“I1 AM ASHAMED TO TELL
YOU TO HOW MANY FIG-

URES I CARRIED THESE

COMPUTATIONS, HAVING
NO OTHER BUSINESS AT

THE TIME.”

Isaac Newton 1665—-1666
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A ROMANTIC STORY WITH
A CAST OF THOUSANDS.
SET IN MANY EXOTIC LO-
CATIONS AND SPANNING
THOUSANDS OF YEARS.

The Cast:

Act 1. Eudoxus, Archimedes,

Tsu Chung-Chi, Leonardo of
Pisa, Ludolph van Ceulen.

Act 2. Vieta, Wallis, Newton,
Gregory, Leibnitz, Machin, Eu-
ler, Lambert, Dase, Shanks.

Act 3. Gauss, Legendre, La-
grange, Ramanujan.
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Act 4. Von Neumann, Salamin,
Gosper, Brent, Berndt, Bali-

ley, Kanada, Chudnovsky, Eniac,
CDC, IBM, Cray, Hitachi.

With Thanks To Co-Authors:
D. Bailey, J. Borwein,
K. Dilcher, F. Garvan.




Prehistory: = =3

“Also he made a molten sea
of ten cubits from brim to brim,
round in compass, and five
cubits the height thereof; and

a line of thirty cubits did com-
pass it round about.”

Old Testament, 1 Kings 7:23

. 1 91 913
7—3,37,38,38—1,...

Babylonian and Egyptian.



“For a circle one meter in ra-
dius, rotation at roughly ten
million revolutions per second
will bring about the desired
value for pi (3)”

Due to the Lorentz-Fitzgerald
contraction.

(R. Norwood, 1992)



Bill No. 246, 1897. State of
Indiana.

“Be it enacted by the Gen-
eral Assembly of the State of
Indiana: It has been found
that the circular area is to
the quadrant of the circum-
ference, as the area of an equi-
lateral rectangle is to the square
on one side.”

“In further proof of the value
of the author’s (E.J. Good-
man, M.D.) proposed contri-
bution to education, and of-

fered as a gift to the State of
Indiana, is the fact of his so-
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lutions of the trisection of the
angle, duplication of the cube
and quadrature of the circle
having been already accepted
as contributions to science by
the American Mathematical
Monthly, the leading exponent
of mathematical thought in this
country.”

e Passes three readings, Indi-
ana House, 1897. (Via House
Committee on Swamp Lands.)

o Passes first reading, Indi-
ana Senate, 1897. (Via Sen-
ate Committee on Temperance.)

7



“The case is perfectly simple.
If we pass this bill which es-
tablishes a new and correct
value of r, the author offers
our state without cost the use
of this discovery and its free
publication in our school text-
books, while everyone else must
pay him a royalty.”

e Professor C.A. Waldo of Pur-
due intercedes and the bill is

tabled.



First Age of Pi (Archimedes)

e This computes the length of
circumscribed and inscribed
regular 6 -2"-gons in a circle
of radius one.

Archimedes used n=4 for his
estimate.



3.141< 7 <3.142 Archimedes
(287-212 BC)

3—34 Digits Chinese,
Arabic, etc.
34 Digits Ludolph

(1540-1610)
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Landmarks:

Francois Viete (1540-1603)

2_(%1 ww1 1F 1F_
szt Toe TN

(1593)

John Wallis (1616—-1703)

2.2.4.4.6.6-8-8---
~—1.3.3.5.5.7.7.9...

Nl 5

(1655)

11



W illiam Brouncker (1620-1684)

4

mw — 1

I _|_
25

James Gregory (1638-1675),
Gottfried Wilhelm Leibnitz
(1646-1716)

(1671)
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Second Age of Pi (Calculus)

arctanz :=z — 23/3 +2°/5— - -

== 16 arctan(1/5) 4+ 8arctan(1/239)
100 Digits - Machin (1706)

= 20 arctan(1/5) 4+ 8 arctan(3/79)
20 Digits - Euler (~1748)

m/4 = arctan(1/2)+
arctan(1/5) 4+ arctan(1/8)

N——"

205 Digits - Dase (1844)
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Other Machin-like formulae

707(527) D. Shanks (1853)

2037 D. ENIAC (1949)

(von Neuman & )

10,000 D. IBM 704 (1958)
(Genuys)

100,000 D. IBM 7090 (1961)
(Shanks, Wrench)

1-million D. CDC 7600 (1973)
(Guilloud, Bouyer)
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William Shanks

Contributions to
Mathematics
Comprising Chiefly
the
Rectification of the Circle
to 607 Places of Decimals.
1853

Towards the close of the year
1850 the Author first formed
the design of rectifying the
circle to upwards of 300 places
of decimals.
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He was aware at that time,
that the accomplishment of
his purpose would add little
or nothing to his fame as a
Mathematician though it might
as a Computer; nor would it
be productive of anything in
the shape of pecuniary rec-
ompense.
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17-mill.

