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Introduction:

We consider rational approximations of the form

{(1 + z)a““p“—(z)}

Gn(2)

in certain natural regions in the complex plane
where p., and ¢, are polynomials of degree cn
and n respectively.

In particular we construct natural maximal re-
gions (as a function of a and ¢) where the col-
lection of such rational functions is dense in the
analytic functions.

So from this point of view we have rather com-
plete analogue theorems to the results concerning
incomplete polynomials on an interval.

The analysis depends on a careful examination of
the zeros and poles of the Padé approximants to
(1 4+ z)***TL, This is effected by an asymptotic
analysis of certain integrals.



In this sense it mirrors the well known results of
Saff and Varga on the zeros and poles of the Padé
approximant to exp. Results that, in large mea-
sure, we recover as a limiting case.

In order to make the asymptotic analysis as pain-
less as possible we prove a fairly general result on
the behavior, in n, of integrals of the form

1
| b= nrra
0
where f,(t) is analytic in z and a polynomial in t.

From this we can and do analyze automatically
(by computer) the limit curves and regions that
we need.



The Wellspring:

In a remarkable paper of 1924, Szegd considered
the zeros of the partial sums s,,(z) := Y1 _, 2" /!
of the MacLaurin expansion for e*. Szeg6 estab-
lished that Z is a limit point of zeros of the se-
quence of normalized partial sums,

{sn(n2) }n%0;

if and only if
se{z:|zet7 =1,]2] < 1}.

Moreover, Szegd showed that Z is a nontrivial limit
point of zeros of the normalized remainder

(e = su(n2) i

if and only if

sedz:|zel % =1,]2| > 1}.
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Padé Approximation to (1 + z)*":

Theorem. The set of functions
{1+ 2)""7n(2) t 1a(2) € T taly

is dense in A(K), the analytic functions on K,
where K s an arbitrary compact subset of R3 and
not in any region strictly containing Rs (R3 is the
region in Fig.1).

Theorem 2.1. For the (m,n) Padé approxima-
tion to (1 + 2)*" ™1 at 0, a > 0, we have

a P an+1 pm(Z)
(a) (1+2) o)
2L [ — 1™ (1 4 12)*" ™
B %L(Z) ’

() po(z) = /O (F— 1) (1 4 2 — )™,

and

() gu(z) = /O (1= )™= (45 + 1) — 1)"dt,
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Corollary 2.2. For the (¢n,n) Padé approxima-
tion to (1 4+ 2)*" 1 at 0, a > 0, we have

a Syentl _ Pen(2)
() (1+42) (o)

gen L [U(1 — )et(1 4 tz) <] dt
qn(z)

Y

(b)  pen(z) = / (= )te(1 + = — 1)t

© o) = [ 0=t w14+ 2) - D)

Corollary 2.3. When ¢ =1, we have

(14 2)"pn (1;'22) = n(2).
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The Asymptotic Analysis
Theorem 2.4. Let

I, = / H(1 = ) f ()] dt = / Q1)) dt

where Q(t) = t(1—1) f(t) is a polynomial of degree
N n t.

Let t1,to,... ,tny—_1 be the N — 1 zeros of Q'(t).
Suppose that

Q)| # 1Q)],  1#7.

Then

lim I)/™ = arg(Q(t:))|Q(t:)] = Q(¢;)

n—00

for some 1.



Theorem 2.5. Let

I(z) = / 11— 1) 1. (1)) dt = / Q. ()]"dt

where Q. (t) = t(1—t) f.(t) is a polynomial in t and
analytic in z on an open connected set U. Suppose

Q= (:(2)] # 1Q=(t;(2))]

for any i # j, and any z € U, where t; := t;(2)
are the zeros of the polynomial Q. (t) (which by
the above assumption can be given so that each t;
is analytic on U ). Then

(a) I.,(2)Y™ converges to a non-zero limit point-
wise on U.

(b) |I.(2)|Y™ is uniformly bounded on compact
subsets of U.

(c) I.(2)Y™ converges uniformly to a Q. (t;(2))
on compact subsets of U, and Q,(t;(2)) is analytic
on U. Moreover, Q.(t;(2)) # 0 for all z € U .
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Corollary 2.6. Let I,,(2), f.(t) and Q.(t) be as
in Theorem 2.5. Suppose that for each z, Q.(t)
15 a polynomaial of degree N in t, and further that
Q.(t) is analytic in z. Then, the limit points of
the zeros of I,,(z) can only cluster on the curve

12:1Q=(t:(2))] = |Q=(t;(2)),  for some i # j}

or at points where Q,(t;(z)) = 0, or at points
where Q. (t;(2)) is not analytic. (Note t; := t;(2),
which is a function of z.)

These results require some careful saddle point
analysis.

