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“ AM ASHAMED TO TELL YOU
TO HOW MANY FIGURES I CAR-
RIED THESE COMPUTATIONS, HAV-

ING NO OTHER BUSINESS AT THE

TIME.”
Isaac Newton 1665—1666
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Prehistory

“Also he made a molten sea of ten cubits
from brim to brim, round in compass, and
five cubits the height thereof; and a line of
thirty cubits did compass it round about.”

Old Testament, 1 Kings 7:23

Various Babylonian and Egyptian estimates
include

7'(':3,3 ?, Sg, 3g,
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The First Age of Pi (Archimedes)

20,0,
nt1l = =2V 3
Ant1 @ + bn ag f

bn_|_1 = \/an_|_1 . bn b() =3

This computes the length of circumscribed
and inscribed regular 6 - 2"-gons.

e Archimedes, 3—6 Digits

e Ludolph van Ceulen, 34 Digits, (1540—
1610)
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The Second Age of Pi (Calculus)
arctan(z) == — x°/3+2°/5 — - -

m = 16 arctan(1/5) — 4 arctan(1/239)
With various other Machin-like formulae
e 100 Digits — Machin (1706)

e 205 Digits — Dase (1844)

e 707 Digits (527 correct) — Shanks (1853)

e 2037 Digits — ENIAC (1949) — (von Neu-
man et al )

e 1-million Digits — CDC 7600 (1973) —
(Guilloud and Bouyer)
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The 3rd Age (higher order methods)

e 17-million Digits,
Symbolics 3670 (1985), (Gosper)

e 29-million Digits,
Cray-2 (1986), (Bailey)

e 1-4 Billion Digits,
Home-brew, (Chudnovskys)

e 1-200 Billion Digits,
various Hitachi, (Kanada)
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The Current State of our Knowledge
We know that ...

e 7 is irrational. Lambert (1761)
e 7 is transcendental. Lindemann (1882)
e 7 is not Liouville. Mahler (1953)
o T++/2log 2 transcendental. Baker(1966)
e Many billions of digits behave regularly.

e 123456789 appears at the 523,551,502th
digit.

e The billionth digit of m is 9.



The Current State of Our Ignorance
We do not know ...

e The decimal expansion of m contains in-
finitely many 2’s (or anything else con-

cerning normality).

e The continued fraction expansion is un-

bounded.

e 7™ + ¢ is transcendental (or even irra-
tional).

e 7/logm is transcendental (or even irra-
tional).

e whether 7 is computable as fast as mul-
tiplication.



Bill No. 246, 1897. State of Indiana.

“Be it enacted by the General Assembly
of the State of Indiana: It has been found
that the circular area is to the quadrant of
the circumference, as the area of an equi-
lateral rectangle is to the square on one
side.”

“In further proof of the value of the au-
thor’s (E.J. Goodman, M.D.) proposed con-
tribution to education, and offered as a
gift to the State of Indiana, is the fact of
his solutions of the trisection of the angle,
duplication of the cube and quadrature of
the circle having been already accepted
as contributions to science by the Amer-
ican Mathematical Monthly, the leading
exponent of mathematical thought in this
country.”
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Passes three readings, Indiana House, 1897.
(Via House Committee on Swamp Lands.)

Passes first reading, Indiana Senate, 1897.
(Via Senate Committee on Temperance.)

“The case is perfectly simple. If we pass
this bill which establishes a new and cor-
rect value of 7, the author offers our state
without cost the use of this discovery and
its free publication in our school textbooks,
while everyone else must pay him a roy-
alty.”

Professor C.A. Waldo of Purdue intercedes
and the bill is tabled.
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Francois Viete (1593)

James Gregory (1671), Leibnitz (1674)

T 1+1 1+
4 3 5 7
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How Big is 100 Billion

e 100 billion (12pt) digits stretch from
Halifax to Vancouver ten times.

e 100 billion (12pt) digits fill 120 football
fields.

e 100 billion digits read off at 3 digits/second
take a millenium

e 100 billion is roughly the U.S. national
debt in thousand dollar bills.

e 100 billion fill roughly 24000 Bibles.
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High Order Iterative Algorithms

The arithmetic-geometric mean iteration:

ap :=1, by = /2

and
a, + b,
Ap+1 = 9 ) bn—l—l F= anbn
Then
lim a,, = lim b,, =
n—oo n—r0o0
/2
fl dt
0 Vi—it

In 1799, Gauss observed this purely nu-
merically and wrote that this result

“will surely open a whole new field of anal-
ysis.”
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Equivalent Modular Parameterization

This is equivalent to the identities

_ 05(q) + 04(q)
2

0s(q°)

and

04(q%) = \/05(q)04(q)

AOESIE

where

These are modular forms. So for example

Vs (e™™) = 05 (6_”/'9)
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Quartic Algorithm. Let ag := 6—4/2,
Yo = \/§ — 17

1—(1-y,)"""
It T Iy

(T4 yns1) an—22"yn 1 (1 4y +y2 1)

Then a,, — % quartically.

e One hundred billion digits requires a
couple of hundred full precision addi-
tions, multiplications, multiplications, di-
visions, and root extractions. Eighteen it-
erations give at least 100-billion digits.

e Multiplication is the key. Division and
root extraction are Newton’s method.
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Ramanujan Type Series

Ramanujan’s remarkable series for 1/7 in-
clude

1 2v2 = (4n)![1103 + 26390n]

T 9801 (n))% (4 %99)4n

n—

This series adds roughly eight digits per
term.

