MÜNTZ POLYNOMIALS

PETER BORWEIN
Simon Fraser University

Typeset by $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ -TEX

Müntz's Theorem.

A very attractive variant of Weierstrass' theorem characterizes exactly when the linear span of a system of monomials

$$\mathcal{M} := \{x^{\lambda_0}, x^{\lambda_1}, \dots\}$$

is dense in C[0, 1] or $L_2[0, 1]$.

Müntz's Theorem in C[0,1]. Suppose $\{\lambda_i\}_{i=1}^{\infty}$ is a sequence of distinct positive real numbers not converging to 0. Then

$$\mathrm{span}\{1, x^{\lambda_1}, x^{\lambda_2}, \dots\}$$

is dense in C[0,1] in the uniform norm if and only if

$$\sum_{i=1}^{\infty} \frac{1}{\lambda_i} = \infty.$$

This theorem follows by a simple trick from the L_2 version of the theorem.

Müntz's Theorem in $L_2[0,1]$. Suppose $\{\lambda_i\}_{i=0}^{\infty} \subset (-1/2,\infty)$ is a sequence of distinct real numbers not converging to -1/2. Then

$$\mathrm{span}\{x^{\lambda_0},x^{\lambda_1},\dots\}$$

is dense in $L_2[0,1]$ if and only if

$$\sum_{\substack{i=0\\\lambda_i\neq 0}}^{\infty} \frac{1}{|\lambda_i|} = \infty.$$

Orthonormal Müntz-Legendre polynomials.

We can orthonormalize

$$\operatorname{span}\{x^{\lambda_0},\ldots,x^{\lambda_n}\}$$

Define L_n^* , the *n*-th orthonormal Müntz-

Legendre polynomial defined by

$$L_n(x) := \frac{1}{2\pi i} \int_{\Gamma} \prod_{k=0}^{n-1} \frac{t + \overline{\lambda}_k + 1}{t - \lambda_k} \frac{x^t dt}{t - \lambda_n}$$

$$=\sum_{k=0}^{n}c_{k,n}x^{\lambda_k}, \qquad x \in (0,\infty)$$

with

$$c_{k,n} := \frac{\prod_{j=0}^{n-1} (\lambda_k + \overline{\lambda}_j + 1)}{\prod_{j=0, j \neq k}^n (\lambda_k - \lambda_j)}$$

and

$$L_n^* := (1 + \lambda_n + \overline{\lambda}_n)^{1/2} L_n.$$

Then we get an orthonormal system, that is,

$$\int_{0}^{1} L_{n}^{*}(x) \overline{L_{m}^{*}(x)} dx = \delta_{m,n}, \quad m, n = 0, 1, \dots$$

Proof of Müntz's Theorem. We consider the approximation to x^m by elements of

$$\mathrm{span}\{x^{\lambda_0},\ldots,x^{\lambda_{n-1}}\}$$

in $L_2[0,1]$

For L_n^* , the *n*-th orthonormal Müntz-Legendre polynomial we have

$$L_n^*(x) = \sum_{i=0}^{n-1} a_i x^{\lambda_i} + a_n x^m$$

where

$$|a_n| = \sqrt{1 + 2m} \prod_{i=0}^{n-1} \left| \frac{m + \lambda_i + 1}{m - \lambda_i} \right|.$$

It follows from $||L_n^*||_{L^2[0,1]} = 1$ and orthogonality that L_n^*/a_n is the error term

in the best $L_2[0,1]$ approximation to x^m from

$$\operatorname{span}\{x^{\lambda_0},\ldots,x^{\lambda_{n-1}}\}.$$

Therefore

$$\min_{b_i \in \mathbb{C}} \left\| x^m - \sum_{i=0}^{n-1} b_i x^{\lambda_i} \right\|_{L^2[0,1]}$$

$$= \frac{1}{|a_n|} = \frac{1}{\sqrt{1+2m}} \prod_{i=0}^{n-1} \left| \frac{m-\lambda_i}{m+\lambda_i+1} \right|.$$

So, for $m \neq \lambda_i$,

$$x^m \in \overline{\operatorname{span}}\{x^{\lambda_0}, x^{\lambda_1}, \dots\}$$

(where $\overline{\text{span}}$ denotes the $L_2[0,1]$ closure of the span) if and only if

$$\lim_{n} \sup_{i=0}^{n-1} \left| 1 - \frac{2m+1}{m+\lambda_i + 1} \right| = 0.$$

