2
0 0
1 real

maginary 12

Figure 3. The subtle fourfold serpent.

imaginary £ -8 real

Figure 4. A period three dynamical system (odd and even

510

iterates).
1 1
(24) th = tw(a,b) = — + wy_ (1 - _) th-2,
n n

where w, = a® or b® (from the Ramanujan con-
tinued fraction definition), depending on whether
n is even or odd.

If one studies this based only on numerical val-
ues, nothing is evident; one only sees that t, — 0
fairly slowly. However, if we look at this iteration
pictorially, we learn significantly more. In particu-
lar, if we plot these iterates in the complex plane
and then scale by \/n and color the iterations blue
or red depending on odd or even n, then some re-
markable fine structures appear; see Figure 2. With
assistance of such plots, the behavior of these it-
erates (and the Ramanujan continued fractions) is
now quite well understood. These studies have
ventured into matrix theory, real analysis, and even
the theory of martingales from probability theory
[19], [17], [18], [23].
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(=1)*+D/25in(0 — log(2n)/2)

where 0 := argI'((1 +1)/2).

Analysis is easy given the following striking hy-
pergeometric parametrization of (24) when
a=>b + 0 (see [18]), which was both experimen-
tally discovered and is computer provable:

25)  taa,a) = ~Fu@) + ~Fu(-a),
2 2
where
P anzliw - . 1
Fn(a) := —m 2Fp (w,w,n+ 1 +(A),§) .
Here
L I'n+1)
Bn+1+w,—w):= Tt 1t ol (W) and
_1-1/a
= 5

Indeed, once (25) was discovered by a combination
of insight and methodical computer experiment, its
proof became highly representative of the chang-
ing paradigm: both sides satisfy the same recursion
and the same initial conditions. This can be checked
in Maple, and if one looks inside the computation,
one learns which confluent hypergeometric identi-
ties are needed for an explicit human proof.

As noted, study of R devolved to hard but com-
pelling conjectures on complex dynamics, with
many interesting proven and unproven general-
izations. In [23] consideration is made of contin-
ued fractions like

242
1°aj
242
2-as
2 42
3°a;

Si(a) =
1+
1+

1+ 7.

for any sequence a = (a,),-; and convergence
properties obtained for deterministic and random
sequences (ay). For the deterministic case the best
results obtained are for periodic sequences, satis-
fying a; = aj,. for all j and some finite c. The dy-
namics are considerably more varied, as illustrated
in Figure 4.
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Coincidence and Fraud

Coincidences do occur, and such examples drive
home the need for reasonable caution in this en-
terprise. For example, the approximations

3 9801
T~ —= log(640320), f4412

occur for deep number theoretic reasons: the first
good to fifteen places, the second to eight. By con-
trast

e —1m = 19.999099979189475768...,
most probably for no good reason. This seemed

more bizarre on an eight-digit calculator. Likewise,
as spotted by Pierre Lanchon recently,

e = 10.10110111111000010101000101100...

while

m = 11.0010010000111111011010101000...

have 19 bits agreeing in base two—with one reading
right to left. More extended coincidences are almost
always contrived, as illustrated by the following:

[n tanh(17)] 1

10n T 81’

>, [ntanh(rt/2)] 1
§ 10n T8’

Me

n=1

The first holds to 12 decimal places, while the sec-
ond holds to 268 places. This phenomenon can be
understood by examining the continued fraction ex-
pansion of the constants tanh(rr/2) and tanh():
the integer 11 appears as the third entry of the first,
while 267 appears as the third entry of the second.

Bill Gosper, commenting on the extraordinary ef-
fectiveness of continued-fraction expansions to
“see” what is happening in such problems, de-
clared, “It looks like you are cheating God some-
how.”

A fine illustration is the unremarkable decimal
o = 1.4331274267223117583... whose contin-
ued fraction begins [1, 2, 3,4,5,6,7,8,9...] and so
most probably is a ratio of Bessel functions. Indeed,
1p(2)/1;(2) was what generated the decimal. Simi-
larly, 7t and e are quite different as continued frac-
tions, less so as decimals.

A more sobering example of high-precision
“fraud” is the integral

[

(26) T = J: cos(2x) | | cos (%) dx

The computation of a high-precision numerical
value for this integral is rather challenging, due in
part to the oscillatory behavior of [],.; cos(x/n)
(see Figure 2), but mostly due to the difficulty of
computing high-precision evaluations of the inte-
grand function. Note that evaluating thousands of
terms of the infinite product would produce only
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C(x
1 (x)
0.8 1
0.61
0.41
0.2
0 1 2
X
-0.21

=an

5335
[T
o

Figure 5. First few terms of [[,., cos(x/k).

a few correct digits. Thus it is necessary to rewrite
the integrand function in a form more suitable for
computation. This can be done by writing

(27) () = cos(2x) {l_[ cos(x/k)] exp(fin(x))
1

where we choose m > x, and where

(28) fm(x) i log cos (%) :

k=m+1

The log cos evaluation can be expanded in a Tay-
lor series [1, p. 75], as follows:

1)422/-1(22] — 1)By; (x)Zf
<)

log cos ( ) g S

where B,; are Bernoulli numbers. Note that since
k > m > x in (28), this series converges. We can now
write

fmx) =

1)J22j- 1(221—1)321 (X)Zj
k

2 g J2j)!

k=m+

o R¥-1TRj) | < 1 -

oogmEi

< (2% - 1)C(2)) - 1 ;

= - Zl 7‘]-”-2J §(2J) - Z kTJ XZJ.
j=

This can now be written in a compact form for com-
putation as

(29) Z

JmXJ

where . .
(¥ - 1)LER))
aJ - 2 ]
jmr
(30) m
bjm=7C@2j)— > 1/k¥.
k=1
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Figure 6. Advanced Collaborative Environment in Vancouver.

512

Computation of these b coefficients must be done
to a much higher precision than that desired for
the quadrature result, since two very nearly equal
quantities are subtracted here.

The integral can now be computed using, for ex-
ample, the tanh-sinh quadrature scheme. The first
60 digits of the result are the following:

0.3926990816987241548078304229099
37860524645434187231595926812....

At first glance, this appears to be 77/8. But a care-
ful comparison with a high-precision value of 17/8,
namely

0.3926990816987241548078304229099

37860524646174921888227621868.. .,

reveals that they are not equal: the two values dif-
fer by approximately 7.407 x 1043, Indeed, these
two values are provably dlstlnct The reason is
governed by the fact that Zn 1 1/Cn+1)>2>
25,41 1/(2n + 1). See [16, Chap. 2] for additional
details.

A related example is the following. Recall the sinc
function sin x

<

Consider the seven highly oscillatory integrals
below.

sinc(x) :=

I = ro sinc(x) dx = E,
0 2
I := J:o sinc(x)sinc (%) dx = g,
I3 := I: sinc(x)sinc <%) sinc (g) dx = g,
Is := I: sinc(x)sinc <§) sinc (IX—I) dx = g,
I7 = I: sinc(x)sinc (%) -+ - sinc (%) dx = %
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However,

Ig:= J sinc(x)sinc (E) - sinc ( ) dx
0 3 15
467807924713440738696537864469

~ 935615849440640907310521750000
~ 0.4999999999926460TT.

When this was first found by a researcher using a
well-known computer algebra package, both he
and the software vendor concluded there was a
“bug” in the software. Not so! It is easy to see that
the limit of these integrals is 2 1r;, where

(31) = Jh cos(x ncos< )

This can be seen via Parseval’s theorem, which
links the integral

Iy := J sinc(a; x)sinc (a»x) - - - sinc (ayx) dx
0

with the volume of the polyhedron Py given by
N

={x:|D axxl < ai, x| 1,2 <k <N},
k=2

where x := (X2, X3, - - -, Xn). If we let
Cyi={(x2,X3,- -, xny): -1 <x¢<1,2<k <N},

then B ol(Py)
2[11 VOI(CN) ’

Thus, the value drops precisely when the con-
straint Zk » dxXy < a, becomes actlve and bites
the hypercube CN That occurs when Zk > dg > dy.

In the above, § + 1 + - - - + 15 < 1, but on addition

N =

of the term 1 5 the sum exceeds 1, the volume
drops, and Iy = 7 no longer holds. A similar analy-
sis applies to 11,. Moreover, it is fortunate that we
began with 71; or the falsehood of the identity anal-
ogous to that displayed above would have been
much harder to see.

Further Directions and Implications

In spite of the examples of the previous section, it
must be acknowledged that computations can in
many cases provide very compelling evidence for
mathematical assertions. As a single example, re-
cently Yasumasa Kanada of Japan calculated 7T to
over one trillion decimal digits (and also to over one
trillion hexadecimal digits). Given that such com-
putations—which take many hours on large, state-
of-the-art supercomputers—are prone to many
types of error, including hardware failures, system
software problems, and especially programming
bugs, how can one be confident in such results?
In Kanada’s case, he first used two different
arctangent-based formulas to evaluate 1T to over
one trillion hexadecimal digits. Both calculations
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agreed that the hex expansion beginning at
position 1,000,000,000,001 is B4466E8D21
5388C4E014. He then applied a variant of the BBP
formula for 7r, mentioned in Section 3, to calculate
these hex digits directly. The result agreed exactly.
Needless to say, it is exceedingly unlikely that
three different computations, each using a com-
pletely distinct computational approach, would
all perfectly agree on these digits unless all three
are correct.

Another, much more common, example is the
usage of probabilistic primality testing schemes.
Damgard, Landrock, and Pomerance showed in
1993 that if an integer n has k bits, then the prob-
ability that it is prime, provided it passes the most
commonly used probabilistic test, is greater than
1 — k242K and for certain k is even higher [25].
For instance, if n has 500 bits, then this probabil-
ity is greater than 1 —1/4?%™, Thus a 500-bit
integer that passes this test even once is prime
with prohibitively safe odds: the chance of a false
declaration of primality is less than one part in Avo-
gadro’s number (6 x 10%3). If it passes the test for
four pseudorandomly chosen integers a, then the
chance of false declaration of primality is less than
one part in a googol (10'°9). Such probabilities are
many orders of magnitude more remote than the
chance that an undetected hardware or software
error has occurred in the computation. Such meth-
ods thus draw into question the distinction be-
tween a probabilistic test and a “provable” test.

Another interesting question is whether these
experimental methods may be capable of discov-
ering facts that are fundamentally beyond the reach
of formal proof methods, which, due to Godel’s re-
sult, we know must exist; see also [24].

One interesting example, which has arisen in our
work, is the following. We mentioned in Section 3
the fact that the question of the 2-normality of 7t
reduces to the question of whether the chaotic it-
eration xo = 0 and

Xn =

2 _
{mxn,l . 120n2 — 89n + 16 }

512n* —1024n3 + 712n? — 206n + 21

where {-} denotes fractional part, are equidistrib-
uted in the unit interval.

It turns out that if one defines the sequence
Vn = | 16X, ] (in other words, one records which of
the 16 subintervals of (0, 1), numbered 0 through
15, x,, lies in), that the sequence (y,), when inter-
preted as a hexadecimal string, appears to pre-
cisely generate the hexadecimal digit expansion of
7. We have checked this to 1,000,000 hex digits and
have found no discrepancies. It is known that (y,)
is a very good approximation to the hex digits of
17, in the sense that the expected value of the num-
ber of errors is finite [15, Section 4.3] [11]. Thus
one can argue, by the second Borel-Cantelli lemma,
that in a heuristic sense the probability that there

May 2005

Figure 7. Polyhedra in an immersive environment.

is any error among the remaining digits after the
first million is less than 1.465 x 108 [15, Section
4.3]. Additional computations could be used to
lower this probability even more.

Although few would bet against such odds, these
computations do not constitute a rigorous proof
that the sequence (y},) is identical to the hexadec-
imal expansion of 7r. Perhaps someday someone
will be able to prove this observation rigorously.
On the other hand, maybe not—maybe this
observation is in some sense an “accident” of
mathematics, for which no proof will ever be
found. Perhaps numerical validation is all we can
ever achieve here.

Conclusion

We are only now beginning to digest some very old
ideas:

Leibniz’s idea is very simple and very
profound. It’s in section VI of the Dis-
cours [de métaphysique]. It’s the obser-
vation that the concept of law becomes
vacuous if arbitrarily high mathemati-
cal complexity is permitted, for then
there is always a law. Conversely, if the
law has to be extremely complicated,
then the data is irregular, lawless, ran-
dom, unstructured, patternless, and
also incompressible and irreducible. A
theory has to be simpler than the data
that it explains, otherwise it doesn’t ex-
plain anything. —Gregory Chaitin [24]

Chaitin argues convincingly that there are many
mathematical truths which are logically and com-
putationally irreducible—they have no good reason
in the traditional rationalist sense. This in turn
adds force to the desire for evidence even when
proof may not be possible. Computer experiments
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can provide precisely the sort of evidence that is
required.

Although computer technology had its roots in
mathematics, the field is a relative latecomer to the
application of computer technology, compared,
say, with physics and chemistry. But now this is
changing, as an army of young mathematicians,
many of whom have been trained in the usage of
sophisticated computer math tools from their high
school years, begin their research careers. Further
advances in software, including compelling new
mathematical visualization environments (see Fig-
ures 6 and 7), will have their impact. And the re-
markable trend towards greater miniaturization
(and corresponding higher power and lower cost)
in computer technology, as tracked by Moore’s
Law, is pretty well assured to continue for at least
another ten years, according to Gordon Moore him-
self and other industry analysts. As Richard Feyn-
man noted back in 1959, “There’s plenty of room
at the bottom” [27]. It will be interesting to see what
the future will bring.
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11. Ten problems in experimental mathematics

Discussion

This article poses and resolves ten computation mathematics problems whose solution requires
both numeric and symbolic computation. Such hybrid computation is now more the rule than the
exception for the resolution of sophisticated mathematical computation problems. The collection was
stimulated by Nick Trefethen’s ten problems whose solutions are beautifully described by Folkmar
Bornemann, Dirk Laurie, Stan Wagon, and Jorg Waldvogel in The SIAM 100-Digit Challenge: A
Study In High-accuracy Numerical Computing, SIAM 2004. Here is an excerpt from the challenge

review by Jonathan Borwein:

Lists, challenges and competitions have a long and primarily lustrous history in math-
ematics. Consider the Hilbert and the Millennium problems. This is the story of a
recent highly successful challenge. The book under review also makes it clear that
with the continued advance of computing power and accessibility, the view that “real
mathematicians don’t compute” has little traction, especially for a newer generation of
mathematicians who may readily take advantage of the maturation of computational

packages such as Maple, Mathematica and phMATLAB.!

Source

D. Bailey, J. Borwein, V. Kapoor and E. Weisstein, “Ten Problems in Experimental Mathematics,”
Amer. Math Monthly, 113, June-July 2006, 481-509.

'From an extended review of The SIAM 100-Digit Challenge in the Mathematical Intelligencer, 27 (4) (2005),
40-48.
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Ten Problems in Experimental Mathematics

David H. Bailey, Jonathan M. Borwein, Vishaal Kapoor,
and Eric W. Weisstein

1. INTRODUCTION. This article was stimulated by the recent SIAM “100 Digit
Challenge” of Nick Trefethen, beautifully described in [12] (see also [13]). Indeed,
these ten numeric challenge problems are also listed in [15, pp. 22-26], where they
are followed by the ten symbolic/numeric challenge problems that are discussed in
this article. Our intent in [15] was to present ten problems that are characteristic of the
sorts of problems that commonly arise in “experimental mathematics” [15], [16]. The
challenge in each case is to obtain a high precision numeric evaluation of the quantity
and then, if possible, to obtain a symbolic answer, ideally one with proof. Our goal
in this article is to provide solutions to these ten problems and, at the same time, to
present a concise account of how one combines symbolic and numeric computation,
which may be termed “hybrid computation,”’ in the process of mathematical discovery.

The passage from object o to answer w often relies on being able to compute the
object to sufficiently high precision, for example, to determine numerically whether
« is algebraic or is a rational combination of known constants. While some of this is
now automated in mathematical computing software such as Maple and Mathematica,
in most cases intelligence is needed, say in choosing the search space and in deciding
the degree of polynomial to hunt for. In a similar sense, using symbolic computing
tools such as those incorporated into Maple and Mathematica often requires significant
human interaction to produce material results. Such matters are discussed in greater
detail in [15] and [16].

Integer relation detection. Several of these solutions involve the usage of inte-
ger relation detection schemes to find experimentally a likely relationship. For a
given real vector (xi, x,,...,X,) an integer relation algorithm is a computational
scheme that either finds the n-tuple of integers (ai, as, ..., a,), not all zero, such
that a,x; + a,x, + - - - a,x, = 0 or else establishes that there is no such integer vector
within a ball of some radius about the origin, where the metric is the Euclidean norm
(ai +a3+ - +a)'?.

At the present time, the best known integer relation algorithm is the PSLQ algorithm
[25] of Helaman Ferguson, who is well known in the community for his mathematical
sculptures. Simple formulations of the PSLQ algorithm and several variants are given
in [7]. Another widely used integer relation detection scheme involves the Lenstra-
Lenstra-Lovasz (LLL) algorithm. The PSLQ algorithm, together with related lattice
reduction schemes such as LLL, was recently named one of ten “algorithms of the
century” by the publication Computing in Science and Engineering [3].

Perhaps the best-known application of PSLQ is the 1995 discovery, by means of a
PSLQ computation, of the “BBP” formula for 7:

531, 4 2 1 1
T = — — — — .
16t \8k+1 8k+4 8k+5 8k+6

This formula permits one to calculate directly binary or hexadecimal digits beginning
at the nth digit, without the need to calculate any of the first n — 1 digits [6]. This
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result has, in turn, led to more recent results that suggest a possible route to a proof
that 7 and some other mathematical constants are 2-normal (i.e., that every m-long
binary string occurs in the binary expansion with limiting frequency 5= [8], [9]). The
BBP formula even has some practical applications: it is used, for example, in the g95
compiler for transcendental function evaluations [34].

All integer relation schemes require very high precision arithmetic, both in the input
data and in the operation of the algorithms. Simple reckoning shows that if an integer
relation solution vector (a;, a,, . . ., a,) has Buclidean norm 10¢, then the input data
must be specified to at least dn digits, lest the true solution be lost in a sea of numer-
ical artifacts. In some cases, including one mentioned at the end of the next section,
thousands of digits are required before a solution can be found with these methods.
This is the principal reason for the great interest in high-precision numerical evalua-
tions in experimental mathematics research. It is the also the motivation behind this
set of ten challenge problems.

2. THE BIFURCATION POINT B;.
Problem 1. Compute the value of r for which the chaotic iteration
Xnt1 = rxn(l — Xn),

starting with some xq in (0, 1), exhibits a bifurcation between four-way periodicity and
eight-way periodicity. Extra credit: This constant is an algebraic number of degree not
exceeding twenty. Find the minimal polynomial with integer coefficients that it satisfies.

History and context. The chaotic iteration x,,; = rx,(1 — x,) has been studied since
the early days of chaos theory in the 1950s. It is often called the “logistic iteration,”
since it mimics the behavior of an ecological population that, if its growth one year
outstrips its food supply, often falls back in numbers for the following year, thus con-
tinuing to vary in a highly irregular fashion. When r is less than one iterates of the
logistic iteration converge to zero. For r in the range 1 < r < B; = 3 iterates con-
verge to some nonzero limit. If By <r < B, =1+ V6 = 3.449489 . . . , the limit-
ing behavior bifurcates—every other iterate converges to a distinct limit point. For
r with B, < r < Bj; iterates hop between a set of four distinct limit points; when
By < r < By, they select between a set of eight distinct limit points; this pattern re-
peats until » > B, = 3.569945672 ..., when the iteration is completely chaotic (see
Figure 1). The limiting ratio lim, (B, — B,_1)/(B,+1 — B,) = 4.669201 . .. is known
as Feigenbaum’s delta constant.

A very readable description of the logistic iteration and its role in modern chaos
theory are given in Gleick’s book [26]. Indeed, John von Neumann had suggested
using the logistic map as a random number generator in the late 1940s. Work by W.
Ricker in 1954 and detailed analytic studies of logistic maps beginning in the 1950s
with Paul Stein and Stanislaw Ulam showed the existence of complicated properties
of this type of map beyond simple oscillatory behavior [35, pp. 918-919].

Solution. We first describe how to obtain a highly accurate numerical value of B;
using a relatively straightforward search scheme. Other schemes could be used to find
B5; we present this one to underscore the fact that computational results sufficient for
the purposes of experimental mathematics can often be obtained without resorting to
highly sophisticated techniques.
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Figure 1. Bifurcation in the logistic iteration.

Let fg(r, x) be the eight-times iterated evaluation of rx(1 — x), and let gg(r, x) =
fs(r, x) — x. Imagine a three-dimensional graph, where r ranges from left to right
and x ranges from bottom to top (as in Figure 1), and where gg(r, x) is plotted in
the vertical (out-of-plane) dimension. Given some initial r slightly less than Bj;, we
compute a “comb” of function values at n evenly spaced x values (with spacing £,)
near the limit of the iteration x,; = f3(r, x,,). In our implementation, we use n = 12,
and we start with r = 3.544, x = 0.364, h, = 107*, and h, = 5 x 10~*. With this
construction, the comb has n/2 negative function values, followed by n/2 positive
function values. We then increment r by /4, and reevaluate the “comb,” continuing in
this fashion until two sign changes are observed among the n function values of the
“comb.” This means that a bifurcation occurred just prior to the current value of r, so
we restore r to its previous value (by subtracting /4, ), reduce #,, say by a factor of four,
and also reduce the &, roughly by a factor of 2.5. We continue in this fashion, moving
the value of r and its associated “comb” back and forth near the bifurcation point
with progressively smaller intervals £, . The center of the comb in the x-direction must
be adjusted periodically to ensure that n/2 negative function values are followed by
n/2 positive function values, and the spacing parameter /&, must be adjusted as well to
ensure that two sign changes are disclosed when this occurs. We quit when the smallest
of the n function values is within two or three orders of magnitude of the “epsilon” of
the arithmetic (e.g., for 2000-digit working precision, “epsilon” is 1072°), The final
value of r is then the desired value Bj, accurate to within a tolerance given by the final
value of r,. With 2000-digit working precision, our implementation of this scheme
finds Bj to 1330-digit accuracy in about five minutes on a 2004-era computer. The first
hundred digits are as follows:
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B3 = 3.54409035955192285361596598660480454058309984544457367545781
25303058429428588630122562585664248917999626 . . . .

With even a moderately accurate value of r in hand (at least two hundred digits or
s0), one can use a PSLQ program (such as the PSLQ programs available at the URL
http://crd.1bl.gov/ dhbailey/mpdist) to check whether r is an algebraic
constant. This is done by computing the vector (1, r, r%, ..., r") for various n, begin-
ning with a small value such as two or three, and then searching for integer relations
among these n + 1 real numbers. When n > 12, the relation

0=r">—12r" +48r"0 — 40r° — 193r® + 39217 + 44r° 4 87> — 977r*
— 604r° +2108r? + 4913 (1)
can be recovered.

A symbolic solution that explicitly produces the polynomial (1) can be obtained as
follows. We seek a sequence xi, x», ..., x4 that satisfies the equations

Xo=rxi(I —x1), x3=rxo(l —x3), x4=rxs(l—x3), x;=rxs(l—x4),

and

1=

4
Hr(l —2x))|.
i=1

The first four conditions represent a period-4 sequence in the logistic equation x,; =
rx,(1 — x,), and the last condition represents the stability of the cycle, which must be
1 or —1 for a bifurcation point (see [33] for details).

First, we deal with the system corresponding to 1 + ]_[?: 7 (1 —2x;) = 0. We com-
pute the lexicographic Groebner basis in Maple:

with(Groebner) :

L := [x2 - r*x1*(1-x1),x3 - r*x2*x(1-x2),x4 - r*x3*(1-x3),
x1 - r*xd*x(1-x4) ,r"4%(1-2*x1) * (1-2%xx2) * (1-2*x3) * (1-2*x4) + 1];
gbasis(L,plex(x1,x2,x3,x4,r));

After a cup of coffee, we discover the univariate element
Fr+ D@ =8 +24r2 = 32r +17) x (r* — 4r3 —4r? +16r +17)

x (r'? —12r" 4+ 48r'° — 40r° — 1937 +392¢7 + 44r° + 85 — 9777*
— 604r° 4+ 2108r2 + 4913)

in the Groebner basis, in which the monomial ordering is lexicographical with r last.
The first three of these polynomials have no real roots, and the fourth has four real
roots. Using trial and error, it is easy to determine that Bj is the root of the minimal
polynomial
r'? — 127" 4+ 4871 — 40r° — 193r° + 392/

+ 44r° 4+ 8r° — 977r* — 604r> + 210812 + 4913,
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which has the numerical value stated earlier. The corresponding Mathematica code
reads:

GroebnerBasis[{x2 - r x1(1 - x1), x3 - r x2(1 - x2),

x4 - r x3(1 - x3), x1 - r x4(1 - x4),

r74(1 - 2x1)(1 - 2x2) (1 - 2x3)(1 - 2x4) + 1},

r,

{x1, x2, x3, x4}, MonomialOrder -> EliminationOrder]//Timing

This requires only 1.2 seconds on a 3 GHz computer. These computations can also be
recreated very quickly in Magma, an algebraic package available at http://magma.
maths.usyd.edu.au/magnma:

Q := RationalField(); P<x,y,z,w,r> := PolynomialRing(Q,5);
I:= ideal< P| y - r*x*(1-x), z - r*xyx(1-y), w - rxzx(1l-z),
x - rrwx(1-w), r7dx(1-2xx)* (1-2xy)* (1-2%2) *x (1-2%w) +1>;
time B := GroebnerBasis(I);

This took 0.050 seconds on a 2.4Ghz Pentium 4.

The significantly more challenging problem of computing and analyzing the con-
stant B, = 3.564407266095 . .. is discussed in [7]. In this study, conjectural reason-
ing suggested that B, might satisfy a 240-degree polynomial, and, in addition, that
o = —B4(Bs — 2) might satisfy a 120-degree polynomial. The constant « was then
computed to over 10,000-digit accuracy, and an advanced three-level multi-pair PSLQ
program was employed, running on a parallel computer system, to find an integer re-
lation for the vector (1, a, o?, ..., @'?°). A numerically significant solution was ob-
tained, with integer coefficients descending monotonically from 257°°, which is a
73-digit integer, to the final value, which is one (a striking result that is exceedingly
unlikely to be a numerical artifact). This experimentally discovered polynomial was
recently confirmed in a large symbolic computation [30].

Additional information on the Logistic Map is available at http://mathworld.
wolfram.com/LogisticMap.html.

3. MADELUNG’S CONSTANT.

Problem 2. Evaluate

y o
a0 N/m® +n? 4 p?

where convergence means the limit of sums over the integer lattice points enclosed
in increasingly large cubes surrounding the origin. Extra credit: Usefully identify this
constant.

2)

History and context. Highly conditionally convergent sums like this are very com-
mon in physical chemistry, where they are usually written down with no thought of
convergence. The sum in question arises as an idealization of the electrochemical sta-
bility of NaCl. One computes the total potential at the origin when placing a positive
or negative charge at each nonzero point of the cubic lattice [16, chap. 4].

Solution. It is important to realize that this sum must be viewed as the limit of the
sum in successively larger cubes. The sum diverges when spheres are used instead. To
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clarify this consider, for complex s, the series

(_ 1)m+n+p

(_1)m+n
b= ), ——s b= ) e ()
o (m* 1 )s/ e (m*+n + p?)s/

These converge in two and three dimensions, respectively, over increasing “cubes,’
provided that Res > 0. When s = 1, one may sum over circles in the plane but not
spheres in three-space, and one may not sum over diamonds in dimension two. Many
chemists do not know that b3(1) # Y (—1)"r3(n)/+/n, a series that arises by sum-
ming over increasing spheres but that diverges. Indeed, the number r;(n) of repre-
sentations of n as a sum of three squares is quite irregular—no number of the form
8n + 7 has such a representation—and is not O(n'/?). This matter is somewhat ne-
glected in the discussion of Madelung’s constant in Julian Havil’s deservedly popular
recent book Gamma: Exploring Euler’s Constant [27], which contains a wealth of
information related to each of our problems in which Euler had a hand.

