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1. Introduction.

The ubiquitous Chebyshev polynomial

T, (x) := cos(n arccos x)

1 n n
eV s v
is a polynomial of degree n with integer coefficients
and with lead coefficient 2"~! that equioscillates
n + 1 times on the interval [—1, 1].

For fairly simple reasons, based on this equioscil-
lation, it follows that

Jomin {2 = paall g g
n 1
= H21 TnH[—1,1] ~ on—1°

Here P,, denotes the polynomials of degree at most
n with real coefficient.
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The polynomial

Pn(x) =2 (b ; a)”Tn (233[:_&&— b>

is now the monic polynomial of degree n of small-
est supremum norm on the interval [a, b] and it

satisfies
b—a\"
1Pnllae =2 — :

" b—a
(oo™ = (*5°)

which gives the transfinite diameter of [a, b].

The Chebyshev polynomials have a central role to
play in minimization problems in the sup norm as
well as many other extremal problems .

The analogue problem where the polynomials are

restricted to have integer coefficients is very much
harder.
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We let Z,, denote the polynomials of degree at
most n with integer coefficients.

We define

1/n
(*) O, [a, 0] :=< inf ||p||[a,b]>

0#£pEZy,
and let
Qla, b] := inf{Q,[a,b] :n=0,1,...}

= lim Q,|a, b].

n—00

Any polynomial satisfying (x) above is called an
n-th integer Chebyshev polynomial on [a,b] .

The above limit exists and equals the inf mostly
because

(Qnsmla, )" < (Qufa, B])" (Qnla, 0)™ .
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We have from the unrestricted case the trivial in-

equality
b —
Qa,b] > — <

We also have

Qla, b] < Qy,la, b]

for any particular n.

Thus good upper bounds can be achieved by com-
putation (although the computation to any degree
of accuracy is hard).

The limit ©2[a, b] may be thought an integer version
of the transfinite diameter.
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Hilbert showed that there exists an absolute con-
stant ¢ so that

o b o\ /2
inf <
ooty Wy < ont? (25

and Fekete showed that

o b—a n/2
(@ala ) <27 - (20
There are many refinements.

From the above it follows that

aSQMH§< “)
4 4

Recall that b — a < 4.

There is a pretty argument due to Gelfond to see
that integer coefficients really are a restriction on

0, 1].
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If 0 # p, € Z,, then

1
1Ball? 1 2 [12al2, 001 = / P (2)da

m

~ LCM(L,2,....2n+1)

#£0
where LCM denotes the least common multiple.

Now LCM(1,2,...,n))"™ ~ e, by the prime num-
ber theorem and it follows that

Q[0,1] > 1/e.

This is not however the right lower bound.

The best previous bounds, due to Aparicio and
Gorshkov,

1 1
<Q[0,1] < .
(2.37686.. . . ) (2.343...)

The upper bound comes by example.
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For the lower bound we show there exist infinitely

many relatively prime polynomials ¢ € Z; with
all their roots in (0, 1), and with lead coefficients

{ay} satisfying allf/k < 2.37686. . .

This number was conjectured to be the right bound.
It comes from iterating (z — 1/x) on (—o0, 00).

Lemma. Suppose p, € Z, and suppose qx(z) =
apz® 4 -+ +ag € Z has all its roots in [a,b]. If
Pn and qp do not have common factors then

1/n _
(Ipnllias) " > lak| =",

Proof. Let 31, (s, ..., Ok be the roots of ¢q;.. Then

|ak|" Ppr(B1)Pn(B2) - - Pr(Br)

is a non-zero integer and the result follows. [
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Aparicio also shows that if [a,b] = [0, 1] then any
polynomial p € Z, for which the inf in (*) is
achieved, for sufficiently large n, has a factor of
the form

(x)LA,nJ (1— x)LMnJ (22 — 1)LA2nJ

«(5z2 — b + 1)Lrsnd

where A1 > .014, Ay > .016, A3 > .0037.

We improve the upper bounds of ©[0, 1] to

1
00,1] <
2.360

and use this to increase the number of factors that

must divide an n-th integer Chebyshev polynomial
T, on [0, 1].

We also establish a lower bound for the multiplic-
ity of the zero at 0 of the integer Chebyshev poly-
nomial 7, , on [a, 1].
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From all this we deduce that the natural conjec-
ture, due to the Chudnovsky’s, that

1

Q0,1] =
0.1 2.37686..

is close but false.

