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e Some old chestnuts. All at least 35 years
old.

e All involve Chebyshev type problems for
polynomials with integer coefficients.

e All very hard.

e All have a highly non-trivial computa-
tional component.

e All have accessible partials?

e All very interesting.
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A. The Integer Chebyshev Problem
of Hilbert and Fekete.

1. Problem. Find

CN[OZ, ﬁ] =

1
N
. N
e )

We will restrict to 0 — a < 4.

2. One can show that

Cla, f] == lim Cyla, f]
N — 00
exists. This is the integer Chebyshev con-
stant for the interval or the integer trans-
finite diameter.
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3. We (T. Erdélyi and P.B.) show

1
<0, 1] <
2.3768— € — 0,1] <

1
2.360

Lemma. Suppose
gm () = amx™ + ... + ag, A, € Z

has all its roots in (0,1). (That is: qm €
TR(0,1)). Then, provided (¢m,pn) =1

1/n 1
||pn||[0,1] > Tm

e It is conjectured (Chudnovskys, Mont-
gomery) that the lemma gives the right
bound in 3. (This is likley false.)



5

B. The Schur, Siegel, Smyth Trace

Problem.

1. Conjecture. Suppose
Pn(2) = anz" + ...+ ag,0; € Z

has all real, positive roots and is irreducible.
Then

an—1 > (2 — €)n.

2. Partials. Except for finitely many
(explicit) exceptions

an_1 > e'/?n Schur (1918)
an—1 > (1.733..)n Siegel (1943)

an—1 > (1.771.0)n Smyth (1983).
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3. The Relationship to the Small In-
terval Problem.

Lemma. If
Cl0,1/m] <1/(m + )
then, for totally positive polynomials
An_1 > ON

(with finitely many explicit exceptions).
Corollary. 6 > 1.744

Proof. By example on C]0,1/100].
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C. Prouhet-Tarry-Escott Problem.

1. Conjecture. For any N there ex-
ists p € Z|z] (a polynomial with integer
coefficients) so that

p(x) = (z — l)Nq(a:) = Yapz"
and

S(p) := X|ar| = 2N.

Almost equivalently (though not quite ob-
viously) this polynomial must have coeffi-
cients {0, —1,41} and so

Pl z2q21=13 = V2N.
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2. The Basis for the Conjecture.
e, 4O P PN = ((:E—I)N).
For N =2,...,10 with

oy, ... ,any] and [B,...,0n5]

o [0,3] =[1,2]

o [1,2,6] = [0,4,5]

¢ [0,4,7,11] =[1,2,9,10]

e [1,2,10,14,18] = [0,4,8, 16, 17]

¢ [0,4,9,17,22,26] = [1,2,12, 14, 24, 25
e [0,18,27,58,64,89,101]

= [1,13, 38, 44, 75, 84, 102]
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e [0,4,9,23,27,41, 46, 50]
= [1,2,11, 20, 30, 39, 48, 49]
e [0,24, 30,83, 86,133,157, 181, 197]
=[1,17,41, 65,112,115, 168, 174, 198]
e [0, 3083, 3301, 11893, 23314, 24186, 35607,
44199, 44417, 47500] =
12, 2865, 3519, 11869, 23738, 23762, 35631,
43981, 44635, 47488

e The size 10 example illustrates the prob-
lems inherent with searching for a solu-
tion.
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3. Partial History.

e Fuler

e Prouhet (1851)

e Tarry (1910) - Small Examples

e Escott (1910) - Small Examples

e Letac (1941) - Size 9 and 10

e Gloden (1946) - Size 9 and 10

e Smyth (Math Comp. 1991) - Size 10

generalized.
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4. Diophantine Form
Find distinct integers

oy, ... ,an] and [B1,...,ON]
so that

Ozl—l——I—OéN:Bl—I——I—,Bn
4. o=+ 3

aof T oy =8+ B

e The problem is completely open for N >
11.
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D. The Weak Prouhet-Tarry-Escott

Problem.

1. Problem. For fixed N find p € Z[x]
p(z) = (x — DV g(z) = Sapa”
that minimizes
S(p) = Xlas|

or

$%(p) = (Slail*)"/?

2. Solving S(p) = |S%(p)|* = 2N is the
Prouhet-Tarry-Escott-Problem and is the
big prize.
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3. Showing that there exist

{pn} = {(z - 1)"q¢(2)}
so that
S(pn) = o(Nlog N)

1s also a big prize.

e This shows that the “Easier Waring Prob-
lem” is easier than the “Waring Problem”
(At the moment.)

e That is: it requires essentially fewer pow-
ers to write every integer as sums and dif-
ferences of Nth powers than just as sums
of Nth powers. (Fuchs and Wright, Quart.
J. Math. 1936).
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4. It 1s known that
N2
S((x —1)¥q(e)) < -

1s possible.