Straightforward methods to compute (3) are extremely unproductive. Such tech-
niques produce at most three digits—indeed, the physical model should have a solar-
system sized salt crystal to justify ignoring the boundary. Thus, we are led to using
more sophisticated methods. We note that

(_1)i+j+k
b3(s) == Z (l2 + j2 + k2)s/2’

where Z’ signifies a sum over Z*\{(0, 0, 0)}, and let M,(f) denote the Mellin trans-
form

M,(f) = f " ox da.
0

The quantity that we wish to compute is b3(1). It follows by symmetry that

/(_1)i+j+k(l'2+j2_|_k2)
by(1) = Z (i2 + j2 + k2)3/2
o (D) (=1
=3 Z (12 + j2 + k2)32 :

4)
We observe that M,(e™ ") = I'(s), so
. 3
M3/2(qn2+12+k2) —T (5) (n* + j* + k232,

where n, j, and k are arbitrary integers and ¢ = ¢~'. Continuing, we rewrite equation
(4) as

3 = 2
r (E) bs(1) = 3M3/2 (n:ZOO(—l)"nzqn Qj(x)> s

where 0,(x) = Z(f’oo(—l)"x”2 is the usual Jacobi theta-function. Since the theta trans-
form—a form of Poisson summation—yields (e ~"/%) = /s6,(e~*7), it follows that
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00 2
r (%) by(1)=3 3 n’Ms), (Z(—l)"nzq’ﬂge; (%))

n=—00

Also,T'(3/2) = /7 /2, s0

b3(1) = lZﬁZ(—l)",ﬂ Z / [efnzxf(n2/4x)(j2+k2)]x71/2dx‘
n=1 (j.k) odd YO

The integral is evaluated in [19, Exercise 4, sec. 2.2] and is (7r/n%)"/2e= 7V >+
whence

o0 [oe) o0
by(l) =487 Y > Z(—l)”ne-ﬂnx/m,
k=0 j=0 n=1
Finally, when a > 0,

4%( D" ne=" T e? (a>
—_ ne = — SC — y
— (I 4+e9)? 2

from which we obtain

by(1) =127 Y sech’ (%(m2+n2)‘/2>. (5)
m,n>1
m,n odd

Summing over m and n from 1 up to 81 in (5) gives

b3(1) = 1.74756459463318219063621203554439740348516143662474175
8152825350765040623532761179890758362694607891 . . . .

It is possible to accelerate the convergence further still. Details can be found in [19],
[16].

There are closed forms for sums with an even number of variables, up to 24 and
beyond. For example, b,(2s) = —4 a(s) B(s), where

a(s) =Y (=1)"/(n+1)°

n>0

and
Bls) = (=1)"/@n+1)".
n>0
In particular, b,(2) = —m log2. No such closed form for b5 is known, while much

work has been expended looking for one. The formula for b, is due to Lorenz (1879). It
was rediscovered by G. H. Hardy and is equivalent to Jacobi’s Lambert series formula
for 03 (q):

2n+1
q

932(Q) —1= 42(—1)n1_7q2n+1-

n>0
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This, in turn, is equivalent to the formula for the number r,(n) of representations of n
as a sum of two squares, counting order and sign,

r2(n) = 4(d(n) — ds(n)),

where dj, is the number of divisors of n congruent to kK modulo four. The analysis of
three squares is notoriously harder.

Additional information on Madelung’s constant and lattice sums is available
at http://mathworld.wolfram.com/MadelungConstants.html and http:
//mathworld.wolfram.com/LatticeSum.html.

4. DOUBLE EULER SUMS.

Problem 3. Evaluate the sum

v (o ety
C_;(l S+ (D k) g (6)

Extra credit: Evaluate this constant as a multiterm expression involving well-known
mathematical constants. This expression has seven terms and involves m, log?2, {(3),
and Lis(1/2), where Li,(x) = Y, _, x"/n* is the nth polylogarithm. (Hint: The ex-
pression is “homogenous,” in the sense that each term has the same total “degree.”
The degrees of m and log 2 are each 1, the degree of £(3) is 3, the degree of Lis(1/2)
is 5, and the degree of a" is n times the degree of a.)

History and context. In April 1993, Enrico Au-Yeung, an undergraduate at the Uni-
versity of Waterloo, brought to the attention of one of us (Borwein) the curious result

177
360 °

i1+1+ +121—459987 ~ U 4) = (7)
2 k) k- Mt =

k=1

The function ¢ (s) in (7) is the classical Riemann zeta-function:

(=Y

n=1

Euler had solved Bernoulli’s Basel problem when he showed that, for each positive
integer n, ¢ (2n) is an explicit rational multiple of 72" [16, sec. 3.2].

Au-Yeung had computed the sum in (7) to 500,000 terms, giving an accuracy of five
or six decimal digits. Suspecting that his discovery was merely a modest numerical
coincidence, Borwein sought to compute the sum to a higher level of precision. Using
Fourier analysis and Parseval’s equation, he obtained

L tog (25in ) ar = 52 (Zkmn 1)’
2n/0(7r 1)* log (251n2> dt =" NI (®)

n=1

The idea here is that the series on the right of (8) permits one to evaluate (7), while
the integral on the left can be computed using the numerical quadrature facility of
Mathematica or Maple. When he did this, Borwein was surprised to find that the con-
jectured identity holds to more than thirty digits. We should add here that, by good
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fortune, 17/360 = 0.047222 . .. has period one and thus can plausibly be recognized
from its first six digits, so that Au-Yeung’s numerical discovery was not entirely far-
fetched.

Solution. We define the multivariate zeta-function by

k
“Isil —n;
g(SI’SZ’---,Sk)= Z 1_[72] jUj j,

ny>np>-->n;>0 j=1

where the sy, 55, ..., sx are nonzero integers and o; = signum(s;). A fast method for
computing such sums based on Holder convolution is discussed in [20] and imple-
mented in the EZFace+ interface, which is available as an online tool at the URL
http://www.cecm.sfu.ca/projects/ezface+. Expanding the squared term in
(6), we have

(_1)i+j
c= > S =286 -L-D+eG. 9)

0<i,j<k
Evaluating this in EZFace+ we quickly obtain

C =0.156166933381176915881035909687988193685776709840303872957529354
497075037440295791455205653709358147578 . . . .

Given this numerical value, PSLQ or some other integer-relation-finding tool can
be used to see if this constant satisfies a rational linear relation with the following
constants (as suggested in the hint): 77, 7*log(2), 7> log*(2), w2 log’(2), 7 log*(2),
log5 (2),7%¢(3),mlog(2)¢(3), log2 (2)¢(3),¢(5),Lis(1/2). The result is quickly found
to be

A 1 5 17 1, 7 N
C = 4Li; 5) ™% log’(2) — 5;(5) — %n log(2) + Z§(3) log=(2)

+—7log’(2) — 27%(3)
18 8 '
This result has been proved in various ways, both analytic and algebraic. Indeed,
all evaluations of sums of the form ¢(+a;, *a,, ..., £a,) with weight w = Zk ay
(w < 8),as in (9), have been established.

Further history and context. What Borwein did not know at the time was that Au-
Yeung’s suspected identity follows directly from a related result proved by De Doelder
in 1991. In fact, it had cropped up even earlier as a problem in this MONTHLY, but the
story goes back further still. Some historical research showed that Euler considered
these summations. In response to a letter from Goldbach, he examined sums that are
equivalent to

i(1+i+---+i> 1 (10)
2 km ) ke + Dy

k=1

The great Swiss mathematician was able to give explicit values for certain of these
sums in terms of the Riemann zeta-function.
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Starting from where we left off in the previous section provides some insight into
evaluating related sums. Recall that the Taylor expansion of

1
fx) = —5 log(1 — x) log(1 + x)

takes the form

o0 11 1o x%
— l— — 4 — — ... -
A2 Z( 213 +2k—1)2k

k=1

Applying Parseval’s identity to f (e'’), we have an effective way of computing

in terms of an integral that can be rapidly evaluated in Maple or Mathematica.
Alternatively, we may compute

. 2
Z(1+%+%+---+%)
k=1 k2 ‘

The Fourier expansions of (7 — ¢)/2 and — log |2 sin(z/2)| are

> m(nt) T —t
Z > 0 <t <2m

and

. cos(nt) )
> —— = —log|2sin(t/2)] (0 <t <2m), (11)

n=1

respectively. Multiplying these together, simplifying, and doing a partial fraction de-
composition gives

n—1

—log |2 sin(z/2)] - il 2_ sin(nt)

-

t > 1
:;;

on (0, 2r). Applying Parseval’s identity results in

~
I

1

o ittty

(m — 1)*log*(2sin(t/2))dt = ) ( (n+1)?

n=1

4 J

The integral may be computed numerically in Maple or Mathematica, delivering an
approximation to the sum.
The Clausen functions defined by

Cho) =Y Sin’i’je), Cl@®) =Y Cosn(fe), ClL@) =Y Si“}ife),...

n=1 n=1 n=1

arise as repeated antiderivatives of (11). They are useful throughout harmonic analy-
sis and elsewhere. For example, with o = 2 arctan V7 , one discovers with the aid of
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PSLQ that
9 27 4 61
6Cl, () — 6Cl, (2x) + 2Cl, (Ba) = 7Cl, - + 7Cl, - )~ 7Cl, - (12)

(here the question mark is used because no proof is yet known) or, in what can be
shown to be equivalent, that

24 (72
— log
7\/7 /3
This arises from the volume of an ideal tetrahedron in hyperbolic space [15, pp. 90—

91]. (Here L_7(s) = )_,_, x—7(n)n~* is the primitive L-series modulo seven, whose
character patternis 1, 1, —1, 1, —1, —1, 0, which is given by

tan(z) + /7
tan(z) — /7

) dt =L 5(2) = 1.151925470....  (13)

X_7(k) = 2(sin(kt) + sin(2kt) — sin(3kt))/x/7

with T = 27/7.)

Although (13) has been checked to twenty thousand decimal digits, by using a nu-
merical integration scheme we shall describe in section 8, and although it is known
for K-theoretic reasons that the ratio of the left- and right-hand sides of (12) is ra-
tional [14], to the best of our knowledge there is no proof of either (12) or (13). We
might add that recently two additional conjectured identities related to (13) have been
discovered by PSLQ computations. Let 7, be the definite integral of (13), except with
limits nm /24 and (n + 1) /24. Then

25 — 2@ — 2Ly — 2Is + Iy + Iy — g — I} = 0,
I+ 304301, + 315 + 20 + 21, — 31y — Iy = 0. (14)

Readers who attempt to calculate numerical values for either the integral in (13)
or the integral Iy in (14) should note that the integrand has a nasty singularity at
t = arctan /7.

In retrospect, perhaps it was for the better that Borwein had not known of De
Doelder’s and Euler’s results, because Au-Yeung’s intriguing numerical discovery
launched a fruitful line of research by a number of researchers that has continued
until the present day. Sums of this general form are known nowadays as “Euler sums”
or “Euler-Zagier sums.” Euler sums can be studied through a profusion of methods:
combinatorial, analytic, and algebraic. The reader is referred to [16, chap. 3] for an
overview of Euler sums and their applications. We take up the story again in Prob-
lem 9.

Additional information on Euler sums is available at http://mathworld.
wolfram.com/EulerSum.html.

S. KHINTCHINE’S CONSTANT.

Problem 4. Evaluate

00 1 logy k 00
Ko = 1 - k[log2(1+1/k(k+2))]. 15
0 kD [ T 2)] [1 (as)

k=1
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Extra credit: Evaluate this constant in terms of a less-well-known mathematical con-
stant.

History and context. Given some particular continued fraction expansion « =
[ag, a1, . . .], consider forming the limit

Ko(o) = lim (aga; - ca)'".

Based on the Gauss-Kuzmin distribution, which establishes that the digit distribution
of a random continued fraction satisfies Prob{a;y = n} = log,(1 + 1/k(k 4 2)), Khint-
chine showed that the limit exists for almost all continued fractions and is a certain
constant, which we now denote K. This circle of ideas is accessibly developed in
[27]. As such a constant has an interesting interpretation, computation seems like the
next step.

Taking logarithms of both sides of (15) and simplifying, we have

= 1
log2-log Ky = Zlogn-log 14 m .

n=1

Such a series converges extremely slowly. Computing the sum of the first 10000 terms
gives only two digits of log?2 - log K. Thus, direct computation again proves to be
quite difficult.

Solution. Rewriting log n as the telescoping sum

logn = (logn —log(n — 1)) + -+ - 4+ (log2 —log 1) = Zlog
k=2

k—1
we see that
(n +1)?
log2 -log K log —_—.
0~ ; ; n(n +2)
We interchange the order of summation to obtain
= (n+ 1) k
log2 -log K . 16
8o 8 he= ;zk: w2 k=1 (16)

But

= (+1)2 k+1 1
—log—— =1log (14 -],
Z nnt2) 2Tk °g< +k>

=k

so (16) transforms into

1
log2-log Ky = Zlog ( ) log (1 + %> . 17)

The Maclaurin series for — log(1 — x) log(1 4 x) is

il 1+1 n 1 x2k
2 3 2k —1) k-

k=1
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This allows us to rewrite log 2 - log K as

a 1 1 1 &
10g2-logKo=Z<1—§+§—--- 2](—1)%272 2K

k=1 n=2

o oI
_Z( __+__...+ﬁ>;(;(zk)—1).

k=1

Appealing to either Maple or Mathematica, we can easily compute this sum. Taking
the first 161 terms, we obtain one hundred digits of Kj:

Ky = 2.68545200106530644530971483548179569382038229399446295
3051152345557218859537152002801141174931847709.. . ..

However, faster convergence is possible, and the constant has now been computed
to more than seven thousand places. Moreover, the harmonic and other averages
are similarly treated. It appears to satisfy its own predicted behavior (for details,
see [5], [32]). Correspondingly, using 10® terms one can obtain the approxima-
tion Ko(m) &~ 2.675.... Note however that Ky(e) = oo = lim,_,~, x/(2n)!, since
e is a member of the measure zero set of exceptions not having Ky(x) = Ko, as
a result of the non-Gauss-Kuzmin distribution of terms in the continued fraction
e=1[2,1,2,1,1,4,1,1,6,...].

We emphasize that while it is known that almost all numbers o have limits K (o)
that equal K, this has not been exhibited for any explicit number «, excluding artificial
examples constructed using their continued fractions [5].

6. RAMANUJAN’S AGM CONTINUED FRACTION.

Problem 5. For positive real numbers a, b, and n define R, (a, b) by

R,(a,b) = —————.
n+—oa—
s

952
n+ y’+

Calculate R,(2,?2). Extra credit: Evaluate this constant as a two-term expression in-
volving a well-known mathematical constant.

History and context. This continued fraction arises in Ramanujan’s Notebooks. He
discovered the beautiful fact that

R,(a,b) —;— R,(b,a) _R, (a ;Lb’ @)

The authors wished to record this in [15] and to check the identity computationally.
A first attempt to find R; (1, 1) by direct numerical computation failed miserably, and
with some effort only three reliable digits were obtained: 0.693 . ... With hindsight, it
was realized that the slowest convergence of the fraction occurs in the mathematically
simplest case, namely, when a = b. Indeed, R, (1, 1) = log2, as the first primitive
numerics had tantalizingly suggested.
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Solution. Attempting a direct computation of R (2, 2) using a depth of twenty thou-
sand gives only two digits. Thus we must seek more sophisticated methods. From [16,
(1.11.70)] we learn that when 0 < b < a,

T akK (k) K (k)
Ri(a,b) = 5 ZZ K200 + a2nin? sech (nn IR0 > , (18)

where k = b/a = 63/07 and k' = +/1 — k2. Here 6, and 65 are Jacobian theta-
functions, and K is a complete elliptic integral of the first kind.
Writing (18) as a Riemann sum, we find that

* sech(x/(2a))
1+ x2

e ( 1)k+l
,; 1+ 2k — Da’ (19

R(a) =Ri(a,a) = / dx
0

where the final equality follows from the Cauchy-Lindeldf theorem. This sum can also

be written as
2a 1 1 1 3
R(a) = Fi\ —+- I, —+ =, —-1),
@) 1—|—a21<2a+2 a2 )

where ;, F (-) denotes the hypergeometric function [1, p. 556]. The latter form is what
we use in Maple or Mathematica to determine

R(2) = 0.974990988798722096719900334529210844005920219994710605745268
251285877387455708594352325320911129362.. . . .

This constant, as written, is a bit difficult to recognize, but if one first divides by +/2 and
exploits the Inverse Symbolic Calculator, an online tool available at the URL http:

//www.cecm.sfu.ca/projects/ISC/ISCmain.html, it becomes apparent that
the quotient is 77/2 — log(1 + +/2). Thus we conclude, experimentally, that

RQ2) = 2[r/2 —log(1 + V2)].

Indeed, it follows (see [18]) that

1 tl/a
Ra) =2 dt.
(a) /O T

Note that R(1) = log2. No nontrivial closed-form expression is known for R(a, b)
when a # b, although

I (1 1\ v2_ (1 1Y\ 1 sech(nm)
R'(#(z’z)’@ﬁ(z’z))—znzm

/4

is almost closed. It would be pleasant to find a direct proof of (19). Further details are
to be found in [18], [17], and [16].
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7. EXPECTED DISTANCE ON A UNIT SQUARE.

Problem 6. Calculate the expected distance E, between two random points on differ-
ent sides of the unit square:

2 1 1 1 1 1
E2=§/ f \/xz-l—yzdxdy—i-g/ / V14w —v)2dudv. (20)
o Jo o Jo

Extra credit: Express this constant as a three-term expression involving algebraic con-
stants and an evaluation of the natural logarithm with an algebraic argument.

History and context. This evaluation and the next were discovered, in slightly more
complicated form, by James D. Klein [16, p. 66]. He computed the numerical integral
and compared it with the result of a Monte Carlo simulation. Indeed, a straightforward
approach to a quick numerical value for an arbitrary iterated integral is to use a Monte-
Carlo simulation, which entails approximating the integral by a sum of function values
taken at pseudo-randomly generated points within the region. It is important to use
a good pseudo-random number generator for this purpose. We tried doing a Monte
Carlo evaluation for this problem, using a pseudo-random number generator based
on the recently discovered class of provably normal numbers [9], [15, pp. 169-70].
The results we obtained for the two integrals in question, with 10® pseudo-random
pairs, are 0.765203 ... and 1.076643 ..., respectively, yielding an expected distance
of 0.869017.... Unfortunately, none of these three values immediately suggests a
closed form, and they are not sufficiently accurate (because of statistical limitations)
to be suitable for PSLQ or other constant recognition tools. More digits are needed.

Solution. It is possible to calculate high-precision numerical values for these two in-
tegrals using a two-dimensional quadrature (numerical integration) program. In our
program, we employed a two-dimensional version of the “tanh-sinh” quadrature algo-
rithm, which we will discuss in more detail in Problem 8. Two-dimensional quadrature
is usually much more expensive than one-dimensional quadrature, at a given precision
level, because many more function evaluations must be performed. Often a highly par-
allel computer system must be used to obtain a high-precision result in reasonable run
time [11]. Nonetheless, in this case we were able to evaluate the first of the two inte-
grals to 108-digit accuracy in twenty-one minutes run time on a 2004-era computer,
and the second to 118-digit accuracy in just twenty seconds. The first is more difficult
due to nondifferentiability of the integrand at the origin.

Indeed, in this case both Maple and Mathematica are able to evaluate each of these
integrals numerically, as is, to over one hundred decimal digit accuracy in just a few
minutes of run time, either by evaluating the inner integral symbolically and the outer
integral numerically or else by performing full two-dimensional numerical quadrature.
Maple, Mathematica, and the two-dimensional quadrature program all agreed on the
following numerical value for the expected distance:

a = 0.86900905527453446388497059434540662485671927963168056
9660350864584179822174693053113213554875435754 . . ..

Using PSLQ, with the basis elements «, V2, log(«/i + 1), and 1, we obtain

1 5 2
a=§\/§+§log(\/§+l)+§. 1)
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An alternate solution is to attempt to evaluate the integrals symbolically! In fact,
in this case Version 5.1 of Mathematica can do both the integrals “out of the box,’
whereas in the first case Maple appears to need coaxing, for instance, by converting to
polar coordinates:

/4 secH 2 /4 1 1 1
2/ f r2drdf = —f sec’0do = =2 — —log(2) + = log(2 + \/E),
o Jo 3 3 6 3

since the radius for a given 6 is 1/ cos 6. As for the second integral, Maple and Math-
ematica both give

1 1 1 2
——42 - =1 2—1 —log(1 2 —.
3 20g(x/_ )+20g( +[)+3

To obtain the second integral analytically, write it as 2 fol 0” 14+ (u—v)*dvdu.

Now change variables (set t = u — v) to obtain 1/2 fol {un/1 + u? + arcsinh u} du.
Thus, the expected distance is

1 1 2 1 1 2
§x/_— §10g(2) + §log(2—|— V2) - glog(ﬁ— 1)+ glog(l +2) + 9’

which can be simplified to the formula (21).
Additional information on the problem is available at http://mathworld.
wolfram.com/SquareLinePicking.html.

8. EXPECTED DISTANCE ON A UNIT CUBE.

Problem 7. Calculate the expected distance between two random points on different
faces of the unit cube. (Hint: This can be expressed in terms of integrals as

4 1 1 1 1
E3:=—f/ /f\/x2+y2+(z—w)2dwdxdydz
S5Jo Jo Jo Jo

1 1 1 1 1
+—// // V1I4+©—u)?+(z—wldudwdydz.)
5 0 JO 0 JO

Extra credit: Express this constant as a six-term expression involving algebraic con-
stants and two evaluations of the natural logarithm with algebraic arguments.

History and context. As we noted earlier, this evaluation was discovered, in essen-
tially the same form, by Klein [16, p. 66]. As with Problem 6, a Monte Carlo integra-
tion scheme can be used to obtain quick approximations to the integrals. The values
we obtained were 0.870792 ... and 1.148859. .., respectively, yielding an expected
distance of 0.926406 . ... Once again, however, these numerical values do not imme-
diately suggest a closed-form evaluation, yet the accuracy is too low to apply PSLQ
or other constant recognition schemes. What’s more, in this case, unlike Problem 6,
neither Maple nor Mathematica are able to evaluate these four-fold integrals directly —
though Mathematica comes close. As in most cases “help” is needed, in the form of
mathematical manipulation to render these integrals in a form where mathematical
computing software can evaluate them —numerically or symbolically.

Solution. Let , F|(-) again denote the hypergeometric function [1, p. 556]. One can
show that the first integral evaluates to
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\/E;_<” 2 Fi(1/2, —n+2;3/2;1/2) 4 ) |
> ; 2n+ DI (n+2)T(5/2 —n) +g‘/5+ 5 log (ﬁ+1) -

and the second generalized hypergeometric function formally evaluates to

ﬂ i 4F3(1,1/2,-1/2 —n,—n —1;2,1/2 —n,3/2; —1)
10 4 2n+ 1HI'(n+2)I'3/2 —n)

2 V2 1

=+ 55 T g los (V2+1).
(Although the second diverges as a Riemann sum, both Maple and Mathematica can
handle it, with some human help, producing numerical values of the corresponding
Borel sum.) Both expressions are consequences of the binomial theorem, modulo an
initial integration with respect to z in the first case. These expansions allow one to
compute the expectation to high precision numerically and to express both of the in-
dividual integrals in terms of the same set of constants. The numerical value of the
desired expectation is

0.92639005517404672921816358654777901444496019010733504673252192127
1418504594036683829313473075349968212 . . . .

An integer relation search in the span of {1, 7, 2,3, log(1 + V2), log(2 + ﬁ)}

produces
4 17 2 7 7 7
- LA L Drog (14 V2) + =1 (7 4 3).
75175 35V3— 357 + 55 log (14 v2) + 55 log (7 +4v3

With substantial effort we were able to nurse the symbolic integral out of Maple. We
started, as in the previous problem, by integrating with respect to w over [0, z], dou-
bling, and continuing in this fashion until we reduced the problem to showing that

1
E3:—f (2x3+6x2+3)1n(\/2+x2—1)dx
0

P =2+ DIn(V2+x2—1)+In(vV2-1)
+/ 3 > dx
0 x2(x2+1)
5 7 7 3 37
:—§n+8«/§+iln(1+x/§)—Eln(2)+ln(1+\/§>+ﬁ
-+§ln0n+v6ﬁn

4

which we leave to the reader to establish.
Mathematica was more helpful: consider

4/5 Integrate[Sqrt[x~2 + y"2 + (z - w)"2], {x, 0, 1}, {y, O, 1},
{w, 0, 1}, {z, 0, 1}]// Timing
{52.483021*Second, (168*Sqrt[2] - 24xSqrt([3] - 44#Pi + 72%ArcSinh[1] +
162*ArcSinh[1/Sqrt[2]] + 24*Log[2] - 240xLog[-1 + Sqrt([3]] +
192*xLog[1 + Sqrt[3]] + 20*Log[26 + 15%Sqrt[3]] + 3*Log[70226 +
40545*Sqrt [311) /900}
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This form is what the shipping version of Mathematica 5.1 returns on a 3.0 GHz Pen-
tium 4. It evaluates the first integral directly, while the second one can be done with a
little help. The combined outcomes can then be simplified symbolically to the result
shown.

There is also an ingenious method due to Michael Trott using a Laplace transform
to reduce the four-dimensional integrals to integrals over one-dimensional integrands.
It proceeds by eliminating the square roots (which cause most of the difficulty in sym-
bolic evaluation of the multiple integrals) at the expense of introducing one additional
(but “easy”) integral. The original problem can then be written in terms of the single
integral

28¢~2erf(z) . Te Zerf(z)  12¢73
25z 25z 257

o 14
f ——e_zzﬁerfz(z) +
. | 25

68¢~2 8¢~
dz,
5w T BuE | ¢

which can be evaluated directly in Mathematica to produce the symbolic expression
for E5.

Nonetheless, we must emphasize (i) that one needs to proceed with confidence,
since such symbolic computations can take several minutes, and (ii) that phrases like
“Maple can not” or “Mathematica can” are release-specific and may also depend on
the skill of the human user to make use of expert knowledge in mathematics, symbolic
computation, or both, in order to produce a form of the problem that is most amenable
to computation in a given software system. This explains our desire to illustrate various
solution paths here and elsewhere.

Additional information on this problem is available at http://mathworld.
wolfram.com/CubeLinePicking.html. For more information about the Laplace
transform trick applied to the related problem of expected distance in a unit hypercube,
see http://mathworld.wolfram.com/HypercubelLinePicking.html.

9. AN INFINITE COSINE PRODUCT.

Problem 8. Calculate

T, = / cos(2x) l—[cos (f) dx.
0 n=1 n

History and context. The challenge of showing that 7, < 7 /8 was posed by Bernard
Mares, Jr., along with the problem of demonstrating that

00 X X T
= —)d —.
T /0 ﬂcos(ﬂ) X<

This is indeed true, although the error is remarkably small, as we shall see.

