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Littlewood’s 22nd Problem

“If the nm are integral and all different, what
is the lower bound on the number of real zeros
of

N
∑

m=1

cos(nmθ)??

Possibly N − 1, or not much less.”

Littlewood in his 1968 monograph “Some Prob-
lems in Real and Complex Analysis” poses this.
No progress appears to have been made on this
in the last half century. Until now.

Theorem 1 It is possible to construct cosine
polynomials with the nm integral and all differ-
ent, so that the number of real zeros of

N
∑

m=1

cos(nmθ)

is

O
(

N9/10
)

.



We also prove in a positive direction.

Denote the number of zeros of T in the period

[−π, π) by N(T ).

Theorem 2 Suppose the set {aj : j ∈ N} ⊂ R

is finite and the set {j ∈ N : aj 6= 0} is infinite.

Let

Tn(t) =
n

∑

j=0

aj cos(jt) .

Then

lim
n→∞N(Tn) = ∞ .

One of our main tools for this, not surprisingly,

is the resolution of the Littlewood Conjecture.



The next two results SHOULD be straightfor-

ward corollaries of the above result (????)



Theorem 3 Let AN denote the the lower bound

on the number of zeros in period [−π, π) of all

N term cosine sums of the form

N
∑

m=1

cos(nmθ)

then

lim
n→∞Bn = ∞.

As an answer to a question of B. Conrey.

Theorem 4 Let BN denote the the lower bound

on the number of zeros in period [−π, π) of all

N term cosine sums of the form

N
∑

m=1

± cos(nθ)

then

lim
n→∞An = ∞ .



Lemma 1 Let λ0 < λ1 < · · · < λm be nonneg-

ative integers and let

Sm(t) =
m
∑

j=0

Aj cos(λjt) .

Then
∫ π

−π
|Sm(t)| dt ≥ 1

80

m
∑

j=0

|Am−j|
j + 1

.



Littlewood’s 22nd Problem

Problem 1 “If the nm are integral and all dif-

ferent, what is the lower bound on the num-

ber of real zeros of
∑N

m=1 cos(nmθ)? Possibly

N − 1, or not much less.”

In terms of reciprocal polynomials one is look-

ing for a reciprocal polynomial with coefficients

0 and 1 with 2n terms and n-1 or fewer zeros.

Even achieving n-1 is fairly hard.

An exhaustive search up to 2n = 32 yielded

only the 2 examples below with n-1 zeros of

modulus one and none with n-2 or fewer zeros.

There where only 11 more examples with ex-

actly n zeros. It is hard to see how one might

generate infinitely many examples or indeed

why Littlewood made his conjecture.



x27+x26 +x25+x19+x18+x17+x15+x14+

x13 + x12 + x10 + x9 + x8 + x2 + x + 1

and

x31+x30 +x29+x28+x27+x26+x25+x24+

x23 + x20 + x19 + x17 + x14 +x12 + x11 + x8 +

x7 + x6 + x5 + x4 + x3 + x2 + x + 1

The following is a reciprocal polynomial with

32 terms and exactly 14 zeros of modulus 1.

So it corresponds to a cosine sum of 16 terms

with 14 zeros in [−π, π). In other words the

sharp version of Littlewood’s conjecture is false.

(Though barely.)

1 + x + x2 + x4 + x3 + x5 + x6 + x7 + x8 +

x9 + x12 + x13 + x14 + x15 + x16 + x18 + x20

+x22+x23+x24+x25+x26+x29+x30+x31+

x32 + x33 + x34 + x35 + x36 + x37 + x38



The following is a reciprocal polynomial with

280 terms and 52 zeros of modulus 1. So it

corresponds to a cosine sum of 140 terms with

52 zeros in [−π, π). In other words the sharp

version of Littlewood’s conjecture is false. Though

this time by a margin.

It was found by a version of the greedy algo-

rithm (and some guessing). There is no reason

to believe it is a minimal example.

