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Muntz’s Theorem.

A very attractive variant of Weierstrass’
theorem characterizes exactly when the
linear span of a system of monomials

M= {zro 2™ )
is dense in C'[0, 1] or L2|0,1].
Miintz’s Theorem in C|0,1]. Suppose

{152, is a sequence of distinct positive
real numbers not converging to 0. Then

span{1,z*, 22, ...}

is dense in C|0, 1] in the uniform norm if
and only if

=1

This theorem follows by a simple trick from
the Lo version of the theorem.
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Miintz’s Theorem in L,|0,1]. Suppose
{Ai}2y C (—1/2,00) is a sequence of dis-
tinct real numbers not converging to —1/2.

Then

span{z, z, ...}

is dense in L9|0,1] if and only if

|
; vin 0.
A; #0O

Orthonormal Miuntz-Legendre poly-
nomials.

We can orthonormalize

span{z?°, ... "}

Define L}, the n-th orthonormal Muntz-



Legendre polynomial defined by
27‘(‘2 t — )\k t — )\n

n
— ch,nczf"“, x € (0,00)
k=0

with
IS e+ + 1)
T [Lico e Ak = A5)

and

L¥ = (14 Xy + M) Y21,

Then we get an orthonormal system, that
1S,

1
/ L (x)Lf (x)dx = 6y, m,n=0,1,....
0



Proof of Muntz’s Theorem. We consider
the approximation to " by elements of

span{z*°, ... g "1}

n L2 [O, 1]

For L7, the n-th orthonormal Muntz-Legendre
polynomial we have

n—1

L (x) = Z a; x4 apx™
1=0

It follows from ||L} | z2(01) = 1 and or-
thogonality that L} /a, is the error term
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in the best L5|0, 1] approximation to =™
from

span{z™°, ... -1}

Therefore

n—1
min ||x"" — E b x
b, eC :

1=0

£2[0,1]

m—)\i
m-+ N\, + 1]

1 1

B m B V1+2m E)
So, for m # A\,

™ € span{x’?, ™, ...}

)

(where Span denotes the L]0, 1] closure of
the span) if and only if

n—1
lim sup H
" 4=0

]

1 —

2m + 1 B
m+ A\ +1 B
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Full Mintz Theorem on [a,b], a >
0. Let {\;}2, be a sequence of distinct
real numbers. Then

span{z°, zt, ...} = Cla, b]

where span means the closure of the span
in the uniform norm on |a, b, if and only

of
DR R
= 1l |
Ai #£0

Miuntz with Complex Exponents. Sup-
pose {\;}52 is a sequence of complex num-
bers satisfying

Re()\i)>0, 1 =1,2,....

A — 1\
A, + 1 -

If

(o

n=1




then
span{l,z™, z*?, ...}

18 dense in the set of complex-valued con-
tinuous functions on |0, 1].

Muntz Rationals.

A surprising and beautiful theorem, con-
jectured by Newman and proved by So-
morjai , states that rational functions de-
rived from any infinite Miuntz system are
always dense in C'a, b],a > 0. More specif-
ically we have

Denseness of Miuntz Rationals. Let
{N:}524 be any sequence of distinct real
numbers. Suppose a > 0. Then

n .y
{%;:0 Z;\ a5, b; €R, ne N}
i=0 Vit




is dense in Cla, b].

The proof of this theorem, primarily due
to Somorjal, rests on the existence of zoomers.
A function Z defined on |a, b] is called an
e-zoomer (€ > 0) at ¢ € (a,b) if

Z(x) >0, x € |a,b]
Z(x) <€, T < (—€
Z(x)>e ', z>(+e

While (approximate) o-functions are ap-
proximate building blocks for polynomial
approximations, the existence of e-zoomers
is all that is needed for rational approxi-
mations.

A comparison between Muntz’s Theorem
and this shows the power of a single di-
vision in these approximations. In what
other contexts does allowing a division cre-
ate a spectacularly different result.
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Conjecture 1 (Newman 1978). If M
is any infinite Markov system on [0, 1] then
the set of rationals

{Z—j ' p,q € span ./\/l}
q

is dense in C|0,1].