Solution. The computation of a high-precision numerical value for this integral is
rather challenging, owing in part to the oscillatory behavior of [] ., cos(x/n) (see
Figure 2) but mostly because of the difficulty of computing high-precision evaluations
of the integrand. Note that evaluating thousands of terms of the infinite product would
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C(x)

0.8
0.6
0.4

0.2

-0.2

Figure 2. Approximations to [] a>1C08(x/n).

produce only a few correct digits. Thus it is necessary to rewrite the integrand in a
form more suitable for computation.
Let f(x) signify the integrand. We can express f(x) as

£ %) = cos(2x) []‘[ cos (%)} exp(fin (X)), (22)
k=1
where we choose m greater than x and where
fu) =3 logcos (%) . (23)

k=m-+1

The kth summand can be expanded in a Taylor series [1, p. 75], as follows:

X (=1)72%-1(2% — 1)B,; 2j
log cos <)—C> = Z =1 - ( : ) By, ()i) )
k = Jj@2n! k

in which B,; are Bernoulli numbers. Observe that since k > m > x in (23), this series
converges. We can then write

S & ()2 QY — DBy x\Y
= 30 3 HOT] () 24)
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After applying the identity [1, p. 807]

5 _ CDIM22)102))
e (27)%

and interchanging the sums, we obtain

N (27 =D | ] ;
fm(X):_ZT[Z ﬁ:|x2].

j=1 k=m+1

Note that the inner sum can also be written in terms of the zeta-function, as follows:

o (27 = 1DE(2)) Lo ] :
fm(x)=—ZT|:§(2])—Zﬁi|le-

Jj=1 k=1

This can now be reduced to a compact form for purposes of computation as

[e¢]

fu¥) ==Y a;bjux*, (25)

j=1
where

(2% — D¢ (2))
@ = (26)

bim=CQ2j) =Y 1/kY. 27
k=1

We remark that {(2j), a;, and b;,, can all be precomputed, say for j up to some
specified limit and for a variety of m. In our program, which computes this integral
to 120-digit accuracy, we precompute b, ,, form =1,2,4,8,16,...,256 and for j
up to 300. During the quadrature computation, the function evaluation program picks
m to be the first power of two greater than the argument x, and then applies formulas
(22) and (25). It is not necessary to compute f (x) for x larger than 200, since for these
large arguments | f (x)| < 1071?° and thus may be presumed to be zero.

The computation of values of the Riemann zeta-function can be done using a simple
algorithm due to Peter Borwein [21] or, since what we really require is the entire set
of values {¢(2j) : 1 < j < n} for some n, by a convolution scheme described in [5].
It is important to note that the computation of both the zeta values and the b; ,, must
be done with a much higher working precision (in our program, we use 1600-digit
precision) than the 120-digit precision required for the quadrature results, since the
two terms being subtracted in formula (27) are very nearly equal. These values need
to be calculated to a relative precision of 120 digits.

With this evaluation scheme for f(x) in hand, the integral (8) can be computed us-
ing, for instance, the tanh-sinh quadrature algorithm, which can be implemented fairly
easily on a personal computer or workstation and is also well suited to highly paral-
lel processing [10], [11], [16, p. 312]. This algorithm approximates an integral f (x)
on [—1, 1] by transforming it to an integral on (—o00, co0) via the change of variable
x = g(t), where g(¢) = tanh(sr/2 - sinh t):
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1 oo 00
f f(x)dx =/ fg@)g'®)dt =h Z w; f(x;) + E(h). (28)
-1 —00

j=—00

Here x; = g(hj) and w; = g'(hj) are abscissas and weights for the tanh-sinh quadra-
ture scheme (which can be precomputed), and E (/) is the error in this approximation.

The function g'(r) = /2 - cosht - sech?(r /2 - sinht) and its derivatives tend to
zero very rapidly for large |¢|. Thus, even if the function f () has an infinite derivative,
a blow-up discontinuity, or oscillatory behavior at an endpoint, the product function
f(g(r))g’'(¢) is in many cases quite well behaved, going rapidly to zero (together with
all of its derivatives) for large |¢|. In such cases, the Euler-Maclaurin summation for-
mula [2, p. 180] can be invoked to conclude that the error E (k) in the approximation
(28) decreases very rapidly —faster than any power of 4. In many applications, the
tanh-sinh algorithm achieves quadratic convergence (i.e., reducing the size i of the
interval in half produces twice as many correct digits in the result).

The tanh-sinh quadrature algorithm is designed for a finite integration interval. In
this problem, where the interval of integration is [0, 00), it is necessary to convert the
integral to a problem on a finite interval. This can be done with the simple substitution
s = 1/(x + 1), which yields an integral from O to 1.

In spite of the substantial computation required to construct the zeta- and b-arrays,
as well as the abscissas x; and weights w; needed for tanh-sinh quadrature, the en-
tire calculation requires only about one minute on a 2004-era computer, using the
ARPREC arbitrary precision software package available at http://crd.1bl.gov/
“dhbailey/mpdist. The first hundred digits of the result are the following:

0.3926990816987241548078304229099378605246454341872315959268122851
62093247139938546179016512747455366777 . . . .
A Mathematica program capable of producing 100 digits of this constant is avail-
able on Michael Trott’s website: http://www.mathematicaguidebooks.org/
downloads/N_2_01_Evaluated.nb.

Using the Inverse Symbolic Calculator, for instance, one finds that this constant is
likely to be 7 /8. But a careful comparison with a high-precision value of 7 /8, namely,
0.3926990816987241548078304229099378605246461749218882276218680740

38477050785776124828504353167764633497 .. .,

reveals that they are not equal — the two values differ by approximately 7.407 x 10=%.
Indeed, these two values are provably distinct. This follows from the fact that

55 54
1/@n41)>2>>"1/Qn+1).

n=1 n=1

See [16, chap. 2] for additional details. We do not know a concise closed-form expres-
sion for this constant.

Further history and context. Recall the sinc function

. sin x
sincx = ,
X
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and consider, the seven highly oscillatory integrals:

[ee) . T
11:/ sincxdx = —,
0 2
< e T
I, = f sinc x sinc (—) dx = —,
0 3 2
< e x T
I; = / sinc x sinc (—) sinc <—> dx = —,
0 3 5 2

R . (X ) X
Is = sinc x sinc (—) -+ 8inc (—) dx = —,
0 3 11
< . (X ) x
I = sinc x sinc (—) ... sinc (—) dx =
0 3 13

It comes as something of a surprise, therefore, that

< e ./ X
Iy = / sinc x sinc (—) - - sinc (—) dx
0 3 15

_ 467807924713440738696537864469

= ~ 0.4 264617.
035615849440640007310521750000 " - - 499999999992646m

When this was first discovered by a researcher, using a well-known computer algebra
package, both he and the software vendor concluded there was a “bug” in the software.
Not so! It is fairly easy to see that the limit of the sequence of such integrals is 27;.
Our analysis, via Parseval’s theorem, links the integral

o0
Iy = / sinc(a;x) sinc(arx) - - - sinc(ayx) dx
0

with the volume of the polyhedron Py described by
N
Py = {x Y ] < an, i < 1,25k5N}
k=2
for x = (x5, x3, ..., xy). If we let
Cy ={(x2,x3,...,0p) 1 =1 =x, = 1,2 <k < N},
then

7w Vol(Py)
N 04, Vol(Cy)

Thus, the value drops precisely when the constraint Z,ivzz arx; < a, becomes active
and bites the hypercube C . That occurs when Z,I{sz a; > a;.In the foregoing,

SR S
375 13-
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but on addition of the term 1/15, the sum exceeds 1, the volume drops, and Iy = /2
no longer holds. A similar analysis applies to 7,. Moreover, it is fortunate that we
began with m; or the falsehood of 7, = 1/8 would have been much harder to see.
Additional information on this problem is available at http://mathworld.
wolfram.com/InfiniteCosineProductIntegral.html and http://math-
world.wolfram.com/BorweinIntegrals.html.

10. A MULTIVARIATE ZETA-FUNCTION.

Problem 9. Calculate

1
Zm-

i>j>k>[>0

Extra credit: Express this constant as a single-term expression involving a well-known
mathematical constant.

History and context. We resume the discussion from Problem 3. In the notation in-
troduced there, we ask for the value of ¢(3, 1, 3, 1). The study of such sums in two
variables, as we noted, originated with Euler. These investigations were apparently
due to a serendipitous mistake. Goldbach wrote to Euler [15, pp. 99-100]:

When I recently considered further the indicated sums of the last two series in
my previous letter, I realized immediately that the same series arose due to a
mere writing error, from which indeed the saying goes, “Had one not erred, one
would have achieved less [Si non errasset, fecerat ille minus].”

Euler’s reduction formula is

1 s—2
£(s, 1)=§;<s+1>—525<k+1>¢<s+1—k),
k=1

which reduces the given double Euler sums to a sum of products of classical ¢-values.
Euler also noted the first reflection formulas

g(a,b) +¢(b,a) =¢(a)s(b) — &(a+ D),

certainly valid whena > 1 and b > 1. This is an easy algebraic consequence of adding
the double sums. Another marvelous fact is the sum formula

Yo t@H2a+l, . a ) =Cntr+ 1) (29)

Xaj=n,a;>0

for nonnegative integers n and r. This, as David Bradley observes, is equivalent to the
generating function identity

1 4 1
2w =, 2 ij_x-

n>0 ki >ky>-ky>0 j=1

The first three nontrivial cases of (29) are {(3) = ¢(2,1),¢(4) =¢(3,1) +¢(2,2),
and ¢(2,1,1) =¢(4).
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Solution. We notice that such a function is a generalization of the zeta-function. Sim-
ilar to the definition in section 4, we define

n

X
Ly 2: 1
{(S],Sz, "'7Skax) — s1..52 S0 (30)
ny>ny>-->n>0 nyny -« ny
for s1, 82, . . ., 5, nonnegative integers. We see that we are asked to compute the value

£(3,1,3,1;1). Such a sum can be evaluated directly using the EZFace+ interface at

http://www.cecm.sfu.ca/projects/ezface+, which employs the Holder con-

volution, giving us the numerical value
0.005229569563530960100930652283899231589890420784634635522547448
97214886954466015007497545432485610401627 . . . . (31)

Alternatively, we may proceed using differential equations. It is fairly easy to see [16,
sec. 3.7] that

1
—¢(my,ny, ..., 0 x) ==y —Ling,...,n.x) (ng > 1), (32)
dx X
1
Z;—C(nl,nz,...,nr;x):= —(ny, ..., n5x) (np=1), (33)
X 1—x
with initial conditions ¢(n;;0) = ¢(ny,ny;0) = --- = ¢(ny,...,n,;0) =0 and

¢(-; x) = 1. Solving

dsysl =

diff(y3131(x),x) = y2131(x)/x,

diff(y2131(x),x) = y1131(x)/x,

diff(y1131(x),x) = 1/(1-x)*y131(x),

diff(y131(x),x) = 1/(1-x)*y31(x),

diff (y31(x),x) = y21(x)/x,

diff (y21(x),x) = y11(x)/x,

diff (y11(x),x) = y1(x)/(1-x),

diff(y1(x),x) = 1/(1-x);

initl = y3131(0) = 0,y2131(0) = 0, y1131(0) = O,
¥131(0) = 0,y31(0) = 0,y21(0) = 0,y11(0) = 0,y1(0) = 0;

V VV V V V V V V VYV

in Maple, we obtain 0.005229569563518039612830536519667669502942 (this is
valid to thirteen decimal places). Maple’s identify command is unable to iden-
tify portions of this number, and the inverse symbolic calculator does not return a
result. It should be mentioned that both Maple and the ISC identified the constant
£(3, 1) (see the remark under the “history and context” heading). From the hint for
this question, we know this is a single-term expression. Suspecting a form similar to
£(3, 1), we search for a constants ¢ and d such that £(3, 1, 3, 1) = ¢z ?. This leads to
c=1/81440 =2/10'and d = 8.

Further history and context. We start with the simpler value, ¢(3, 1). Notice that

log(1 = x) = ¥ + 2% £ x4
—log(l —x)=x+ —x"+ -x"+---,
g 2" 73
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SO

1 1 1
f(x) =—log(1 —x)/(1 —x) =x + (1+5)x2+ (1+5+—)x3+---
-y x"
n>m=>0 m
As noted in the section on double Euler sums,

(_1)m+1 1 1 1
x"log"  xdx = ———,
'm) J (n+1)m

so integrating f using this transform for m = 3, we obtain

1 1
(G0 =3 / £ log? x dx
0
= 0.270580808427784547879000924 . . ..

The corresponding generating function is

S 0((3, 1))t = ST — ST

n>0

’

w2 x2

equivalent to Zagier’s conjectured identity

4n

¢({3, 1},) = @nt2)

Here {3, 1}, denotes n-fold concatenation of {3, 1}.
The proof of this identity (see [16, p. 160]) derives from a remarkable factorization
of the generating function in terms of hypergeometric functions:

S 03, hox' =, (x“ Lt 1)
n>0

X o F (x(l_i),—x(l_i);l;l>.
2 2

Finally, it can be shown in various ways that

¢({3)) = ¢({2, 1}0)

for all n, while a proof of the numerically-confirmed conjecture

({2, 1) =2V ¢ ({2, 1},) (34)

remains elusive. Only the first case of (34), namely,

—_

1

=

o oalg < (—1)"
2 i w8

n=1 m=1 n=1 m=1

=

(=¢3))

1
m

June—July 2006]  TEN PROBLEMS IN EXPERIMENTAL MATHEMATICS 505



206 Ten problems in experimental mathematics Chapter 11

has a self-contained proof [16]. Indeed, the only other established case is

00 1 n—1 00 (_1)n n—1 1
2 =64) D o

- —1
1
n=1 m=1 n=1 m=1 p=1 p q=1 q

—_

m—

<

1
{1 p?

(=¢@3,3).

Q| =

1
n 1

S|
I
<
Il

This is an outcome of a complete set of equations for multivariate zeta-functions of
depth four.

There has been abundant evidence amassed to support identity (34) since it was
found in 1996. For example, very recently Petr Lisonek checked the first eighty-five
cases to one thousand places in about forty-one hours with only the expected roundoff
error. And he checked n = 163 in ten hours. This is the only identification of its type
of an Euler sum with a distinct multivariate zeta-function.

11. A WATSON INTEGRAL.

Problem 10. Evaluate

1 T T s 1
W = —f f f dxdydz. (35)
73 Jo Jo Jo 3—cosx —cosy—cosz

History and context. The integral arises in Gaussian and spherical models of ferro-
magnetism and in the theory of random walks. It leads to one of the most impressive
closed-form evaluations of an equivalent multiple integral due to G. N. Watson:

~ T T T 1
w :f / / dxdydz
wJ-xJ_z 3 —COsSx —cosy—cosz
1 1 11
= _W3-Dr*{ =) r*( = 36
96 /3-1) (24) <24) (36)
— 4 (18 +12v2 — 1043 — 7[6) K2 (k).

where kg = (2 — V/3)(V/3 — V/2) is the sixth singular value. The most self-contained
derivation of this very subtle result is due to Joyce and Zucker in [28] and [29], where
more background can also be found.

Solution. In [31], it is shown that a simplification can be obtained by applying the
formula

L[~
= e Mdt (ReAx > 0) (37)
A 0

to W3. The three-dimensional integral is then reducible to a single integral by using
the identity

! / N exp(t cos 0)do = Iy(1), (38)
T Jo

in which Iy(¢) is the modified Bessel function of the first kind. It follows from this
that W = fooo exp(—31)I; (1)dt. This integral can be evaluated to one hundred digits
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in Maple, giving

W3 = 0.50546201971732600605200405322714025998512901481742089
21889934878860287734511738168005372470698960380. . . . 39)

Finally, an integer relation hunt to express log W in terms of log 7, log 2, log I'(k/24),

and log(+/3 — 1) will produce (36).
We may also write W3 as a product solely of values of the gamma function. This is
what our Mathematician’s ToolKit returned:

0 = -1.% log[w3] + -1.% loglgamma[1/24]] + 4.*loglgamma[3/24]] +
-8.*log[gamma[5/24]] + 1.* loglgamma[7/24]1] + 14.xlogl[gamma[9/24]] +
-6.*log[gamma[11/24]1] + -9.xlog[gamma[13/24]] + 18.xlog[gamma[15/24]] +
-2.%log[gamma[17/24]] + -7.*log[gamma[19/24]]

Proving this is achieved by comparing the result with (36) and establishing the implicit
gamma representation of (v/3 — 1)2/96.

Similar searches suggest there is no similar four-dimensional closed form —the rele-
vant Bessel integral is Wy = [ exp(—41)1; () dt.(NB. [~ exp(—21) I3 () dt = c0.)
In this case it is necessary to compute exp(—?)[y(¢) carefully, using a combination of
the formula

2n

221 (n!)2

exp(—1)1y(t) = exp(—t) Z
n=0

for ¢ up to roughly 1.2 - d, where d is the number of significant digits desired for the
result, and

N n
B N [Tei 2k — 1)
exp(—1)1o(1) ~ \/ﬁ; (81)"n!

for large ¢, where the upper limit N of the summation is chosen to be the first index n
such that the summand is less than 10~ (since this is an asymptotic expansion, taking
more terms than N may increase, not decrease the error). We have implemented this
as ‘besselexp’ in our Mathematician’s ToolKit, available at http://crd.1lbl.gov/
“dhbailey/mpdist. Using this software, which includes a PSLQ facility, we found
that W, is not expressible as a product of powers of I'(k/120) (0 < k < 120) with
coefficients having fewer than 80 digits. This result does not, of course, rule out the
possibility of a larger relation, but it does cast some doubt, in an experimental sense,
that such a relation exists—enough to stop looking.

Additional information on this problem is available at http://mathworld.
wolfram.com/WatsonsTripleIntegrals.html.

12. CONCLUSION. While all the problems described herein were studied with a
great deal of experimental computation, clean proofs are known for the final results
given (except for Problem 7), and in most cases a lot more has by now been proved.
Nonetheless, in each case the underlying object suggests plausible generalizations that
are still open.

The “hybrid computations” involved in these solutions are quite typical of mod-
ern experimental mathematics. Numerical computations by themselves produce no in-
sight, and symbolic computations frequently fail to produce full-fledged, closed-form
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solutions. But when used together, with significant human interaction, they are often
successful in discovering new facts of mathematics and in suggesting routes to formal
proof.
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12. Implications of experimental mathematics for the

philosophy of mathematics

Discussion

One of most damaging myths in mathematics is the notion that as Phillip Davis puts it: “Well, in
principle, you could understand all the talks.” A humanist philosophy of mathematics, as advocated
by Davis and Reuben Hersh among others in, for example, The Mathematical Experience has the

most to offer in addressing such misconceptions. Davis writes:

Once the opening ceremonies were over, the real meat of the Congress was then served
up in the form of about 1400 individual talks and posters. I estimated that with luck I
might be able to comprehend 2% of them. For two successive weeks in the halls of a
single University, ICM’98 perpetuated the myth of the unity of mathematics; which myth
is supposedly validated by the repetition of that most weaselly of rhetorical phrases:

“Well, in principle, you could understand all the talks.”!

Source

Iy

J.M. Borwein, “Implications of Experimental Mathematics for the Philosophy of Mathematics,’
Chapter 2, pp. 33-61, and Cover Image in Proof and Other Dilemmas: Mathematics and Philosophy,
Bonnie Gold and Roger Simons Eds, MAA Spectrum Series. 2008.

!Describing the 1998 Berlin International Congress of Mathematicians in the October 1998 SIAM News.
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Implications of Experimental Mathematics
for the Philosophy of Mathematics!'

Jonathan Borwein, FRSC?
Christopher Koch [35] accurately captures a great scientific distaste for philosophizing:

“Whether we scientists are inspired, bored, or infuriated by philosophy, all our
theorizing and experimentation depends on particular philosophical background
assumptions. This hidden influence is an acute embarrassment to many re-
searchers, and it is therefore not often acknowledged.” (Christopher Koch, 2004)

That acknowledged, I am of the opinion that mathematical philosophy matters more
now than it has in nearly a century. The power of modern computers matched with that
of modern mathematical software and the sophistication of current mathematics is changing
the way we do mathematics.

In my view it is now both necessary and possible to admit quasi-empirical inductive
methods fully into mathematical argument. In doing so carefully we will enrich mathematics
and yet preserve the mathematical literature’s deserved reputation for reliability—even as the
methods and criteria change. What do I mean by reliability? Well, research mathematicians
still consult Euler or Riemann to be informed, anatomists only consult Harvey?® for historical
reasons. Mathematicians happily quote old papers as core steps of arguments, physical
scientists expect to have to confirm results with another experiment.

1 Mathematical Knowledge as I View It

Somewhat unusually, I can exactly place the day at registration that I became a mathemati-
cian and I recall the reason why. I was about to deposit my punch cards in the ‘honours
history bin’. I remember thinking

“If I do study history, in ten years I shall have forgotten how to use the calculus
properly. If I take mathematics, I shall still be able to read competently about the
War of 1812 or the Papal schism.” (Jonathan Borwein, 1968)

The inescapable reality of objective mathematical knowledge is still with me. Nonetheless,
my view then of the edifice I was entering is not that close to my view of the one I inhabit
forty years later.

I'The companion web site is at www.experimentalmath.info

2Canada Research Chair, Faculty of Computer Science, 6050 University Ave, Dalhousie University, Nova
Scotia, B3H 1W5 Canada. E-mail: jborwein@cs.dal.ca

3William Harvey published the first accurate description of circulation, “An Anatomical Study of the
Motion of the Heart and of the Blood in Animals,” in 1628.
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I also know when I became a computer-assisted fallibilist. Reading Imre Lakatos’ Proofs
and Refutations, [38], a few years later while a very new faculty member, T was suddenly
absolved from the grave sin of error, as I began to understand that missteps, mistakes and
errors are the grist of all creative work.* The book, his doctorate posthumously published
in 1976, is a student conversation about the Euler characteristic. The students are of var-
ious philosophical stripes and the discourse benefits from his early work on Hegel with the
Stalinist Lukacs in Hungary and from later study with Karl Popper at the London School
of Economics. I had been prepared for this dispensation by the opportunity to learn a va-
riety of subjects from Michael Dummett. Dummett was at that time completing his study
rehabilitating Frege’s status, [23].

A decade later the appearance of the first ‘portable’ computers happily coincided with my
desire to decode Srinivasa Ramanujan’s (1887-1920) cryptic assertions about theta functions
and elliptic integrals, [13]. I realized that by coding his formulae and my own in the APL
programming language®, I was able to rapidly confirm and refute identities and conjectures
and to travel much more rapidly and fearlessly down potential blind alleys. I had become
a computer-assisted fallibilist; at first somewhat falteringly but twenty years have certainly
honed my abilities.

Today, while I appreciate fine proofs and aim to produce them when possible, I no longer
view proof as the royal road to secure mathematical knowledge.

2 Introduction

[ first discuss my views, and those of others, on the nature of mathematics, and then illustrate
these views in a variety of mathematical contexts. A considerably more detailed treatment
of many of these topics is to be found in my book with Dave Bailey entitled Mathematics
by FExperiment: Plausible Reasoning in the 21st Century—especially in Chapters One, Two
and Seven, [9]. Additionally, [2] contains several pertinent case studies as well as a version
of this current chapter.

Kurt Godel may well have overturned the mathematical apple cart entirely deductively,
but nonetheless he could hold quite different ideas about legitimate forms of mathematical
reasoning, [28]:

“If mathematics describes an objective world just like physics, there is no reason
why inductive methods should not be applied in mathematics just the same as in
physics.” (Kurt Godel®, 1951)

4Gila Hanna [30] takes a more critical view placing more emphasis on the role of proof and certainty in
mathematics; I do not disagree, so much as I place more value on the role of computer-assisted refutation.
Also ’certainty’ usually arrives late in the development of a proof.

SKnown as a ‘write only’ very high level language, APL was a fine tool; albeit with a steep learning curve
whose code is almost impossible to read later.

6Taken from a previously unpublished work, [28].
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While we mathematicians have often separated ourselves from the sciences, they have
tended to be more ecumenical. For example, a recent review of Models. The Third Dimension
of Science, [17], chose a mathematical plaster model of a Clebsch diagonal surface as its only
illustration. Similarly, authors seeking examples of the aesthetic in science often choose
iconic mathematics formulae such as E = MC2.

Let me begin by fixing a few concepts before starting work in earnest. Above all, I hope
to persuade you of the power of mathematical experimentation—it is also fun—and that
the traditional accounting of mathematical learning and research is largely an ahistorical
caricature. I recall three terms.
mathematics, n. a group of related subjects, including algebra, geometry, trigonometry
and calculus, concerned with the study of number, quantity, shape, and space, and their
inter-relationships, applications, generalizations and abstractions.

This definition—taken from my Collins Dictionary [6]—makes no immediate mention of
proof, nor of the means of reasoning to be allowed. The Webster’s Dictionary [54] contrasts:
induction, n. any form of reasoning in which the conclusion, though supported by the
premises, does not follow from them necessarily.; and
deduction, n. a process of reasoning in which a conclusion follows necessarily from the
premises presented, so that the conclusion cannot be false if the premises are true.

b. a conclusion reached by this process.

Like Godel, I suggest that both should be entertained in mathematics. This is certainly
compatible with the general view of mathematicians that in some sense “mathematical stuff
is out there” to be discovered. In this paper, I shall talk broadly about experimental and
heuristic mathematics, giving accessible, primarily visual and symbolic, examples.

3 Philosophy of Experimental Mathematics

“The computer has in turn changed the very nature of mathematical experience,
suggesting for the first time that mathematics, like physics, may yet become an
empirical discipline, a place where things are discovered because they are seen.”
(David Berlinski, [4])

The shift from typographic to digital culture is vexing for mathematicians. For example,
there is still no truly satisfactory way of displaying mathematics on the web—and certainly
not of asking mathematical questions. Also, we respect authority, [29], but value authorship
deeply—however much the two values are in conflict, [16]. For example, the more I recast
someone else’s ideas in my own words, the more I enhance my authorship while undermining
the original authority of the notions. Medieval scribes had the opposite concern and so took
care to attribute their ideas to such as Aristotle or Plato.

And we care more about the reliability of our literature than does any other science,
Indeed I would argue that we have over-subscribed to this notion and often pay lip-service
not real attention to our older literature. How often does one see original sources sprinkled
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like holy water in papers that make no real use of them—the references offering a false sense
of scholarship?

The traditional central role of proof in mathematics is arguably and perhaps appropriately
under siege. Via examples, I intend to pose and answer various questions. I shall conclude
with a variety of quotations from our progenitors and even contemporaries:

My Questions. What constitutes secure mathematical knowledge? When is computation
convincing? Are humans less fallible? What tools are available? What methodologies?
What of the ‘law of the small numbers’? Who cares for certainty?” What is the role of
proof? How is mathematics actually done? How should it be? I mean these questions both
about the apprehension (discovery) and the establishment (proving) of mathematics. This
is presumably more controversial in the formal proof phase.

My Answers. To misquote D’Arcy Thompson (1860-1948) ‘form follows function’, [52]:
rigour (proof) follows reason (discovery); indeed, excessive focus on rigour has driven us
away from our wellsprings. Many good ideas are wrong. Not all truths are provable, and
not all provable truths are worth proving. Godel’s incompleteness results certainly showed
us the first two of these assertions while the third is the bane of editors who are frequently
presented with correct but unexceptional and unmotivated generalizations of results in the
literature. Moreover, near certainty is often as good as it gets—intellectual context (com-
munity) matters. Recent complex human proofs are often very long, extraordinarily subtle
and fraught with error—consider, Fermat’s last theorem, the Poincaré conjecture, the clas-
sification of finite simple groups, presumably any proof of the Riemann hypothesis, [25]. So
while we mathematicians publicly talk of certainty we really settle for security.

In all these settings, modern computational tools dramatically change the nature and
scale of available evidence. Given an interesting identity buried in a long and complicated
paper on an unfamiliar subject, which would give you more confidence in its correctness:
staring at the proof, or confirming computationally that it is correct to 10,000 decimal
places?

