1 Spectra of Pisot and Salem Numbers.

For g € (1,2) define
Ag):={eo+eq + - +eq" e € {~1,0,1}}
Alg) :={eo+eaq +---+e&g" 6 e {-1,1}}.
Further define
I(g) = inf{(ly| : y € A(q),y # 0}

a(q) = inf{ly| : y € A(q),y # 0}

Erdés, Jo6 and Komornik in 1990 ask about /(q) for Pisot

numbers gq.

Our main purpose is to give a general method for com-

puting I(q).

A related question is for which non-Pisot numbers (if
any) is a(g) non-zero. We give an infinite class of Salem

numbers where a(q) # 0.

It is clear that A(q) C A(g). Results known for A(q)
specifically are due to Peres and Solomyak. They show
that A(q) is dense in R for a.e. ¢ € (v/2,2). Alsoif q €
(1,4/2) and ¢? is not the root of a height 1 polynomial,
then A(q) is dense.



We give some examples of non Pisot q where A(q) is dis-
crete. The existence of such a ¢ is somewhat surprising,
because the analog, A(g), is thought to be discrete if and
only if q is Pisot. Though it is still open if there exists a
g that is not Pisot with I(¢) > 0.

If ¢ does not satisfy a polynomial of height 1, then I(q) =
0 by a Pigeon hole argument.

If ¢ is the Pisot number that satisfies ¢ — ¢*> — 1, then
I(q) = ¢* — 2 (Komornik et al)

If g is the Pisot number satisfying ¢" —¢" ' —---—1 then
l(q) = % (Erdés, Joo and Joo).

We give an algorithm that calculates I(q) for any Pisot
number g. This is similar to an algorithm of Ka-Sing

Lau.

Another question that can be examined with this algo-
rithm asks for which Pisot numbers ¢ does ¢ satisfy a

polynomial with 41 coefficients.

Surprisingly there exists Pisot numbers which do not sat-
isfy such a polynomial. For the Pisot numbers that do
satisfy a £1 polynomial, it is often possible to use LLL
to find this polynomial.



Basis of the Algorithm.

Lemma 1. Let S be a finite set of integers. Let p(z) be
a degree n polynomial with coefficients in S. Let s; <

S < sy, be lower and upper bounds for the integers in

S, and let ¢ > 1. Denote a, := q—__s:l and o := ;j”f. If

p(q) & [ou, o) then q - p(q) + s & [au, o] for all s € S.
Lemma 2. If q is a Pisot number, and S is a finite set

of integers, then |Ag(q) NJa,b]| is finite.

Programming Tricks.

When calculating A(g) a list of all polynomials examined
must be kept. To reduce the space requirements, the
actual code stores the remainders modulo the minimal

polynomial of q. This keeps all the calculations exact.

This has a second advantage. If p(q) = p/(q) where p and
p’ are polynomials, then the remainders of p and p’ when
divided by the minimal polynomial of ¢ are equal. Thus

duplication within the spectrum is easily recognized.

With a careful implementation, this technique can be

parallelized.



Questions on A(g) and A(g) for Pisot numbers g.

We calculated [(q) for all Pisot numbers up to and in-
cluding degree 9, and a(q) for Pisot numbers up to and

including degree 10 (using David Boyd’s algorithm).

There are 232 Pisot numbers of degree less than or equal

to 10 (between 1 and 2 inclusive).

The number of Pisot numbers of degree less than or equal
to 9 where a(q) = l(q) is fairly small, and it would be
interesting to know if the set of Pisot numbers with this

property is finite.

The next question of interest is which Pisot numbers ¢
satisfy a +1 polynomial. This is equivalent to asking
if 0 € A(q). This was answered in the affirmative for
most Pisot numbers. The first failure is of degree 6. It is
interesting to note that all of the examples found where

0 ¢ A(q) are such that this root ¢ is greater than 1.95.

In the largest calculations we did the spectrum sizes ex-

ceeded 20 million

A spectrum of size over about 48 million broke our progam
and accounted for 16 out of the 232 Pisot numbers of de-

gree 10 or less.



