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We prove that if f(z) = Y7_5azz® is a poly-
nomial with no cyclotomic factors whose co-
efficients satisfy ap = 1 mod 2, then Mahler’s
measure of f satisfies

log M(f) > |025 (1—%)-

This resolves a problem of D. H. Lehmer for
the class of polynomials with odd coefficients.

We also prove that if f has odd coefficients,
degree n — 1, and at least one noncyclotomic
factor, then at least one root a of f satisfies

log 3

2n

resolving a conjecture of Schinzel and Zassen-
haus for this class of polynomials.

o] > 1+




Introduction

Mahler's measure of a polynomial f, denoted
M(f), is defined as

d
M(f) = la| ][] max{1, oz} (1)

k=1

For f € Z[x], clearly M(f) > 1, and by a classi-
cal theorem of Kronecker, M(f) = 1 precisely
when f(x) is a product of cyclotomic polyno-
mials and the monomial =x.

In 1933, D. H. Lehmer asked if for every ¢ > 0
there exists a polynomial f € Z[x] satisfying
1< M(f)<1l+e

This is known as Lehmer’s problem. Lehmer
noted that the polynomial

() =204+22 — 2" —2% -2z — 234241

has M(¢) = 1.176280..., and this value re-
mains the smallest known measure larger than 1
of a polynomial with integer coefficients.



Lehmer’s problem has been solved for several
special classes of polynomials.

Smyth shows that if f € Z[x] is nonreciprocal
and f(0) # 0, then

M(f) > M(z3 —z—1) =1.324717... .

Schinzel proves that if f is a monic, integer

polynomial with degree d satisfying f(0) = £1

and f(£1) # 0, and all roots of f are real, then
M(f) > ~%?

where ~ denotes the golden ratio, v := (1 +

v5)/2.

The best general lower bound for Mahler's mea-
sure of an irreducible, noncyclotomic polyno-
mial f € Z[x] with degree d has the form

log logd\3
IogM(f)»(oi);;J ) ,

This is due to Dobrowolski.




We solve Lehmer's problem for the class of
polynomials D,, polynomials whose coefficients
are all congruent to 1 mod m,

d
{Zakxkeﬂx]:akzlmodmforogkgd}.

k=0
(2)

We prove that if f € Dy, has degree n — 1 and
no cyclotomic factors, then

l0g M(f) > em (1 - %) ,

with ¢ = (log5)/4 and

cm = log(yYm? + 1/2)

for m > 2.

We provide in Theorem 1 a characterization
of polynomials f € Z[z] for which there exists
a polynomial F' € D, with f | F and M(f) =
M(F'), where p is a prime number.



We obtain a lower bound on a Salem num-
ber whose minimal polynomial lies in D,. This
bound is slightly stronger than that obtained
from our bound on Mahler's measure of a poly-
nomial in this set.

The smallest Pisot number is the minimal value
of Mahler's measure of a nonreciprocal polyno-
mial, M(a3 —z —1) = 1.324717....

Previously we showed that the smallest mea-
sure of a nonreciprocal polynomial in D5 is the
golden ratio, M(z2 —xz — 1) = ~, and therefore
this value is the smallest Pisot number whose
minimal polynomial lies in D».

Salem proves that every Pisot number is a
limit point, from both sides, of Salem num-
bers. We prove that the golden ratio is in fact
a limit point, from both sides, of Salem num-
bers whose minimal polynomials are also in Do;
in fact, they are Littlewood polynomials.



Factors of polynomials in D,
Let p be a prime number.

Lemma 1 Suppose p is a prime number, and
n = pFm with ptm. Then

k
¥ —1= HCDZ (z) mod p.
d|lm

Cyclotomic polynomials whose indices are rel-
atively prime and not divisible by p have no
common factors in Fylz].

Lemma 2 Suppose m and n are distinct, rel-
atively prime positive integers, and suppose p
Is a prime number that does not divide mn.
Then &,(x) and &, (x) are relatively prime in
Fplx].



Lemma 3 Suppose f(x) € Z[x] has degree n—
1 and @, | f. If f € Dy, then r | 2n; if f € Dy
for an odd prime p, then r | n.

We now have a simple characterization of poly-
nomials f € Z[x] that divide a polynomial with
the same measure having all its coefficients
congruent to 1 modulo p.

Theorem 1 Letp be a prime number, and let
f(x) be a polynomial with integer coefficients.

There exists a polynomial F € Dy with f | F
and M(f) = M(F) if and only if f is congruent
modulo p to a product of cyclotomic polyno-
mials.



This suggests an algorithm for determining if
a given polynomial f with degree d divides a
polynomial F' in Dp with the same measure:

Construct all possible products of cyclotomic
polynomials with degree d, and test if any of
these are congruent to f mod p.

Using this strategy, we verify that none of the
100 smallest measure known irreducible, non-
cyclotomic polynomials divides a Littlewood
polynomial with the same measure.