Here is such a formula, [3, p. 20]:

tant + /7
Og | ——=
tant — \/7

°
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1 dt = L_7(2) = (1)
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= 1 1 1 1 1 1
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This identity links a volume (the integral) to an arithmetic quantity (the sum). It arose out
of some studies in quantum field theory, in analysis of the volumes of ideal tetrahedra in
hyperbolic space. The question mark is used because, while no hint of a path to a formal
proof is yet known, it has been verified numerically to 20,000 digit precision—using 45 minutes
on 1024 processors at Virginia Tech.

A more inductive approach can have significant benefits. For example, as there is still
some doubt about the proof of the classification of finite simple groups it is important to

4
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ask whether the result is true but the proof flawed, or rather if there is still perhaps an
‘ogre’ sporadic group even larger than the ‘monster’? What heuristic, probabilistic or com-
putational tools can increase our confidence that the ogre does or does not exist? Likewise,
there are experts who still believe the Riemann hypothesis” (RH) may be false and that the
billions of zeroes found so far are much too small to be representative.® In any event, our
understanding of the complexity of various crypto-systems relies on (RH) and we should like
secure knowledge that any counter-example is enormous.

Peter Medawar (1915-87)—a Nobel prize winning oncologist and a great expositor of
science—writing in Advice to a Young Scientist, [44], identifies four forms of scientific exper-
iment:

1. The Kantian experiment: generating “the classical non-FEuclidean geometries (hyper-
bolic, elliptic) by replacing Fuclid’s axiom of parallels (or something equivalent to it) with
alternative forms.”  All mathematicians perform such experiments while the majority of
computer explorations are of the following Baconian form.

2. The Baconian experiment is a contrived as opposed to a natural happening, it “is the
consequence of ‘trying things out’ or even of merely messing about.” Baconian experiments
are the explorations of a happy if disorganized beachcomber and carry little predictive power.

3. Aristotelian demonstrations: “apply electrodes to a frog’s sciatic nerve, and lo, the leg
kicks; always precede the presentation of the dog’s dinner with the ringing of a bell, and lo,
the bell alone will soon make the dog dribble.” Arguably our ‘Corollaries’ and 'Examples’
are Aristotelian, they reinforce but do not predict. Medawar then says the most important
form of experiment is:

4. The Galilean experiment is “a critical experiment — one that discriminates between
possibilities and, in doing so, either gives us confidence in the view we are taking or makes
us think it in need of correction.” The Galilean the only form of experiment which stands to
make Experimental Mathematics a serious enterprise. Performing careful, replicable Galilean
experiments requires work and care.

Reuben Hersh'’s arguments for a humanist philosophy of mathematics, especially [31, pp.
590-591] and [32, p. 22], as paraphrased below, become even more convincing in our highly
computational setting.

1. Mathematics is human. [t is part of and fits into human culture. It does not match
Frege’s concept of an abstract, timeless, tenseless, objective reality.”

2. Mathematical knowledge is fallible. As in science, mathematics can advance by making
mistakes and then correcting or even re-correcting them. The “fallibilism” of mathematics
1s brilliantly argued in Lakatos’ Proofs and Refutations.

3. There are different versions of proof or rigor. Standards of rigor can vary depending
on time, place, and other things. The use of computers in formal proofs, exemplified by

" All non-trivial zeroes—not negative even integers—of the zeta function lie on the line with real part 1/2.

8See [45] and various of Andrew Odlyzko’s unpublished but widely circulated works.

9That Frege’s view of mathematics is wrong, for Hersh as for me, does not diminish its historical impor-
tance.
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the computer-assisted proof of the four color theorem in 1977,'° is just one example of an
emerging nontraditional standard of rigor.

4. Empirical evidence, numerical experimentation and probabilistic proof all can help us
decide what to believe in mathematics. Aristotelian logic isn’t necessarily always the best
way of deciding.

5. Mathematical objects are a special variety of a social-cultural-historical object. Con-
trary to the assertions of certain post-modern detractors, mathematics cannot be dismissed as
merely a new form of literature or religion. Nevertheless, many mathematical objects can be
seen as shared ideas, like Moby Dick in literature, or the Immaculate Conception in religion.

I entirely subscribe to points 2., 3., 4., and with certain caveats about objective knowl-
edge!! to points 1. and 5. In any event mathematics is and will remain a uniquely human
undertaking.

This version of humanism sits fairly comfortably along-side current versions of social-
constructivism as described next.

“The social constructivist thesis is that mathematics is a social construction, a
cultural product, fallible like any other branch of knowledge.” (Paul Ernest, [26,

§3])

But only if I qualify this with “Yes, but much-much less fallible than most branches of
knowledge.” Associated most notably with the writings of Paul Ernest—an English Mathe-
matician and Professor in the Philosophy of Mathematics Education who in [27] traces the
intellectual pedigree for his thesis, a pedigree that encompasses the writings of Wittgenstein,
Lakatos, Davis, and Hersh among others—social constructivism seeks to define mathematical
knowledge and epistemology through the social structure and interactions of the mathemat-
ical community and society as a whole.

This interaction often takes place over very long periods. Many of the ideas our students—
and some colleagues—take for granted took a great deal of time to gel. The Greeks suspected
the impossibility of the three classical construction problems '? and the irrationality of the
golden mean was well known to the Pythagoreans.

While concerns about potential and completed infinities are very old, until the advent
of the calculus with Newton and Leibnitz and the need to handle fluxions or infinitesimals,
the level of need for rigour remained modest. Certainly Euclid is in its geometric domain
generally a model of rigour, while also Archimedes’ numerical analysis was not equalled until
the 19th century.

0Especially, since a new implementation by Seymour, Robertson and Thomas in 1997 which has produced
a simpler, clearer and less troubling implementation.

HWhile it is not Hersh’s intention, a superficial reading of point 5. hints at a cultural relativism to which
I certainly do not subscribe.

12Trisection, circle squaring and cube doubling were taken by the educated to be impossible in antiquity.
Already in 414 BCE, in his play The Birds, Aristophanes uses ‘circle-squarers’ as a term for those who attempt
the impossible. Similarly, the French Academy stopped accepting claimed proofs a full two centuries before
the 19th century achieved proofs of their impossibility.
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The need for rigour arrived in full force in the time of Cauchy and Fourier. The treacher-
ous countably infinite processes of analysis and the limitations of formal manipulation came
to the fore. It is difficult with a modern sensibility to understand how Cauchy’s proof of
the continuity of pointwise-limits could coexist in texts for a generation with clear counter-
examples originating in Fourier’s theory of heat.!?

By the end of the 19th century Frege’s (1848-1925) attempt to base mathematics in a
linguistically based logicism had foundered on Russell and other’s discoveries of the paradoxes
of naive set theory. Within thirty five years Godel-—and then Turing’s more algorithmic
treatment'4—had similarly damaged both Russell and Whitehead’s and Hilbert’s programs.

Throughout the twentieth century, bolstered by the armor of abstraction, the great ship
Mathematics has sailed on largely unperturbed. During the last decade of the 19th and first
few decades of the 20th century the following main streams of philosophy emerged explicitly
within mathematics to replace logicism, but primarily as the domain of philosophers and
logicians.

e Platonism. FEveryman’s idealist philosophy—stuff exists and we must find it. De-
spite being the oldest mathematical philosophy, Platonism—still predominant among
working mathematicians—was only christened in 1934 by Paul Bernays.'®

e Formalism. Associated mostly with Hilbert—it asserts that mathematics is invented
and is best viewed as formal symbolic games without intrinsic meaning.

e [ntuitionism. Invented by Brouwer and championed by Heyting, intuitionism asks for
inarguable monadic components that can be fully analyzed and has many variants;
this has interesting overlaps with recent work in cognitive psychology such as Lakoff
and Nunez’ work, [39], on ‘embodied cognition’.!6

e Constructivism. Originating with Markoff and especially Kronecker (1823-1891), and
refined by Bishop it finds fault with significant parts of classical mathematics. Its ‘I'm
from Missouri, tell me how big it is” sensibility is not to be confused with Paul Ernest’s
‘social constructivism’, [27].

The last two philosophies deny the principle of the excluded middle, “A or not A”,
and resonate with computer science—as does some of formalism. It is hard after all to
run a deterministic program which does not know which disjunctive logic-gate to follow.

13Cauchy’s proof appeared in his 1821 text on analysis. While counterexamples were pointed out almost
immediately, Stokes and Seidel were still refining the missing uniformity conditions in the late 1840s.

4The modern treatment of incompleteness leans heavily on Turing’s analysis of the Halting problem for
so-called Turing machines.

15Gee Karlis Podnieks, “Platonism, Intuition and the Nature on Mathematics”, available at
http://www.ltn.1lv/ podnieks/gtl.html

16The cognate views of Henri Poincaré (1854-1912), [47, p. 23] on the role of the subliminal are reflected
in “The mathematical facts that are worthy of study are those that, by their analogy with other facts are
susceptible of leading us to knowledge of a mathematical law, in the same way that physical facts lead us to
a physical law.” He also wrote “It is by logic we prove, it is by intuition that we invent,” [48].

7
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By contrast the battle between a Platonic idealism (a ‘deductive absolutism’) and various
forms of ‘fallibilism’(a quasi-empirical ‘relativism’) plays out across all four, but fallibilism
perhaps lives most easily within a restrained version of intuitionism which looks for ‘intuitive
arguments’ and is willing to accept that ‘a proof is what convinces’. As Lakatos shows, an
argument that was convincing a hundred years ago may well now be viewed as inadequate.
And one today trusted may be challenged in the next century.

As we illustrate in the next section or two, it is only perhaps in the last twenty five years,
with the emergence of powerful mathematical platforms, that any approach other than a
largely undigested Platonism and a reliance on proof and abstraction has had the tools'” to
give it traction with working mathematicians.

In this light, Hales’ proof of Kepler's conjecture that the densest way to stack spheres
15 1 a pyramid resolves the oldest problem in discrete geometry. It also supplies the most
interesting recent example of intensively computer-assisted proof, and after five years with
the review process was published in the Annals of Mathematics—with an “only 99% checked”
disclaimer.

This process has triggered very varied reactions [34] and has provoked Thomas Hales to
attempt a formal computational proof which he expects to complete by 2011, [25]. Famous
earlier examples of fundamentally computer-assisted proof include the Four color theorem
and proof of the Non-existence of a projective plane of order 10. The three raise and answer
quite distinct questions about computer-assisted proof—both real and specious. For example,
there were real concerns about the completeness of the search in the 1976 proof of the Four
color theorem but there should be none about the 1997 reworking by Seymour, Robertson
and Thomas.'® Correspondingly, Lam deservedly won the 1992 Lester R. Ford award for
his compelling explanation of why to trust his computer when it announced there was no
plane of order ten, [40]. Finally, while it is reasonable to be concerned about the certainty
of Hales’ conclusion, was it really the Annal’s purpose to suggest all other articles have been
more than 99% certified?

To make the case as to how far mathematical computation has come we trace the changes

over the past half century. The 1949 computation of 7 to 2,037 places suggested by von
Neumann, took 70 hours. A billion digits may now be computed in much less time on a
laptop. Strikingly, it would have taken roughly 100,000 ENTAC’s to store the Smithsonian’s
picture—as is possible thanks to 40 years of Moore’s law in action . ...*
This is an astounding record of sustained exponential progress without peer in the history
of technology. Additionally, mathematical tools are now being implemented on parallel
platforms, providing much greater power to the research mathematician. Amassing huge
amounts of processing power will not alone solve many mathematical problems. There are
very few mathematical ‘Grand-challenge problems’; [12] where, as in the physical sciences,
a few more orders of computational power will resolve a problem.

1"That is, to broadly implement Hersh’s central points (2.-4.).

18See http://www.math.gatech.edu/ thomas/FC/fourcolor.html.

YMoore’s Law is now taken to be the assertion that semiconductor technology approzimately doubles in
capacity and performance roughly every 18 to 24 months.
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For example, an order of magnitude improvement in computational power currently trans-
lates into one more day of accurate weather forecasting, while it is now common for biomed-
ical researchers to design experiments today whose outcome is predicated on ‘peta-scale’
computation being available by say 2010, [51]. There is, however, much more value in very
rapid ‘Aha’s’ as can be obtained through “micro-parallelism”; that is, where we benefit by
being able to compute many simultaneous answers on a neurologically-rapid scale and so can
hold many parts of a problem in our mind at one time.

To sum up, in light of the discussion and terms above, I now describe myself a a social-
constructivist, and as a computer-assisted fallibilist with constructivist leanings. I believe
that more-and-more the interesting parts of mathematics will be less-and-less susceptible to
classical deductive analysis and that Hersh’s ‘non-traditional standard of rigor’ must come
to the fore.

4 Our Experimental Mathodology

Despite Picasso’s complaint that “computers are useless, they only give answers,” the main
goal of computation in pure mathematics is arguably to yield insight. This demands speed
or, equivalently, substantial micro-parallelism to provide answers on a cognitively relevant
scale; so that we may ask and answer more questions while they remain in our consciousness.
This is relevant for rapid verification; for validation; for proofs and especially for refutations
which includes what Lakatos calls “monster barring”, [38]. Most of this goes on in the daily
small-scale accretive level of mathematical discovery but insight is gained even in cases like
the proof of the Four color theorem or the Non-existence of a plane of order ten. Such
insight is not found in the case-enumeration of the proof, but rather in the algorithmic
reasons for believing that one has at hand a tractable unavoidable set of configurations
or another effective algorithmic strategy. For instance, Lam [40] ran his algorithms on
known cases in various subtle ways, and also explained why built-in redundancy made the
probability of machine-generated error negligible. More generally, the act of programming—
if well performed—always leads to more insight about the structure of the problem.

In this setting it is enough to equate parallelism with access to requisite more space
and speed of computation. Also, we should be willing to consider all computations as ‘ex-
act” which provide truly reliable answers.?’ This now usually requires a careful hybrid of
symbolic and numeric methods, such as achieved by Maple’s liaison with the Numerical Al-
gorithms Group (NAG) Library?!, see [5, 8]. There are now excellent tools for such purposes
throughout analysis, algebra, geometry and topology, see [9, 10, 5, 12, 15].

Along the way questions required by—or just made natural by—computing start to force
out older questions and possibilities in the way beautifully described a century ago by Dewey
regarding evolution.

20Tf careful interval analysis can certify that a number known to be integer is larger that 2.5 and less than
3.5, this constitutes an exact computational proof that it is 3.
21See http://www.nag.co.uk/.
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“Old ideas give way slowly; for they are more than abstract logical forms and
categories. They are habits, predispositions, deeply engrained attitudes of aver-
sion and preference. Moreover, the conviction persists—though history shows it
to be a hallucination—that all the questions that the human mind has asked are
questions that can be answered in terms of the alternatives that the questions
themselves present. But in fact intellectual progress usually occurs through sheer
abandonment of questions together with both of the alternatives they assume; an
abandonment that results from their decreasing vitality and a change of urgent
interest. We do not solve them: we get over them. Old questions are solved by
disappearing, evaporating, while new questions corresponding to the changed atti-
tude of endeavor and preference take their place. Doubtless the greatest dissolvent
in contemporary thought of old questions, the greatest precipitant of new methods,
new intentions, new problems, is the one effected by the scientific revolution that
found its climaz in the ‘Origin of Species.” ” (John Dewey, [20])

Lest one think this a feature of the humanities and the human sciences, consider the
artisanal chemical processes that have been lost as they were replaced by cheaper industrial
versions. And mathematics is far from immune. Felix Klein, quoted at length in the intro-
duction to [11], laments that “now the younger generation hardly knows abelian functions.”
He goes on to explain that:

“In mathematics as in the other sciences, the same processes can be observed
again and again. First, new questions arise, for internal or external reasons,
and draw researchers away from the old questions. And the old questions, just
because they have been worked on so much, need ever more comprehensive study
for their mastery. This is unpleasant , and so one is glad to turn to problems
that have been less developed and therefore require less foreknowledge—even if it
is only a matter of axiomatics, or set theory, or some such thing.” (Felix Klein,
(33, p. 294])

Freeman Dyson has likewise gracefully described how taste changes:

“I see some parallels between the shifts of fashion in mathematics and in music.
In music, the popular new styles of jazz and rock became fashionable a little earlier
than the new mathematical styles of chaos and complexity theory. Jazz and rock
were long despised by classical musicians, but have emerged as art-forms more
accessible than classical music to a wide section of the public. Jazz and rock
are no longer to be despised as passing fads. Neither are chaos and complezity
theory. But still, classical music and classical mathematics are not dead. Mozart
lives, and so does Fuler. When the wheel of fashion turns once more, quantum
mechanics and hard analysis will once again be in style.” (Freeman Dyson, [24])

For example recursively defined objects were once anathema—Ramanujan worked very
hard to replace lovely iterations by sometimes-obscure closed-form approximations. Addi-
tionally, what is “easy” changes: high performance computing and networking are blurring,
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merging disciplines and collaborators. This is democratizing mathematics but further chal-
lenging authentication—consider how easy it is to find information on Wikipedia®* and how
hard it is to validate it.

Moving towards a well articulated Experimental Mathodology—both in theory and practice—
will take much effort. The need is premised on the assertions that intuition is acquired—we
can and must better mesh computation and mathematics, and that visualization is of growing
importance—in many settings even three is a lot of dimensions.

“Monster-barring” (Lakatos’s term, [38], for refining hypotheses to rule out nasty counter-
examples??) and “caging” (Nathalie Sinclair tells me this is my own term for imposing needed
restrictions in a conjecture) are often easy to enhance computationally, as for example with
randomized checks of equations, linear algebra, and primality or graphic checks of equalities,
inequalities, areas, etc. Moreover, our mathodology fits well with the kind of pedagogy
espoused at a more elementary level (and without the computer) by John Mason in [43].

4.1 Eight Roles for Computation

I next recapitulate eight roles for computation that Bailey and I discuss in our two recent
books [9, 10]:

#1. Gaining insight and intuition or just knowledge. Working algorithmically with
mathematical objects almost inevitably adds insight to the processes one is studying.
At some point even just the careful aggregation of data leads to better understanding.

#2. Discovering new facts, patterns and relationships. The number of additive
partitions of a positive integer n, p(n), is generated by

P(g) =1+ Zp(n)q" = m

(2)

Thus, p(5) = 7 since
5=44+1=3+2=3+14+1=24+241= 2414+14+1=1+14+14+1+1.

Developing (2) is a fine introduction to enumeration via generating functions. Additive
partitions are harder to handle than multiplicative factorizations, but they are very
interesting, [10, Chapter 4]. Ramanujan used Major MacMahon’s table of p(n) to
intuit remarkable deep congruences such as

p(bn+4) =0 mod 5, p(Tn+5)=0 mod 7, p(1ln+6)=0 mod 11,

22 Wikipedia is an open source project at http://en.wikipedia.org/wiki/Main Page; “wiki-wiki” is
Hawaiian for “quickly”.

23], for example, a polyhedron always convex? Is a curve intended to be simple? Is a topology assumed
Hausdorff, a group commutative?
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43,

#4.

45,

46,

from relatively limited data like

Plqg) = 1+q+2¢@+3¢+5¢"+7¢"+11¢"+15¢
+ 22¢5+30¢° +42¢"° +56 ¢" + 77 ¢"% + 101 ¢** + 135 ¢**
+ 176 ¢" + 231 ¢"° 4297 ¢*" + 385 ¢'® + 490 ¢**°
+ 627¢°b+ 792 ¢* + 1002 ¢* + - - - 4 p(200)¢*° + - - (3)

Cases bn+4 and Tn+ 5 are flagged in (3). Of course, it is markedly easier to (heuristi-
cally) confirm than find these fine examples of Mathematics: the science of patterns.®*
The study of such congruences—much assisted by symbolic computation—is very ac-
tive today.

Graphing to expose mathematical facts, structures or principles. Consider
Nick Trefethen’s fourth challenge problem as described in [5, 8]. It requires one to find
ten good digits of:

4. What is the global minimum of the function
exp(sin(502) ) +sin(60e¥) +sin (70 sin ) +-sin(sin(80y) ) —sin(10(x+y) )+ (z* +y*) /47

As a foretaste of future graphic tools, one can solve this problem graphically and in-
teractively using current adaptive 3-D plotting routines which can catch all the bumps.
This does admittedly rely on trusting a good deal of software.

Rigourously testing and especially falsifying conjectures. I hew to the Poppe-
rian scientific view that we primarily falsify; but that as we perform more and more
testing experiments without such falsification we draw closer to firm belief in the truth
of a conjecture such as: the polynomial P(n) = n* —n + p has prime values for all
n=0,1,...,p— 2, exactly for Euler’s lucky prime numbers, that is, p= 2, 3, 5, 11,
17, and 41.%°

Exploring a possible result to see if it merits formal proof. A conventional
deductive approach to a hard multi-step problem really requires establishing all the
subordinate lemmas and propositions needed along the way—especially if they are
highly technical and un-intuitive. Now some may be independently interesting or use-
ful, but many are only worth proving if the entire expedition pans out. Computational
experimental mathematics provides tools to survey the landscape with little risk of
error: only if the view from the summit is worthwhile, does one lay out the route
carefully. T discuss this further at the end of the next Section.

Suggesting approaches for formal proof. The proof of the cubic theta function
identity discussed on [10, pp. 210] shows how a fully intelligible human proof can be
obtained entirely by careful symbolic computation.

2AThe title of Keith Devlin’s 1996 book, [21].
25See [55] for the answer.
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47

#8.

5

Computing replacing lengthy hand derivations. Who would wish to verify the
following prime factorization by hand?

6422607578676942838792549775208734746307
= (2140992015395526641)(1963506722254397)(1527791).

Surely, what we value is understanding the underlying algorithm, not the human work?

Confirming analytically derived results. This is a wonderful and frequently ac-
cessible way of confirming results. FEven if the result itself is not computationally
checkable, there is often an accessible corollary. An assertion about bounded operators
on Hilbert space may have a useful consequence for three-by-three matrices. It is also
an excellent way to error correct, or to check calculus examples before giving a class.

Finding Things versus Proving Things

I now illuminate these eight roles with eight mathematical examples. At the end of each I
note some of the roles illustrated.

1.

Pictorial comparison of y — y* and y* — y* to —y?In(y), when y lies in the unit
interval, is a much more rapid way to divine which function is larger than by using
traditional analytic methods.

Figure 1 below shows that it is clear in the latter case the functions cross, and so it is
futile to try to prove one majorizes the other. In the first case, evidence is provided
to motivate attempting a proof and often the picture serves to guide such a proof—by
showing monotonicity or convexity or some other salient property. ]

This certainly illustrates roles #3 and #4, and perhaps role #5.

Figure 1. (Ex. 1.): Graphical comparison of —z”In(z) (lower local maximum in

both graphs) with x — z? (left graph) and 2? — z* (right graph)

2. A proof and a disproof. Any modern computer algebra can tell one that

D1 —z)tat 22
T dr == 4
O</0 T2 dx - = (4)
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since the integral may be interpreted as the area under a positive curve. We are
however no wiser as to why! If however we ask the same system to compute the
indefinite integral, we are likely to be told that

Clg 24 5 4
/0 - = ?t — §t +t° — §t +4t—4 arctan (t) .
Then (4) is now rigourously established by differentiation and an appeal to the Fun-
damental theorem of calculus. |

This illustrates roles #1 and #6. It also falsifies the bad conjecture that 7 = 22/7 and
so illustrates #4 again. Finally, the computer’s proof is easier (#7) and very nice, though
probably it is not the one we would have developed by ourselves. The fact that 22/7 is a
continued fraction approximation to 7 has led to many hunts for generalizations of (4), see
[10, Chapter 1]. None so far are entirely successful.

3. A computer discovery and a ‘proof’ of the series for arcsin®(z). We compute
a few coefficients and observe that there is a regular power of 4 in the numerator, and
integers in the denominator; or equivalently we look at arcsin(x/2)%. The generating
function package ‘gfun’ in Maple, then predicts a recursion, r, for the denominators
and solves it, as R.

>with(gfun):
>s:=[seq(l/coeff(series(arcsin(x/2)"°2,x,25),x,2%n) ,n=1..6)]:
>R:=unapply(rsolve(op(1l, listtorec(s,r(m))),r(m)),m);[seq(R(m),m=0..8)];

yields, s := [4, 48, 360, 2240, 12600, 66528],

4mI'(3/2+m)(m+1)

R = 8
me 720 (1 +m) ’

where I' is the Gamma function, and then returns the sequence of values
[4, 48,360, 2240, 12600, 66528, 336336, 1647360, 7876440].

We may now use Sloane’s Online Encyclopedia of Integer Sequences®® to reveal that
the coefficients are R(n) = 2n? (2:) More precisely, sequence A002544 identifies

R(n+1)/4= ("7")(n+1)"
> [seq(2*n~2%binomial (2*n,n),n=1..8)];
confirms this with

4,48, 360, 2240, 12600, 66528, 336336, 1647360).

Next we write

26 At www.research.att.com/~njas/sequences/index.html

14



Chapter 12 227

> S:=Sum((2*x) " (2*n)/(2*n"2*binomial (2%n,n)) ,n=1..infinity) :S=values(S);

which returns

= arcsin®(7).

That is, we have discovered—and proven if we trust or verify Maple’s summation
algorithm—the desired Maclaurin series.

As prefigured by Ramanujan, it transpires that there is a beautiful closed form for

arcsin®”(z) for all m = 1,2,.... In [14] there is a discussion of the use of integer
relation methods, [9, Chapter 6], to find this closed form and associated proofs are
presented. [ |

Here we see an admixture of all of the roles save #3, but above all #2 and #5.

4. Discovery without proof. Donald Knuth?" asked for a closed form evaluation of:

> ( kF 1 }
— = —0.084069508727655 . ... 5
; { ket ork (%)

Since about 2000 CE it has been easy to compute 20—or 200—digits of this sum
in Maple or Mathematica; and then to use the ‘smart lookup’ facility in the Inverse
Symbolic Calculator(ISC). The ISC at http://oldweb.cecm.sfu.ca/projects/ISC
uses a variety of search algorithms and heuristics to predict what a number might
actually be. Similar ideas are now implemented as ‘identify’ in Maple and (for algebraic
numbers only) as ‘Recognize’ in Mathematica, and are described in [8, 9, 15, 1]. In this
case it rapidly returns

¢(1/2)
TR
We thus have a prediction which Maple 9.5 on a 2004 laptop confirms to 100 places in

under 6 seconds and to 500 in 40 seconds. Arguably we are done. After all we were
asked to ewvaluate the series and we now know a closed-form answer.

2
0.084069508727655 ~ 3 +

Notice also that the ‘divergent’ ((1/2) term is formally to be expected in that while
3% 1/nt? = oo, the analytic continuation of ((s) := Y _°2  1/n® for s > 1 evaluated
at 1/2 does occur! |

We have discovered and tested the result and in so doing gained insight and knowledge
while illustrating roles #1, #2 and #4. Moreover, as described in [10, pp. 15], one can also
be led by the computer to a very satisfactory computer-assisted but also very human proof,

2TPosed as an MAA Problem [36].
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thus illustrating role #6. Indeed, the first hint is that the computer algebra system returned
the value in (5) very quickly even though the series is very slowly convergent. This suggests
the program is doing something intelligent—and it is! Such a use of computing is termed
“Instrumental” in that the computer is fundamental to the process, see [41].

5. A striking conjecture with no known proof strategy (as of spring 2007) given
in [10, p. 162] is: forn =1,2,3---

2

8¢ ({2 1}n) =C({2,1}n) - (6)

Explicitly, the first two cases are

(_1)n B 1 d A (_1)n+o B 1
8 Z n2m n3 an 0 Z n2mo?p Z n3ms3’

n>m>0 n>0 n>m>o0>p>0

The notation should now be clear—we use the ‘overbar’ to denote an alternation. Such
alternating sums are called multi-zeta values (MZV) and positive ones are called Fuler
sums after Euler who first studied them seriously. They arise naturally in a variety of
modern fields from combinatorics to mathematical physics and knot theory.