Gosper in 1985 computed 17 million terms
of the continued fraction for 7w using this.

Such series exist because various modular
invariants are rational (which is more-or-
less equivalent to identifying those imagi-
nary quadratic fields of class number 1).
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Chudnovskys’ series with d = —163 is

19 6n 1'13591409+n545140134
o Z n)! (6403203)n+1/2 '

Quadratic versions correspond to class num-
ber two imaginary quadratic fields. The
largest example has d = —427 and

B N (A+nB)
T 12220 n' 3n' Cnt1/2

where
A= 212175710912V 61 + 1657145277365

B := 13773980892672v/614107578229802750
C := [5280(236674 + 30303v/61)]°.

This series adds roughly 25 digits per term.
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Frauds

Gregory’s series for 7, truncated at 500, 000
terms gives to forty places

500 000 1

1 Z 2k—1

= 3.141590653589793240462643383269502884197.

Only the underlined digits are wrong.
Excessive Fraud

Sum (correct to over 42 billion digits)

2

o n2
% S e | =g

n=-—oo
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Conjecture No one will ever know the
101%9%th digit of m (or the 10°1th).

But there is more to this story...
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INDIVIDUAL DIGITS OF PI

e It is possible to compute just the d-th
digit of certain transcendental numbers in
various bases.

e These algorithms can be easily imple-
mented (multiple precision arithmetic is
not needed), require virtually no memory,
and scale nearly linearly.

e It is possible to compute, for example,
the billionth binary digit of log (2) or w on
a modest work station in a few hours run
time.
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These calculations rest on three observa-
tions.

e First, the d-th digit of 1/n is “easy” to
compute.

e Secondly, this allows for the computa-
tion of certain polylogarithm and arctan-
gent series.

e Thirdly, very special polylogarithmic lad-

ders exist for certain numbers like 7, 72,

log(2) and log®(2).

For example the critical identity for 7r:

2 1 1

=~ 1
;1@ 82+1 82+4 82+ 5 8z+6)
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e It is widely believed that computing just
the d-th digit of a number like 7 is really
no easier than computing all of the first d
digits.

e From a bit complexity point of view this
may well be true, although it is probably
very hard to prove.

e What we will show is that it is possi-
ble to compute just the d-th digit of many
transcendentals in (essentially) linear time
and logarithmic space.
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e We are interested in computing in SC,
polynomially logarithmic space and poly-
nomial time.

Actually we are most interested in the space
we will denote by SC* of polynomially log-
arithmic space and (almost) linear time

(here we want the time = O(dlog®Y (d))).

e It is not known whether division is possi-
ble in SC, similarly it is not known whether
base change is possible in SC.

e The situation is even worse in SC*, where
it is not even known whether multiplica-
tion is possible. If two numbers are in
SC* (in the same base) then their prod-
uct computes in time = O(d?log®® (d))
and is in SC but not obviously in SC*.
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e We will show that the class of numbers
we can compute in SC* in base b includes
all numbers of the form

> 1

k=1

where p is a polynomial with integer coef-
ficients and c is a positive integer.

e Since addition is possible in SC*, integer
linear combinations of such numbers are
also feasible (provided the base is fixed).

e The algorithm for the binary digits of
7w, which also shows that 7 is in SC* in
base 2, rests on the following remarkable
identity:
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Theorem.
o0

1, 4 9 1 1
”:ZE 16i(8z'+1_8i+4_8z’+5_8z’+6)'

1=

Proof. This is equivalent to:

1/V2 4/ — 843 — 4\/224 — 827
= 1 — 8
0

which on substituting y := v/2x becomes

_/1 16y—16
"ot 2 Ay 4

The equivalence follows from the identity

dx.

1/v2 gh—1 V2 & k—1+8
/ 8 dr = Zx dx
0 0 i=0
1 — 1
NGk ; 16% (8 + k)
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Identities. As usual, we define the m-th
polylogarithm L., by

©.@) Zi
Lo (2) ::Z%, 2] < 1.
1=1

The most basic identity is
—log(1 —27") = Ly(1/2")
which shows that log(1 — 27") is in SC*

base 2 for integer n.

e LLess obvious are the identities

2 =

36L2(1/2)—36L5(1/4)—12Lo(1/8)+6Ls(1/64)

log®(2) =
4L(1/2)—6L(1/4)—2La(1/8)+Lo(1/64) .
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These rewrite as

o0n Z 92 [a'z] — [17 _37 _27_37 170]
'

log? (2 = b
0g”(2) _ Y, [bi] =1[2,-10,-7,-10,2,—1].
1=1

e Thus we see that 72 and log®(2) are in
SC* in base 2.

e These are polylogarithmic ladders in the
base 1/2 in the sense of Lewin.