Pisot polynomial q 1(q) Polynomial associated
with 1(q)

22—z —1 1.618034 | 0.618034 z—1

2 —222 42 -1 1.754878 | 0.245122 z—2

e — 1.380278 | 0.008993 22 — 422 +5

2t =223+ —1 1.866760 | 0.13324 z—2

xt—23 — 22241 1.905166 | 0.068706 2 - 322+ 1 +2

o —at —2® + 22 — 1| 1.443269 | 0.002292 422 — 3z — 4

2> — 2% —22 —x—1 | 1.534158 | 0.002155 22 — 323 + 22 -3z +2

o —gt—2? -1 1.570147 | 0.006992 zt — 222 — 20+ 2

z® — 22% 4+ 2% — 22 1.673649 | 0.009705 2t — a2 -2 -2 +3
+zr—1

2 —zt—23 -1 1.704903 | 0.030844 223 — 323 — 2

2% — 2% —2* + 22 —1 | 1.501595 | 0.0003491 x° + 22* — 423 — 322

+3x — 2

28 —225 4+ -1 1.967168 | 0.032831 z—2

27— 2% — a2t —2? 1.590005 | 0.0001137 4z8 — 52° — z* — o3
-2 —z—1 +z—6

27 — 2% —2* — 2% — 1 | 1.601347 | 0.0004642 2% — x* — 32% — 122

—xr+2

27— 225 4 25 — 24 1.640728 | 0.0003030 228 — 225 — 224
A N S | 222+ +3

27 — 228 4+ 25 — 224 1.790223 | 0.0006021 28 — 325 + 5zt — 423
+22° — 224+ -1 —4xr+1

27 —22% + 2 —1 1.983861 | 0.016138 z—2

2% — 28 — 27 — 28 1.743836 | 0.000004806 | x® — 32° — 4z — 322

+at+ 2% -1

+4x + 2

Table 1: Pisot numbers where I(q) = a(q).




Pisot polynomial

Pisot number

28— 25 -2t 422 -z —1

28 —32°+ 3zt —223 + 2 -1

2 — 2" — 28— — 22 41

20— — 2" — 228 4P 22—z —1
20— 228 425 — 22t + -1

20 8 7 6 5_ gt _ g3 _ g2 _ 1
2% —227 — 325 — 225 + 2% —x -1

29 — 28 — 27 — 26 5 _ ph _ g8

—2°—z' —2° -2

- —z—1

20 —af —2" — 2% — 2% —at 41

20— % — 28 — g7 — 2% — 225 41

20— 2% — 228 + 28 — 25 — 22t 22— -1
20— 229 4 27T — 228 4+t — 23 4+ — 1

20— 229 42—zt —z+1

20— g9 — 228 408 — 5 —pt ¥ 42— —1
T

10 _ g9 _ 08 _ 07 _ 26 _ 45 41

1.979476326
1.955451068
1.995777793
1.997784254
1.996283920
1.994016415
1.992483962
1.989944545
1.963515789
1.998987762
1.998772685
1.998277927
1.969456013
1.966884957
1.964715641

Table 2: Pisot polynomials that do not divide a +1 polynomial.

Precise values of I(g) and a(q) at ¢ can be found on the

web at

http://www.cecm.sfu.ca/“kghare, 2000.




Pisot polynomial q 1(q) Approximate | CPU
size of secs
spectrum in
[oy, o]
210 — g9 — g8 — o7 1.742975573 | 1.18668e-07 | 26973910 39m50s
+2f — 23+ 1

210 — 2% — 27 — 26 1.746541923 | 7.04603e-08 | 41498130 58m4ls
-z -zt — 23
-z -1

210 — 2% — 28 — 27 1.795572823 | 3.5123e-08 | 43357472 1h1mTs
425 —23 41

20— g% — 2% — 27 1.852234868 | 8.17922e-08 | 25981420 34m38s
-3 +1

210 — 2% — 28 — 27 1.860952864 | 3.80874e-07 | 24944436 35m22s
—2® 42t 41

210 — 22° + 28 — 227 | 1.870250440 | 4.44816e-08 | 46252634 1h4mb56s
+28 + 2% — 22
+zr—1

210 — 22° + 27 — 26 1.881601063 | 2.57611e-07 | 27513576 35m35s
—23 422 -1

210 — 228 — 327 — 2% | 1.890027098 | 2.67873e-07 | 20923016 29m43s
+2° + 22% 4 28
—22—22x—-1