29-muill.

128-mill.

536-mill.

1-billion

1-billion

2-billion

Symbolics 3670
(1985) Gosper

Cray-2
(1986) Bailey

HITACHI
(1987) Kanada et al.

HITACHI S-810/80
(1989) Kanada

IBM 3090/CRAY 2
(1989) Chudnovsky?

(1989) Kanada

(1990) Chudnovsky?
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The State of our Knowledge

We know that ...

e 7 1S Irrational. Lambert
(1761)

o 7 not alg. Lindemann
(1882)

e 7 1s not Liouville. Mahler
(1953)

e 7+ +v2log2 not alg. Baker
(1966)
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o The first few billion digits
distribute regularly.

e 123456789 appears starting
at the 523,551,502th digit.

e The billionth digit of = is 9.
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The State of Our Ignorance

We do not know. ..

o If the decimal expansion of
7 contains infinitely many 2’s
(or anything else about nor-
mality).

e If the continued fraction ex-
pansion is unbounded.

e If 7+ ¢ is transcendental
(or even irrational).

o If n/logr is transcendental
(or even irrational).
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How Big is Three Billion

e 3 billion (12pt) digits go from
Halifax to Vancouver.

e 3 billion digits fill four foot-
ball fields.

e 3 billion digits read off at 1
digit /second take a century.

e 3 billion is roughly the U.S.
national debt in thousand dol-

lar bills.

e 3 billion digits fill roughly
700 Bibles.
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High Order Iterative Algo’s

Arithmetic-geometric mean it-
eration: If

. b .
Cln_|_1 . — Q[L_—'Z__n CI,O . — 1

and
bn_|_]_ = \/a,nbn bO = \/? (.13)
Then
lim an — 1im bn — 1 Tr/dZt
b 1—t4
_ m/2
o /7T/2 do
0 J1—(1—2%)sin?0
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In 1799, Gauss observed this
purely numerically and wrote
that this result

“will surely open a whole new
field of analysis.”
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Equivalent Modular Parame-
terization

) = 304400

and

— O

These are modular forms.
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Three Algorithms for Pi.

Quartic Algorithm. Let o :=
6—4\/?, Yo -— \/i—l,

1= 41 —yf
In+1 -— 1+ 4@

an41 = (14 ypp1)*an

2203y (L g1 H¥211)

Then
1

an — —
T

quartically.

o 15 iterations give 2-billion
digits.
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Cubic Algorithm

Let ap = 1, bO = £2;1 If

o 20
n+1 -— %j_?n

and 5 5
bn—l—l = BJ bn(an—l_%nbn""bn)
then
™ =

= 1.9 _ 2
L= n203n+ (a7 = aj11)

e The convergence is cubic.
Twenty two terms gives more
than two billion digits.
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Quintic Algorithm
Let s5:=5(vV5—-2) , ap:=1/2.

Apy] = s%an

—5”{(5% -5)/2+ \/3% — 2sp + 5}

Then 1/an, converges quinti-
cally to r.
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e The first three iterations give
5,31 and 166 digits.

e Fourteen iterations give over
8-billion digits.

e This is based on a solvable
modular equation due to Ra-
manujan.
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A Cubic AGM

Let qp:=1 and by 1=z

. 2b
Int1 -— QB—E—E
and . 3|bp(az+anby+02)
bn—l—l T 3

then the common limit is

B 1
Flz) = 9] (%%, 1;1 - 23

e The convergence is cubic.
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Proof: Opaque:
2P1(1/3,2/3;1;x)

satisfies
no (1 1 ) ) 4 _
y —|_(:U+x—1y 0o(1—2)? =V

The equivalent cubic transfor-
mation is beautiful:

1 2

(V)
~
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A Cubic AGM cont.

