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LITTLEWOOD TYPE PROBLEMS

We are primarily concerned with polynomials with coef-
ficients in the set {+1,—1}. Since many of these prob-
lems were raised by Littlewood we denote the set of
such polynomials by £,, and refer to them as Littlewood
polynomials. Specifically

n

L,:=Kp:plx)= Zajxj, a; € {-1,1}

j=0

The following conjecture is due to Littlewood probably
from some time in the fifties. It has been much studied
and has associated with it a considerable literature

Conjecture. It is possible to find p, € L, so that

Civn+1<|py(2)| < Covn+1

for all complex z of modulus 1. Here the constants Cy
and Cy are independent of n.

Such polynomials are often called “flat”. Because the
Ls norm of a polynomial from L, is exactly v/n + 1 the
constants must satisfy C7 <1 and Cs > 1.
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It is still the case that no sequence is known that satisfies
the lower bound.

A sequence of Littlewood polynomials that satisfies just
the upper bound is given by the Rudin-Shapiro polyno-
mials:

and
Pnt1(2) == pn(2) + Z2nQn(z)7

Qn—l—l(z) = pn(z) — Z2“Qn(z)

These have all coefficients £1 and are of degree 2™ — 1.
From

|pn-|—1|2 + |Qn-|-1|2 = 2(|pn|2 + |Qn|2)

we have for all z of modulus 1

Pa(2)] < 2V2" = v/24/deg(py)

and

g (2)] < 2v2" = v/24/deg(qy)

This conjecture is complemented by a conjecture of Erdés.



Conjecture. The constant Cy in Littlewood’s conjec-
ture is bounded away from 1 (independently of n).

This is also still open. Though a remarkable result of
Kahane’s shows that if the polynomials are allowed to
have complex coefficients of modulus 1 then “flat” poly-
nomials exist and indeed that it is possible to make C}
and Cy asymptotically arbitrarily close to 1.

Another striking result due to Beck proves that “flat”
polynomials exist from the class of polynomials of degree
n whose coefficients are 400th roots of unity.

Because of the monotonicity of the L, norms it is rele-
vant to rephrase Erdos’ conjecture in other norms. New-
man and Byrnes speculate that

pll3 > (6 — d)n?/5

for p € L£,, and n sufficiently large. This, of course,
would imply Erdds’ conjecture above. Here

lallo = ( [ @) 9/ (2r) )

is the normalized p norm on the boundary of the unit
disc.

1/p



It is possible to find a sequence of p,, € L£,, so that

lpall2 = (7/6)n°.
This sequence is constructed out of the Fekete polyno-
mials
) =3 (5]
k=0 \P

where (2—9> is the Legendre symbol. One now takes the

Fekete polynomials and cyclically permutes the coeffi-
cients by about p/4 to get the above example due to
Turyn.

Problem. Show for some absolute constant 6 > 0 and
for all p, € L,

Iplls = (L+6)v/n

or even the much weaker

Iplla > vV + 6.

A very interesting question is how to compute the min-
imal L4 Littlewood polynomials (say up to degree 200).



A Barker polynomial

n

p(z) = Z apz”

k=0

with each ay € {—1,41} so that

p(2)p(z) = Z cpz”

k=—n

satisfies co = n + 1 and
ci] <1, 1=1,2,3....

Here

n—j
cj = g Ak —k and C_j = Cj.
k=0

If p(z) is a Barker polynomial of degree n then

p|ls < ((n+1)% + 2n))1/4

The nonexistence of Barker polynomials of degree n is
now shown by showing

Ipnlla > (n+ 1)Y2 4+ (n+1)71/2)2.
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This is even weaker than the weak form of the preceding
problem.

It is conjectured that no Barker polynomials exist for
n > 12.

We can compute the expected L, norm of Littlewood
polynomials (B and Lockhart).

For random ¢,, € L,

E(llgnllp)

(D) s (1(1+ p/2) 7

and for derivatives

E(l¢5],)

n(2r+1)/2

= (2r 4+ 1)72(0(L + p/2)) 7.



ExpriciT MERIT CALCULATIONS

Our purpose here is to give explicit formulas for the L4
norms (on the boundary of the unit disc) and hence,
also the merit factors of various polynomials that are
closely related to the Fekete polynomials.

As usual the L, norm on the boundary of the unit disc
is defined by

1 2w »
o= (55 [ o) as)

The L4 norm of a polynomial is particularly easy to
work with because it can be computed as the square
root of the Ly norm of p(z)p(z) and hence, computes
exactly as the fourth root of the sum of the squares of
the coefficients of p(z)p(z). In contrast, the supremum
norm or other L, norms, where p is not an even integer,
are computationally difficult.