210 — 22° 4+ 2% — 27 1.903832902 | 2.22525e-07 | 22738454 28m42s
8 -2+ -1

210 — g9 — g8 — o7 1.921407084 | 3.12296e-08 | 41511868 57mbs
-5 —zt —2?
—z—1

210 —22° + 28 — 227 | 1.957362809 | 2.22214e-07 | 22336604 29m7Ts
+2b — 25— 22 -1

20— 22° + 27 — 225 | 1.998277927 | 2.447e-08 46943484 1h3mb4s

4zt —283 + 2 —1

Table 3: Successful calculations with a spectrum over 20 million for I(g).




Pisot polynomial q a(q) Approximate | CPU
size of secs
spectrum in
[al’ au]
210 — 2% — 28 + 22 — 1 | 1.601755862 | 1.59445e-07 33921896 30m38s
210 — 2% — 2% — 22 41 | 1.632690733 | 1.03354e-07 21835702 17m30s
210 —22% 4+ 28 — 27 1.735143707 | 8.28149e-08 32342934 29m18s
+2® —2?+2 -1

Table 4: Successful calculations with a spectrum over 20 million for a(q).
Some questions of A(g) for non-Pisot numbers g.

Peres and Solomyak asked for which ¢ in 1 < ¢ < 2 is
A(q) dense. It was unknown to the authors then if there
were any q for which ¢ is not a Pisot number and A(q)

is not dense. This we answered in the affirmative.

The examples of non-Pisot numbers ¢ where A(q) is dis-
crete required a search of 1868 possible candidates. The

search rests on the following theorem.

Theorem 1. If g does not satisfy a polynomial of the
form e x™ + .. + €™ + B_1™ L+ - + By where € €
{£1} and B; € {£2,0}, then A(q) is not discrete.

Corollary 1. If g does not satisfy a height 2 polynomaal,
then A(q) is not discrete.



Observations on A(q).

1. All examples of ¢ where A(q) is discrete found are
Perron numbers (all conjugates are of modulus less

than q).

2. There were 120 examples found of non-Pisot num-

bers with discrete spectra A(q).

3. There were 7 Salem numbers found (all but one con-

jugate is of modulus 1), with discrete spectra.

4. The only non-Pisot numbers ¢ whose minimal poly-
nomial has Mahler measure less than 2 while A(q) is

discrete seems to be these Salem numbers.

5. The smallest (non-Pisot) number found with discrete
spectrum is the Salem number 1.72208 of degree four

(the root of z* — 23 — 22 — z + 1).

nml . —z+41lisa

6. ** The largest root of z" — z
Salem number with discrete spectrum and and the
only Salem numbers of degree 9 or less with discrete

spectrum satisfy a polynomial of this type.

7. The smallest degree polynomial satisfying a ¢ such

that A(q) is discrete is 3 — 2z — 2.



Non-Pisot polynomial

Root

23— 2z —2

zt— 2% -2z -2

zt — 222 — 22 — 2
25—t — 222 -2
25—t — 2% — 222 42

2® — ot — 222 — 22 -2

x® —22% — 222 — 22 — 2

28 —22% — 223 — 2

28 — 2% — 2t — 223 4+ 224+ 2

28 — 224 — 223 — 222 + 2

28 — 2% — 2t —22% + 2

28 — 224 — 2% — 222 — 22 -2
28 — 2% — 2t — 2% — 222 + 2

2l — 28 — 2% — gt 2% 22242
x7 — 28 — 25 — 22 + 222 4+ 2
27— 28— 25 —2* — 2% +2

27— 28 — 2% —22% + 22 42
27— 28 — 25 — gt — 2% — 222 + 22+ 2
x7 — 28 — 25 — 224 42

27— 28— 2% — 2t — 223 42

27— —ad —t — 3 — 22242

1.769292354
1.873708564
1.899321089
1.803707279
1.917514202
1.942887561
1.953501637
1.813277575
1.859080768
1.865843123
1.961038629
1.977807115
1.963984556
1.815396315
1.888840344
1.903972308
1.937730036
1.945197233
1.981204104
1.982546502
1.983151826

Table 5: Polynomials with non-uniformly discrete spectrum
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Finding +1 polynomials with LLL.