3 lim a2
n—oo

ot 2
L- n§o3n+1 (0 — 4 11)

mw —

where ay, is as above, with

V31
by 1= —5—

o Taking ¥+ 1 terms of the
sum and limit gives a cubi-
cally convergent algorithm.

e Twenty one terms gives three
billion digits.
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Equivalent Modular Parame-
terization

If
L(q) _ Of qm2+mn—|—n2
— 00
and
3L(¢°) - L
M(q): (g )2 (9)
Then
L + 2M
L(q3)= (9) ; (9)
and
M(g%) =

32



Some Explanations: Let

n
9Fy(a,b;c;a) 1= %j (a),(b),z

n=0 (c)nn' ’
where
(a)n — a(a—l—l)---(a—|—n— 1).
Let
1 1
Fs(x) := 2F1(§ — 55 +s,1, :1:2)

1 1
Gs(x) = 2F1(—§ — 55 + s, 1,x2).

Then

Gs(x)FS(\/l — :z:2) + FS(:(:)GS( 1 - a:2)

cos(rs) )
2(1+ 2s)

1

T

—Fs(x)Fs( 1 - x2) =
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and
:1:(1 — xz) dFS(a:)

Gs(x) = (1—:1:2)F3(:1:)—|— 12 e

With z:=1/V2 we get
V2

cos(rs)

Fs(LVD)FY(1/VD) = ©

o If we can compute Fs itera-
tively we can compute F, and
1/7 by a second linked itera-
tion.
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e There are four particularly
interesting cases.

s =0 Gaussian AGM.
s=1/6 Cubic AGM.
s=1/3 Absolute invariant.
s=1/4 Borchardt type.

e Inverting Fs(z)/Fs(V1 — 22) gives
modular functions.

e This makes much of this an
algebraic theory.

e Finding and proving these
iterations can (at least in prin-
cipal) be effected entirely com-
putationally.
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Quadratic s=1/4 Iteration

Let
an_|_1 p— %Lbn) CLO e ].
and
. bplan+0 .
PR X R

Then the common limit is

1
o F7(1/4,3/4;1;1 — 22)
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Caveat Emptor: Let
a,n_l_]_ = Qﬂ;'é'?—bn a( =1

and

Y an —l_Bb bO = .

bn—l—l —

Then the common limit g¢(z)
is not differentially algebraic.

So this is probably not a fa-
miliar named function.
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“a certain impression I had of
mathematicians was ... that
they spent immoderate amounts
of time declaring each other’s
work trivial.”

(Richard Preston)

“It’s about as interesting as
going to the beach and count-
ing sand. I wouldn’t be caught
dead doing that kind of work.”

(***********)

“The universe contains at most
10°1 grains of sand.”

(Archimedes)
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Ramanujan Type Series

Ramanujan’s remarkable se-
ries for 1/7 include

1_ 2v2 oo (4n)![1103 +26390n)
w9801 520 (n)d (4% 99)4n

e This series adds roughly eight
digits per term.

o Gosper in 1985 computed
17 million terms of the con-
tinued fraction for = using this.
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e Such series exist because var-
ious modular invariants are ra-
tional (which is more-or-less
equivalent to identifying those
imaginary quadratic fields of
class number 1).
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The Chudnovskys’ series with
d= -163 is

1
127
o (~1)"(6n)!13591409+n545140134
n=0 (n!)3(3n)!  (6403203)n+1/2

eQuadraticversionscomefromclassnumbertwormaginaryq

e The largest example has d =
—427 and adds roughly 25 dig-
its per term.
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1 o (—1)"*(6n)! n
7 2 ((n!))S ((3n))! (éntl/g)

where
A:=212175710912v61
+1657145277365

B :=13773980892672v61
+107578229802750

C := [5280(236674 + 30303v61)]3.
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These series are of the form

nzo(a(t) —|—nb(t>)(3n)! MHAGE
_ =)
where




By(q) = 1-24 & ™

n=11-¢"
0o nd3gh
Eala) = 1240 n=11—gn
5. n
0  nYgq
E6<q) = 1- 5407121 1_ "
q = —6_7‘-\/%.

e Here ¢t is the appropriate dis-
criminant, j is the “absolute
invariant” of Klein.

e £y, B, and Eg are Eisenstein
series.
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e There 1s an unlimited num-
ber of such series with increas-
ingly more rapid convergence.

e The price is that one must
deal with more complicated
algebraic irrationalities.