These high order zeros are also used to show that
the function Q(z) := Q]0,z] is constant on the
interval [1 — 6,14 9].

We also relate the integer Chebyshev problem on
small intervals [0, 1/m] to an old problem of Schur
and Siegel on the trace of totally positive algebraic
integers.

Another related problem is the Prouhet-Tarry-Escott
problem.

We conclude with a number of open problems.
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2. Computing Integer Chebyshev Polys.

We restrict our attention to the interval [0, 1]. Though
we observe in passing that

(Q[-1,1))* = (2[0,1])” = [0, 1/4]

as a consequence of the changes of variable x — 22

and z — z(1 — x) and symmetry.

The dependence of the constant 2[a,b] and the
minimal polynomials on [a, b] is interesting and is
explored a little further later.

Even computing low degree examples is compli-
cated. There is no good algorithm and getting
examples of say degree 100 seems intractable.
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n  n-th integer Chebyshev poly on [0,1]

Note that we do not have uniqueness, though it
is open as to whether we have uniqueness for n
sufficiently large.

The arguments for the above table are of the fol-
lowing variety.
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Consider the case n = 5.

Let T € Z5 be a 5-th integer Chebyshev polyno-
mial on [0, 1].

Then T5(0) and T5(1) are integers of modulus less
then 1 so both of them must be 0.

Using Markov’s inequality, we obtain that

50
175 10,17 < 50{|T5([j0,1] < (2.236.. ) < 1.

Since 1¢(0) and T¢(1) are integers of modulus less
than 1, both of them must be zero.

Since 2°T5(1/2) is an integer of modulus at most
32/(2.236...)° < 1, it must also be zero.

Thus we conclude that

r?(1 — 2)%(2z — 1) divides T5.
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Examples in L5[0, 1]. Polynomials of degrees 13. ..

which minimize ||p,||z,[0,17 This computation was
done in pari by using the minum function.

Degree 13

(522 — 5z +1)(22 — 1)%2%(z — 1)°
(522 — 52+ 1)(22 — 1)%(z — 1)%2°
(522 — 52+ 1)(22 — 1)3(2 — 1)%2*
(22 — 1)(522 =52+ 1)(z — 1)°2°
(22 — 1)(52* =5z + 1)%(z — 1)%2*
(22 —1)%(z — 1)°2°

(22 —1)(z — 1)*2%(292* — 582°% + 402° — 112z + 1)
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Degree 14
(522 — 5z +1)(22 — 1)%(2 — 1)°2°
Degree 15
(522 =52+ 1)(22 — 1)%(2 — 1)%2°
Degree 16
(522 =52+ 1)(22 — 1)%(2 — 1)%2°
Degree 17
(522 — 52+ 1)(22 — 1)%(2 — 1)%2°
Degree 18

(22 —1)%(522 =52+ 1)(z — 1)82°

15
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Degree 19
(522 =524+ 1)(22 — 13 (2 = 1)72°
Degree 20

(522 — 52+ 1)(292* —582% + 4022 — 112+ 1)(2z —
1)%(z —1)%2°
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PolT

We have

3243z% — 108923 + 21622 — 232 + 1

17
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Proposition. Let

Poro = p - pS" - p3*t - 03 - pa - ps - D - pr - ps - Po

then
1/210 1
P _
(I12210/l10.1) (2.3543...)
and hence
1
(2.3543...)

Proof. This proof is obviously just a computational
verification. It is the algorithm for finding Psqq
which is of some interest. It is based on LLL lat-
tice basis reduction in the following way.

a] Lattice basis reduction finds a short vector in
a lattice. If we construct a lattice of the form

p(z) - Z ot = Zﬁkzk
k=0 k=0
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where p is a fixed polynomial and the set

{(Oé(), aq,... ,Ozn)}

is a lattice then the set

{(507 517 s 7ﬁm)}

is also a lattice, and L LL will return a short vector
in the sense of > ;" |Ok|* being relatively small.