It is of interest to see which ¢ satisfy a 1 polynomial, or
equivalently when 0 € A(q). (The preceding Algorithm

works only when the spectrum is discrete.)

For this we consider the following LLL based algorithm:

Lemma 3. If the head coefficient and tail coefficient of
p(z) are both odd, then p(z)|1 4+ z + ---2" (mod 2) for

some n.

Our algorithn will first, for input p(z), find a polynomial
q(z), such that p(z)q(z) is of the form 1 + z + --- + 2"
(mod 2). (This is easy.)

From here LLL can often be used to find a polynomial
¢ (z) where ¢'(z)p(z) is a polynomial with +1 coeffi-

cients.

For a basis choose p(z)q(z) as one basis element, and
2p(z)z™ for 0 < n < degq as the rest. It can be seen
that if there is one basis element in the original basis
with all odd coefficient, and all the rest have only even
coefficients, then the resulting basis from LLL will have

at least one basis element with only odd coeflicients.
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LLL tries to minimize the sum of the squares of the coef-
ficients. The basis polynomial in the reduced basis with
odd coefficients will, with some luck, be a polynomial

with 1 coefficients.

This works quite well for small problems. Unfortunately,
for almost every polynomial of degree n, the resulting
q(z) is of degree 2" — n. This means that LLL must be
performed on a basis of size 2" — n, which leads to an

exponential time algorithm.
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Pisot polynomial

41 polynomial it divides

22 —z—1
2 —z—1
3 —z2—1
-3 —a22 -2 —1

-zt —2® — 2241

2?2 —z—1

2642 -t -2 -z —1
R SR Qi
_ 30 4 429 4 498 9T 26 4 25 24 93
L2 _ gl 4 g0 4 219 18 1T o 16 4 15
gl g3 g2 4 g0l 10 0 o8 T 6

3 _ g2

—r—1

+a2% — a2t — 2 —z—1

B30 29 4 28 4 027 _ 026 4 025 24 4 423
422 _ g2l _ 20 4 19 p18 017 _ 016 4 15
44 13 12 4 g1l 4 210 0 08 0T g6

-zt - -2+ +1

Salem polynomial

+1 polynomial it divides

20+ 2% — g7 — 26 — 48

gt -+ 41

10— g8 — b — gt 41

210 — g7 — b — g3 41

30 _ 420 L 428 4 097 | 026 | 25 _ 24 03
C 22 g2 20 4 19 18 4 AT 16 415
FPRURNIPRT ST SR SR [ RN RN S, G
8+t 42t 422 —z—1

30 429 4 498 4 9T 26 4 25 | 24 93
L2 g2 g0 4 19 18 4 1T | 16 5
gl 13 _ 12 4 g0l 200 | 0 | o8 T L 46
—2P 4+t 4+t -2+ -1

Degree 32 example found.

Non-Pisot

Non-Salem polynomial

+1 polynomial it divides

xt—z2 -1

28—zt —1

28—zt —22 -1
2t —22—z—1
2t —x—1

P4t —t -2 —z-—1
213 412 _ g1l _ 10 | 49 o 8
P SN N SR S

428 — 2P — gt — 3 — 2
2t -2 —z—1
24 4 g13 g 12 11 410

g9 g8 T _ 6

—x—1

—r—1

—d -3 -2 -z -1

Table 6: Polynomials found by the LLL algorithm
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Open Questions:

1. Is the set of g such that a(q) = I(q) finite?

2. Does there exists and a =~ 1.95 such that if ¢ < «,
and ¢ Pisot, then 0 € A(q)?

3. Are all ¢ where A(q) is discrete necessarily Perron?

4. Are the only g where A(q) is discrete and the Mahler
measure of ¢ is less than 2 necessarily Salem numbers

or Pisot numbers.

5. Do the only Salem numbers ¢ with A(q) discrete sat-

isfy ¢" — ¢" ! —--- — ¢+ 1 for some n?

6. Is there a @ ~ 1.72 such that if ¢ < a and ¢ is not
Pisot then A(g) is not discrete?

7. Is it true that I(g) > O if and only if ¢ is Pisot?

14