(1+x+x2+x4+x3+x5+x6+x7+x8+x9+

x10+x11 +x12+x13+x19+x14+x15+x17+

x18+x16 +x20+x21+x22+x23+x24+x25+

x26+x27 +x28+x29+x30+x31+x32+x33+

x34+x35 +x36+x37+x38+x39+x40+x41+

x42+x43 +x44+x45+x46+x47+x48+x49+

x50+x51 +x52+x53+x54+x55+x56+x57+

x58+x59 +x60+x61+x62+x63+x64+x65+

x66+x67 +x68+x69+x70+x71+x72+x73+

x74+x75 +x76+x78+x79+x80+x81+x82+



x83+x77 +x84+x85+x86+x87+x88+x89+

x90+x91 +x92+x93+x94+x95+x96+x97+

x98 + x99 + x100 + x101 + x102 + x103 + x104 +

x105+x106+x107+x108+x109+x110+x111+

x112+x113+x114+x115+x116+x117+x118+

x119+x120+x121+x122+x123+x129+x130+

x131+x132+x133+x135+x136+x137+x138+

x139+x140+x142+x144+x146+x149+x150+

x154+x155+x158+x160+x162+x164+x165+

x171+x166+x167+x169+x168+x172+x173+

x174+x175+x181+x182+x183+x184+x185+

x186+x187+x188+x189+x190+x191+x192+

x193+x194+x195+x196+x197+x198+x199+

x200+x201+x202+x203+x204+x205+x206+

x207+x208+x209+x210+x211+x212+x213+

x214+x215+x216+x217+x218+x219+x220+

x221+x222+x223+x224+x225+x226+x227+

x228+x230+x231+x232+x233+x234+x235+

x229+x236+x237+x238+x239+x240+x241+

x242+x243+x244+x245+x246+x247+x248+

x249+x250+x251+x252+x253+x254+x255+



x256+x257+x258+x259+x260+x261+x262+

x263+x264+x265+x266+x267+x268+x269+

x270+x271+x272+x273+x274+x275+x276+

x277+x278+x279+x280+x281+x282+x283+

x284+x285+x286+x287+x288+x289+x290+

x291+x292+x293+x294+x295+x296+x297+

x298+x299+x300+x301+x302+x303+x304)



Auxiliary Functions

The key is to construct n term cosine sums

that are large most of the time.

Lemma 2 There is a constant C such that for

all n and α > 1 there is a sequence a0, . . . , an

with each ai ∈ {0,1} such that

meas{t ∈ [−π, π) : |Pn(t)| ≤ α} ≤ Cαn−1/2.

where

Pn(t) =
n

∑

j=0

aj cos(jt).



The Main Theorem

Theorem 5 It is possible to construct cosine

polynomials with the nm integral and all differ-

ent, so that the number of real zeros of

N
∑

m=1

cos(nmθ)

is

O
(

N9/10 log1/5(N)
)

.

The proof follows immediately from the fol-

lowing lemma and Lemma 2.

(Take m := N + 1, n = m2/5 log−4/5(m), α =

n1/4 and β = Cαn−1/2 = Cn−1/4.)



Lemma 3 Let m ≤ n,

Dm(t) :=
m
∑

j=0

cos(jt) ,

Pn(t) :=
n

∑

j=0

aj cos(jt) , aj ∈ {0,1} .

Suppose α ≥ 1 and

meas{t ∈ [−π, π) : |Pn(t)| ≤ α} ≤ β .

Let Sm := Dm−Pn. Then the number of zeros

of Sm in [−π, π) is at most

c1m

α
+ c2mβ + c3nm1/2 logm ,

where c1, c2, and c3 are absolute constants.



For this we need the following consequence of

the Erdős-Turán Theorem.

Lemma 4 Let

Sm(t) =
n

∑

j=0

aj cos(jt) , aj ∈ {0,1} .

Denote the number of zeros of Sm in [α, β] ⊂
[−π, π) by N([α, β]). Then

N([α, β]) ≤ c4m(β − α) + c4
√

m logm ,

where c4 is an absolute constant.



Average Number of Zeros

Lemma 5 Suppose that p is a polynomial of

degree exactly n and p has k zeros of modulus

greater than 1 and j zeros of modulus 1 then

for any m
(

zmp(z) ± p∗(z)
)

has degree m+n and at least m+n - 2k roots

of modulus 1.

Proof. Rouché’s theorem shows that

(1 + ε)zmp(z) ± p∗(z)

and

zmp(z)

have the same number of roots inside the unit

disk. Note that |p(z)| = |p∗(z)| for |z| = 1.

So with ε = 0, zmp(z)±p∗(z) has all but k zeros

in the closed unit disk.



Now use the fact that zmp(z)±p∗(z) is recipro-

cal so has the same number of zeros of mod-

ulus less than 1 as of modulus greater than

1.



Lemma 6 Suppose that p is a polynomial of

degree exactly n and p(0) 6= 0. Consider

P :=
(

zmp(z) ± p∗(z)
)

and

Q :=
(

zmp∗(z) ± p(z)
)

.

with the same choice of sign (ie the cos case

and the sin case). Suppose P has j1 zeros of

modulus 1 and Q has j2 zeros of modulus 1.

Then

j1 + j2 ≥ 2m.

Proof. Use the previous lemma and note that

if p has k zeros of modulus greater than 1 and j

zeros of modulus 1 then p∗ has n−k−j zeros of

modulus greater than 1 and j zeros of modulus

1.



Note that if M := (m − n)/2 ≥ 1 with M an

integer then

C :=
n+M
∑

i=M

ai cos it

and

S :=
n+M
∑

i=M

ai sin it

correspond to

P (z) :=
(

zmp(z) ± p∗(z)
)

with

p(z) =
n

∑

i=0

aiz
i.

Also zeros of P of modulus 1 correspond (with

the same count) to zeros of the trigonometric

polynomials C amd S in the period [0, π).



Lemma 7 Suppose an+M 6= 0. Consider

C(t) :=
n+M
∑

i=M

ai cos it

and

C∗(t) :=
n+M
∑

i=M

a(n+M+M−i) cos it

which reverses the coefficients.

Let w1 be the number of zeros of C in the

period [0, π) and let w2 be the number of zeros

of C∗ in the period [0, π) then

w1 + w2 ≥ m ≥ n + 1.

Furthermore w1 ≥ m and w2 ≥ m.



Averaging over any reasonable class of sums

gives:

Lemma 8 The average number of zeros over

the classes
{

n
∑

i=1

± cos it
}

and
{

n
∑

i=1

δi cos it, δi ∈ 0,1
}

is at least n/2.