The nice thing is that one can guarantee that the
right contours exist without actually constructing
them.

Computing the possible limit curves is now an ex-
ercise in computer algebra.
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Specialization to ¢ =1

pu(z) = / (6 — 1)t (1 — ¢+ 2)]"dt,

(2 = [ 1=+ 2) = ),
o 1n(2) = /O (1= 1)t(1 + t2)°~]"dt.

Let Q.(t) = (1 —t)t* 1 (#(1 + 2z) — 1), then

Q.00)= Q-0 =@ (1) =0

and

d
EQz(t) ‘t:tl,g(z) =0

where
alz+2)xp

22+ 1)(1+ )’

t]_’2<2) =

1= (a?2% + 4z + 4)Y2.
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Therefore, from Corollary 2.6 and the above ob-
servation, the critical curve for p,(z), ¢.(z) and

€(a—1)n(2) is

121 1Q:(11(2))] = |Q=(t2(2))]},

which is
az+22+24+ | |laz—2—p ()éZ—i-QOé—,LLa_l_l
az+224+2—p| |laz—24+pu| |laz+ 24+ B

where
p= (2% + 4z + 40)Y2.

The critical curves for « = 2, o = 3, @ = 5 and
a = 8 are shown in Figures 1, 2, 3 and 4 respec-
tively.

In Figures 5 and 6, we plot the zeros of p,(z) and
qn(2) for « = 2, n = 20 and o = 3, n = 10
respectively. We also plot the zeros of e(o_1),(2)
for « = 3, n = 15 in Figure 7.
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Theorem 3.1. For o > 1, {g.(2)}*/™ converges
to Q. (ta2(z)) uniformly on any compact subset of
R1, Ry and R3, and to Q.(t1(2)) uniformly on any
compact subset of Ry. Moreover, the limit points
of the zeros of {q,(2)}5% 1 are dense on the branch
Bs, which is the boundary between Rs and Ry4.

Theorem 3.2. For o > 1, {p,(2)}}/™ converges

to (1 + 2)*Q.(t1(2)) uniformly on any compact

subset of R1 and Ra, and to (1 4+ 2)*Q.(t2(2))

uniformly on any compact subset of Rs and Ry4.

Moreover, the limit points of the zeros of {pn(2)}524
are dense on the branch By, which is the boundary

between R and Rs.

Theorem 3.3. Fora > 1, {e(a_l)n}l/” converges
to (1+2)*Q.(t2(2))/2? uniformly on any compact
subset of Ry and to (1+2)%p.(t1(2))/2* uniformly
on any compact subset of Ro, R3 and R4. More-
over, the limit points of the zeros of {e,(2)}o%,
are dense on the branch By, which 1s the bound-
ary between Rq1 and Rs.
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Theorem 4.1. Let p,(2), qn(2) and eq—1)n(2)
be as in Corollary 2.2 in the case ¢ = 1. Then we

have that (1 + 2)*"T1q,(2)/pn(z) converges

(a) to oo uniformly on any compact subset of Ry
and Ry (as in Figures 1,2,3.,4);

(b) to 0 uniformly on any compact subset of Ro;

(c) to 1 uniformly on any compact subset of Rs.

Remark. Observe that 1 can not be approximated
on any reqion strictly larger than Rs by the Rouché’s
Theorem, so Rs is a natural maximal region of
denseness.

Theorem 4.2.

{(1+2)""rn(2) : 70(2) € Tnntney

is dense in A(K') where K is an arbitrary compact
subset of Rs.
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The Polynomial Case: ¢=0

Theorem 5.1. If c:=0then q,,(2) and eqyn(2) have
the same critical curve

{z:]2(1+2)" = a®/(1+ ) T},

and the limit points of the zeros of q,(2) or eqn(2)
can only cluster on this curve .

Theorem 5.4.

{1+ 2)*"pu(2) 1 pu(2) € T}y 2
is dense in A(K') where K is an arbitrary compact

subset of R3 as in Fig. 8.

The limit points of the zeros of {q.(2)}52, are
dense in the boundary between R1 and Rg.

The limit points of the zeros of {ean(2)}SL, are
dense in the boundary between R1 and Rs.
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Question. For which sets K is

{1+ 2)"r(2) 1ol

dense in A(K) ?

Uniform convergence to 1 of {x?"r, (x)} is not pos-
sible on any interval [b, 1] with

b < tan*(7(0 — 1)/40)

and this is essentially sharp. (Saff and Rachmanov)

Uniform convergence to 1 of {e®r,(x)} is not pos-
sible on any interval [0, a| with a > 27 (compare
b = 2 for polynomials).

Question. What is the maximum measure of

{z 1 (2)/ra(2)] >=n}

in the complex plane? (On the line it should be
21 7)