Any improvement would be a major step.

5. If we demand that p has a zero of
order NV but not NV + 1 at 1 then

S(p) = 0((log N)N?)
is possible (Hua).

Any improvement would be interesting.
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E. Problem of Erdos and Szekeres
(1958).

1. Problem. Minimize over {aq,...,an}
N
S (Hu - a:o‘i))
k=1

Call this minimum S%;.
2. Conjecture. S7 > N for any k.

3. From the P-T-E problem

ST > 2N
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4. Examples.

N ollflh o, an)

1 2 {1}

2 4 {1,2}

3 6 {1, 2,3}

4 8 {1,2,3,4}

5 10 {1,2,3,5,7}

6 12 {1,1,2,3,4,5}

7 16 {1,2,3,4,5,7,11}

8 16 {1,2,3,5,7,8,11,13}

9 20 {1,2,3,4,5,7,9,11,13}
10 24 {1,2,3,4,5,7,9,11,13,17}
11 28 {1,2,3,5,7,8,9,11,13,17,19}
12 36 {1,...,9,11,13,17}

13 48 {1,...,9,11,13,17,19}
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5. Conjecture. Exceptfor N =1,2,3,4,5,6
and 8
Sy > 2N + 2.

e Maltby solves this for N=7, 9 and 10.
6. Partials.

St <L NO(N'/?) (Atkinson, Dobrowolski)
ST & NO(log NN'/?) (Odlyzko)

(could equally well use || ||r2(p)-)
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F. Lehmer’s Conjecture.

Mahler’s Measure: it

then
M(p) = | [ max{1, o[}
i=1
or equivalently

M (p) := exp {/01 log |p(e”™)| dt}

Conjecture. Suppose pis a monic poly-

nomial with integer coefficients. Then ei-
ther M (p) =1 or M(p) > 1.17....
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e This generalizes Kronecker’s theorem which

can be stated as: M(p) = 1 implies that
p 1s cyclotomic.

e The minimal Mahler measure for a non-
cylotomic p i1s speculated to be

pi=x0429 2" 20— -zt -3+ +1
for which M (p) = 1.17628081825991750...

e This is also speculated to be the smallest
Salem number.

Question. Do there polynomials with co-
efficients {0, —1,+1} with roots of arbi-
trarily high multiplicity inside the unit disk.

A negative answer solves the conjecture.
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G. Littlewood’s Conjecture.

Conjecture (resolved 1981). Suppose

N

p(2) =Y enz™ el > 1.

n=0

Then the L1 norm of p on the boundary
of the unit disc is >> log(N).

H. A Problem of Erdos.

Conjecture, 1957. Suppose

N

p(z) = Z Cn2" c; £ 1.

n=0

Then the supremum norm of p on the bound-
ary of the unit disc is > (1 4 ¢)v/N.
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I. Littlewood’s Other Conjecture.
Conjecture (1966). There is some

p(z) = Z 2" c;i £1

so that for all z on the boundary of the
unit disc

O < \p\;%)l

< Chs.

e Littlewood, in part, based his conjecture
on computations of all such polynomials
up to degree twenty.

e Odlyzko has now done 200 MIPS years
of computing on this problem



22

SO MUCH FOR MOTIVATION
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ON THE NUMBER OF
ZEROS OF {0,+1,-1)}
POLYNOMIALS AND RELATED
CHEBYSHEV PROBLEMS.

P. BorweIN, T. ERDELYI AND G. KOs
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e We consider the problem of minimizing
the uniform norm on [0, 1] over polynomi-
als p

n

p(x):Zaja:j, la;| <1, a;€C

j=m

with fixed |a,,| # 0.

e This is equivalent to the question of how

many zeros such a polynomial can have at
1.

e Particular cases include:

Polynomials with coeflicients in the set
{-1,0,1}.

Polynomials with coefficients in the set
{0,1} on the interval [—1,0].
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So obviously

A, CF,CZ,CP,.
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2. NUMBER OF ZEROS AT 1

Theorem 2.1. There is an absolute con-
stant ¢ > 0 such that every polynomzial p
of the form

n

p(x):Zaj:I:j, la;| <1, a; €C
7=0

has at most

¢(n(1 —log|ao|)) "/

zeros at 1.

e Applying Theorem 2.1 with ¢(z) := 27 "p(z™1)
gives the following:
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Theorem 2.2. There is an absolute con-
stant ¢ > 0 such that every polynomual p
of the form

n

p(a:):Zajazj, la;| <1, a; €C
j=0

has at most

¢(n(1 - logla,|))/?

zeros at 1.

e This sharpens a sequence of old and not
so old results of Littlewood, Schur, Turan,
Erdds, Bombieri, Vaaler and others. (In
the case of small height polynomials.)

e The result is sharp.
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Theorem 2.3. It exp(—3n) < |ag| < 1,
then there exists a polynomzual p of the form

n

p(x):Zaja:j, la;| <1, a; €C
j=0

such that p has a zero at 1 with multiplic-
1ty at least

1
£(n (1 —log jao]))!/? — 1.

e The next two theorems treat the case
ag = 1. The proofs are attractive and we
will work through them. (As time allows.)
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Theorem 2.4. FEvery polynomial p of the
form

px) => ajz’,  ao|=1, o] <1
§=0

has at most 5y/n zeros at 1 and at most
c\/n zeros in |—1,1].