There is abundant evidence amassed since ‘identity’ (6) was found in 1996. For exam-
ple, very recently Petr Lisonek checked the first 85 cases to 1000 places in about 41
HP hours with only the predicted round-off error. And the case n = 163 was checked
in about ten hours. These objects are very hard to compute naively and require sub-
stantial computation as a precursor to their analysis.

Formula (6) is the only identification of its type of an Euler sum with a distinct MZV
and we have no idea why it is true. Any similar MZV proof has been both highly
non-trivial and illuminating. To illustrate how far we are from proof: can just the case
n = 2 be proven symbolically as has been the case for n = 17 |
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Figure 2. (Ex. 6.): “The price of metaphor is eternal vigilance.”
(Arturo Rosenblueth & Norbert Wiener, [42])

This identity was discovered by the British quantum field theorist David Broadhurst and
me during a large hunt for such objects in the mid-nineties. In this process we discovered
and proved many lovely results (see [9, Chapter 2] and [10, Chapter 4]), thereby illustrating
#1,#2, #4, #5 and #7. In the case of ‘identity’ (6) we have failed with #6, but we have
ruled out many sterile approaches. It is one of many examples where we can now have (near)
certainty without proof. Another was shown in equation (1) above.

6. What you draw is what you see. Roots of polynomials with coefficients 1 or -1 up
to degree 18.

As the quote suggests, pictures are highly metaphorical. The shading in Figure 2 is
determined by a normalized sensitivity of the coefficients of the polynomials to slight
variations around the values of the zeros with red indicating low sensitivity and violet
indicating high sensitivity.?® It is hard to see how the structure revealed in the pictures
above? would be seen other than through graphically data-mining. Note the different
shapes—now proven—of the holes around the various roots of unity.

The striations are unexplained but all re-computations expose them! And the fractal
structure is provably there. Nonetheless different ways of measuring the stability of

28Colour versions may be seen at http://oldweb.cecm.sfu.ca/personal/loki/Projects/Roots/Book/.
29We plot all complex zeroes of polynomials with only -1 and 1 as coefficients up to a given degree. As
the degree increases some of the holes fill in—at different rates.
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the calculations reveal somewhat different features. This is very much analogous to a
chemist discovering an unexplained but robust spectral line. ]

This certainly illustrates #2 and #7, but also #1 and #3.

7. Visual Dynamics. In recent continued fraction work, Crandall and I needed to study
the dynamical system to =t := 1:

1 1
by = —tp1 +wp_1 | 1—— tn—27
n n

where w, = a?, b for n even, odd respectively, are two unit vectors. Think of this
as a black box which we wish to examine scientifically. Numerically, all one sees is
t, — 0 slowly. Pictorially, in Figure 3, we learn significantly more.? If the iterates are
plotted with colour changing after every few hundred iterates,®' it is clear that they
spiral roman-candle like in to the origin:

2] . ® Stértlng
point
o

C ol

TS T

ff AN

||'} llll\_lllllll

0.2

-0.24

Figure 3. (Ex. 7.): “Visual convergence in the complex plane”

Scaling by /n, and distinguishing even and odd iterates, fine structure appear in
Figure 4. We now observe, predict and validate that the outcomes depend on whether
or not one or both of a and b are roots of unity (that is, rational multiples of 7). Input
a p-th root of unity and out come p spirals, input a non-root of unity and we see a
circle. |

This forceably illustrates role #2 but also roles #1, #3, #4. It took my coauthors and
me, over a year and 100 pages to convert this intuition into a rigorous formal proof, [3].
Indeed, the results are technical and delicate enough that I have more faith in the facts than
in the finished argument. In this sentiment, I am not entirely alone.

30, “Then felt I like a watcher of the skies, when a new planet swims into his ken.” From John Keats

(1795-1821) poem On first looking into Chapman’s Homer.
3LA colour version may be seen on the cover of [2].

18



Chapter 12 231

Figure 4. (Ex. 7.): The attractors for various |a| = |b| = 1

Carl Friedrich Gauss, who drew (carefully) and computed a great deal, is said to have
noted, I have the result, but I do not yet know how to get it.>*> An excited young Gauss
writes: “A new field of analysis has appeared to us, self-evidently, in the study of functions
etc.” (October 1798, reproduced in [9, Fig. 1.2, p.15]). It had and the consequent proofs
pried open the doors of much modern elliptic function and number theory.

My penultimate and more comprehensive example is more sophisticated and I beg the
less-expert analyst’s indulgence. Please consider its structure and not the details.

8. A full run. Consider the unsolved Problem 10738 from the 1999 American Mathe-
matical Monthly, [10]:

Problem: For ¢ > 0 let
ma(t) = > k" exp(—t) o
k=0

be the nth moment of a Poisson distribution with parameter t. Let ¢, (t) = m,(t)/n!.
Show

a) {m,(t)}°2, is log-convex® for all ¢ > 0.
b) {c,(t)}22, is not log-concave for ¢ < 1.

c*) {en(t)}22, is log-concave for ¢t > 1.

Solution. (a) Neglecting the factor of exp(—t) as we may, this reduces to

41 1k+j 1\ k4] p\npk+g 1.2 2
Z(Jk) t gZ(Jk)t kgzz(ﬂf)t k 4+

L Ryl L2 K Zz, ml 3
and this now follows from 2jk < k% + 52
(b) As
% ik
M1 (t) =Y (k+1)"exp(—t) o
k=0

32Like so many attributions, the quote has so far escaped exact isolation!
33A sequence {a,} is log-convex if ani1a,—1 > a2, for n > 1 and log-concave when the inequality is
reversed.
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on applying the binomial theorem to (k+1)", we see that m,,(t) satisfies the recurrence

M1 (t) = tkzi% (Z) me(t),  mo(t) = 1.

In particular for ¢ = 1, we computationally obtain as many terms of the sequence
1,1,2,5,15,52,203,877,4140. . .

as we wish. These are the Bell numbers as was discovered again by consulting Sloane’s
Encyclopedia which can also tell us that, for ¢ = 2, we have the generalized Bell
numbers, and gives the exponential generating functions.?* Inter alia, an explicit com-

putation shows that
1+1¢

2
exactly if ¢ > 1, which completes (b).

t =co(t) eao(t) < cr(t)? = ¢

Also, preparatory to the next part, a simple calculation shows that

Z cpu™ = exp (t(e" —1)). (7)

n>0

(c*)¥ We appeal to a recent theorem, [10, p. 42|, due to E. Rodney Canfield which
proves the lovely and quite difficult result below. A self-contained proof would be very

fine.
Theorem 1 If a sequence 1,by, by, -+ is non-negative and log-concave then so is the
sequence 1,cy,co, - -+ determined by the generating function equation
S o (S0
cpu” = exp i— | -
n>0 SR

Using equation (7) above, we apply this to the sequence b; =t/(j — 1)! which is log-
concave exactly for ¢t > 1. |

A search in 2001 on MathSciNet for “Bell numbers” since 1995 turned up 18 items.
Canfield’s paper showed up as number 10. Later, Google found it immediately!

Quite unusually, the given solution to (c) was the only one received by the Monthly. The
reason might well be that it relied on the following sequence of steps:

34Bell numbers were known earlier to Ramanujan—an example of Stigler’s Law of Eponymy, [10, p. 60].
Combinatorially they count the number of nonempty subsets of a finite set.
35The “*’ indicates this was the unsolved component.
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A (Question Posed) = Computer Algebra System = Interface =

Search Engine = Digital Library = Hard New Paper = (Answer)

Without going into detail, we have visited most of the points elaborated in Section 4.1. Now
if only we could already automate this process!

Jacques Hadamard, describes the role of proof as well as anyone—and most persuasively
given that his 1896 proof of the Prime number theorem is an inarguable apex of rigorous
analysis.

“The object of mathematical rigor is to sanction and legitimize the conquests of
intuition, and there was never any other object for it.” (Jacques Hadamard?®)

Of the eight uses of computers instanced above, let me reiterate the central importance
of heuristic methods for determining what is true and whether it merits proof. I tentatively
offer the following surprising example which is very very likely to be true, offers no suggestion
of a proof and indeed may have no reasonable proof.

9. Conjecture. Consider

(8)

120n° — 89n + 16
T, = 16x,,_1 +

512n* — 1024n3 + 712n2 — 206n + 21

The sequence (3, = (|16x,|), where (z,,) is the sequence of iterates defined in equation
(8), precisely generates the hexadecimal expansion of m — 3.

(Here {-} denotes the fractional part and (|-]) denotes the integer part.) In fact, we
know from [9, Chapter 4] that the first million iterates are correct and in consequence:

> llw, — {16" 7} < 146 x 1075 ... (9)

n=1

where |la|| = min(a,1 — a). By the first Borel-Cantelli lemma this shows that the
hexadecimal expansion of 7 only finitely differs from (3,,). Heuristically, the probability
of any error is very low. ]

6 Conclusions

To summarize, I do argue that reimposing the primacy of mathematical knowledge over
proof is appropriate. So I return to the matter of what it takes to persuade an individual to
adopt new methods and drop time honoured ones. Aptly, we may start by consulting Kuhn
on the matter of paradigm shift:

36]. Hadamard, in E. Borel, Lecons sur la theorie des fonctions, 3rd ed. 1928, quoted in [49, (2), p. 127] .
See also [47].
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“The issue of paradigm choice can never be unequivocally settled by logic and
experiment alone. --- in these matters neither proof nor error is at issue. The
transfer of allegiance from paradigm to paradigm is a conversion experience that
cannot be forced.” (Thomas Kuhn3")

As we have seen, the pragmatist philosopher John Dewey eloquently agrees, while Max
Planck, [46], has also famously remarked on the difficulty of such paradigm shifts. This is

Kuhn’s version3:
“And Mazx Planck, surveying his own career in his Scientific Autobiography, sadly
remarked that “a new scientific truth does not triumph by convincing its opponents
and making them see the light, but rather because its opponents eventually die,
and a new generation grows up that is familiar with it.” (Albert Einstein, [37, 46])

This transition is certainly already apparent. It is certainly rarer to find a mathematician
under thirty who is unfamiliar with at least one of Maple, Mathematica or MatLab, than it
is to one over sixty five who is really fluent. As such fluency becomes ubiquitous, I expect a

re-balancing of our community’s valuing of deductive proof over inductive knowledge.
In his famous lecture to the Paris International Congress in 1900, Hilbert writes’

“Moreover a mathematical problem should be difficult in order to entice us, yet
not completely inaccessible, lest it mock our efforts. It should be to us a guidepost
on the mazy path to hidden truths, and ultimately a reminder of our pleasure in
the successful solution.” (David Hilbert, [56])

Note the primacy given by a most exacting researcher to discovery and to truth over
proof and rigor. More controversially and most of a century later, Greg Chaitin invites us

to be bolder and act more like physicists.

“I believe that elementary number theory and the rest of mathematics should
be pursued more in the spirit of experimental science, and that you should be
willing to adopt new principles... And the Riemann Hypothesis isn’t self-evident
either, but it’s very useful. A physicist would say that there is ample experimental
evidence for the Riemann Hypothesis and would go ahead and take it as a working
assumption. --- We may want to introduce it formally into our mathematical

system.” (Greg Chaitin, [9, p. 254])

Ten years later:

37In [50], Who Got Einstein’s Office? The answer is Arne Beurling.

38Kuhn is quoting Einstein quoting Planck. There are various renderings of this second-hand German

quotation.

39Gee the late Ben Yandell’s fine account of the twenty-three “Mathematische Probleme” lecture, Hilbert
Problems and their solvers, [56]. The written lecture (given in [56]) is considerably longer and further ranging

that the one delivered in person.
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“[Chaitin’s] “Opinion” article proposes that the Riemann hypothesis (RH) be
adopted as a new axiom for mathematics. Normally one could only countenance
such a suggestion if one were assured that the RH was undecidable. However, a
proof of undecidability is a logical impossibility in this case, since if RH is false
it is provably false. Thus, the author contends, one may either wait for a proof,
or disproof, of RH—both of which could be impossible—or one may take the bull
by the horns and accept the RH as an axiom. He prefers this latter course as the
more positive one.” (Roger Heath Brown®)

Much as I admire the challenge of Greg Chaitin’s statements, [ am not yet convinced that
it is helpful to add axioms as opposed to proving conditional results that start “Assuming
the continuum hypothesis” or emphasize that “without assuming the Riemann hypothesis
we are able to show ...”. Most important is that we lay our cards on the table. We should
explicitly and honestly indicate when we believe our tools to be heuristic, we should carefully
indicate why we have confidence in our computations—and where our uncertainty lies— and
the like.

On that note, Hardy is supposed to have commented—somewhat dismissively—that Lan-
dau, a great German number theorist, would never be the first to prove the Riemann Hy-
pothesis, but that if someone else did so then Landau would have the best possible proof
shortly after. I certainly hope that a more experimental methodology will better value in-
dependent replication and honour the first transparent proof*! of Fermat’s last theorem as
much as Andrew Wiles’ monumental proof. Hardy also commented that he did his best work
past forty. Inductive, accretive, tool-assisted mathematics certainly allows brilliance to be
supplemented by experience and—as in my case—stands to further undermine the notion
that one necessarily does one’s best mathematics young.

6.1 As for Education

The main consequence for me is that a constructivist educational curriculum—supported
by both good technology and reliable content—is both possible and highly desirable. In
a traditional instructivist mathematics classroom there are few opportunities for realistic
discovery. The current sophistication of dynamic geometry software such as Geometer’s
Sketchpad, Cabri or Cinderella, of many fine web-interfaces, and of broad mathematical
computation platforms like Maple and Mathematica has changed this greatly—though in
my opinion both Maple and Mathematica are unsuitable until late in high-school, as they
presume too much of both the student and the teacher. A thoughtful and detailed discussion
of many of the central issues can be found in J.P. Lagrange’s article [41] on teaching functions
in such a milieu.

Another important lesson is that we need to teach procedural or algorithmic thinking.
Although some vague notion of a computer program as a repeated procedure is probably

40Roger Heath-Brown’s Mathematical Review of [18], 2004.
41Should such exist and as you prefer be discovered or invented.
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ubiquitous today, this does not carry much water in practice. For example, five years or
so ago, while teaching future elementary school teachers (in their final year), I introduced
only one topic not in the text: extraction of roots by Newton’s method. I taught this in
class, tested it on an assignment and repeated it during the review period. About half of the
students participated in both sessions. On the final exam, I asked the students to compute
V/3 using Newton’s method starting at zo = 3 to estimate v/3 = 1.732050808 . . . so that the
first three digits after the decimal point were correct. I hoped to see z1 = 2, 9 = 7/4 and
xr3 = 97/56 = 1.732142857 .. .. I gave the students the exact iteration in the form

r+3/x
INEW — 75 OLD, (10)

and some other details. The half of the class that had been taught the method had no
trouble with the question. The rest almost without exception “guessed and checked”. They
tried zorp = 3 and then rather randomly substituted many other values in (10). If they
were lucky they found some xorp such that xygw did the job.

My own recent experiences with technology-mediated curriculum are described in Jen
Chang’s 2006 MPub, [19]. There is a concurrent commercial implementation of such a
middle-school Interactive School Mathematics currently being completed by MathResources.*?
Many of the examples T have given, or similar ones more tailored to school [7], are easily
introduced into the curriculum, but only if the teacher is not left alone to do so. Technol-
ogy also allows the same teacher to provide enriched material (say, on fractions, binomials,
irrationality, fractals or chaos) to the brightest in the class while allowing more practice for
those still struggling with the basics. That said, successful mathematical education relies
on active participation of the learner and the teacher and my own goal has been to produce
technological resources to support not supplant this process; and I hope to make learning or
teaching mathematics more rewarding and often more fun.

6.2 Last Words

To reprise, I hope to have made convincing arguments that the traditional deductive ac-
counting of Mathematics is a largely ahistorical caricature—FEuclid’s millennial sway not
withstanding.*®> Above all, mathematics is primarily about secure knowledge not proof, and
that while the aesthetic is central, we must put much more emphasis on notions of supporting
evidence and attend more closely to the reliability of witnesses.

Proofs are often out of reach—but understanding, even certainty, is not. Clearly, com-
puter packages can make concepts more accessible. A short list includes linear relation
algorithms, Galois theory, Groebner bases, etc. While progress is made “one funeral at a

time,”** in Thomas Wolfe’s words “you can’t go home again” and as the co-inventor of the

42Gee http://www.mathresources.com/products/ism/index.html. I am a co-founder of this ten-year
old company. Such a venture is very expensive and thus relies on commercial underpinning.

43Most of the cited quotations are stored at jborwein/quotations.html

44This grim version of Planck’s comment is sometimes attributed to Niels Bohr but this seems specious.
It is also spuriously attributed on the web to Michael Milken, and I imagine many others
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Fast Fourier transform properly observed, in [53]%

“Far better an approximate answer to the right question, which is often vague,

than the exact answer to the wrong question, which can always be made precise.”
(J. W. Tukey, 1962)
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13. Exploratory experimentation and computation

Discussion

This article revisits the theme of several earlier ones, especially Chapters 7 and 10. Over the past
thirty years, our views on the subject have evolved and, we hope, matured.

In the intervening period, the human genome has been decoded, neurobiology has become
a science, fiber-optics and the internet have rewired the earth, chess has been beaten, Fermat’s
last theorem has been proven, the Poincaré conjecture is resolved, and the iron curtain is gone.
Technically much that was once hard is now easy.

Yet in mathematics much more has remained the same than has changed dramatically. We echo

Martin Raff’s sentiment that understanding will always remain a few steps away:

It is tempting to think that the main principles of neural development will have been
discovered by the end of the century [20th| and that the cellular and molecular basis of
the mind will be the main challenge for the next. An alternative view is that this feeling
that understanding is just a few steps away is a recurring and necessary delusion that
keeps scientists from dwelling on the complexity the face and how much more remains to

be discovered.!

Source

D.H. Bailey and J. M. Borwein, “Exploratory Experimentation and Computation,” Notices of the
AMS. Accepted February 2010.

1 “Neural Development: Mysterious No More?” Editorial on page 1063 of Science November 15, 1996.
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EXPLORATORY EXPERIMENTATION AND
COMPUTATION

DAVID H. BAILEY AND JONATHAN M. BORWEIN

ABSTRACT. We believe the mathematical research community is
facing a great challenge to re-evaluate the role of proof in light of
recent developments. On one hand, the growing power of current
computer systems, of modern mathematical computing packages,
and of the growing capacity to data-mine on the Internet, has
provided marvelous resources to the research mathematician. On
the other hand, the enormous complexity of many modern capstone
results such as the Poincaré conjecture, Fermat’s last theorem, and
the classification of finite simple groups has raised questions as to
how we can better ensure the integrity of modern mathematics.
Yet as the need and prospects for inductive mathematics blossom,
the requirement to ensure the role of proof is properly founded
remains undiminished.

1. EXPLORATORY EXPERIMENTATION

The authors’ thesis—once controversial, but now a common-
place—is that computers can be a useful, even essential, aid
to mathematical research.—Jeff Shallit

Jeff Shallit wrote this in his recent review MR2427663 of [9]. As
we hope to make clear, Shallit was entirely right in that many, if not
most, research mathematicians now use the computer in a variety of
ways to draw pictures, inspect numerical data, manipulate expressions
symbolically, and run simulations. However, it seems to us that there
has not yet been substantial and intellectually rigorous progress in
the way mathematics is presented in research papers, textbooks and

Date: August 14, 2010.
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number DE-AC02-05CH11231. Borwein: Centre for Computer Assisted Research
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NSW 2308, Australia. Email: jonathan.borwein@newcastle.edu.au.
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classroom instruction, or in how the mathematical discovery process is
organized.

1.1. Mathematicians are humans. We share with George Pdlya
(1887-1985) the view [24, 2 p. 128] that while learned,

intuition comes to us much earlier and with much less outside
influence than formal arguments.

Pélya went on to reaffirm, nonetheless, that proof should certainly be
taught in school.

We turn to observations, many of which have been fleshed out in
coauthored books such Mathematics by Ezperiment [9], and FEzperi-
mental Mathematics in Action [3], where we have noted the changing
nature of mathematical knowledge and in consequence ask questions
such as “How do we teach what and why to students?”, “How do
we come to believe and trust pieces of mathematics?”, and “Why do
we wish to prove things?” An answer to the last question is “That
depends.” Sometimes we wish insight and sometimes, especially with
subsidiary results, we are more than happy with a certificate. The
computer has significant capacities to assist with both.

Smail [26, p. 113] writes:

the large human brain evolved over the past 1.7 million years

to allow individuals to negotiate the growing complexities

posed by human social living.
As a result, humans find various modes of argument more palatable
than others, and are more prone to make certain kinds of errors than
others. Likewise, the well-known evolutionary psychologist Steve Pinker
observes that language [23, p. 83] is founded on

... the ethereal notions of space, time, causation, possession,

and goals that appear to make up a language of thought.

This remains so within mathematics. The computer offers scaf-
folding both to enhance mathematical reasoning, as with the recent
computation of the Lie group FEjg, see http://www.aimath.org/E8/
computerdetails.html, and to restrain mathematical error.

1.2. Experimental mathodology. Justice Potter Stewart’s famous
1964 comment, “I know it when I see it” is the quote with which The
Computer as Crucible [12] starts. A bit less informally, by experimental
mathematics we intend [9]:

(a) Gaining insight and intuition;

(b) Visualizing math principles;

(¢) Discovering new relationships;
(d) Testing and especially falsifying conjectures;
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(e) Exploring a possible result to see if it merits formal proof;
(f) Suggesting approaches for formal proof;

(g) Computing replacing lengthy hand derivations;

(h) Confirming analytically derived results.

Of these items (a) through (e) play a central role, and (f) also plays
a significant role for us, but connotes computer-assisted or computer-
directed proof and thus is quite distinct from formal proof as the topic
of a special issue of these Notices in December 2008; see, e.g., [19].

1.2.1. Digital integrity, I. For us (g) has become ubiquitous, and we
have found (h) to be particularly effective in ensuring the integrity of
published mathematics. For example, we frequently check and correct
identities in mathematical manuscripts by computing particular values
on the LHS and RHS to high precision and comparing results—and
then if necessary use software to repair defects.

As a first example, in a current study of “character sums” we wished
to use the following result derived in [13]:

ooi ( 1)m+n1 (1'1)
=i~ (2m—1)(m+n—1)°
; 1 51 1 1 7
=4Liy [ = | — —7" — —7?10g?(2) + = log*(2) + = log(2 :
1 (5) = g — 57082+ glog'®) + S low(2)g(3)

Here Liy(1/2) is a polylogarithmic value. However, a subsequent com-
putation to check results disclosed that whereas the LHS evaluates to
—0.872929289. . ., the RHS evaluates to 2.509330815. ... Puzzled, we
computed the sum, as well as each of the terms on the RHS (sans
their coefficients), to 500-digit precision, then applied the “PSLQ” al-
gorithm, which searches for integer relations among a set of constants
[15]. PSLQ quickly found the following:

m+n 1

ZZ 2m—1 m+n—1) (12)

mlnl

(1 151, 1 5.0 5 1. 4 7
=4 Liy (2) 580" " &" log“(2) + 5 log™(2) + 5 log(2)¢(3).
In other words, in the process of transcribing (1.1) into the original
manuscript, “151” had become “51.” It is quite possible that this error
would have gone undetected and uncorrected had we not been able to
computationally check and correct such results. This may not always
matter, but it can be crucial.

With a current Research Assistant, Alex Kaiser at Berkeley, we have
started to design software to refine and automate this process and
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to run it before submission of any equation-rich paper. This semi-
automated integrity checking becomes pressing when verifiable output
from a symbolic manipulation might be the length of a Salinger novel.
For instance, recently while studying expected radii of points in a hy-
percube [11], it was necessary to show the existence of a “closed form”
for

o log(t + 22 + y?)
I = /W o s dady (1.3)

The computer verification of [11, Thm. 5.1] quickly returned a 100000-
character “answer” that could be numerically validated very rapidly to
hundreds of places. A highly interactive process stunningly reduced a
basic instance of this expression to the concise formula

2 7 11 s 29 om
2)=—log2— — — l<—>—— Lb{—], (14
(@) = g log2 = 3563 + 557 Cl (G 247TC2<6) (14)
where Cly is the Clausen function Cly(0) := 37 - sin(nf)/n” (Cly is the
simplest non-elementary Fourier series). Automating such reductions
will require a sophisticated simplification scheme with a very large and
extensible knowledge base.

1.3. Discovering a truth. Giaquinto’s [17, p. 50] attractive encap-
sulation

In short, discovering a truth is coming to believe it in an
independent, reliable, and rational way.

has the satisfactory consequence that a student can legitimately dis-
cover things already “known” to the teacher. Nor is it necessary to
demand that each dissertation be absolutely original—only that it be
independently discovered. For instance, a differential equation thesis is
no less meritorious if the main results are subsequently found to have
been accepted, unbeknown to the student, in a control theory journal
a month earlier—provided they were independently discovered. Near-
simultaneous independent discovery has occurred frequently in science,
and such instances are likely to occur more and more frequently as the
earth’s “new nervous system” (Hillary Clinton’s term in a recent policy
address) continues to pervade research.

Despite the conventional identification of mathematics with deduc-
tive reasoning, Kurt Godel (1906-1978) in his 1951 Gibbs Lecture said:

If mathematics describes an objective world just like physics,
there is no reason why inductive methods should not be ap-
plied in mathematics just the same as in physics.
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He held this view until the end of his life despite—or perhaps because
of—the epochal deductive achievement of his incompleteness results.

Also, we emphasize that many great mathematicians from Archimedes
and Galileo—who reputedly said “All truths are easy to understand
once they are discovered; the point is to discover them.”—to Gauss,
Poincaré, and Carleson have emphasized how much it helps to “know”
the answer beforehand. Two millennia ago, Archimedes wrote, in the
Introduction to his long-lost and recently reconstituted Method manu-
script,

For it is easier to supply the proof when we have previously
acquired, by the method, some knowledge of the questions
than it is to find it without any previous knowledge.

Archimedes’ Method can be thought of as an uber-precursor to today’s
interactive geometry software, with the caveat that, for example, Cin-
derella actually does provide proof certificates for much of Euclidean
geometry.

As 2006 Abel Prize winner Lennart Carleson describes in his 1966
ICM speech on his positive resolution of Luzin’s 1913 conjecture (that
the Fourier series of square-summable functions converge pointwise a.e.
to the function), after many years of seeking a counterexample, he
finally decided none could exist. He expressed the importance of this
confidence as follows:

The most important aspect in solving a mathematical prob-
lem is the conviction of what is the true result. Then it took
2 or 3 years using the techniques that had been developed
during the past 20 years or so.

1.4. Digital Assistance. By digital assistance, we mean the use of:

(a) Integrated mathematical software such as Maple and Mathemat-
ica, or indeed MATLAB and their open source variants.

(b) Specialized packages such as CPLEX, PARI, SnapPea, Cinderella
and MAGMA.

(¢) General-purpose programming languages such as C, C++, and
Fortran-2000.
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(d) Internet-based applications such as: Sloane’s Encyclopedia of In-
teger Sequences, the Inverse Symbolic Calculator,! Fractal Ex-
plorer, Jeff Weeks’” Topological Games, or Euclid in Java.?

(e) Internet databases and facilities including Google, MathSciNet,
arXiv, Wikipedia, MathWorld, MacTutor, Amazon, Amazon
Kindle, and many more that are not always so viewed.