Full Müntz Theorem on [a,b], a > 0. Let $\{\lambda_i\}_{i=0}^{\infty}$ be a sequence of distinct real numbers. Then

$$\overline{span}\{x^{\lambda_0}, x^{\lambda_1}, \dots\} = C[a, b]$$

where \overline{span} means the closure of the span in the uniform norm on [a, b], if and only if

$$\sum_{\substack{i=0\\\lambda_i\neq 0}}^{\infty} \frac{1}{|\lambda_i|} = \infty.$$

Müntz with Complex Exponents. Suppose $\{\lambda_i\}_{i=1}^{\infty}$ is a sequence of complex numbers satisfying

$$Re(\lambda_i) > 0, \qquad i = 1, 2, \dots$$

If

$$\sum_{n=1}^{\infty} \left(1 - \left| \frac{\lambda_n - 1}{\lambda_n + 1} \right| \right) = \infty$$

then

$$span\{1, x^{\lambda_1}, x^{\lambda_2}, \dots\}$$

is dense in the set of complex-valued continuous functions on [0, 1].

Müntz Rationals.

A surprising and beautiful theorem, conjectured by Newman and proved by Somorjai, states that rational functions derived from any infinite Müntz system are always dense in $C[a, b], a \geq 0$. More specifically we have

Denseness of Müntz Rationals. Let $\{\lambda_i\}_{i=0}^{\infty}$ be any sequence of distinct real numbers. Suppose $a \geq 0$. Then

$$\left\{ \frac{\sum_{i=0}^{n} a_i x^{\lambda_i}}{\sum_{i=0}^{n} b_i x^{\lambda_i}} : a_i, b_i \in \mathbb{R}, \quad n \in \mathbb{N} \right\}$$

is dense in C[a, b].

The proof of this theorem, primarily due to Somorjai, rests on the existence of zoomers. A function Z defined on [a,b] is called an ϵ -zoomer $(\epsilon > 0)$ at $\zeta \in (a,b)$ if

$$Z(x) > 0,$$
 $x \in [a, b]$
 $Z(x) \le \epsilon,$ $x < \zeta - \epsilon$
 $Z(x) \ge \epsilon^{-1},$ $x > \zeta + \epsilon$

While (approximate) δ -functions are approximate building blocks for polynomial approximations, the existence of ϵ -zoomers is all that is needed for rational approximations.

A comparison between Müntz's Theorem and this shows the power of a single division in these approximations. In what other contexts does allowing a division create a spectacularly different result.

Conjecture 1 (Newman 1978). If \mathcal{M} is any infinite Markov system on [0,1] then the set of rationals

$$\left\{\frac{p}{q}: p, q \in span \mathcal{M}\right\}$$

is dense in C[0,1].

He calls this a "wild conjecture in search of a counterexample". It does however hold for both

$$\mathcal{M} = \{x^{\lambda_0}, x^{\lambda_1}, \dots\}, \qquad \lambda_i \ge 0$$

and

$$\mathcal{M} = \left\{ \frac{1}{x - \alpha_1}, \frac{1}{x - \alpha_2} \dots \right\}$$

We give a counterexample to this conjecture. However, the characterization of the

class of Markov systems for which it holds remains as an interesting question.

Newman also conjectures the non-denseness of products

Conjecture 2 (Newman 1978).

$$\{\Sigma a_i x^{i^2}\}\{\Sigma b_i x^{i^2}\}$$

is not dense in C[0,1].

He speculates that this "extra" multiplication of Müntz polynomials should not carry the utility of the "extra" division.

We will show that products of two Müntz polynomials from non-dense Müntz spaces never form a dense set in C[0,1].

Non-Dense Ratios of Müntz Spaces. Suppose $0 \le \lambda_0 < \lambda_1 < \cdots$. Let a > 0.

Show that

$$\left\{ \frac{\sum_{i=0}^{n} a_i x^{\lambda_i}}{\sum_{i=0}^{n} b_i x^{-\lambda_i}} : a_i, b_i \in \mathbb{R}, \ n \in \mathbb{N} \right\}$$

is dense in C[a, b], if and only if $\sum_{i=1}^{\infty} 1/\lambda_i < \infty$.

The following example is due to Boris Shekhtman and P. B.

A Markov System with Non-Dense Rationals.