Theorem 2.5. For every n € N, there

exists
7’L2
pn(x) = E a;x’
=0
such that ag = 1; ay,a9,...,a,2 are real

numbers of modulus less than 1; and p,,
has a zero at 1 with multiplicity at least
n — 1.
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e Theorem 2.5 immediately implies

Corollary 2.6. For every n € N, there
exists a polynomial

n

pn(az):Zaj:cj, anp =1,

7=0

ap,ai, ... ,a, are real numbers of modulus
less than 1, and p, has a zero at 1 with
multiplicity at least |/n| — 1.
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e The next related result 1s well known:

Theorem 2.7. There is an absolute con-
stant ¢ > 0 so that for every n € N there 1s
a p € F, having at least cy/n/log(n + 1)
zeros at 1.

e Theorems 2.4 and 2.7 show that the
right upper bound for the number of ze-
ros a polynomial p € F, can have at 1
is somewhere between ci1/n/log(n + 1)
and co+/n with absolute constants ¢; > 0
and co > 0.

e This gap looks quite hard to close. This
is an old problem on which there has been
no progress in 20 years.
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e There is a simple observation about the
maximal number of zeros a polynomial
p € A, can have.

Theorem 2.8. There is an absolute con-
stant ¢ > 0 such that every p € A,, has at
most clogn zeros at —1.

e There is a less simple observation about
the maximal number of zeros at 1 of a
polynomial with coefficients {+1, —1}.

There are between c; logn and c;(logn)?
such zeros and is open as to what is cor-

rect (Boyd 95).
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Remark to Theorem 2.8. Let R, be
defined by

ﬁ 1+ x%

where a1 := 1 and a; 41 1s the smallest odd
integer that is greater than >, _, ay.

e It is tempting to speculate that R,, is the
lowest degree polynomial with coefficients
{0,1} and a zero of order n at —1.

e This is true for n := 1,2, 3,4, 5 but fails
for n := 6 and hence for all larger n.
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3. RESTRICTED CHEBYSHEV PROBLEM

Theorem 3.1. There are absolute con-
stants so that

exp (—cln(l — log \am\))1/2>
< inf ||p||jo,1]
p

< exp (—CQn(l — log |am|))1/2> ;

where the inf is taken over 0 # p of the
form

n

p(w):Zaja:j, la;| <1, a; €C

j=m

with |any,| > exp (5(1 —n)) .
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e This specializes to

Theorem 3.2. There are absolute con-
stants ¢y > 0 and co > 0 such that

eXp (_Cl\/ﬁ) < i%f ||P||[0,1] < exp (—02\/5) ;

for polynomials of the form

n

p(x):Zajxj, la;| <1, a,=1.

j=m
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e For the class F,, we have

Theorem 3.3. There are absolute con-
stants ¢1 > 0 and co > 0 such that

exp (—e1v/n)

< inf
<A 1Pll0,1)

< exp (—Cz\/ﬁ) :

e The upper bound requires some new
ideas.
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e The approximation rate in Theorems 3.2
and 3.3 should be compared with

omin__lp 1"
p(z):=z™+--
and also with

1 1/n

- < min Ipllg s <

2.376 .. 0#ApEZ,

(0,1] —

21/n
4

1+ o(1)
2.3605

e The first equality above is attained by

the normalized Chebyshev polynomial shifted

linearly to [0, 1] and is proved by a simple
perturbation argument. The second in-
equality is much harder (the exact result

is open).
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e It is an interesting fact that the poly-
nomials 0 # p € Z, with the smallest
uniform norm on [0, 1] are very different
from the usual Chebyshev polynomial of
degree n.

e For example, they have at least 52% of
their zeros at either 0 or 1. Relaxation
techniques do not allow for their approxi-
mate computation.

e Likewise, polynomials 0 # p € F,, with

small uniform norm on [0, 1] are again quite
different from polynomials 0 # p € Z,

with small uniform norm on |0, 1].
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e The story is roughly as follows. Polyno-
mials 0 # p € P,, with leading coefficient
1 and with smallest possible uniform norm
on [0, 1] are characterized by equioscilla-
tion and are given by the Chebyshev poly-
nomials explicitly.

e In contrast, finding polynomials from
Z, with small uniform norm on [0, 1] is
closely related to finding irreducible poly-
nomials with all their roots in [0, 1].
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e As we shall see the construction of small
norm polynomials from F,, is governed by
how many zeros such a polynomial can
have at 1.

e It is interesting to note that the polyno-
mials 0 # p € P, with leading coefficient
1 and with smallest uniform norm on [0, 1]
have coeflicients that alternate in sign.

e This also appears to be true for the anal-
ogous polynomials from Z,, (though this is
only conjectural and probably quite hard
to prove).
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e This is quite different from the story
for F,,. For polynomials p(—x) with 0 #
p € A, we get a very much larger smallest
possible uniform norm on [0, 1].