All entail data-mining in various forms. The capacity to consult the
Oxford dictionary and Wikipedia instantly within Kindle dramatically
changes the nature of the reading process. Franklin [16] argues that
Steinle’s “exploratory experimentation” facilitated by “widening tech-
nology” and “wide instrumentation,” as routinely done in fields such
as pharmacology, astrophysics, medicine, and biotechnology, is lead-
ing to a reassessment of what legitimates experiment; in that a “local
model” is not now a prerequisite. Thus, a pharmaceutical company
can rapidly examine and discard tens of thousands of potentially ac-
tive agents, and then focus resources on the ones that survive, rather
than needing to determine in advance which are likely to work well.
Similarly, aeronautical engineers can, by means of computer simula-
tions, discard thousands of potential designs, and submit only the best
prospects to full-fledged development and testing.

Hendrik Sgrenson [27] concisely asserts that experimental mathe-
matics —as defined above—is following similar tracks with software
such as Mathematica, Maple and MATLAB playing the role of wide
instrumentation.

These aspects of exploratory experimentation and wide in-
strumentation originate from the philosophy of (natural) sci-
ence and have not been much developed in the context of
experimental mathematics. However, I claim that e.g. the
importance of wide instrumentation for an exploratory ap-
proach to experiments that includes concept formation also
pertain to mathematics.

In consequence, boundaries between mathematics and the natural sci-
ences and between inductive and deductive reasoning are blurred and
becoming more so. (See also [2].) This convergence also promises some

Most of the functionality of the ISC, which is now housed at http:
//carma-1x1.newcastle.edu.au:8087, is now built into the “identify” func-
tion of Maple starting with version 9.5. For example, the Maple command
identify(4.45033263602792) returns V3 + e, meaning that the decimal value
given is simply approximated by v/3 + e.

2A cross-section of Internet-based mathematical resources is available at
http://ddrive.cs.dal.ca/~isc/portal/ and http://www.experimentalmath.
info.
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relief from the frustration many mathematicians experience when at-
tempting to describe their proposed methodology on grant applica-
tions to the satisfaction of traditional hard scientists. We leave unan-
swered the philosophically-vexing if mathematically-minor question as
to whether genuine mathematical experiments (as discussed in [9]) truly
exist, even if one embraces a fully idealist notion of mathematical ex-
istence. It surely seems to us that they do.

2. P1, PARTITIONS AND PRIMES

The present authors cannot now imagine doing mathematics without
a computer nearby. For example, characteristic and minimal polynomi-
als, which were entirely abstract for us as students, now are members
of a rapidly growing box of concrete symbolic tools. One’s eyes may
glaze over trying to determine structure in an infinite family of matrices
including

2 —33 165 —495 990 —1386 ]
2 =21 63 -—-105 1 —20 100 —-285 540 714
1 —-12 36 —-55 1 -16 72 -—177 288 —336
1 -8 20 -25 1 —-13 53 -—112 148 -—140
1 -5 9 =8 1 -10 36 —-66 70 —49
1 -7 20 -30 25 —12 |

but a command-line instruction in a computer algebra system will re-
veal that both M} —3My — 21 = 0 and M§ — 3Ms — 21 = 0. Likewise,
more and more matrix manipulations are profitably, even necessarily,
viewed graphically. As is now well known in numerical linear algebra,
graphical tools are essential when trying to discern qualitative infor-
mation such as the block structure of very large matrices. See, for
instance, Figure 1.

Equally accessible are many matrix decompositions, the use of Groeb-
ner bases, Risch’s decision algorithm (to decide when an elementary
function has an elementary indefinite integral), graph and group cat-
alogues, and others. Many algorithmic components of a computer al-
gebra system are today extraordinarily effective compared with two
decades ago, when they were more like toys. This is equally true of
extreme-precision calculation—a prerequisite for much of our own work
[7, 10, 8]. As we will illustrate, during the three decades that we have
seriously tried to integrate computational experiments into research, we
have experienced at least 12 Moore’s law doublings of computer power
and memory capacity [9, 12], which when combined with the utiliza-
tion of highly parallel clusters (with thousands of processing cores) and



250

Exploratory experimentation and computation

Chapter 13

8 DAVID H. BAILEY AND JONATHAN M. BORWEIN

FIGURE 1. Plots of a 25 x 25 Hilbert matrix (L) and a
matrix with 50% sparsity and random [0, 1] entries (R).

fiber-optic networking, has resulted in six to seven orders of magnitude
speedup for many operations.

2.1. The partition function. Consider the number of additive par-
titions, p(n), of a natural number, where we ignore order and zeroes.
For instance, 5 =44+1=34+2=3+14+1=242+1=2+1+1+1=
1+1+1+141,s0p(5)=7. The ordinary generating function (2.1)
discovered by Euler is

> pn)g" = H 1-¢")" . (2.1)

(This can be proven by using the geometric formula for 1/(1 — ¢*) to
expand each term and observing how powers of ¢" occur.)

The famous computation by MacMahon of p(200) = 3972999029388
at the beginning of the 20th century, done symbolically and entirely
naively from (2.1) on a reasonable laptop, took 20 minutes in 1991
but only 0.17 seconds today, while the many times more demanding
computation

p(2000) = 4720819175619413888601432406799959512200344166

took just two minutes in 2009. Moreover, in December 2008, Crandall
was able to calculate p(10%) in three seconds on his laptop, using the
Hardy-Ramanujan-Rademacher ‘finite’ series for p(n) along with FFT
methods. Using these techniques, Crandall was also able to calculate
the probable primes p(1000046356) and p(1000007396), each of which
has roughly 35000 decimal digits.
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Such results make one wonder when easy access to computation dis-
courages innovation: Would Hardy and Ramanujan have still discov-

ered their marvelous formula for p(n) if they had powerful computers
at hand?

2.2. Quartic algorithm for 7. Likewise, the record for computation
of m has gone from 29.37 million decimal digits in 1986, to 5 trillion
digits in 2010. Since the algorithm below was used as part of each
computation, it is interesting to compare the performance in each case:

Set ap := 6 — 4v/2 and yo := v/2 — 1, then iterate
_ 11—yt
yk+1 - 1 + (1 . yé)1/47

a1 = ap(1+yrn) = 2%y (1 + v + yig)- (2.2)

Then ay converges quartically to 1/m—each iteration approximately
quadruples the number of correct digits. Twenty-one full-precision it-
erations of (2.2), which was discovered on a 16K Radio Shack portable
in 1983, produce an algebraic number that coincides with 7 to well
more than six trillion places. This scheme and the 1976 Salamin—Brent
scheme [9, Ch. 3] have been employed frequently over the past quar-
ter century. Here is a highly abbreviated chronology (based on http:
//en.wikipedia.org/wiki/Chronology_of_computation_of_pi).

e 1986: One of the present authors used (2.2) to compute 29.4 mil-
lion digits of 7. This required 28 hours on one CPU of the new
Cray-2 at NASA Ames Research Center. Confirmation using
the Salamin-Brent scheme took another 40 hours. This compu-
tation uncovered hardware and software errors on the Cray-2.

e Jan. 2009: Takahashi used (2.2) to compute 1.649 trillion dig-
its (nearly 60,000 times the 1986 computation), requiring 73.5
hours on 1024 cores (and 6.348 Thyte memory) of a Appro
Xtreme-X3 system. Confirmation via the Salamin-Brent scheme
took 64.2 hours and 6.732 Thyte of main memory.

e Apr. 2009: Takahashi computed 2.576 trillion digits.

e Dec. 2009: Bellard computed nearly 2.7 trillion decimal digits
(first in binary), using the Chudnovsky series given below in
(2.10). This took 131 days on a single four-core workstation
with lots of disk storage.

e Aug. 2010: Alexander Yee and Shigeru Kondo used the Chud-
novsky formula to compute 5 trillion digits of 7 over a 90-
day period, mostly on a two-core Intel Xeon system with 96
Gbyte of memory. They confirmed the result in two ways, using
the BBP formula (see below), which required 66 hours, and a




252 Exploratory experimentation and computation Chapter 13

10 DAVID H. BAILEY AND JONATHAN M. BORWEIN

102 F

1010 b

S S S S S T S S N
1975 1980 1985 1990 1995 2000 2005 2010

FIGURE 2. Plot of 7 calculations, in digits (dots), com-
pared with the long-term slope of Moore’s Law (line).

variant of the BBP formula due to Bellard, which required 64
hours. Changing from binary to decimal required 8 days. Full
details are available at http://www.numberworld.org/misc_
runs/pi-5t/details.html.

Daniel Shanks, who in 1961 computed 7 to over 100,000 digits, once
told Phil Davis that a billion-digit computation would be “forever im-
possible.” But both Kanada and the Chudnovskys achieved that in
1989. Similarly, the intuitionists Brouwer and Heyting asserted the
“impossibility” of ever knowing whether the sequence 0123456789 ap-
pears in the decimal expansion of 7, yet it was found in 1997 by Kanada,
beginning at position 17387594880. As late as 1989, Roger Penrose ven-
tured, in the first edition of his book The Emperor’s New Mind, that
we likely will never know if a string of ten consecutive sevens occurs in
the decimal expansion of 7. This string was found in 1997 by Kanada,
beginning at position 22869046249.

Figure 2— shows the progress of 7 calculations since 1970, superim-
posed with a line that charts the long-term trend of Moore’s Law. It is
worth noting that whereas progress in computing m exceeded Moore’s
Law in the 1990s, it has lagged a bit in the past decade.

2.2.1. Digital integrity, 1I. There are many possible sources of errors
in these and other large-scale computations:

e The underlying formulas used might conceivably be in error.
e Computer programs implementing these algorithms, which em-
ploy sophisticated algorithms such as fast Fourier transforms
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to accelerate multiplication, are prone to human programming
erTors.

e These computations usually are performed on highly parallel
computer systems, which require error-prone programming con-
structs to control parallel processing.

e Hardware errors may occur—this was a factor in the 1986 com-
putation of 7, as noted above.

So why would anyone believe the results of such calculations? The
answer is that such calculations are always double-checked with an
independent calculation done using some other algorithm, sometimes
in more than one way. For instance, Kanada’s 2002 computation of 7
to 1.3 trillion decimal digits involved first computing slightly over one
trillion hexadecimal (base-16) digits. He found that the 20 hex digits
of 7 beginning at position 10'2 4 1 are B4466ESD21 5388C4E014.

Kanada then calculated these hex digits using the “BBP” algorithm
[6]. The BBP algorithm for 7 is based on the formula

o0

_21 4 2 11 23)
N 166 \8& +1 8 +4 8 +5 8 +6)/’ ‘

1=0

which was discovered using the “PSLQ” integer relation algorithm [15].
Integer relation methods find or exclude potential rational relations
between vectors of real numbers. At the start of this millennium, they
were named one of the top ten algorithms of the twentieth century by
Computing in Science and Engineering. The best-known is Helaman
Ferguson’s PSLQ algorithm [9, 3].

Eventually PSLQ produced the formula

1 1
T = 4,F; < L - Z) + 2tan™! (5) —log 5, (2.4)

1 . .
— le) = 0.955933837 ... is a Gaussian hypergeomet-

1
where o F4 4

5
ric function. !
From (2.4), the series (2.3) almost immediately follows. The BBP
algorithm, which is based on (2.3), permits one to calculate binary
or hexadecimal digits of 7 beginning at an arbitrary starting point,
without needing to calculate any of the preceding digits, by means of
a simple scheme that does not require very high precision arithmetic.
The result of the BBP calculation was B4466E8D21 5388C4E014.
Needless to say, in spite of the many potential sources of error in both
computations, the final results dramatically agree, thus confirming (in
a convincing but heuristic sense) that both results are almost certainly
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correct. Although one cannot rigorously assign a “probability” to this
event, note that the chances that two random strings of 20 hex digits
perfectly agree is one in 16%° ~ 1.2089 x 10%4.

This raises the following question: What is more securely established,
the assertion that the hex digits of 7 in positions 10*? + 1 through
10'2 + 20 are B4466E8SD21 5388C4E014, or the final result of some very
difficult work of mathematics that required hundreds or thousands of
pages, that relied on many results quoted from other sources, and that
(as is frequently the case) only a relative handful of mathematicians
besides the author can or have carefully read in detail?

In the most recent computation using the BBP formula, Tse-Wo Zse
of Yahoo! Cloud Computing calculated 256 binary digits of 7 starting
at the two quadrillionth bit [29]. He then checked his result using the
following variant of the BBP formula due to Bellard:

L~ (—1)kF [ 256 N 1 64 4
64410248 \10k+1  10k+1 10k+3 10k +5
1 32 1
— — — 2.5
10k+7 4k+1 4k+3) (25)

In this case, both computations verified that the 24 hex digits begin-
ning immediately after the 500 trillionth hex digit (i.e., after the two
quadrillionth binary bit) are: E6C1294A ED40403F 56D2D764.

2.3. Euler’s totient function ¢. As another measure of what changes
over time and what doesn’t, consider two conjectures regarding ¢(n),
which counts the number of positive numbers less than and relatively
prime to n:

2.3.1. Giuga’s conjecture (1950). An integer n > 1, is a prime if
and only if Gy, := S k"' =n—1 mod n.

Counterexamples are necessarily Carmichael numbers—rare birds
only proven infinite in 1994—and much more. In [10, pp. 227] we
exploited the fact that if a number n = py---p,, with m > 1 prime
factors p; is a counterexample to Giuga’s conjecture (that is, satisfies
s, =n — 1 mod n), then for i # j we have p; # p;,

1
o= > 1,

i=1 Di
and the p; form a normal sequence: p; # 1 mod p; for i # j. Thus,
the presence of ‘3" excludes 7,13,19,31,37,..., and of ‘5’ excludes
11,31,41, . ...
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This theorem yielded enough structure, using some predictive ex-
perimentally discovered heuristics, to build an efficient algorithm to
show—over several months in 1995—that any counterexample had at
least 3459 prime factors and so exceeded 1013%8¢ extended a few years
later to 10'4!%* in a five-day desktop computation. The heuristic is
self-validating every time that the programme runs successfully. But
this method necessarily fails after 8135 primes; someday we hope to
exhaust its use.

While writing this piece, one of us was able to obtain almost as good
a bound of 3050 primes in under 110 minutes on a laptop computer,
and a bound of 3486 primes and 14,000 digits in less than 14 hours;
this was extended to 3,678 primes and 17,168 digits in 93 CPU-hours
on a Macintosh Pro, using Maple rather than C++4, which is often
orders-of-magnitude faster but requires much more arduous coding.

An equally hard related conjecture for which much less progress can
be recorded is:

2.3.2. Lehmer’s conjecture (1932). gb(n)‘(n — 1) if and only if n is
prime. He called this “as hard as the existence of odd perfect numbers.”

Again, prime factors of counterexamples form a normal sequence, but
now there is little extra structure. In a 1997 Simon Fraser M.Sc. thesis,
Erick Wong verified the conjecture for 14 primes, using normality and
a mix of PARI, C++ and Maple to press the bounds of the ‘curse
of exponentiality.” This very clever computation subsumed the entire
scattered literature in one computation but could only extend the prior
bound from 13 primes to 14.

For Lehmer’s related 1932 question: when does ¢(n) | (n+1) %, Wong
showed there are eight solutions with no more than seven factors (six-
factor solutions are due to Lehmer). Let

m—1
,Cm = H Fk
k=0
with F,, := 22" 4+ 1 denoting the Fermat primes. The solutions are

2,L1,L,...,Ls,

and the rogue pair 4919055 and 6992962672132095, but analyzing just
eight factors seems out of sight. Thus, in 70 years the computer only
allowed the exclusion bound to grow by one prime.

In 1932 Lehmer couldn’t factor 6992962672132097. If it had been
prime, a ninth solution would exist: since ¢(n)|(n + 1) with n + 2
prime implies that N := n(n + 2) satisfies ¢(N)|(N + 1). We say
couldn’t because the number is divisible by 73; which Lehmer—a father
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of much factorization literature—could certainly have discovered had he
anticipated a small factor. Today discovering that
6992962672132097 = 73 - 95794009207289

is nearly instantaneous, while fully resolving Lehmer’s original question
remains as hard as ever.

2.4. Inverse computation and Apéry-like series. Three intriguing
formulae for the Riemann zeta function are

Zm . (2.6)

0 k+1
k=1

(€) C4) = —?Z &

Binomial identity (2.6)(a) has been known for two centuries, while
(b)—exploited by Apéry in his 1978 proof of the irrationality of ((3)—
was discovered as early as 1890 by Markov, and (c¢) was noted by
Comtet [3].

Using integer relation algorithms, bootstrapping, and the “Pade”
function (Mathematica and Maple both produce rational approxima-
tions well), in 1996 David Bradley and one of us [3, 10] found the
following unanticipated generating function for ¢(4n + 3):

> 5 & (- A <1 + 4x4/m4)
4k + 3) 2™ = = — ). (2.7
2 =52 i L T )27
Note that this formula permits one to read off an infinity of formulas
for ((4n+3), n > 0, beginning with (2.6)(b), by comparing coefficients
of % on the LHS and the RHS.
A decade later, following a quite analogous but much more deliberate

experimental procedure, as detailed in [3], we were able to discover a
similar general formula for ((2n+ 2) that is pleasingly parallel to (2.7):

/1= 4a2/m?
ZC 2k+2)z 32]{;2 Qk; x2/l{:2) H (m) .(2.8)

As Wlth (2.7), one can now read off an infinity of formulas, beginning
with (2.6)(a). In 1996, the authors could reduce (2.7) to a finite form
that they could not prove, but Almquist and Granville did a year later.
A decade later, the Wilf-Zeilberger algorithm [28, 22]—for which the
inventors were awarded the Steele Prize—directly (as implemented in
Maple) certified (2.8) [9, 3]. In other words, (2.8) was both discovered
and proven by computer.
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We found a comparable generating function for ((2n + 4), giving
(2.6) (¢) when z = 0, but one for {(4n + 1) still eludes us.

2.5. Reciprocal series for w. Truly novel series for 1/7, based on
elliptic integrals, were discovered by Ramanujan around 1910 [3, 9, 30].
One is:

1 2v2 s (4k)! (1103 + 26390k)
2 (K!)13964 ‘

T 9801
k=0

(2.9)

Each term of (2.9) adds eight correct digits. Gosper used (2.9) for the
computation of a then-record 17 million digits of 7 in 1985—thereby
completing the first proof of (2.9) [9, Ch. 3]. Shortly thereafter, David
and Gregory Chudnovsky found the following variant, which lies in the

quadratic number field Q(\/—163) rather than Q(+/58):

(13591409 + 545140134k)
= 12 Z k')3 64032(03k+3/2

(2.10)

Each term of (2.10) adds 14 correct digits. The brothers used this for-
mula several times, culminating in a 1994 calculation of 7 to over four
billion decimal digits. Their remarkable story was told in a prizewin-
ning New Yorker article [25]. Remarkably, as we already noted earlier,
(2.10) was used again in 2010 for the current record computation of 7.

2.5.1. Wilf-Zeilberger at work. A few years ago Jésus Guillera found
various Ramanujan-like identities for 7, using integer relation methods.
The three most basic—and entirely rational—identities are:

iQ - i(—l)"r(n)5(13+ 180n + 820n%) (i) " (2.11)

- — 32
0 2n—+1
% = > (=1)"r(n)°(1 + 8n + 20n°) (%) (2.12)
% z ir(ny@ + 14n 4 76n* + 168n°) (é) " , (213)
where r(n) :=(1/2-3/2- -+ - (2n —1)/2)/n! .

Guillera proved (2.11) and (2.12) in tandem, by very ingeniously
using the Wilf-Zeilberger algorithm [28, 22] for formally proving hyper-
geometric-like identities [9, 3, 18, 30]. No other proof is known, and
there seem to be no like formulae for 1/7" with N > 4. The third,
(2.13), is almost certainly true. Guillera ascribes (2.13) to Gourevich,
who used integer relation methods to find it.
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We were able to “discover” (2.13) using 30-digit arithmetic, and we
checked it to 500 digits in 10 seconds, to 1200 digits in 6.25 minutes, and
to 1500 digits in 25 minutes, all with naive command-line instructions
in Maple. But it has no proof, nor does anyone have an inkling of how
to prove it; especially, as experiment suggests, since it has no ‘mate’
in analogy to (2.11) and (2.12) [3]. Our intuition is that if a proof
exists, it is more a verification than an explication and so we stopped
looking. We are happy just to “know” that the beautiful identity is
true (although it would be more remarkable were it eventually to fail).
It may be true for no good reason—it might just have no proof and be
a very concrete Godel-like statement.

In 2008 Guillera [18] produced another lovely pair of third-millennium
identities—discovered with integer relation methods and proved with
creative telescoping—this time for 72 rather than its reciprocal. They
are

ii(“—%); (6(n +2)+1) —8xix(i (2.14)

2n 27
L= 22 (z+ (x +1)2

—
—_

~—

3

and

i (@+5), (42(n + z) +5) = 32z Zu (2.15)

(x+1)3 (2x +1)2

=0
Here (a), = a(a+ 1) - -(a +n — 1) is the rising factorial. Substituting
r =1/2in (2.14) and (2.15), he obtained respectively the formulae

L (1), m =1 (1) 2
Zﬁ(g)g (3n+2)zz, 56m (313 (2171—1—13):4?.
n=0 2)n n—0 5)n

3. FORMAL VERIFICATION OF PROOF

In 1611, Kepler described the stacking of equal-sized spheres into
the familiar arrangement we see for oranges in the grocery store. He
asserted that this packing is the tightest possible. This assertion is now
known as the Kepler conjecture, and has persisted for centuries without
rigorous proof. Hilbert implicitly included the irregular case of the
Kepler conjecture in problem 18 of his famous list of unsolved problems
in 1900: whether there exist non-regular space-filling polyhedra? the
regular case having been disposed of by Gauss in 1831.

In 1994, Thomas Hales, now at the University of Pittsburgh, pro-
posed a five-step program that would result in a proof: (a) treat maps
that only have triangular faces; (b) show that the face-centered cubic
and hexagonal-close packings are local maxima in the strong sense that
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they have a higher score than any Delaunay star with the same graph;
(c) treat maps that contain only triangular and quadrilateral faces (ex-
cept the pentagonal prism); (d) treat maps that contain something
other than a triangular or quadrilateral face; and (e) treat pentagonal
prisms.

In 1998, Hales announced that the program was now complete, with
Samuel Ferguson (son of mathematician-sculptor Helaman Ferguson)
completing the crucial fifth step. This project involved extensive com-
putation, using an interval arithmetic package, a graph generator, and
Mathematica. The computer files containing the source code and com-
putational results occupy more than three Gbytes of disk space. Ad-
ditional details, including papers, are available at http://www.math.
pitt.edu/~thales/kepler98. For a mixture of reasons—some more
defensible than others—the Annals of Mathematics initially decided to
publish Hales” paper with a cautionary note, but this disclaimer was
deleted before final publication.

Hales [19] has now embarked on a multi-year program to certify the
proof by means of computer-based formal methods, a project he has
named the “Flyspeck” project. As these techniques become better
understood, we can envision a large number of mathematical results
eventually being confirmed by computer, as instanced by other articles
in the same issue of the Notices as Hales’ article.

4. LiMiTsS OF COMPUTATION

A remarkable example is the following:

/000 cos(2x) H cos(z/n)dxr = (4.1)

0.392699081698724154807830422909937860524645434187231595926 . . .

The computation of this integral to high precision can be performed
using a scheme described in [5]. When we first did this computation,
we thought that the result was 7/8, but upon careful checking with the
numerical value

0.392699081698724154807830422909937860524646174921888227621 . . .

it is clear that the two values disagree beginning with the 43rd digit!
Richard Crandall [14, §7.3] later explained this mystery. Via a physi-
cally motivated analysis of running out of fuel random walks, he showed
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that 7 /8 is given by the following very rapidly convergent series expan-
sion, of which formula (4.1) above is merely the first term:

g = mz:()/ooo cos[2(2m + 1)z] }_[lcos(x/n) dz. (4.2)

Two terms of the series above suffice for 500-digit agreement.
As a final sobering example, we offer the following “sophomore’s
dream” identity

o0

O99 = Z sinc(n) sinc(n/3) sinc(n/5) - - - sinc(n/23) sinc(n /29)
= /_OO sinc(x) sinc(x/3) sinc(z/5) - - - sinc(z/23) sinc(x/29) dz,

(4.3)

where the denominators range over the odd primes, which was first
discovered empirically. More generally, consider

o, = Z sinc(n) sinc(n/3) sinc(n/5) sinc(n/7) - - - sinc(n/p)
2 /_oo sinc(x) sine(x/3) sinc(z/5) sine(x/7) - - - sine(x /p) dz.

(4.4)

Provably, the following is true: The “sum equals integral” identity,
for o, remains valid at least for p among the first 10176 primes; but
stops holding after some larger prime, and thereafter the “sum less the
integral” is strictly positive, but they always differ by much less than
one part in a googolpler = 10'°°. An even stronger estimate is possible
assuming the Generalized Riemann Hypothesis (see [14, §7] and [7]).

5. CONCLUDING REMARKS

The central issues of how to view experimentally discovered results
have been discussed before. In 1993, Arthur Jaffe and Frank Quinn
warned of the proliferation of not-fully-rigorous mathematical results
and proposed a framework for a “healthy and positive” role for “spec-
ulative” mathematics [20]. Numerous well-known mathematicians re-
sponded [1]. Morris Hirsch, for instance, countered that even Gauss
published incomplete proofs, and the 15,000 combined pages of the
proof of the classification of finite groups raises questions as to when
we should certify a result. He suggested that we attach a label to each
proof — e.g., “computer-aided,” “mass collaboration,” “constructive,”
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etc. Saunders Mac Lane quipped that “we are not saved by faith alone,
but by faith and works,” meaning that we need both intuitive work and
precision.

At the same time, computational tools now offer remarkable facilities
to confirm analytically established results, as in the tools in develop-
ment to check identities in equation-rich manuscripts, and in Hales’
project to establish the Kepler conjecture by formal methods.

The flood of information and tools in our information-soaked world is
unlikely to abate. We have to learn and teach judgment when it comes
to using what is possible digitally. This means mastering the sorts of
techniques we have illustrated and having some idea why a software
system does what it does. It requires knowing when a computation
is or can—in principle or practice—be made into a rigorous proof and
when it is only compelling evidence, or is entirely misleading. For
instance, even the best commercial linear programming packages of
the sort used by Hales will not certify any solution though the codes
are almost assuredly correct. It requires rearranging hierarchies of what
we view as hard and as easy.

It also requires developing a curriculum that carefully teaches exper-
imental computer-assisted mathematics. Some efforts along this line
are already underway by individuals including Marc Chamberland at
Grinnell (http://www.math.grin.edu/~chamberl/courses/MAT444/
syllabus.html), Victor Moll at Tulane, Jan de Gier in Melbourne,
and Ole Warnaar at University of Queensland.

Judith Grabner has noted that a large impetus for the development
of modern rigor in mathematics came with the Napoleonic introduc-
tion of regular courses: lectures and textbooks force a precision and a
codification that apprenticeship obviates. But it will never be the case
that quasi-inductive mathematics supplants proof. We need to find a
new equilibrium. That said, we are only beginning to tap new ways to
enrich mathematics. As Jacques Hadamard said [24]:

The object of mathematical rigor is to sanction and legitimize
the conquests of intuition, and there was never any other
object for it.

Never have we had such a cornucopia of ways to generate intuition.
The challenge is to learn how to harness them, how to develop and
how to transmit the necessary theory and practice. The Priority Re-
search Centre for Computer Assisted Research Mathematics and its
Applications (CARMA), http://wuw.newcastle.edu.au/research/
centres/carmacentre.html, which one of us directs, hopes to play a
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lead role in this endeavor: an endeavor which in our view encompasses
an exciting mix of exploratory experimentation and rigorous proof.

