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Abstract: A number of classical and
not so classical problems in number the-
ory concern finding polynomials with
integer coefficients that are of small
norm. These include old chestnuts like
the Merit Factor problem, Lehmer’'s Con-

jecture and Littlewood’s (other) Con-

jecture.



Let
n .
Zn:{z aizz:aiEZ}
1=0

denote the set of algebraic polynomials
of degree at most n with integer coef-

ficients and let Z denote the union.

Let
n .
Ly = { > a;2' i a; € {1, 1}}
1=0

denote the set of polynomials of de-
gree at most n with coefficients from
{—1,1}. Call such polynomials Little-

wood polynomials.



T he supremum norm of a polynomial

p on a set A is defined as

|pl| 4 = sup |p(z)].
z€A

For positive o, the L, norm on the

boundary of the unit disk is defined by

Iplla := (% /02” p ()] de)l/a.

For
p(z) i =anz"+---+a1z+ ag

the L, norm on D is also given by

Ipllz = lan/2 + -+ + la1|? + |aol?.



The two interesting limiting cases give

lim_||plle = llpllp = [IPlleo

a—r 00

and

1im ||plla = exp (% /027T og |p (¢")| d9> -

The latter is the Mahler measure de-
noted by M(p). Jensen’s theorem for

pn(z) == a(z —a1)(z —a2) - (z — an)

gives

M(pn) = |a| Il |yl
o[ >1

Mahler’'s measure is multiplicative:

M(pq) = M(p)M(q)



Problem 1. Littlewood’s Problem
iIn Lo (19507). Find the polynomial
in Ly, that has smallest possible supre-

mum norm on the unit disk.

Show that there exist positive constants
c1 and co, so that for any n is it is pos-
sible to find pn, € Ly With

c1vn < |pn(2)| < cav/m
for all complex z with |z| = 1.
Littlewood, in part, based his conjec-

ture on computations of all such poly-

nomials up to degree twenty.



Odlyzko has now done 200 MIPS vyears

of computing on this problem

A Related Erdos’s Problem In L.
Show that there exists a positive con-

stant c3 so that for alln and all pp, € Ly,
we have |pnllp > (1 + c3)v/n.



Merit Factor Problems (19507). The

L, norm computes algebraically. If

n

p(2) == 3 a2
k=0

has real coefficients then

n

p(2)p(1/2) = Y 2"

k=-—n

where the acyclic autocorrelation co-

efficients
n—k
C — Z ajaj_l_k and C_L — Ck
j=0
and

n

Ip()NZ = Ip(2)p(1/2)Z3 = X 2.

k=—n



The merit factor is defined by

Ipl3 — lIpll5
or equivalently
n-+1
MF(p) = -
2Yk>0CF

The merit factor is a useful normaliza-
tion. It tends to give interesting se-
quences integer limits and makes the
expected merit factor of a polynomial

with +1 coefficients 1.

The Rudin-Shapiro polynomials have

merit factors that tend to 3.



Problem 2. Merit Factor Problem.
Find the polynomial in L, that has small-

est possible Ly norm on the unit disk.

Show that there exists a positive con-
stant cq4 so that for all n and all p, € Ly,

we have

La(pn) > (1 04)\/ﬁ-

Equivalently show that the Merit Fac-

tor is bounded above.



The Related Barker Polynomial Prob-
lem. Forn > 12 and pn € Ly, Show that

La(pn) > ((n+ 1)2 +2n)1/%

Equivalently show that at least one non
trivial autocorrelation coefficient is strictly

greater than 1 in modulus.

This is much weaker than the Merit

Factor Problem.



e Find sequences that have analysable

Merit Factors

Theorem . For q an odd prime, the
Turyn type polynomials

1
Ry(z) = CIZ (k +(EQ/4]> K

k=0

where [-] denotes the nearest integer,

satisfy
742 1

4
||Rq||4:?—q—g—7q

and
(h(—q)(h(—q) —4) ifg=1,5 (mod ¢

12(h(—q))° ifg=3 (mod 8),
0 ifg=7 (mod 8).

I\

Vg -=

\



Thus these polynomials have merit fac-

tors asymptotic to 6.

Golay, Hgholdt and Jensen, and Tu-
ryn (and others) show that the merit
factors of cyclically permuted charac-
ter polynomials associated with non-
principal real characters (the Legendre
symbol) vary asymptotically between 3/2
and 6.