/2 is just the Lo, norm

Observe that (37 o |5k[*)
on the unit disk of the polynomial >"7" , 2"

So LLL lets us find polynomials of small Ly norm
(and hence small sup norm) on the disk, and we
can do this while preserving divisibility by a fixed

p.

b] Convert the problem from the interval [« []
to the disk. This is easy. One first maps [«, §] to
[—2,2] by a linear change of variables. One then
lets © := 2z 4+ 1/z. This maps a polynomial in x
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on [—2,2] to a polynomial in z and 1/z on the
boundary of the unit disk.

c] Attack the problem incrementally by using a]
and b]. That is, at the k-th stage find a polynomial
qr of degree kN divisible by ¢qr_1 of degree (k —
1)N using LLL on a lattice of size N + 1. This
allows us to keep the size of LLL fairly small and
uses the fact that integer Chebyshev polynomials
tend to have (of necessity) many repeat factors.
We used N = 10 in the actual computation and
started with ¢p := 1. [
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We can computationally refine the above.

Proposition. The inequality

1
Q0. 1/4| <
0,1/4] < (5.5723...)
and hence
1
[0,1] < .
(2.3605...)

holds.

This is done by minimizing over
o1 Do a9
Pl P2 ¢ o o P9

which is a linear problem.

Corollary. Let k be a positive integer, and let
Ps10 be as in the previous Proposition. Then (Payg)”
divides all the n-th integer Chebyshev polynomaials
on [0, 1] provided n is sufficiently large.
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Proof. Each p;, i = 0,1,---,9 is irreducible and
satisfies

pi(z) = apa® + a2 4 g

with
lax|/* < 2.36.

Each p; also has all roots in [0, 1]. It follows now
by the first Lemma that if ¢) is a polynomial of
degree n with integer coefficients, and

1/n 1
<
UI@nllo)™"" < 2.3605

then p; divides Q).

Markov’s inequality gives the arbitrarily high mul-
tiplicity eventually. [
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We deduce immediately as above.

Corollary. The polynomaials

PosP1y-.- D9

are the only irreducible polynomaials with all their
roots in [0, 1] of the form

P(z) = anz" + apn_12""1 + -+ ag

with
|a, |¥™ < 2.36.
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3. Finer Structure.

The exact dependence of Q[a,b] on the interval
la, b] is interesting and complicated. If we let

Qz) = Q|0, z]
Then clearly () is a non-decreasing function on
(0,00). Obviously
lim Q(x) =0

x—0

(consider =™ on [0,46]). So Q(x) maps [0, 4] onto
[0, 1].

It is an exercise to show that {2 is in fact con-
tinuous. This follows mostly from a theorem of
Chebyshev that gives

[Pn 0,61 < (1 + ke s)™[[pnlljo,6
for every p, € P,.

What is less obvious is that Q(x) is locally flat on
many intervals. Indeed it is conceivable that the
derivative of () is almost everywhere zero.
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Theorem. Let T, :=T,{[0,1]} be an n-th integer
Chebyshev polynomial on [0,1]. Then T, is of the
form

T, (z) = 2"(1 — 2)* S, _op ()

where (0.26)n < k if n s large enough.

As a consequence, there exists an absolute constant
6 > 0 (independent of n) so that T, is an n-th
integer Chebyshev polynomial on larger intervals
[—a, 1+ a] for every a € (0,6].
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4. The Schur-Siegel Trace Problem.

Let « := a7 be an algebraic number with conju-
gate roots awm,---,a,. We say that « is totally
real (positive) if all the «; are real (positive).
The trace of a totally positive algebraic integer is

C¥1—|—C¥2—|—-°-—|—C¥n.

Except for finitely many explicit exceptions, if «
is a totally real algebraic integer then then

MO T U S 648 Schur (18)

d
a1 + a ; ST 5 1733, Siegel (43)
aq ‘|‘042—C:'”+ad > 1.771, Smyth (83).

Note that 4 cos?(m/p) is a totally positive algebraic
integer of degree (p — 1)/2 and trace p — 2 for p
prime. So the best constant in the above theorem
is less than 2.

Connection to the integer Chebyshev Problem is
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Proposition. If

1
m-4+ 96

Q[0,1/m] <

Then, with finitely many exceptions,

C¥1+C¥2-;'°'+de > 5

for every totally positive algebraic integer oy of
degree d > 1 with conjugates ao, ... ,aq.

Proof. Mostly an application of the original lemma
and the Arithmetic-Geometric mean inequality. [

Corollary. If aq is a totally positive algebraic in-
teger of degree d > 1 with conjugates aa, ... ,aq

then
a1+ Qg+ -+ 0y

d

with at most finitely many exceptions. (No excep-
tions of degree greater than 8.)