[1]
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14. Closed forms:
What they are and why they matter

Discussion

This article considers “what is a good mathematical answer?” Such concerns are very old and yet

always new. As Bertrand Russell famously put it:

Thus, mathematics may be defined as the subject in which we never know what we are
talking about, nor whether what we are saying is true. People who have been puzzled
by the beginnings of mathematics will, I hope, find comfort in this definition, and will

probably agree that it is accurate.!

There is a great purpose to realistically attempting the impossible, as indicated by the history of
the classic Greek paradoxes, the non-solvability of the quintic, or indeed Hilbert’s program—all of
which have been mentioned in earlier articles in this collection.

Whatever the future of computationally assisted mathematics, some fundamental mathematical
matters will remain imprecise, and it is fitting that Hermann Weyl, writing about David Hilbert,
should have the final word:

The question of the ultimate foundations and the ultimate meaning of mathematics
remains open: We do not know in what direction it will find its final solution or even
whether a final objective answer can be expected at all. ‘Mathematizing’ may well be a
creative activity of man, like language or music, of primary originality, whose Historical

decisions defy complete objective rationalisation.”—Hermann Weyl.?

The problems of mathematics are not problems in a vacuum. There pulses in them the
life of ideas which realize themselves in concreto through our [or throughout| human
endeavors in our historical existence, but forming an indissoluble whole transcending

any particular science.”?

Source

J.M. Borwein and R.E. Crandall, “Closed forms: what they are and why we care,” Notices Amer.
Math. Soc. Submitted September 2010.

'From “Recent Work on the Principles of Mathematics in International Monthly,” 4 (July, 1901), 83-101. (Collected
Papers, v3, p.366; revised version in Newman’s World of Mathematics, v3, p. 1577.)

2In “Obituary: David Hilbert 1862 - 1943,” RSBIOS, 4, 1944, 547-553; and American Philosophical Society Year
Book, 1944, 387-395, p. 392.

3In “David Hilbert and his mathematical work,” Bull. Am. Math. Soc., 50 (1944), p. 615.
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CLOSED FORMS: WHAT THEY ARE AND WHY THEY MATTER

JONATHAN M. BORWEIN AND RICHARD E. CRANDALL

ABSTRACT. The term “closed form” is one of those mathematical notions that is com-
monplace, yet virtually devoid of rigor. And, there is disagreement even on the intuitive
side; for example, most everyone would say that m 4 log2 is a closed form, but some of
us would think that the Euler constant ~ is not closed. Like others before us, we shall
try to supply some missing rigor to the notion of closed forms and also to give examples
from modern research where the question of closure looms both important and elusive.

1. CLOSED FOrMS: WHAT THEY ARE

Mathematics abounds in terms which are in frequent use yet which are rarely made
precise. Two such are rigorous proof and closed form (absent the technical use within
differential algebra). If a rigorous proof is “that which ‘convinces’ the appropriate audience”
then a closed form is “that which looks ‘fundamental’ to the requisite consumer.” In both
cases, this is a community-varying and epoch-dependent notion. What was a compelling
proof in 1810 may well not be now; what is a fine closed form in 2010 may have been
anathema a century ago. In the article we are intentionally informal as befits a topic that
intrinsically has no one “right” answer.

Let us begin by sampling the Web for various approaches to informal definitions of
“closed form.”

1.0.1. First approach to a definition of closed form. The first comes from MathWorld
[55] and so may well be the first and last definition a student or other seeker-after-easy-truth
finds.

An equation is said to be a closed-form solution if it solves a given problem in terms
of functions and mathematical operations from a given generally accepted set. For
example, an infinite sum would generally not be considered closed-form. However,
the choice of what to call closed-form and what not is rather arbitrary since a new
“closed-form” function could simply be defined in terms of the infinite sum.—FEric
Weisstein

There is not much to disagree with in this but it is far from rigorous.

Date: October 13, 2010.

Borwein: Centre for Computer Assisted Research Mathematics and its Applications (CARMA), Univer-
sity of Newcastle, Callaghan, NSW 2308, Australia. Email: jonathan.borwein@newcastle.edu.au.
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1.0.2. Second approach. The next attempt follows a 16 September 1997 question to the
long operating “Dr. Math.” site' and is a good model of what interested students are likely

to be told.

Subject: Closed form solutions

Dear Dr. Math, What is the exact mathematical definition of a closed form
solution? Is a solution in “closed form” simply if an expression relating all of the
variables can be derived for a problem solution, as opposed to some higher-level
problems where there is either no solution, or the problem can only be solved
incrementally or numerically?
Sincerely, . ...

The answer followed on 22 Sept:

This is a very good question! This matter has been debated by mathematicians for
some time, but without a good resolution.

Some formulas are agreed by all to be “in closed form.” Those are the ones
which contain only a finite number of symbols, and include only the operators
+,—,%,/, and a small list of commonly occurring functions such as n-th roots,
exponentials, logarithms, trigonometric functions, inverse trigonometric functions,
greatest integer functions, factorials, and the like.

More controversial would be formulas that include infinite summations or prod-
ucts, or more exotic functions, such as the Riemann zeta function, functions ex-
pressed as integrals of other functions that cannot be performed symbolically, func-
tions that are solutions of differential equations (such as Bessel functions or hyper-
geometric functions), or some functions defined recursively. Some functions whose
values are impossible to compute at some specific points would probably be agreed
not to be in closed form (example: f(z) = 0 if x is an algebraic number, but
f(z) = 1 if z is transcendental. For most numbers, we do not know if they are
transcendental or not). I hope this is what you wanted.

No more formal, but representative of many dictionary definitions is:

1.0.3. Third approach. A coauthor of the current article is at least in part responsible

for the following brief definition from a recent mathematics dictionary [16]:

closed form n. an expression for a given function or quantity, especially an integral,

in terms of known and well understood quantities, such as the evaluation of

/Oo exp(—2?) da

— 00

as y/m.—Collins Dictionary

And of course one cares more for a closed form when the object under study is important,

such as when it engages the normal distribution as above.

With that selection recorded, let us turn to some more formal proposals.

! Available at http://mathforum.org/dr/math/.
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1.0.4. Fourth approach. Various notions of elementary numbers have been proposed.
Definition [30]. A subfield F' of C is closed under exp and log if (1) exp(z) € F
for all x € F and (2) log(x) € F for all nonzero x € F, where log is the branch of
the natural logarithm function such that —7 < Im(logz) < 7 for all . The field
E of EL numbers is the intersection of all subfields of C that are closed under exp
and log.—Tim Chow
Tim Chow explains nicely why he eschews capturing all algebraic numbers in his defini-
tion; why he wishes only elementary quantities to have closed forms; whence he prefers E
to Ritt’s 1948 definition of elementary numbers as the smallest algebraically closed subfield
LL of C that is closed under exp and log. His reasons include that:

Intuitively, “closed-form” implies “explicit,” and most algebraic functions
have no simple explicit expression.

Assuming Shanuel’s conjecture that given n complex numbers z1, ..., z, which are linearly
independent over the rational numbers, the extension field

Q (21, ey 2, €71, 0y €”™)

has transcendence degree of at least n over the rationals, then the algebraic members of
E are exactly those solvable in radicals [30]. We may thence think of Chow’s class as the
smallest plausible class of closed forms. Only a mad version of Markov would want to
further circumscribe the class.

1.1. Special functions. In an increasingly computational world, an explicit/implicit di-
chotomy is occasionally useful; but not very frequently. Often we will prefer computation-
ally the numerical implicit value of an algebraic number to its explicit tower of radicals;
and it seems increasingly perverse to distinguish the root of 225 — 10x + 5 from that of
22 — 102 + 5 or to prefer arctan(m/7) to arctan(1). We illustrate these issues further in
Example 3.1, 3.3 and 4.3.

We would prefer to view all values of classical special functions of mathematical physics
[53] at algebraic arguments as being closed forms. Again there is no generally accepted
class of special functions, but most practitioners would agree that the solutions to the
classical second-order algebraic differential equations (linear or say Painlevé) are included.
But so are various hypertranscendental functions such as I', B and ¢ which do not arise in
that way.?

Hence, we do not wish to accept any definition of special function which relies on the
underlying functions satisfying natural differential equations. The class must be extensible,
new special functions are always being discovered.

A recent American Mathematical Monthly review® of [46] says:

There’s no rigorous definition of special functions, but the following definition is in
line with the general consensus: functions that are commonly used in applications,
have many nice properties, and are not typically available on a calculator. Obviously

20f course a value of an hypertranscendental function at algebraic argument may be very well behaved,
see Example 1.4.
3Available at http://wuw.maa.org/maa),20reviews/4221 .html.
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this is a sloppy definition, and yet it works fairly well in practice. Most people
would agree, for example, that the Gamma function is included in the list of special
functions and that trigonometric functions are not.

Once again, there is much to agree with, and much to quibble about, in this reprise.
That said, most serious books on the topic are little more specific. For us, special functions
are non-elementary functions about which a significant literature has developed because of
their importance in either mathematical theory or in practice. We certainly prefer that this
literature includes the existence of excellent algorithms for their computation. This is all
consonant with—if somewhat more ecumenical than—Temme’s description in the preface
of his lovely book [53, Preface p. xil:

[W]e call a function “special” when the function, just like the logarithm, the ex-
ponential and trigonometric functions (the elementary transcendental functions),
belongs to the toolbox of the applied mathematician, the physicist or engineer.

Even more economically, Andrews, Askey and Roy start the preface to their important
book Special functions [1] by writing:

Paul Turan once remarked that special functions would be more appropriately la-
beled “useful functions.”

With little more ado, they then start to work on the Gamma and Beta functions; indeed
the term “special function” is not in their index. Near the end of their preface, they also
write

[W]e suggest that the day of formulas may be experiencing a new dawn.

o
e
R
A
s
v

05

(a) modulus of W (b) W on real line

FiGURE 1. The Lambert W function.
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Ezample 1.1 (Lambert’s W). The Lambert W function, W (z), is defined by appropriate
solution of y - e¥ = x [20, pp. 277-279]. This function has been implemented in computer
algebra systems (CAS); and has many uses despite being unknown to most scientists and
only relatively recently named [40]. It is now embedded as a primitive in Maple and
Mathematica with the same status as any other well studied special or elementary function.
(See for example the tome [25].) The CAS know its power series and much more. For
instance in Maple entering;:
> fsolve(exp(x)*x=1);identify(%);
returns
0.5671432904, LambertW(1)

We consider this to be a splendid closed form even though, again assuming Shanuel’s
conjecture, W (1) ¢ E [30]. Additionally, it is only recently rigorously proven that W is
not an elementary function in Liouville’s precise sense [25]. We also note that successful
simplification in a modern CAS [28] requires a great deal of knowledge of special functions.

O

1.2. Further approaches.

1.2.1. Fifth approach. PlanetMath’s offering, as of 15 February 2010%, is certainly in the
elementary number corner.

expressible in closed form (Definition) An expression is expressible in a closed

form, if it can be converted (simplified) into an expression containing only elemen-

tary functions, combined by a finite amount of rational operations and compositions.—

Planet Math

This reflects both much of what is best and what is worst about ‘the mathematical

wisdom of crowds’. For the reasons adduced above, we wish to distinguish—but admit
both—those closed forms which give analytic insight from those which are sufficient and
prerequisite for effective computation. Our own current preferred class [7] is described
next.

1.2.2. Sixth approach. We wish to establish a set X of generalized hypergeometric eval-
uations; see [7] for an initial, rudimentary definition which we shall refine presently. First,

we want any convergent sum
x = Z 2" (1.1)

n>0
to be an element of our set X, where z is algebraic, ¢q is rational, and for n > 0,
A(n)
Cn = B(n) Cn—1
for integer polynomials A, B with deg A < deg B. Under these conditions the expansion

for x converges absolutely on the open disk |z| < 1. However, we also allow x to be
any finite analytic-continuation value of such a series; moreover, when z lies on a branch

4Available at http://planetmath.org/encyclopedia/ClosedForm4.html.
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cut we presume both branch limits to be elements of X. (See ensuing examples for some
clarification.) It is important to note that our set X is closed under rational multiplication,
due to freedom of choice for cg.

Ezample 1.2 (First members of X). The generalized hypergeometric function evaluation
a1, ... 0p+1
PEPA by, by

for rational a;,b; with all b; positive has branch cut z € (0,00), and the evaluation is an
element of X for complex z not on the cut (and the evaluation on each side of said cut is
also in X).

The trilogarithm Liz(z) := Y, <, 2"/n® offers a canonical instance. Formally,

1,1,1,1

z .
2,2.2
and for z = 1/2 the hypergeometric series converges absolutely, with

1 7 1 2
Lis <> = 2¢B) + ~log®2 — % log 2.

1_.
;ng(z) :4F3<

2 6

Continuation values at z = 2 on the branch cut can be inferred as

. . ) 7 2 K
lim Lig (2 +i€) = EC(S) + glogQ + zzlogQ,

e—0t

so both complex numbers on the right here are elements of X. The quadralogarithmic value
Liy (%) is thought not to be similarly decomposable but likewise belongs to X. O

Now we are prepared to posit
Definition [7]. The ring of hyperclosure H is the smallest subring of C containing
the set X. Elements of H are deemed hyperclosed.
In other words, the ring H is generated by all general hypergeometric evaluations, under
the -, 4+ operators, all symbolized by

H = (X).. .

H will contain a great many interesting closed forms from modern research. Note that H
contains all closed forms in the sense of Wilf and Zeilberger [47, Ch. 8] wherein only finite
linear combinations of hypergeometric evaluations are allowed.

So what numbers are in the ring H? First off, almost no complex numbers belong to this
ring! This is easily seen by noting that the set of general hypergeometric evaluations is
countable, so the generated ring must also be countable. Still, a great many fundamental
numbers are provably hyperclosed. Examples follow, in which we let w denote an arbitrary
algebraic number and n any positive integer:

w, logw, ¥, 7
1
the dilogarithmic combination Lis <5> + (log 2)(log 3),
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the elliptic integral K(w),
the zeta function values ((n),
special functions such as the Bessel evaluations J,(w).

Incidentally, it occurs in some modern experimental developments that the real or imag-
inary part of a hypergeometric evaluation is under scrutiny. Generally, R, operations
preserve hyperclosure, simply because a the series (or continuations) at z and z* can be
linearly combined in the ring H. Referring to Example 1.2, we see that for algebraic z, the

number R (Liz(2)) is hyperclosed; and even on the cut, R (Li3(2)) = £((3) + %2 log2 is
hyperclosed. In general, R <p+1Fp (::: z>> is hyperclosed.

We are not claiming that hyperclosure is any kind of final definition for “closed forms.”
But we do believe that any defining paradigm for closed forms must include this ring of
hyperclosure H. One way to reach further is to define a ring of superclosure as the closure

S = (H). | .

This ring contains numbers such as
1
T e
ERANETO)
and of course a vast collection of numbers that may not belong to H itself. If we say that
an element of S is superclosed, we still preserve the countability of all superclosed numbers.
Again, any good definition of “closed form” should incorporate whatever is in the ring S.

1.3. Seventh approach. In a more algebraic topological setting, it might make sense to
define closed forms to be those arising as periods—that is as integrals of rational functions
(with integer parameters) in n variables over domains defined by algebraic equations. These
ideas originate in the theory of elliptic and abelian integrals and are deeply studied [41].
Periods form an algebra and certainly capture many constants. They are especially well
suited to the study of L-series, multi zeta values, polylogarithms and the like, but again
will not capture all that we wish. For example, e is conjectured not to be a period, as is
Euler’s constant v (see Section 5). Moreover, while many periods have nice series, it is not
clear that all do.

As this takes us well outside our domain of expertise we content ourselves with two
examples originating in the study of Mahler measures. We refer to a fundamental paper
by Denninger [38] and a very recent paper of Rogers [49] for details.

Ezample 1.3 (Periods and Mahler Measures [38]). The logarithmic Mahler measure of a
polynomial P in n-variables can be defined as

11 1 A ‘
M(P) — (/ / / log|P(62mel,~-,€2m€")d91"'d0n>'
0 JO 0

Then u(P) turns out to be an example of a period and its exponential, M (P) := exp(u(P)),
is a mean of the values of P on the unit n-torus. When n = 1 and P has integer coeflicients
M (P) is always an algebraic integer. An excellent online synopsis can be found in Dave
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Boyd’s article http://eom.springer.de/m/m120070.htm. Indeed, Boyd has been one of
the driving forces in the field. A brief introduction to the univariate case is also given in
[21, 358-359).

There is a remarkable series of recent results—many more discovered experimentally
than proven—expressing various multi-dimensional p(P) as arithmetic quantities. Boyd
observes that there appears to be a tight connection to K-theory. An early result due to
Boyd is that pu(1+x +y+1/x+1/y) = 7¢(3)/7?, a number that is certainly hyperclosed,
being as both ((3) and 1/7 are. A more recent result due to Smyth (see [50], also [52]) is
that p(1 + x +vy) = Ly(—1). Here L3 is the Dirichlet L-series modulo three. A conjecture
of Denninger [38], confirmed to over 50 places, is that

Wl tzty+1/z+1fy) 2 gLE(Q) (1.2)

is an L-series value over an elliptic curve E with conductor 15. Rogers [49] recasts (1.2) as

o n 2 2n+1
e L5y () U (1.3
n=0

~2

where

F(bc):=(1+b)(1+c) >

n7m7j7k

(_1)n+m+j+k

((6n 4 1)2 + b(6m + 1)2 + ¢(65 + 1)2 + be(6k + 1)2)?

is a four-dimensional lattice sum.

While (1.3) remains a conjecture, Rogers is able to evaluate many values of F(b,c) in
terms of Meijer-G or hypergeometric functions. We shall consider the most famous crystal
sum, the Madelung constant, in Example 5.1. O

It is striking how beautiful combinatorial games can be when played under the rubric of
hyper- or superclosure.
Ezample 1.4 (Superclosure of rational values of I'). Let us begin with the Beta function
I'(r)C(s)
L(r+s)

with I'(s) defined if one wishes as I'(s) := [t 'e~*d¢. It turns out that for any rationals
r, s the Beta function is hyperclosed. This is immediate from the hypergeometric identities

1 _ s JF <—r,—s 1)
1>,

B(r,s) r+s 1
msinm(r+s) (1—r)p(l—38)y 7 T,
sin7r sints M1 —7r— ) 2 <M +1
where M is any integer chosen such that the hypergeometric series converges, say M =
[14 r+ s]. (Each of these Beta relations is a variant of the celebrated Gauss evaluation
of oF at 1 [1, 53] and is also the reason B is a period.)

B(r,s) =

B(r,s) =
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We did not seize upon the Beta function arbitrarily, for, remarkably, the hyperclosure
of B*!(r, s) leads to compelling results on the Gamma function itself. Indeed, consider for
example this product of four Beta-function evaluations:

I(A/5)I(1/5) TE/5)TA/5) TE/5)T(1/5) T'(4/5)I(1/5)

r@2/5) T3 T4/ T(5/5)
We know this product is hyperclosed. But upon inspection we see that the product is
just I'°(1/5). Along such lines one can prove that for any positive rational a/b (in lowest
terms), we have hyperclosure of powers of the Gamma-function, in the form:

I*b(a/b) € H.
Perforce, we have therefore a superclosure result for any I'(rational) and its reciprocal:
I*l(a/b) €.

Again like calculations show I'*(a/b) is a period [41]. One fundamental consequence is thus:
2 (%) = % is hyperclosed; thus every integer power of 7 is hyperclosed.

Incidentally, deeper combinatorial analysis shows that—in spite of our I'® (%) Beta-chain
above, it really only takes logarithmically many (i.e., O(logb)) hypergeometric evaluations

to write Gamma-powers. For example,
(1 1 _1 _111\* _2 _21\? _4 _4
- _ T 7T 7T
r <7> — sof < 1 1> i ( 1 1) i ( 1 1) |
We note also that for I'(n/24) with n integer, elliptic integral algorithms are known which
converge as fast as those for 7 [26, 21]. O

The above remarks on superclosure of I'(a/b) lead to the property of superclosure for
special functions such as J,,(w) for algebraic w and rational v; and for many of the mighty
Meijer-G functions, as the latter can frequently be written by Slater’s theorem [14] as su-
perpositions of hypergeometric evaluations with composite-gamma products as coeflicients.
(See Example 3.2 below for instances of Meijer-G in current research.)

There is an interesting alternative way to envision hyperclosure, or at least something
very close to our above definition. This is an idea of J. Carette [27], to the effect that
solutions at algebraic end-points, and algebraic initial points, for holonomic ODEs—
i.e. differential-equation systems with integer-polynomial coefficients—could be considered
closed. One might say diffeoclosed. An example of a diffeoclosed number is Ji(1), i.e.,
from the Bessel differential equation for Ji(z) with z € [0,1]; it suffices without loss of
generality to consider topologically clean trajectories of the variable over [0,1]. There is
a formal ring of diffeoclosure, which ring is very similar to our H; however there is the
caution that trajectory solutions can sometimes have nontrivial topology, so precise ring
definitions would need to be effected carefully.

It is natural to ask “what is the complexity of hypergeometric evaluations?” Certainly
for the converging forms with variable z on the open unit disk, convergence is geometric,
requiring O(D*€) operations to achieve D good digits. However, in very many cases this
can be genuinely enhanced to O(D/2+€) [21].
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2. CLOSED ForMS: WHY THEY MATTER

In many optimization problems, simple, approximate solutions are more useful than
complex exact solutions.—Steve Wright
As Steve Wright observed in a recent lecture on sparse optimization it may well be that a
complicated analytic solution is practically intractable but a simplifying assumption leads
to a very practical closed form approximation (e.g., in compressed sensing). In addition to
appealing to Occam’s razor, Wright instances that:
(a) the data quality may not justify exactness;
(b) the simple solution may be more robust;
(c) it may be easier to “explain/ actuate/ implement/ store”;
(d) and it may conform better to prior knowledge.
As mathematical discovery more and more involves extensive computation, the premium
on having a closed form increases. The insight provided by discovering a closed form ideally
comes at the top of the list but efficiency of computation will run a good second.

Example 2.1 (The amplitude of a pendulum). Wikipedia® after giving the classical small
angle (simple harmonic) approximation

L
PR 2Ty —
9

for the period p of a pendulum of length L and amplitude «, develops the exact solution

in a form equivalent to
L
p=4,/2K <sin9)
g 2

This integral cannot be evaluated in terms of elementary functions. It can be
rewritten in the form of the elliptic function of the first kind (also see Jacobi’s
elliptic functions), which gives little advantage since that form is also insoluble.

and then says:

True, an elliptic-integral solution is not elementary, yet the notion of insolubility is mis-
leading for two reasons: First, it is known that for some special angles «, the pendulum
period can be given a closed form. As discussed in [32], one exact solution is, for a = /2
(so pendulum is released from horizontal-rod position),

L)

It is readily measurable in even a rudimentary laboratory that the excess factor here,
VT 72(3/4) ~ 1.18034 looks just right, i.e., a horizontal-release pendulum takes 18 per
cent longer to fall. Moreover, there is an exact dynamical solution for the time-dependent
angle «a(t); namely for a pendulum with a(£o00) = £7 and «(0) = 0, i.e. the bob crosses

angle zero (hanging straight down) at time zero, but in the limits of time — foo the bob

5Available at http://en.wikipedia.org/wiki/Pendulum_(mathematics).
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ends up straight vertical. We have period p = oo, yet the exact angle a(t) for given t can
be written down in terms of elementary functions!

The second misleading aspect is this: K is—for any a—remarkably tractable in a com-
putational sense. Indeed K admits of a quadratic transformation

2
K (k) = (L+ k) K (1), o= oYW
1+V1— k2

as was known already to Landen, Legendre and Gauss.

In fact all elementary function to very high precision are well computed via K [21]. So
the comment was roughly accurate in the world of slide rules or pocket calculators; it is
misleading today—if one has access to any computer package. Nevertheless, both deserve
to be called closed forms: one exact and the other an elegant approximate closed form
(excellent in its domain of applicability, much as with Newtonian mechanics) which is

equivalent to
K (sin g) ~ T
2 2
for small initial amplitude o. To compute K (7/6) = 1.699075885. .. to five places requires
using (2.1) only twice and then estimating the resultant integral by 7/2. A third step gives
the ten-digit precision shown. O

(2.1)

It is now the case that much mathematical computation is hybrid: mixing numeric and
symbolic computation. Indeed, which is which may not be clear to the user if, say, numeric
techniques have been used to return a symbolic answer or if a symbolic closed form has
been used to make possible a numerical integration. Moving from classical to modern
physics, both understanding and effectiveness frequently demand hybrid computation.

Ezample 2.2 (Scattering amplitudes [2]). An international team of physicists, in prepara-
tion for the Large Hadron Collider (LHC), is computing scattering amplitudes involving
quarks, gluons and gauge vector bosons, in order to predict what results could be expected
on the LHC. By default, these computations are performed using conventional double preci-
sion (64-bit IEEE) arithmetic. Then if a particular phase space point is deemed numerically
unstable, it is recomputed with double-double precision. These researchers expect that fur-
ther optimization of the procedure for identifying unstable points may be required to arrive
at an optimal compromise between numerical accuracy and speed of the code. Thus they
plan to incorporate arbitrary precision arithmetic, into these calculations. Their objective
is to design a procedure where instead of using fixed double or quadruple precision for
unstable points, the number of digits in the higher precision calculation is dynamically set
according to the instability of the point. Any subroutine which uses a closed form symbolic
solution (exact or approximate) is likely to prove much more robust and efficient. O

3. DETAILED EXAMPLES

We start with three examples originating in [15].
In the January 2002 issue of STAM News, Nick Trefethen presented ten diverse problems
used in teaching modern graduate numerical analysis students at Oxford University, the
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answer to each being a certain real number. Readers were challenged to compute ten digits
of each answer, with a $100 prize to the best entrant. Trefethen wrote,

“If anyone gets 50 digits in total, I will be impressed.”

To his surprise, a total of 94 teams, representing 25 different nations, submitted results.
Twenty of these teams received a full 100 points (10 correct digits for each problem). The
problems and solutions are dissected most entertainingly in [15]. One of the current authors
wrote the following in a review [18] of [15].

Success in solving these problems required a broad knowledge of mathematics and
numerical analysis, together with significant computational effort, to obtain solu-
tions and ensure correctness of the results. As described in [15] the strengths and
limitations of Maple, Mathematica, MATLAB (The 3Ms), and other software tools
such as PARI or GAP, were strikingly revealed in these ventures. Almost all of
the solvers relied in large part on one or more of these three packages, and while
most solvers attempted to confirm their results, there was no explicit requirement
for proofs to be provided.

Ezample 3.1 (Trefethen problem #2 [15, 18]).

A photon moving at speed 1 in the z-y plane starts at t = 0 at (z,y) =
(1/2,1/10) heading due east. Around every integer lattice point (4, j) in the
plane, a circular mirror of radius 1/3 has been erected. How far from the
origin is the photon at ¢ = 107

Using interval arithmetic with starting intervals of size smaller than 107599 one can

actually find the position of the particle at time 2000—mnot just time ten. This makes a
fine exercise in very high-precision interval computation, but in absence of any closed form
one is driven to such numerical gymnastics to deal with error propagation. U

Ezample 3.2 (Trefethen’s problem #9 [15, 18]).

The integral I(a) = f02[2 + sin(10a) |z sin(a/(2 — x)) dx depends on the
parameter «. What is the value a € [0, 5] at which I(«) achieves its maxi-
mum?

The maximum parameter is expressible in terms of a Meijer-G function which is a special
function with a solid history. While knowledge of this function was not common among
the contestants, Mathematica and Maple both will figure this out [14], and then the help
files or a web search will quickly inform the scientist.