This does not imply, however, that no Little-
wood polynomials exist with these measures,
since measures are not necessarily represented
uniquely by irreducible integer polynomials, even
discounting the simple symmetries.



Lehmer’s Problem

Lemma 4 Suppose f € Dy, with degreen—1
and let g be a factor of f. Ifgcd(g(z),x™"—1) =
1, then

Res(g(a),z" — 1)| > m9°99. (3)
Further, if m = 2, k is a nonnegative integer,
and gcd(g(z),z"2" +1) = 1, then

Res(g(z),z"2" + 1)| > 29e99, (4)

Proof Define the polynomial s(z) by

ms(z) = (z" — 1) + (1 — ) f(=), (5)

and note that s(x) € Z[x] since f € Dy,. If
g has no common factor with z™ — 1, then
gcd(g,s) = 1, so |Res(g,s)| > 1. Thus, com-
puting the resultant of both sides of (5) with
g we obtain (3).



Suppose m = 2. For k > 0, define the polyno-
mial ti(x) by

2k_1
2t(z) = (2" + 1)+ L+ 0)f(z) 3 o,

=0
and (4) follows by a similar argument.



Lemma 5 For any polynomial f € Clz], the
value of L(f*)/* approaches ||f||., from above

as k — oo.

For a polyn

omial g € Z[x], let vi(g) denote

the multiplicity of the cyclotomic polynomial
do(x) in g(x), and let v(g) = Xp>ovk(9).

T heorem 2

Suppose f € Dy, with degree n —

1, and suppose F € Z[x] satisfies

T hen

log M(f) > «

gcd(f(z), F(2")) = 1.

v(F)log2 — log || F||o (1 _ l)  m=2
deg F n

VO(F) Iogm—|09||F||oo <1_l> m > 2

| deg F n)’ '

This suggests looking for auxiliary polynomials

F with high

order divisibility by certain cyclo-

tomic polynomials and with small norm on the

disc.



Proof Suppose m = 2. Since f(x) and F(x™)
have no common factors, by Lemma 4 each
cyclotomic factor D, of F' contributes a factor
of 21 to their resultant. Thus

IRes(f(z), F(z™))| > 2vU)n=1),

If o is a root of f, then

[F(a™)| < L(F) max {1, |a|" 99},
SO

IRes(f(x), F(z™))| < L(F)" 1M(f)nde9r.

Therefore

V=) < LRy M ()T,
or

v(F)log2 — log L(F) 1 1
deg F ( B _> .(6)

Let k be a positive integer. Since v(FF) =
kv(F) and deg F¥ = kdeg F, we obtain

log M(f) >
n

log M(f) >

y m — ky1/k
(F) log log L(F%) (1 1).

deg F' n



Letting K — oo and using Lemma 5, the the-
orem follows. The proof for m > 2 is similar,
using vo(F') in place of v(F).



If f has all odd coefficients and no cyclotomic
factors, then we may use F(z) = z2 —1 in the
last theorem to obtain
log 2 1
og M(f) > 2= (1-2). (7)

n
Form > 2, if f € D, has no cyclotomic factors,
then using F(x) = x — 1 yields

09 M(f) > log(m/2) (1-=). (&)

We record here some improved bounds that
arose from some fairly substantial searches.



Corollary 1 Let f be a polynomial with degree
n—1 having odd coefficients and no cyclotomic
factors. Then
log 5 1
g M(f) >, (1-2), (9

n

with equality if and only if f(x) = +1.

4
Proof Let F(z) = (1-|—:c2) (1 —:r;2) . Since
v(F)=9, degF = 10, and

1Fle =+ 0 —0)?

— 2° max |cos(xt) sin®(rt
0%1\ (mt) sin®(xt)]

29
2545’

using the main estimate we establish the bound.



The bound of 51/4 = 1.495348... is not far
from the smallest known measure of a polyno-
mial with odd coefficients and no cyclotomic
factors:

MQA4+z—z2—23—z%+2°+2°%) = 1.556030....

This number is in fact the smallest measure
of a reciprocal polynomial with &1 coefficients
having no cyclotomic factors and degree at
most 72.



For the case m > 2, an improvement is possi-
ble.

Corollary 2 Let f € Dy, have degree n—1 and
no cyclotomic factors. Then

2
0g M(f) > log [ V"2 (1--), o

n

with equality if and only if f(x) = %1.

Proof Let F(z) = (14 z)(1—x)™. Since
vo(F) = m?, deg F = m?2+ 1, and

2 2
F|l. =211 max |cos(xt) sin™ (nt
171l Jmax, |cos(mt) sin™ ()
2?712+1,,nm2
 (m2 4 1)(m2+1)/2°
. T he main theorem now gives the result.