He calls this a “wild conjecture in search
of a counterexample”. It does however

hold for both

M = {a? M, ..}, A >0

1 1
M:{ | }
r— 1y ¥ — Q9

We give a counterexample to this conjec-
ture. However, the characterization of the

and
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class of Markov systems for which it holds
remalns as an interesting question.

Newman also conjectures the non-denseness
of products

Conjecture 2 (Newman 1978).
(Sa;z" bzt )
is not dense in C|0,1].

He speculates that this “extra” multipli-
cation of Muntz polynomials should not
carry the utility of the “extra” division.

We will show that products of two Muntz
polynomials from non-dense Muntz spaces
never form a dense set in C|0, 1].

Non-Dense Ratios of Miintz Spaces.
Suppose 0 < A\g < A1 < ---. Let a > 0.
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Show that

n A
{gfob"’f_x ca;, b ER, 1 € N}
i=0 1 '

is dense in Cla, b], if and only if Y0 1/A; <

.

The following example is due to Boris Shekht-
man and P. B.

A Markov System with Non-Dense
Rationals.

We construct an infinite Markov system
as follows. Consider non-negative even in-
tegers

O=M0<)\1</L1<>\2<,u2<

"'<)\n<,un<"'
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which are lacunary in the sense that there
exists ¢ > 1 so that

. s
&>q and Z+1>q, v =1,2,....
A I

Let ¢, € C[—1, 1] be defined by
wo =1, op(x) ="

and

x>0
par+1(T) = { Ak .

Then {po,p1,...} is a Markov system
on [—1,1].
But the rational functions of the form
n
. a .@ .
Zin—o ’ ], aj,b; eR, n,meN
ijo bjw;

are not dense in C[—1,1] in the uniform
norm.
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Chebyshev Systems.

An essential property that polynomials of
degree at most n have is that they can
uniquely interpolate at n + 1 points. This
i1s equivalent to the fact that a polyno-
mial of degree at most n that vanishes
at n + 1 points vanishes identically. Any
n+ 1 dimensional vector space of continu-
ous functions with this property is called a
Chebyshev space or sometimes a Haar
space.

Examples. The following are Chebyshev
systems.

a] On [0,00) with 0 =Xy <--- < Ay,
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b] With \g < A1 < - < Ay,

1 1 1
T—X - x—N\, )

c] On (—oo,00) with Ag < -+ < Ay,

{ero® M - eAnTY

d] On [0,7),

{1,cos0,cos20,..., cosnb}

Markov and Descartes Systems.

Chebyshev systems capture some of the
essential properties of polynomials. There
are two additional types of systems that
capture some additional properties.
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Definition (Markov System). We say
that { fo, f1,---,fa} is a Markov system
on a Hausdorff space A if each f; € C|A]

and form=0,1,...,n

span{ fo, ..., fin}

is a Chebyshev system. (We allow n to
tend to +00 wn which case we call the sys-
tem an infinite Markov system on A.)

Definition (Descartes System). We say
that {fo, f1,...,fn} is a Descartes sys-

tem (or order complete Chebyshev system)
on |a,b] if each f; € Cla,b] and

D<g’i0 9i, .- g’Lm) > 0

L0 L1 ce Lm,

for any 0 < 1g < 11 < -+ < 1y, and a <
$0<$’1<"'<5Bm§b.
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Theorem (Descartes’ Rule of Signs).

Suppose {fo, ..., fn} is a Descartes sys-
tem on |a,b]. Then the number of distinct
zeros of any

O#fZZaifi, a; € R
1=0

18 not greater than the number of sign changes
in {ag,...,a,} (a sign change occurs ex-
actly when a;a;41 <0,1=0,...,n—1.)

Revised Newman Conjecture. If M
is any infinite Descartes system on [0, 1]
then the set of rationals

{g . P, q € span /\/l}

is dense in C|0,1].
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Chebyshev Polynomials in Chebyshev
Spaces.