We construct an infinite Markov system as follows. Consider non-negative even integers

$$0 = \mu_0 < \lambda_1 < \mu_1 < \lambda_2 < \mu_2 < \dots < \lambda_n < \mu_n < \dots$$

which are lacunary in the sense that there exists q > 1 so that

$$\frac{\mu_i}{\lambda_i} > q$$
 and $\frac{\lambda_{i+1}}{\mu_i} > q$, $i = 1, 2, \dots$

Let $\varphi_k \in C[-1,1]$ be defined by

$$\varphi_0 := 1, \quad \varphi_{2k}(x) := x^{\mu_k}$$

and

$$\varphi_{2k+1}(x) := \begin{cases} x^{\lambda_k}, & x \ge 0 \\ -x^{\lambda_k}, & x \le 0. \end{cases}$$

Then $\{\varphi_0, \varphi_1, \dots\}$ is a Markov system on [-1, 1].

But the rational functions of the form

$$\frac{\sum_{j=0}^{n} a_j \varphi_j}{\sum_{j=0}^{m} b_j \varphi_j}, \quad a_j, b_j \in \mathbb{R}, \quad n, m \in \mathbb{N}$$

are not dense in C[-1,1] in the uniform norm.

Chebyshev Systems.

An essential property that polynomials of degree at most n have is that they can uniquely interpolate at n+1 points. This is equivalent to the fact that a polynomial of degree at most n that vanishes at n+1 points vanishes identically. Any n+1 dimensional vector space of continuous functions with this property is called a **Chebyshev space** or sometimes a Haar space.

Examples. The following are Chebyshev systems.

a] On
$$[0, \infty)$$
 with $0 = \lambda_0 < \cdots < \lambda_n$,

$$\{x^{\lambda_0}, x^{\lambda_1}, \dots, x^{\lambda_n}\}.$$

b] With
$$\lambda_0 < \lambda_1 < \cdots < \lambda_n$$
,

$$\left\{\frac{1}{x-\lambda_0}, \frac{1}{x-\lambda_1}, \dots, \frac{1}{x-\lambda_n}\right\}.$$

c] On
$$(-\infty, \infty)$$
 with $\lambda_0 < \dots < \lambda_n$, $\{e^{\lambda_0 x}, e^{\lambda_1 x}, \dots, e^{\lambda_n x}\}.$

d] On
$$[0, \pi)$$
,
$$\{1, \cos \theta, \cos 2\theta, \dots, \cos n\theta\}$$

Markov and Descartes Systems.

Chebyshev systems capture some of the essential properties of polynomials. There are two additional types of systems that capture some additional properties.

Definition (Markov System). We say that $\{f_0, f_1, \ldots, f_n\}$ is a Markov system on a Hausdorff space A if each $f_i \in C[A]$ and for $m = 0, 1, \ldots, n$

$$\operatorname{span}\{f_0,\ldots,f_m\}$$

is a Chebyshev system. (We allow n to tend to $+\infty$ in which case we call the system an infinite Markov system on A.)

Definition (Descartes System). We say that $\{f_0, f_1, \ldots, f_n\}$ is a Descartes system (or order complete Chebyshev system) on [a, b] if each $f_i \in C[a, b]$ and

$$D\begin{pmatrix} g_{i_0} & g_{i_1} & \dots & g_{i_m} \\ x_0 & x_1 & \dots & x_m \end{pmatrix} > 0$$

for any $0 \le i_0 < i_1 < \dots < i_m \text{ and } a \le x_0 < x_1 < \dots < x_m \le b$.

Theorem (Descartes' Rule of Signs).

Suppose $\{f_0, \ldots, f_n\}$ is a Descartes system on [a, b]. Then the number of distinct zeros of any

$$0 \neq f = \sum_{i=0}^{n} a_i f_i, \quad a_i \in \mathbb{R}$$

is not greater than the number of sign changes in $\{a_0, \ldots, a_n\}$ (a sign change occurs exactly when $a_i a_{i+1} < 0$, $i = 0, \ldots, n-1$.)

Revised Newman Conjecture. If \mathcal{M} is any infinite Descartes system on [0,1] then the set of rationals

$$\left\{\frac{p}{q}: p, q \in span \mathcal{M}\right\}$$

is dense in C[0,1].

Chebyshev Polynomials in Chebyshev Spaces.

Suppose

$$H_n := \operatorname{span}\{f_0, \dots, f_n\}$$

is a Chebyshev space on [a, b] and A is a compact subset of [a, b] with at least n + 1 points. We can define the generalized Chebyshev polynomial

$$T_n := T_n\{f_0, \dots, f_n; A\}$$

for H_n on A by

$$T_n = c \left(f_n - \sum_{k=0}^{n-1} a_k f_k \right)$$

where the numbers $a_0, a_1, \ldots, a_n \in \mathbb{R}$ are chosen to minimize

$$\left\| f_n - \sum_{k=0}^{n-1} a_k f_k \right\|_A$$

and where $c \in \mathbb{R}$ is a normalization constant chosen so that

$$||T_n||_A = 1$$

Theorem. Suppose $H_n := span\{f_0, \ldots, f_n\}$ is a Chebyshev space on [a, b] with associated Chebyshev polynomial

$$T_n := T_n\{f_0, \ldots, f_n; [a, b]\},\$$

and each f_i is differentiable at b. Then

$$\max\{|p_n'(b)|:p_n\in H_n\}$$

where $||p_n||_{[a,b]} \leq 1, p_n(b) = T_n(b)$ is attained by T_n .