> 1.752
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This is not as good as Smyth’s result. It, how-
ever, follows immediately from a computation, as
in Section 2, which shows that

210,1/200
0,1/200] < 201.752

and gives the factors of an example which yields
the above upper bound.
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5. Open Problems.

There are a myriad of open problems in and around
integer Chebyshev polynomials. We formulate a
few of them as questions.

Q1. Find a reasonable algorithm for exactly
computing integer Chebyshev polynomials on [0, 1]
that would work up to, say, degree 200.

Q2. Are the integer Chebyshev polynomials even-
tually unique?

Q3. Do the integer Chebyshev polynomials on
0, 1] have all their roots in [0, 1]7?

Q4. Determine Q[0, o] exactly for any 0 < a < 4.
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Q5. Determine the limit (or the limsup, if the
limit does not exist) of

(Q[0,1/m])~" = m.

Q6. Are all the irreducible factors of the integer
Chebyshev polynomials on [0, 1] forced to be fac-
tors by as in the first Lemma 7 That is, are all
irreducible factors ¢ of the form

¢(z) = apa® + ap_12" T+ 4 ag

with
ja|'/*F < (Q[0,1) 77

Q7. Show that there exist infinitely many irre-
ducible polynomials with integer coefficients which
divide an n-th integer Chebyshev polynomial on
0, 1] for some n.
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6. Prouhet-Tarry-Escott Problem.

Conjecture.

For any N there exists p € Z[x] (a polynomial
with integer coefficients) so that

p(z) = (x — )" q(x) = Sapa"

and
S(p) := X|ar| = 2N.

Almost equivalently (though not quite obviously)

Pl £24)21=13 = V2N.
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The Basis for the Conjecture.

T 4N — P 2PV =0((x — D).

For N = 2,...,10 with

oy, ... ,any] and  [B1,...,0N]
0,3] =[1,2]

[1,2,6] = [0,4, 5]

[0,4,7,11] = [1,2,9, 10]
[1,2,10,14,18] = [0, 4, 8, 16, 17]
[0,4,9,17,22,26] = [1,2,12, 14, 24, 25]
(0,18, 27,58, 64,89, 101]

— [1,13, 38,44, 75, 84, 102]
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(0,4, 9,23,27,41, 46, 50]

= [1,2,11,20, 30, 39,48, 49]

(0,24, 30, 83, 86, 133, 157, 181, 197]

= [1,17,41,65,112,115, 168,174, 198]

[0, 3083, 3301, 11893, 23314, 24186, 35607,
44199, 44417, 47500] =
12, 2865, 3519, 11869, 23738, 23762, 35631,

43981,44635,47488|

e The size 10 example illustrates the problems in-
herent with searching for a solution.



34 PETER BORWEIN

Partial History.

e FEuler

e Prouhet (1851)

e Tarry (1910) - Small Examples

e Escott (1910) - Small Examples

e Letac (1941) - Size 9 and 10

e Gloden (1946) - Size 9 and 10

e Smyth (Math Comp. 1991) - Size 10 generalized.
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Diophantine Form
Find distinct integers [aq, ... ,an] and [f1, ... , ON]

so that

Oll-l—-I—O{N:ﬂl—l——l—ﬂn
4.tk =54+

af T4 tay =0 T

More Open Questions.

e The problem is completely open for N > 11.

e We computed extensively on N = 11 to show no

(symmetric) solutions of degree < 745.
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The Weak Prouhet-Tarry-Escott Problem.

Problem. For fixed N find p € Z|[z]
p(x) = (z — 1)Vq(z) = Sapa®
that minimizes
S(p) = Xlai|
or

S%(p) = (Sla:l*)"/?

e Solving S(p) = |S?(p)|> = 2N is the Prouhet-
Tarry-Escott-Problem and is the big prize.
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e Showing that there exist

{pn} = {(z — 1)V q(x)}

so that
S(pn) = o(N log N)

is also a big prize.

e This shows that the “Easier Waring Problem”
is easier than the “Waring Problem” (At the mo-
ment. )

e That is: it requires essentially fewer powers to
write every integer as sums and differences of Nth

powers than just as sums of Nth powers. (Fuchs
and Wright, Quart. J. Math. 1936).
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e It is known that
N2
S(w = 1)V a(a)) < -
is possible.

Any improvement would be a major step.

o If we demand that p has a zero of order N but
not N 4+ 1 at 1 then

S(p) = 0((log N)N*)

is possible (Hua).

Any improvement would be interesting.