This is another measure of the changing environment. It is usually a good idea—and
not at all immoral—to data-mine. These Meijer-G functions, first introduced in 1936, also
occur in quantum field theory and many other places [8]. For example, the moments of an
n-step random walk in the plane are given for s > 0 by

S

dz. (3.1)

n

Wy(s) := /[071]71 z

k=1

627rwki
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It transpires [23, 35] that for all complex s

B I'(1+s/2) , 1,
W5 = Faars) Ggé(;,

Moreover, for s not an odd integer, we have

1 s s \?2 %, %, %
W3(S) = 922s+1 tan <7> 851 3F2 s+3 s+3
20 2

1

. D , (3.2)

1 _§_§_§1
- F 20 20 2| )
4)*0( 5t |

We have not given the somewhat technical definition of MeijerG, but Maple, Mathematica,
Google searches, Wikipedia, the DLMF or many other tools will.

There are two corresponding formulae for Wy. We thus know, from our “Sixth approach”
section previous in regard to superclosure of I'-evaluations, that both Ws(q), Wy(q) are
superclosed for rational argument q for ¢ not an odd integer. We illustrate by showing
graphs of W3, Wy on the real line in Figure 2 and in the complex plane in Figure 3. The
later highlights the utility of the Meijer-G representations. Note the poles and removable
singularities.

L,
S
2

o

(b) Wa

FIGURE 2. Moments of n-step walks in the plane. Wj3, Wy analytically
continued to the real line.

The Meijer-G functions are now described in the newly completed Digital Library of
Mathematical Functions® and as such are now full, indeed central, members of the family
of special functions. O

Ezample 3.3 (Trefethen’s problem #10 [15, 18]).

A particle at the center of a 10x 1 rectangle undergoes Brownian motion (i.e.,
2-D random walk with infinitesimal step lengths) till it hits the boundary.
What is the probability that it hits at one of the ends rather than at one of
the sides?

6A massive revision of Abramowitz and Stegun—with the now redundant tables removed, it is available
at www.dlmf.nist.gov. The hard copy version is also now out [44]. It is not entirely a substitute for the
original version as coverage has changed.
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-6 -4 -2 0 2

(a) Ws (b) Wy

FIGURE 3. W3 via (3.2) and Wy in the complex plane.

Hitting the Ends. Bornemann [15] starts his remarkable solution by exploring Monte-
Carlo methods, which are shown to be impracticable. He then reformulates the problem
deterministically as the value at the center of a 10 X 1 rectangle of an appropriate harmonic
measure [56] of the ends, arising from a 5-point discretization of Laplace’s equation with
Dirichlet boundary conditions. This is then solved by a well chosen sparse Cholesky solver.
At this point a reliable numerical value of 3.837587979 - 10~7 is obtained. And the posed
problem is solved numerically to the requisite ten places.

This is the warm up. We may proceed to develop two analytic solutions, the first using
separation of variables on the underlying PDE on a general 2a x 2b rectangle. We learn
that

p(a,b) = % ZO 2(;:_)7; sech (71'(27’L2+ ) ,0) (3.3)

where p := a/b. A second method using conformal mappings, yields
arccot p = p(a,b) g +argK (eip(“’b)”> (3.4)

where K is again the complete elliptic integral of the first kind. It will not be apparent to
a reader unfamiliar with inversion of elliptic integrals that (3.3) and (3.4) encode the same
solution—though they must as the solution is unique in (0, 1)—and each can now be used
to solve for p = 10 to arbitrary precision. Bornemann ultimately shows that the answer is

2
p = — arcsin (k1g0) , (3.5)
m

where

k100 = ((3—2\/5) (2+V5) (-3+v10) (-v2+ %)2)2.
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No one (except harmonic analysts perhaps) anticipated a closed form—Iet alone one like
this.
Where does this come from? In fact [21, (3.2.29)] shows that

= (=1)" T2n+1) \ 1
Z 11 sech 5 p) = 5arcsin k, (3.6)

n=0

exactly when k, is parameterized by theta functions in terms of the so called nome,
q = exp(—mp), as Jacobi discovered. We have

oo n 2
03(q) _ Somt oo 4"YP —_———" (3.7)

ko = = = , q
? 03(q) S

Comparing (3.6) and (3.3) we see that the solution is
k100 = 6.02806910155971082882540712292.. .. - 107

as asserted in (3.5).

The explicit form now follows from classical nineteenth century theory as discussed say
in [15, 21]. In fact kojo is the singular value sent by Ramanujan to Hardy in his famous
letter of introduction [20, 21]. If Trefethen had asked for a 1/210 x 1 box, or even better a

v/ 15 X 4/14 one, this would have shown up in the answer since in general
2
p(a,b) = — arcsin (k?a2/b2) . (3.8)
7T

Alternatively, armed only with the knowledge that the singular values of rational param-
eters are always algebraic we may finish entirely computationally as described in [18]. O

FIGURE 4. Typical mirage, due to optical refraction. There appears to be
a “lake” in front of the right-hand vehicles.
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We finish this section with a quick pair of attractive applied-physics examples—from
optics and astrophysics, respectively.

Ezample 3.4 (Mirages [45]). In [45] the authors, using geometric methods, develop an exact
but implicit formula for the path followed by a light ray propagating over the earth, given
radial variations in the refractive index. By suitably simplifying they are able to provide
an explicit integral as a closed form, then expand asymptotically. This is done with the
knowledge that the approximation is good to six or seven places—more than enough to
use it on optically realistic scales. Moreover, in the case of quadratic or linear refractive
indices these steps may be done analytically.

In other words, as advanced by Wright, a tractable and elegant approximate closed form
is obtained to replace a problematic exact solution. From these forms interesting qualitative
consequences follow. With a quadratic index, images are uniformly magnified in the vertical
direction; only with higher order indices can nonuniform vertical distortion occur. This sort
of knowledge allows one, for example, to correct distortions of photographic images such as
Figure 4, with confidence and efficiently. (Said image taken from free repository http://
upload.wikimedia.org/wikipedia/commons/7/7b, then processed/refined by the present
authors.) O

Ezample 3.5 (Structure of stars). The celebrated Lane—Emden equation, presumed to de-
scribe the pressure x at radius r within a star, can be put in the form:
d?x
—1 _

" ar? -X", (3.9)
with boundary conditions x(0) = 0, x’(0) = 1, and positive real constant n, all of this giving
rise to a unique trajectory xn(r) on r € [0,00). (Some authors invoke the substitution
X(r) :=rf(r) to get an equivalent ODE for temperature 0; see [29]).

e The beautiful thing is, where this pressure trajectory crosses zero for positive radius
r is supposed to be the star radius; call that zero z,.

Amazingly, the Lane-Emden equation has known exact solutions for n = 0,1,5. The
pressure trajectories for which indices n being respectively

L3

xo(r) = ~&" + (3.10)
x1(r) = sinr, (3.11)
Xs(r) = ——— (3.12)

The respective star radii are thus closed forms zg = v/6 and 2z = 7, while for (3.12) with
index n = 5 we have infinite star radius (no positive zero for the pressure xs).

In the spirit of our previous optics example, the Lane-Emden equation is a simplification
of a complicated underlying theory—in this astrophysics case, hydrodynamics—and one is
rewarded by some closed-form star radii. But what about, say, index n = 27 We do not
know a closed-form function for the x trajectory in any convenient sense. What the present
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authors have calculated (in 2005) is the n = 2 star radius, as a high-precision number

zg = 4.352874595946124676973570061526142628112365363213008835302151 . . ..

If only we could gain a closed form for this special radius, we might be able to guess the
nature of the whole trajectory!
O

4. RECENT EXAMPLES RELATING TO OUR OWN WORK

LS

02]
i Rl

"

4 1 2 3 4
T Wolfram 3§ Demonstrations Project
(a) Critical Temperature (b) Wolfram Player Demonstration

FIGURE 5. The 2-dimensional Ising Model of Ferromagnetism, (a) image
provided by Jacques Perk, plotting magnetization M (peak) and specific
heat C' (decay) per site against absolute temperature T' [43, p. 91-93, p.
245].

Ezample 4.1 (Ising integrals [5, 8]). We recently studied the following classes of integrals [5].
The D, integrals arise in the Ising model of mathematical physics (showing ferromagnetic
temperature driven phase shifts see Figure 5 and [31]), and the C), have tight connections
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to quantum field theory [8

co_ / / duq du,
= S —
1 (uj + 1/u])> " Un

D z<] ul-s-uj) duq du,,
"o n' 2w U
uj—i-l/u])) n
2

E, = / / U Y dto dts - - - dt,,
1<]<k< Uk 1 U

where (in the last line) uy = Hle t;.

Needless to say, evaluating these multidimensional integrals to high precision presents a
daunting computational challenge. Fortunately, in the first case, the C,, integrals can be
written as one-dimensional integrals:

271 oo

C, = = pK{y(p)dp,

n' 0
where K is the modified Bessel function. After computing C,, to 1000-digit accuracy for

various n, we were able to identify the first few instances of C), in terms of well-known
constants, e.g.,

1 1 7
C3 = L_3(2) = Z <(3TL—|— 1)2 - (3TL+2)2> ) Cy= EC(3)7

n>0

where ¢ denotes the Riemann zeta function. When we computed C), for fairly large n, for
instance

Cro24 = 0.63047350337438679612204019271087890435458707871273234 . . .,

we found that these values rather quickly approached a limit. By using the new edition of
the Inverse Symbolic Calculator” this numerical value was identified as

lim C, = 2e %,

n—oo
where v is the Fuler constant, see Section 5. We later were able to prove this fact—this is
merely the first term of an asymptotic expansion—and thus showed that the C,, integrals
are fundamental in this context [5].

The integrals D,, and E,, are much more difficult to evaluate, since they are not reducible
to one-dimensional integrals (as far as we can tell), but with certain symmetry transforma-
tions and symbolic integration we were able to symbolically reduce the dimension in each
case by one or two.

In the case of D5 and FEj5, the resulting 3-D integrands are extremely complicated (see
Figure 6), but we were nonetheless able to numerically evaluate these to at least 240-digit

7 Available at http://carma.newcastle.edu.au/isc2/.
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precision on a highly parallel computer system. This would have been impossible without
the symbolic reduction. We give the integral in extenso to show the difference between a
humanly accessible answer and one a computer finds useful.

In this way, we produced the following evaluations, all of which except the last we
subsequently were able to prove:

Dy = 1/3
D3 = 844723 —27L_3(2)

Dy = 47%/9—1/6 —7¢(3)/2
E, = 6—8log?2
F3 = 10— 2x% —8log2 + 32log? 2

By = 22—82((3) —24log2 + 1761og? 2 — 256(log>2)/3 + 167* log 2 — 227% /3
and

Es < 42 —1984Lig(1/2) + 1897 /10 — 74¢(3) — 1272¢(3) log 2 + 4072 log? 2
—621%/3 + 40(72 log 2) /3 + 881og? 2 + 464 1og® 2 — 401og 2, (4.1)

where Li denotes the polylogarithm function.

In the case of Dy, D3 and Dy, these are confirmations of known results. We tried
but failed to recognize Ds in terms of similar constants (the 500-digit numerical value is
accessible® if anyone wishes to try to find a closed form; or in the manner of the hard
sciences to confirm our data values). The conjectured identity shown here for E5 was
confirmed to 240-digit accuracy, which is 180 digits beyond the level that could reasonably
be ascribed to numerical round-off error; thus we are quite confident in this result even
though we do not have a formal proof [5].

Note that every one of the D, E forms above, including the conjectured last one, is
hyperclosed in the sense of our “Sixth approach” section. U

Ezample 4.2 (Weakly coupling oscillators [48, 6]). In an important analysis of coupled
Winfree oscillators, Quinn, Rand, and Strogatz [48] developed a certain N-oscillator sce-
nario whose bifurcation phase offset ¢ is implicitly defined, with a conjectured asymptotic
behavior: sing ~ 1 — ¢;/N, with experimental estimate ¢; = 0.605443657.... In [6] we
were able to derive the exact theoretical value of this “QRS constant” ¢; as the unique
zero of the Hurwitz zeta ((1/2,2/2) on z € (0,2). In so doing were able to prove the con-
jectured behavior. Moreover, we were able to sketch the higher-order asymptotic behavior;
something that would have been impossible without discovery of an analytic formula.
Does this deserve to be called a closed form? In our opinion resoundingly ‘yes’, unless
all inverse functions such as that in Bornemann’s (3.8) are to be eschewed. Such constants
are especially interesting in light of even more recent work by Steve Strogatz and his
collaborators on chimera—coupled systems which can self-organize in parts of their domain

8 Available at http://crd.1bl.gov/~dhbailey/dhbpapers/ising-data.pdf.
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By = /01 /01 /01 20— 2)°(1 = )*(1 = 21) (1 = (1 = 42)°(1 = ay2)?

(— [4(9: + 1) (zy + 1) log(2) (y523w7 -y Ay + 1)z +3)2° — 2 ((yz + 1) 22+ 4(y+
1)z+5)a:5 +y2 <4y(y+1)z3+3 (y2+1> 22 +4(y+ 1)z — 1) w4+y(z (zz + 4z
+5)y% + 4 (22 + 1) y+5z+4) 3+ ((—322 — 4z 4 1) y% — day + 1) 2% — (y(5z + 4)
+a)z = 1]/ [(2 = D@y — D (ayz - 1°] + [3r — D’y (= = 1?27 (v
~1)%2% + 2432 (3(z — 12230 + 27 (5z3 +322 432+ 5) i (2 - 1)%2
(5z2 +162 + 5) o+ (3z5 +32% — 2223 22,2 43, 4 3) v +3 (—2z4 +23 42
Ptz 2) y+32% +52% 452+ 3) 2 + 4P (7(z — 1)y — 2.8 (z3 +1522
4152 4+ 1) y° + 222 (—2124 1462 + 142 + 62 — 21) oyt — 22 (z5 — 62t — 2723
—272% _ 62 + 1) v+ (7z6 —302° + 282% 4 542% + 2822 — 302 + 7) y% =2 (7z5
+152% — 623 — 622 + 152 + 7) g7t =225 4222 _ 22 4 7) z* — 2y (z3 (z3
—9:% — 92+ 1) y® + 22 (7z4 —142% — 1822 — 142 + 7) o® 42 (7z5 +142% +3
234322 4142 + 7) ot 4 (z5 —142° +32% 48423 £ 322 — 142 + 1) =3 (3z5
+6z4—z3—z2+6z+3)y2 — (9z4+14z3—1422+14z+9)y+z3+722+7z
+1)a® + (22 (11z4 +62% — 6622 + 62 + 11) y® 422 (5z5 41324 — 223 _ 2,7
4132 4+ 5)3° + (11z5 42625 4 442% — 662° + 4422 + 262 + 11) oyt 4 (6z5 —4
2% 662° — 6622 — 4z + 6) =2 (3324 +2:% 22222 422 4 33) o2+ (6z3 + 26
22 4 262 +6) Y+ 1122 + 102 + 11) 2 —2 (z2 (55’ 1+32% 432+ 5) ¥tz (22z4
152% —222% £ 52 4 22) yh (5z5 4520 —262% — 2627 + 52+ 5) o+ (3z4—

22:% — 2622 —22z+3> ye + (323+5z2 +5z+3) y+522+22z+5)m+1522 + 22

+2y(z = *(z+ 1)+ 20° (2 = D22z + 1) +y*2% (1527 + 22 +15) +47 (152°

—22° — 902% — 22 + 15) + 15] / [(r —1)2(y — 1) (zy — 1)%(z — 1)2(yz — 1)?

(@yz = 1] = [4@+ Dy + Dz + 1) (=27y" + 42+ 1Dy° + (27 +1) ¢
—4(z+ 1)y + 4z <y2 — 1) (y222 — 1) + 22 (22y4 —dz(z+ 1)y® — <22 + 1) y?
+4(z + 1)y + 1) = Dlog(e + 1] / [(= = D*a(y — ) (yz = 1)*] = [4(y + D(wy

+1)(z+ 1) (m2 (z2 — 4z — 1) y4 + 4z (z + 1) (22 — 1) y3 — (mZ + 1) (22 — 4z — 1)

y? —4(z+1) (z2 — 1) y+2°—dz — 1) log(zy + 1)} / [z(y —1)%y(zy — 1)%(z—
D?] = [4+ Dz + 1) (+°9°27 + 2%y ol + 1) +5)2° —ay® ((v°+
1) 22— 4(y+ 1)z — 3) 25— y2 (4y(y + 1)1:3 +5 (y2 + 1) z2 +4(y+ )z + 1) z4+
y (y2r3 —4y(y +1)z® -3 (92 + 1) z —4(y + 1)) 2%+ (5r2y2 +y +4a(y+1)
y+1) 2 + (B + )y +4)z — 1) log(ayz + 1) / [oy(z = 1*2(y2 = 1) (ayz - 1)°])]

@+ D@+ D@y + 1%+ 1Dz + D)oy + 1?] dedydz

FIGURE 6. The reduced multidimensional integral for Ej5, which integral
has led via extreme-precision numerical quadrature and PSLQ to the con-
jectured closed form given in (4.1).
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PRL 101, 084103 (2008)
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- .
oscillator index £(6)

FIG. 1 (color online). Snapshot of a chimera state, obtained by
numerical integration of (1) with 8 =0.1, A =0.2, and N; =
N, = 1024. (a) Synchronized population. (b) Desynchronized
population. (c) Density of desynchronized phases predicted by
Eqgs. (6) and (12) (smooth curve) agrees with observed histo-
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FIG. 2 (color online). Order parameter r versus time. In all
three panels, Ny = N, = 128 and 8 = 0.1. (a) A = 0.2: stable
chimera; (b) A = 0.28: breathing chimera; (c) A = 0.35: long-
period breather. Numerical integration began from an initial
condition close to the chimera state, and plots shown begin after
allowing a transient time of 2000 units.

21

gram.

FIGURE 7. Simulated chimera (figures and parameters from [42]).

and remain disorganized elsewhere, see Figure 7 taken from [42]. In this case observed
numerical limits still need to be put in closed form. O

It is a frequent experience of ours that, as in Example 4.2, the need for high accuracy
computation drives the development of effective analytic expressions (closed forms?) which
in turn typically shed substantial light on the subject being studied.

Ezample 4.3 (Box integrals [3, 7, 22]). There has been recent research on calculation of
expected distance between points inside a hypercube. Such expectations are also called
“box integrals” [22]. So for example, the expectation (|7]) for random 7 € [0,1]? has the

closed form 1 1 1
Y (2 ) .
1 3 247r + 5 og |2+ V3

Incidentally, box integrals are not just a mathematician’s curiosity—the integrals have
been used recently to assess the randomness of brain synapses positioned within a paral-
lelepiped [37]. Indeed, we had cognate results for

Auls) = / / o — g3 dady
[0,1]¢ J0,1)¢

which gives the moments of the distance between two points in the hypercube.
In a lovely recent paper [51] Stephan Steinerberger has shown that in the limit as the
dimension goes to infinity

1 s/p 2 s/p
lim (= / / r—ylfdedy = <> 4.2
d—o0 <d> 0,174 J[0,1] Iz =yllp dody (p+1)(p+2) (4.2)
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for any s,p > 0. In particular, with p = 2 this gives a first-order answer to our earlier
published request for the asymptotic behavior of Ay(s).

A quite recent result is that all box integrals (|7]") for integer m, and dimensions
1,2,3,4,5 are hyperclosed, in the sense of our “Sixth attempt” section. It turns out that
five-dimensional box integrals have been especially difficult, depending on knowledge of a
hyperclosed form for a single definite integral J(3), where

‘ log(t + 2% + y?)
J(t) /[0’1]2 0+ 291+ 02 dz dy. (4.3)
A proof of hyperclosure of J(t) for algebraic ¢ > 0 is established in [22, Thm. 5.1]. Thus
(|772) for € [0,1]% can be written in explicit hyperclosed form involving a 105-character
symbolic J(3); the authors of [22] were able to reduce the 5-dimensional box integral
down to “only” 10* characters. A companion integral .J(2) also starts out with about 10°
characters but reduces stunningly to a only a few dozen characters, namely

24 6 24 6

where Cly is the Clausen function Cly(6) := 3 - sin(nf)/n? (Cly is the simplest non-
elementary Fourier series). -

Automating such reductions will require a sophisticated simplification scheme with a very
large and extensible knowledge base. With a current Research Assistant, Alex Kaiser at
Berkeley, we have started to design software to refine and automate this process and to run
it before submission of any equation-rich paper. This semi-automated integrity checking
becomes pressing when—as above—verifiable output from a symbolic manipulation can be
the length of a Salinger novella. U

2
J(2) = 7%logZ - 4—78§(3) + Eﬂ'cb (E) - §7TCIQ (Em) ; (4.4)

5. PROFOUND CURIOSITIES

In our treatment of numbers enjoying hyperclosure or superclosure, we admitted that
such numbers are countable, and so almost all complex numbers cannot be given a closed
form along such lines. What is stultifying is: How do we identify an explicit number lying
outside of such countable sets? The situation is tantamount to the modern bind in regard
to normal numbers—numbers which to some base have statistically random digit-structure
in a certain technical sense. The bind is: Though almost all numbers are absolutely normal
(i.e. normal to every base 2,3,...), we do not know a single fundamental constant that is
provably absolutely normal. (We do know some “artificial” normal numbers, see [13].)

Here is one possible way out of the dilemma: In the theory of computability, the existence
of noncomputable real numbers, such as an encoded list of halting Turing machines, is well
established. The celebrated Chaitin constant () is a well-known noncomputable. So a “folk”
argument goes: “Since every element of the ring of hyperclosure H can be computed via
converging series, it should be that 2 ¢ H.” A good research problem would be to make
this heuristic rigorous.

Let us focus on some constants that might not be hyperclosed (nor superclosed). One
such constant is the celebrated Euler constant v := limy, 00 > pq 1/k —logn. We know of
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no hypergeometric form for v; said constant may well lie outside of H (or even S). There
are expansions for the Euler constant, such as

3\ 4 log(2k + 1)
= logm—4logD (2) + 2 S (mp)kr1 28T L)
cem 208 <4)+w;( T

and even more exotic series (see [12]). But in the spirit of the present treatment, we do not
want to call the infinite series closed because it is not hypergeometric per se. Relatedly,
the classical Bessel expansion is

Ko(z) = (111(2) +,y> Io(= Z Ek 1 i <2>

Now Kj(z) has a (degenerate) Meijer-G representatlon—so potentially is superclosed for
algebraic z—and Iy(z) is accordingly hyperclosed, but the nested-harmonic series on the
right is again problematic. Again, vy is conjectured not to be a period [41].

Number of nearestneighbors = 24

A screen from the Madelung Constant section of Lattice Energetics.

(a) NaCl nearest neighbors (b) CMS Prize Sculpture
FiGURE 8. Two representations of salt.

Ezample 5.1 (Madelung constant [21, 36, 57]). Another fascinating number is the Madelung
constant, M, of chemistry and physics [21, Section 9.3]. This is the potential energy at the
origin of an oscillating-charge crystal structure (most often said crystal is NaCl (salt) as
illustrated in Figure 8). The right-hand image is of a Helaman Ferguson sculpture based
on M that is awarded biannually by the Canadian Mathematical Society as part of the
David Borwein Career Award.) and is given by the formal (conditionally convergent [17])
sum

(_1)x+y+z

M = Z —_—
(wyn)2000) VE TY2+ 22

and has never been given what a reasonable observer would call a closed form. Nature plays
an interesting trick here: There are other crystal structures that are tractable, yet somehow

= —1.747564594633..., (5.1)
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this exquisitely symmetrical salt structure remains elusive. In general, even dimensional
crystal sums are more tractable than odd for the same modular function reasons that the
number of representations of a number as the sum of an even number of squares is. But
this does not make them easy as illustrated by Example 1.2.

Here we have another example of a constant having no known closed form, yet rapidly
calculable. A classical rapid expansion for the Madelung constant is due to Benson:

M=-127 Z sech? (g\/(Zm +1)24+ (2n + 1)2) , (5.2)

m,n>0

in which convergence is exponential. Summing for m,n < 3 produces —1.747564594 . . .,
correct to 8 digits. There are great many other such formulae for M (see [21, 34]).

Through the analytic methods of Buhler, Crandall, Tyagi and Zucker since 1999 (see
[34, 36, 54, 57]), we now know approximations such as

M~ 1 log2 8t  T(1/8)I'(3/8) oe k3 7

8 4 3 w3/24/2 16k4 k)
where kg := ((2'/* — 1)/(2"/* + 1))2. Two remarkable things: First, this approximation
is good to the same 13 decimals we give in the display (5.1); the missing O(10~!4) error
here is a rapidly, exponentially converging—but alas infinite—sum in this modern approx-
imation theory. Second: this 5-term approximation itself is indeed hyperclosed, the only
problematic term being the I'-function part, but we did establish in our “Sixth approach”
section that B(1/8,3/8) and also 1/7 are hyperclosed, which is enough. Moreover, the
work of Borwein and Zucker [26] also settles hyperclosure for that term. g

Certainly we have nothing like a proof, or even the beginnings of one, that M (or )
lies outside H (or even S), but we ask on an intuitive basis: Is a constant such as the
mighty M telling us that it is not hyperclosed, in that our toil only seems to bring more
“closed-form” terms into play, with no exact resolution in sight?

6. CONCLUDING REMARKS AND OPEN PROBLEMS

e We have posited several approaches to the elusive notion of “closed form.” But what
are the intersections and interrelations of said approaches? For example, can our
“Fourth approach” be precisely absorbed into the evidently more general “Sixth
approach” (hyperclosure and superclosure)?

e How do we find a single number that is provably not in the ring of hyperclosure H?
(Though no such number is yet known, almost all numbers are as noted not in said
ring!) The same question persists for the ring of hyperclosure, S. Furthermore, how
precisely can one create a field out of HY via appropriate operator extension?

e Though H is a subset of S, how might one prove that H # S? (Is the inequality
even true?) Likewise, is the set of closed forms in the sense of [47, Ch. 8] (only
finite linear combinations of hypergeometric evaluations) properly contained in our

H? And what about a construct such as HE ? Should such an entity be anything
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really new? Lest one remark on the folly of such constructions, we observe that
most everyone would say 77 is a closed form!

Having established the property of hyperclosure for I'®(a/b), are there any cases
where the power b may be brought down? For example, 1/7 is hyperclosed, but
what about 1/4/7?

What is a precise connection between the ring of hyperclosure (or superclosure) and
the set of periods or of Mahler measures (as in Example 1.3)7

There is expounded in reference [22] a theory of “expression entropy,” whereby
some fundamental entropy estimate gives the true complexity of an expression. So
for example, an expression having 1000 instances of the polylog token Liz might
really involve only about 1000 characters, with that polylogarithm token encoded
as a single character, say. (In fact, during the research for [22] it was noted that the
entropy of Maple and Mathematica expressions of the same entity often had widely
varying text-character counts, but similar entropy assessments.)

On the other hand, one basic notion of “closed form” is that explicitly infinite
sums not be allowed. Can these two concepts be reconciled? Meaning: Can we
develop a theory of expression entropy by which an explicit, infinite sum is given
infinite entropy? This might be difficult, as for example a sum o, # only
takes a few characters to symbolize, as we just did hereby! If one can succeed,
though, in resolving thus the entropy business for expressions, “closed form” might
be rephrased as “finite entropy.”

In any event, we feel strongly that the value of closed forms increases as the complexity
of the objects we manipulate computationally and inspect mathematically grows—and we
hope we have illustrated this. Moreover, we belong to the subset of mathematicians which
finds fun in finding unanticipated closed forms.

Acknowledgements. Thanks are due to David Bailey and Richard Brent for many rele-
vant conversations and to Armin Straub for the complex plots of W3 and Wjy.
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