Theorem 3.4. There are absolute con-
stants ¢1 > 0 and co > 0 such that

exp (—cy log”(n + 1))
< inf —
< A, lp(=2)llo.

< exp (—calog?(n+1))
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4. TOOLS

e In the general case the tools are:

e Denote by S the collection of all analytic
functions f on the open unit disk D :=
{z € C:|z| < 1} that satisfy

f(2)| < zeD.

1 —z|°

Theorem 4.1. There are absolute con-
stants ¢y > 0 and co > 0 such that

FO)/* < exp (Z) 1 l-an

for every f € S and a € (0,1].
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Hadamard Three Circles Theorem.

Suppose f is reqular. Let M(r) := max|,|=, | f(2)].
Then forri <r <ro

M(r)log(ﬁ/"“l) S M(rrl)log(TQ/r)M(TQ)IOg(T/Tl).

Halasz Lemma.

For every k € N, there exists a polynomzial
h € P; such that

hO)=1, h(1)=0, |h(z)|<exp (%)
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5. PROOFS OF THE MAIN RESULTS

Theorem 2.4. FEvery polynomial p of the
form

n

p(x) = ajz’,  a|=1,  Ja;| <1
§=0

has at most 5y/n zeros at 1.

Proof of Theorem 2.4. If p has a zero at 1
of multiplicity m, then for every polyno-
mial f of degree less than m, we have

()
aof(0) +arf(1)+---+anf(n)=0.

We construct a polynomial f of degree at
most 5+/n, for which

fln) > [fO) +[F)] + -+ [f(n=1)].



45
Equality (*) cannot hold with this f, so
the multiplicity of the zero of p at 1 is at
most the degree of f.

Let T, be the v-th Chebyshev poly. Let
g =To+T1+ - +T; € Py
Note that g(1) = k£ + 1 and

g(cosy) =14+ cosy+cos2y+---+ cosky

sin(k + %)y + sin 2y

2 sin %y
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Hence, for —1 < x < 1,

V2
Vi—x

Let f(z) == g*(% — 1). Then f(n) =
(k+1)* and

g(z)| <

[FO)HFD)[+- -+ f(n=1)] < Z (_])

If k.= |(w2/6)'/%\/n| then
fn) > fO+[FD)[+---+[fn—-1)].

In this case the degree of fis 4k < 5y/n. O
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Theorem 2.5. For every n € N, there

ex18ts
2n2
pnl(x) = E a;a’
J=0
such that as,2 = 1; ag,a1,... ,a9,2_1 are

real numbers of modulus less than 1; and
pn has a zero at 1 with multiplicity at least
n.

Proof of Theorem 2.5. Define

(n!)? ot dt

2wt Jr [ (8 — k2)
where the simple closed contour I' sur-

rounds the zeros of the denominator in the
integrand.

L,(x):=

Then L, is a polynomial of degree n? with
a zero of order n at 1.



48

Also, by the residue theorem,

L,(z)=1+ Z ck,naﬁkz
k=1

(=D)"(r)?  _ (=1)"2(n!)?

Ck.n = n . —
Hj:O,j;ék(k2 —-7%)  (n—Fk)l(n+k)

It follows that
Ck,n§27 k:1,2,...,n
Hence,

Ln(z) + Ly (5’72)
2

qn () =

is a polynomial of degree 2n? with real
coefficients and with a zero at 1 of order
n.
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Also q,, has constant coefficient 1 and each
of its remaining coefficients is a real num-
ber of modulus less than 1.

Now let pp(z) := 22" ¢, (1/z). O

Proof of Theorem 2.8. Suppose P € A,
has m zeros at —1. Then (1+2)™ divides

P. On evaluating the above at 1 we see
that n > 2" —1 and the result follows. [
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6. COMMENTS

e There is an obvious interval dependence
in the problem of minimal elements from

Fn.

e On any interval [0, 6] with § < 1/2 the
only polynomials from F,, with minimal
uniform norm are +x" .

e On [0,1/2] all of £2™ and +(z™ — 2™~ 1)
are extremals.

e On any interval [0, 6] with 6 > 1/2 the
polynomials +(z"—z"~1) work better than
x™, so the nature of the extremals change

at 1/2.
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