We found them by searching for identities
of this type using an integer relation algo-
rithm. We have not found them directly
in print. However they follow from known
results pretty easily.
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e There are several ladder identities in-
volving Lg:

35/2¢(3) — m?log(2) =

36L3(1/2)—18L3(1/4)—4L5(1/8)+Ls(1/64),

2log*(2) — 7¢(3) =
—24L5(1/2)+18L5(1/4)+4L3(1/8)—L3(1/64),

101log®(2) — 272 log(2) =
—48L3(1/2)+54L3(1/4)+12L3(1/8)—3L3(1/64).
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e The favored algorithms for 7 of the last

centuries involved some variant of Machin’s

1706 formula:

T 1 1
— =4 arctan — — arctan — .
4 5} 239

There are many related formula but to be
useful to us all the arguments of the arc-
tans have to be a power of a common base,
and we have not discovered any such for-
mula for 7 .

e One can however write

T
5 — 2arctan — + arctan —

V2 V8

This rewrites as

Vor =4f(1/2)+f(1/8):  flz):=) (2_7,2?

i=1
and allows for the calculation of /27 in

SC*.
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e Another two identities involving Cata-
lan’s constant G, 7 and log(2) are:

@)

7 log(2) Ci
G — = .
8 Z ol5H 152’

1=1

where
[Ci] — [17 17 17 07 _17 _17 _17 O]

and
5 5 1og’(2) <= d;
96 3 _ZQV?W’
where

d;] =[1,0,-1,—1,—-1,0,1,1]

e Thus 8G —mlog(2) is also in SC* in base
2.

That G is itself in SC* in base 2 is a recent
result of Broadhurst.
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The Algorithm.

e We wish to evaluate the n-th base b digit

of o
1
Z k.bck
k=1

by evaluating the fractional part of

k=1

e Evaluating the fractional part of the sec-
ond sum will evaluate the first sum to as
many base b digits after the n-th place as
the precision of the calculation.
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e The keys are that the fractional part of
(*) is the same as the fractional part of

. 0" mod k
k=1

and that 8"~ mod k can be evaluated
quickly.

e Fast evaluation of 8"~ mod k is well

understood; it rests on the simple fact
that if
b"™ =r mod k

then

(b™)? = r? mod k.
The allows for fast exponentiation mod
k by the so called binary method.

¢ (According to Knuth this trick goes back
at least to 200 B.C.)
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e The critical fact is that the the fractional
part of b™ /k can be computed quickly.

e For example, in base 10. If we solve

10" = aamod k
then Lon
Q
— — — € Z
kk

and so 10" /k and a/k have the same frac-
tional parts.

e In particular a/k gives the digits of 1/k
staring after the n-th place.

e This allows for the calculation of the n-
th digit of 1077 /k from the computation
of

107 = amod k.

This explains (**) above.
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THE QUADRILLIONTH BIT OF PI1 1S 0

In Sept 2000, 1734 computers from 56 coun-
tries. Ths took a total of about 1.2 million
cpu hours using idle time slices.

It was orchestrated bu Colin Percival.

The “average” computer participating was
a 450MHz Pentium II.

The answer, starting at the 999,999,999,999,997th
bit of Pi:

1110 0110 0010 0001 0110
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Logs in base 2. It is easy to compute,
in base 2, the d-th binary digit of

log(1 —27") = L1(1/2").

So it is easy to compute log m for any in-
teger m that can be written as

(291 —1)(2%2 —1)--- (2% — 1)
2 1)@ — 1) (2 — 1)

m —

e In particular the n-th cyclotomic poly-
nomial evaluated at 2 is so computable.
The beginning of this list is:

{2,3,5,7,11,13,17,31, 43,57} .

e Since

218 _1=7.9.19.73,
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and since 7, V9 and 73 are all on the
above list we can compute log(19) in SC*
from

log(19) = log(2'® — 1)—log(7)—log(9)—log(73).

e Note that 211 —1 = 23-89 so either both
log(23) and log(89) are in SC* or neither
1S.

One can show that no formula of the type
on the previous page exists for log(23).



37
Questions.

e The hardest part of our method is find-
ing an appropriate base b expansion.

e We cannot, at present, compute deci-
mal digits of m by our methods because
we know of no identity like Theorem 1 in
base 10. But it seems unlikely that this is

inherently impossible.

e This raises the following obvious prob-
lem.

1] Find an algorithm for the n-th decimal
digit of m in SC*.

e [t is not even so clear that 7 is in SC in
base 10. This is a result of Plouffe.
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e Numbers that are not given by special
values of polylogarithms aren’t suscepti-
ble to our methods. Is this necessarily the
case?

2] Are e and /2 in SC (SC*) in any base?

e Similarly the treatment of log is incom-
plete.

3] Is log(2) in SC* in base 107

4] Is log(23) in SC* in base 27
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