The bound of v/10/2 = 1.581138... form = 3
may be replaced by 1.582495... by using the
auxiliary polynomial (1—z)#2%(1—22)%0(1—25).
No improvements are known for m > 3.



Auxiliary Polynomials

We obtain nontrivial bounds on the measure of
a polynomial f € D,, from Theorem 2 by us-
ing auxiliary polynomials having small degree,
small supremum norm, and a high order of van-
iIshing at 1.

We now investigate a family of polynomials
having precisely these properties.

Pure product polynomials

A pure product of size n is a polynomial of the
form

n
H (1 T xek) ’
k=1
with each e, a positive integer. Let A(n) de-
note the minimal supremum over the unit disk
among all pure products of size n,

ZekZ].}.
o0

A(n) = min { ﬁ (1 — x%)
k=1




Erdds and Szekeres study this quantity, proving
that the growth rate of A(n) is subexponential:
im A(n)l/™ = 1.

n—o0
The upper bound on the asymptotic growth
rate of log A(n) has since been greatly im-
proved. Atkinson obtained O(y/nlogn), Odlyzko
proved O(nl/310g%/3n), Kolountzakis demon-
strated O(nl/3logn), and Belov and Konyagin
showed O(log%n).

The best known general lower bound on A(n)
is simply v/2n; strengthening this would pro-
vide information on the Diophantine problem
of Prouhet, Tarry, and Escott Erdds conjec-
tured that in fact A(n) > n¢ for any ¢ > 0.

Since v9(A(n)) = n and log A(n) = o(n), it
follows that there exist pure product polyno-
mials F'(x) that yield nontrivial lower bounds
in Theorem 2.



Previously we exhibited some pure products of
size n < 20 with very small length and degree,
and these polynomials yield nontrivial lower bounds
in Theorem 2.

However, these polynomials arise as optimal
examples of polynomials with {—1,0,1} coeffi-
cients having a root of prescribed order n at 1
and minimal degree. We obtain better bounds
by designing some more specialized searches.



The Schinzel-Zassenhaus Problem

The lower bounds on log M (f) for f € Dy, of
Corollaries 1 and 2 automatically yield lower
bounds on max{|a| : f(a) = 0} for polynomi-
als f € Dy, having no cyclotomic factors. The
following theorem improves these results in the
Schinzel-Zassenhaus problem in two ways: weak-
ening the hypotheses and improving the con-
stants.

Theorem 3 Suppose f € Dy, is monic with de-
gree n — 1 having at least one noncyclotomic
factor. Then there exists a root a of f satis-

fying

|
(1—|— 0293, ifm=2,
| > 4 n (11)
| —1
1+ og(m—1) i 55
n



Proof (for m =2) Let g denote the noncy-
clotomic part of f, let d = degg, and let a7,
., ag denote the roots of g. Suppose that

max{|ay i1 <k<d}<14°
n

for a positive constant ¢, so ‘a}z_" < e® for each
k.

Suppose m = 2. Since the maximum value of
‘1 — zz‘ for complex numbers z lying in the disk

{z:|z]| <r}is 1472, with the maximum value
occurring at z = 41r, we have

‘1—04%”‘ <14 e3¢

for each k. Consequently, using Lemma 4 with
both z™ 4+ 1 and =™ — 1, we find

224 < |Res(g(), 1 - «>™)| < (14¢%)". (12)

Therefore 1 4+ e2¢ > 4, and the inequality for
m = 2 follows.



No better bounds were found by using other
auxiliary polynomials in place of 1 — z2™ and
1 —x™. However, for some m we find that the
polynomials employed in Corollaries 1 and 2
do just as well. For example, let F,,(z) =
(1—z2)2(142z2)°, with a and b positive integers.
The supremum of F, , on the disk {z € C : |2| =
r} is

Y

(a+b)/2
_ qa/pp/2 (21 F r?) /
a-+0b
and we obtain a lower bound on ¢ from the
inequality

HFa,b

|z|=r

22a+b < HFa,b

|z|=e¢ "

The optimal choice of parameters is a = 4 and
b= 1, as in Corollary 1, yielding ¢ > (log3)/2.
Likewise, for m > 1 the optimal choice for a
and b in the auxiliary polynomial (1—2z)%(1+z)®
is a = m? and b= 1, but this selection achieves
¢ > log(m — 1) only for m = 3.



Pisot and Salem numbers

We can slightly improve our estimates for Lit-
tlewood Salem’s

Theorem 4 Suppose f is a monic, irreducible
polynomial in Dy with degree n — 1 having éex-
actly one root o outside the unit disk. Then

log 5 1
14+ —].
4 ( T 10n)

It is well-known that every Pisot number is a
two-sided limit point of Salem numbers. We
also prove that more is true for the smallest
Littlewood Pisot number.

log |a| >

Theorem 5 Thesmallest Littlewood Pisot num-
ber is a limit point, from both sides, of Little-
wood Salem numbers.