Suppose

H, :=span{fo,..., fn}

is a Chebyshev space on [a,b] and A is a
compact subset of [a, b] with at least n +
1 points. We can define the generalized
Chebyshev polynomaal

T, = Tulfor..  fui A}
for H,, on A by

n—1
1, =c (fn — Zakfk>

k=0

where the numbers ag, a1, ... ,a, € R are
chosen to minimize

n—1

fn — Zakfk

k=0 A
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and where ¢ € R 1s a normalization con-
stant chosen so that

ITnlla =1

Theorem. Suppose H,, := span{fo,..., fn}
is a Chebyshev space on |a,b] with associ-
ated Chebyshev polynomaial

T, :=Tw{fo,..., fn;|a,b]},
and each f; is differentiable at b. Then
max{[p, (b)| : pn € Hy}

where ||pn|lia,p) < 1,pn(b) = Tn(b) is at-
tained by T, .
Theorem (Lexicographic Property).

Suppose {fo, f1,...} is a Descartes sys-
tem on [a, b]. Suppose Ag < A1 < ... < Ay
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and v < v1 < ... < 7yn are nonnegative
integers satisfying

)\ié’)/i, ’1:2071,...,%.
Let

Tn ‘= Tn{fkoa"' 7f/\n; [aab]}

and

Sp 1= Sn{f’yoa s 7f’yn; [aab]}

be respectively the associated Chebyshev poly-
nomauals. Let

<o <...<a, and Bo< L <...<p,

denote the zeros of 1, and S,, respec-
tively. Then

O‘iéﬂia i:O,...,n

with strict inequality of A\; # ~v; for at least
one index i. (In other words the zeros of

T, lie to the left of the zeros of S, .)
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Denseness and Zeros of Chebyshev
Polynomials.

For a sequence of Chebyshev polynomials
T, associated with a fixed Markov system

on |a, b] we have the mesh of T,, is defined
by

M, == M, (T}, : |a,b]) == max |x; — z;_1].
1<1<n+1

where x; are the zeros of T},.

Theorem (P.B.). If M :={1, f1, f2,...}
is an infinite Markov system on [a, b] with
each f; € Ctla,b]. Then span M is dense
in Cla, b] if and only if

lim M, =0

n—oo

where M, 1s the mesh of the associated
Chebyshev polynomaials.
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Corollary (Weierstrass’ Theorem). The
polynomials are dense in C[—1,1].

Proof. M = {1,z,2%, ...} is an infinite
Markov system of C'! functions on [—1, 1].
The associated Chebyshev polynomials are
just the usual Chebyshev polynomials 7;,
and

M, <l = n=12..
n

1S obvious . []

Denseness and Unbounded Bernstein
Inequalities.

Definition (Unbounded Bernstein In-
equality). Let A be a subset of C'[a,b].
We say that A has an everywhere unbounded
Bernstein iequality if

sup{”p/”[a’ﬁ] pe A p#O} = o0
||p||[a,b]
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for every [a, 8] C la, 0], o # S

Bernstein-Type Inequality for Cheby-
shev Spaces. Let {1, f1,..., fn} be a Cheby-
shev system on |a,b] such that each f; is
differentiable at xq € [a,b]. Let

Ty = Tn{17f17 oy I [aab]}

be the associated Chebyshev polynomaal.
Then

pn(@0)| _ 2
|Pnllfa,e) = 1 — |[Tn(o)]

for every p, € span{l, fi,...,f.} pro-
vided |15, (xo)| # 1.

|77, (o)

Characterization of Denseness by Un-
bounded Bernstein Inequality. Sup-
pose M = {fy = 1, f1,...} is an in-
finite Markov system on |a,b] with each
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fi € C?%[a,b] . Then span M is dense in
Cla, b] if and only if span M has an ev-
erywhere unbounded Bernstein inequality.

Corollary (Weierstrass’ Theorem. The
polynomials are dense in C[—1,1].