Several authors have conjectured this
IS best possible. For example in 1983

Golay wrote:

“[Six] is the highest merit factor
obtained so far for systematically
synthesized binary sequences, and
the eventuality must be consid-
ered that no systematic synthe-
sis will ever be found which will

yield higher merit factors.”



And in 1988 Hgholdt and Jensen wrote:

“We therefore make a new con-
jecture concerning the merit fac-
tor problem, namely, that asymp-
totically the maximum value of
the merit factor is 6 and hence
that offset Legendre sequences

are optimal.”



A really interesting observation made
by Tony Kirilusha and Ganesh Narayanaswam
as summer students at the University
of Richmond of Jim Davis suggested
that one should try building on Turyn’s
construction by appending the initial

part of Turyn’'s sequence to the end.

T heir suggestion was wrong but the in-
tuition was good. To see what is hap-
pening one needs to look at sequences
of length 100,000 or greater.



We conjecture there exist sequences of
Turyn type polynomials (with modifi-
cation) that have merit factors grow-
ing like 6.3. (Joint work with Choi and
Jedwab).

Basically one rotates the Fekete poly-
nomials by 22 percent and adds 5.7

percent of the initial terms to the end.

The numbers are compelling!!



Merit Factor Problem Restated.

For a sequence of length n+41
{ag,a1,a2,... ,an}t ap = %1

the acyclic autocorrelation coefficients

n—k
Cl -— Z Cl,jaj_|_k and C_L = Ck
j=0
and the Merit factor
1
MF = 7T .
23 k>0Ck

For any (all) n, maximize this!

e [ his has been called the "hardest
combinatorial optimization problem known.”



e Best merit factors have been com-
puted up to length 59. This is by vari-
ations on branch and bound algorithms
(with huge effort).

e [ he “landscape” for best merit fac-
tors is very irregular. We suspect that
most hueristics are wrong.

e All Golay pairs are known up to length
100.

e Barker polynomials (all autocorrela-
tions of size at most 1) are known not
to exist up to 1029 — far past compu-
tational rangs.



e One ambition is to map out the best
merit factor space probabilistically up

to degree 100 or so.

e T his is done with a mix of hill climb-
ing and simulated annealing. (And a

lot of cluster computing.)

e It works surprisingly well. (Joint with

Ferguson and Knauer).



Problem 3. Lehmer’s Problem (1933).
Show that a (non-cyclotomic) polyno-
mial p with integer coefficients has Mahler
measure at least 1.1762.... (This lat-
ter constant is the Mahler measure of
1—|—z—z3—z4—z5—z6—z7—|—z9—l—z10.)

A conjecture of similar flavour (implied
by the above) is

Conjecture of Schinzel and Zassen-
haus (1965). There is a constant c
so that any non-cyclotomic polynomial
pn OFf degree n with integer coefficients
has at least one root of modulus at
least c/n.



The best partials are due to Smyth.

If p iIs a non-reciprocal polynomial of
degree n then at least one root p sat-

isfies

[o]
p=>14 9¢

n
where ¢ = 1.3247... is the smallest

Pisot number, namely the real root of

23—z 1.

The number ¢ is also the smallest mea-

sure of a non-reciprocal polynomial.



Theorem 1 (Hare, Mossinghoff and
PB) Suppose f is a monic, nonrecipro-
cal polynomial with integer coefficients
satisfying f = +f* mod m for some in-

teger m > 2. Then

m + ym?2 + 16

M(f) = 4

(1)

and this bound is sharp when m is even.

Corollary 1 If f is a monic, nonrecip-
rocal polynomial whose coefficients are

all odd integers, then

M(f) > M(z*—z—1) = (1+V5)/2.



Theorem 2 (Dobrowolski, Mossinghoff
and PB) Suppose f is a monic poly-
nomial with all odd integer coefficients

of degreen that does not have measure
1.

a] Schinzel and Zassenhaus holds for
this class with at least one root of mod-

ulus at least (1 4 .31/n).

b] If fis irreducible then Lehmer’s con-
jecture holds for this class and the mea-

sure must be at least 1.495.






A Related Problem of Mahler’s. For
each n find the polynomials in L,, that
have largest possible Mahler measure.

Analyse the asymptotic behaviour as n

tends to infinity.



Multiplicity of Zeros of Height One
Polynomials. What is the maximum
multiplicity of the vanishing at 1 of a
height 1 polynomial 7

Multiplicity of Zeros in L,,. What is
the maximum multiplicity of the van-
ishing at 1 of a polynomial in L, 7

1

0.8

0.6

04

0.2