Theorem (Lexicographic Property).

Suppose $\{f_0, f_1, \ldots\}$ is a Descartes system on [a, b]. Suppose $\lambda_0 < \lambda_1 < \ldots < \lambda_n$

and $\gamma_0 < \gamma_1 < \ldots < \gamma_n$ are nonnegative integers satisfying

$$\lambda_i \leq \gamma_i, \qquad i = 0, 1, \dots, n.$$

Let

$$T_n := T_n\{f_{\lambda_0}, \ldots, f_{\lambda_n}; [a, b]\}$$

and

$$S_n := S_n\{f_{\gamma_0}, \dots, f_{\gamma_n}; [a, b]\}$$

be respectively the associated Chebyshev polynomials. Let

 $\alpha_0 < \alpha_1 < \ldots < \alpha_n$ and $\beta_0 < \beta_1 < \ldots < \beta_n$ denote the zeros of T_n and S_n , respectively. Then

$$\alpha_i \leq \beta_i, \quad i = 0, \dots, n$$

with strict inequality if $\lambda_i \neq \gamma_i$ for at least one index i. (In other words the zeros of T_n lie to the left of the zeros of S_n .)

Denseness and Zeros of Chebyshev Polynomials.

For a sequence of Chebyshev polynomials T_n associated with a fixed Markov system on [a, b] we have the mesh of T_n is defined by

$$M_n := M_n(T_n : [a, b]) := \max_{1 \le i \le n+1} |x_i - x_{i-1}|.$$

where x_i are the zeros of T_n .

Theorem (P.B.). If $\mathcal{M} := \{1, f_1, f_2, ...\}$ is an infinite Markov system on [a, b] with each $f_i \in C^1[a, b]$. Then span \mathcal{M} is dense in C[a, b] if and only if

$$\lim_{n \to \infty} M_n = 0$$

where M_n is the mesh of the associated Chebyshev polynomials.

Corollary (Weierstrass' Theorem). The polynomials are dense in C[-1,1].

Proof. $\mathcal{M} = \{1, x, x^2, \dots\}$ is an infinite Markov system of C^1 functions on [-1, 1]. The associated Chebyshev polynomials are just the usual Chebyshev polynomials T_n and

$$M_n \le \frac{\pi}{n}, \qquad n = 1, 2, \dots$$

is obvious.

Denseness and Unbounded Bernstein Inequalities.

Definition (Unbounded Bernstein In-equality). Let \mathcal{A} be a subset of $C^1[a,b]$. We say that \mathcal{A} has an everywhere unbounded Bernstein inequality if

$$\sup \left\{ \frac{\|p'\|_{[\alpha,\beta]}}{\|p\|_{[a,b]}} : p \in \mathcal{A}, \quad p \neq 0 \right\} = \infty$$

for every $[\alpha, \beta] \subset [a, b], \quad \alpha \neq \beta$.

Bernstein-Type Inequality for Chebyshev Spaces. Let $\{1, f_1, \ldots, f_n\}$ be a Chebyshev system on [a, b] such that each f_i is differentiable at $x_0 \in [a, b]$. Let

$$T_n := T_n\{1, f_1, \dots, f_n; [a, b]\}$$

be the associated Chebyshev polynomial. Then

$$\frac{|p'_n(x_0)|}{\|p_n\|_{[a,b]}} \le \frac{2}{1 - |T_n(x_0)|} |T'_n(x_0)|$$

for every $p_n \in \text{span}\{1, f_1, \dots, f_n\}$ provided $|T_n(x_0)| \neq 1$.

Characterization of Denseness by Unbounded Bernstein Inequality. Suppose $\mathcal{M} := \{f_0 := 1, f_1, \dots\}$ is an infinite Markov system on [a, b] with each

 $f_i \in C^2[a,b]$. Then span \mathcal{M} is dense in C[a,b] if and only if span \mathcal{M} has an everywhere unbounded Bernstein inequality.

Corollary (Weierstrass' Theorem. The polynomials are dense in C[-1,1].