e A class number » field will
involve pt" degree algebraic in-
tegers as the constants A =
a(t)y, B = b(t) and C = c(t) in
the series.

e The largest class number 3
example with d = -907 gives
37 or 38 digits per term.
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The largest class number four
sum with 4 = -1555 is

y-C3 3 (6n)! A+nB
8 _n:O (Sn)!(n!)g ot

where

C = —214772995063512240 — 96049403338648032 * 5'/2
1296 % 5'/2(10985234579463550323713318473

4912746253692362754607395912 % 5'/2)1/2

+ |

63365028312971999585426220 + 28337702140800842046825600 * 5'/2
384 % 5'/2(10891728551171178200467436212395209160385656017
4870929086578810225077338534541688721351255040 * 51/2)1/2

+ +

7849910453496627210289749000 4 3510586678260932028965606400 * 51/2
2515968 * 31102 (6260208323789001636993322654444020882161

2799650273060444296577206890718825190235  51/2)1/2

+ +

e This gives 50 additional dig-
its per term.
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Deriving the Series:

e The absolute invariant, and
so the coefficients A, B, and C
satisfy polynomial equations
of known degree and height.

e Thus the problem of deter-
mining the coefficients of each
series reduces to algebra and
can be entirely automated.

e From the expressions for j(¢),
a(t), b(t) it is easy to compute
their values to several hun-
dred digits.
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e The lattice basis reduction
algorithm now provides the
minimal polynomials for each
quantity.

e In addition, a higher preci-
sion calculation actually pro-
vides a proof of the claimed
identity.

e This last step requires know-
ing a priori bounds on the de-
grees and heights.
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Iterative Computations.

Quartic Algorithm.
Let an = 6—4\/§7 Yo -— \/i—].

Let
1= 1y
yn—l—l ° 1_|_ 4’/1_y%

an41 = (L +ypi1)*on

—22mH3y (Lt yn + 2 4q)

Then o, — 1/ quadratically.
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e Ten billion digits requires a
couple of hundred full preci-
sion additions, multiplications,
divisions, and root extractions.

e Multiplication is the key. Di-
vision and root extraction are
Newton’s method.

o Complexity is O(lognM(n))
where M(n) is the bit complex-
ity of multiplication.

o All algebraic numbers have
complexity O(M(n)) so the “es-
sentialness” of the log is a very
interesting question.
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e The algorithm must be started
from scratch for a new run.

e Two runs of different algo-
rithms are generally executed
for error checking.

e For o algebraic log(a) has the
same complexity.
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Series Computations

1 o (20)%42n+5

T nZoln| 212n+4

1 N (2n 342n—|—5

_— nEO(n) oT2ntd T €N

— Zﬂ+5N
N

where
by = 212V+4 is an exact power
of two.

apn 1s an integer of roughly
the same size.
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e This can be restarted if oy
and b, are stored. (So a few
extra digits is easy.)

e Complexity is O((logn)2M(n)),
but in practice it’s good. (Still
needs an FFT.)

o Error checking by congru-
ences.
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Frauds:

Gregory’s series for =, trun-
cated at 500,000 terms gives
to thirty places

500,000 (_1)k—1

kil 2k — 1

= 3.14159065358979324046264338326.

e Only the underlined digits
are wrong.
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Theorem. For integer N di-
visible by 4 the following asymp-
totic expansion holds:

- ~ 2m
372 o1 " o
1 1 5
N NSNS

where the coefficients are the

even Euler numbers 1, -1, 5,
-61, 1385, —50521....
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o Gregory’s series requires more
terms than there are parti-

cles in the universe to com-
pute 100 digits of =.

e However, with N = 200,000
and correcting using the first
thousand even Euler numbers
gives over 5,000 digits of .
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Excessive Fraud:

Sum (correct to somewhere
over 42 x 101000 digits)

6.¢) E 2
! ~otom|
(mf)oonzooe ’ ] -

e The sum arises from an ap-
plication of Poisson summa-
tion or equivalently as a mod-
ular transformation of a theta
function.
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The Billionth Digit of Pi is 9:

Can you compute just the nth
digit in log space and polyno-
mial (linear) time?

e Probably: =% is possible in
base 2 and base 3.

A Final Conjecture ...
Conjecture: No one will ever

know the 101090th digit of ~
(or the 10°1th).

o Eventually we must run out
of time.
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