1/«

Let g be a prime number and let (E) be the Legendre
symbol.
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The Fekete polynomials are defined by

g—1
£0)-
—1 \4

and the closely related polynomials

i =115 ()

The half-Fekete polynomials are defined by

—

EE SR

k=1 q
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If we cyclically permute the coefficients of f, by about
q/4 places we get an example of Turyn’s which we de-

note by
z) 1= qi <k—+ [q/4]> 2"
q

k=0

where [-| denotes the nearest integer, and we denote the
general shifted Fekete polynomials by

- 1<k+t> .
k=0

Note that R has one coefficient that is zero (from the
permutation of the constant term in f). For example

fiii=—a% 42— —2" -2+ P+t -2+

and

Ry := 0 Tttt 1.
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The explicit formulas involve the class number of the
imaginary quadratic field of Q(v/—d) which is denoted
by h(—d). For any odd prime d it can be computed as

(d-1)/2
Med)=xi S (S) (“1)* = AaGa(~1)

k=1

1 if d=1,7 (mod 8),
Ag =4 —1/3 if d=3 (mod 8),
—1 if d=5 (mod 8).
For primes d = 3 (mod 4) it can also be computed as

h(—d) = —fc'lc(il) _ —é Y (S) k

(this sum is 0 for d =1 (mod 4)).

There are two natural measures of smallness for the L4
norm of a polynomial p. One is the ratio of the L4 norm
to the Ly norm, ||p||4/||p||2- The other (equivalent) mea-
sure is the merit factor, defined by

Ipl2

MF — )
P) = o = ol
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Littlewood polynomials are the set

n

L, :=<p:plr)= Zajxj, a; € {—1,1}

i=0

The Lo norm of any element of £,,_1 is v/n and this is,
of course, a lower bound for the L, norm.

The expected L4 norm of an element of £,, is is 21/4,/n.
The expected merit factor is thus 1.

The {R,} above are a sequence with asymptotic merit
factor 6. Golay gives a heuristic argument for this ob-

servation of Turyn’s and this is proved rigorously by
T. Hgholdt and H. Jensen

The Fekete polynomials themselves have asymptotic merit
factor 3/2 and different amounts of cyclic permutations
can give rise to any asymptotic merit factor between

3/2 and 6.
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Golay speculates that 6 may be the largest possible as-
ymptotic merit factor. He writes “the eventuality must
be considered that no systematic synthesis will ever be
found which will yield higher merit factors.”

Newman and Byrnes, apparently independently, make
a similar conjecture. As do Hgholdt and Jensen.

Computations by a number of people on polynomials

up to degree 200 are equivocal. See the web page of
A. Reinholz at http://borneo.gmd.de/~andy/ACR.html.

The Fekete polynomial f, has modulus ,/q at each gth
root of unity (as does f;) and one might hope that they
also satisfy the upper bound in Littlewood’s conjecture
but Montgomery shows that this is not the case.

Littlewood’s conjecture is that it is possible to find p,, €
L, _1 so that

Ci1vn < |pn(2)] < Cov/n

for all z of modulus 1 and for two constants C4,C5 in-
dependent of n.
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2. RESuULTS

Theorem. For g an odd prime, the Fekete polynomial,

o (5)

=1

satisfies
5 4
4 _ 29 =z
[ falls = 3 3q + 3 Vq
where
o { 0 if ¢q=1 (mod 4),
Ta = 12(h(—q))?> if q=3 (mod 4).
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Theorem. For q an odd prime, the Turyn type polyno-

mials o) qi ( k+ [q/4] ) K
q

k=0

where [-] denotes the nearest integer, satisfy

7q° 1

HRqu = 6 —q— 6 — Yq
and
hM—q)(h(—q) —4) f g=1,5 (mod 8),
Ve = { 12(h(—9))’ if ¢=3 (mod 8),

0 if ¢=7 (mod 8).

Montgomery shows that the maximum modulus of f,(z)
at the 2¢gth root of unity is at least %\/c_]log log q.
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Theorem. Let

n_

{—2 if n=0,1 (mod 4),
1  if n=2,3 (mod4).

The above example of Littlewoods depends on the as-
ymptotic series for

because, in the above notation,

sin?(j%m/n)

1Lz = n* + 22

sin?(jm/n)
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Let ¢ be a prime and y be a non-principal character

mod q. Let
g—1

fr(2) = Z x(n +1t)z"

n=0

for 1 <t < g be the character polynomial associated to
X (cyclically permuted ¢ places).

Theorem. For any non-principal and non-real charac-
ter x modulo q and 1 <t < g, we have

4

|53 = 50" + O(¢*/*log? q)

where the implicit constant is independent of t and q.
Here || - |4 denotes the Ly norm on the unit circle.

It follows from this that all cyclically permuted charac-
ter polynomials associated with non-principal and non-
real characters have merit factors that approach 3.
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PROBLEM OF ERDOS AND SZEKERES (1958)

Conjecture (Wright et al). For any N there exists
p € Z[x] (the polynomials with integer coefficients) so
that

p(x) = (z — 1)Vq(z) = Srpapa”

and
ll(p) = Zk|ak| = 2N.

In general how small can the [; norm be. This is a
problem with many interesting variants.

Note that the degree of the solution is not the issue.
The problem is in terms of the size of the zero at 1.

An entirely equivalent form of the above conjecture asks
to find two distint sets of integers [aq,...,an] and

1B1,-..,08n] so that

ar+...+tan=0+...+0n
4. ok =04 +06%

of T4 tan =8+ 48]
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One approach to the Prouhet-Tarry-Escott problem is
to construct products of the form

p(x) := (H(l — x‘“)) :

k=1

Obviously such a product has a zero of order N at 1
and the trick is to minimize the [{ norm.

Problem (Erdds and Szekeres). Minimize over {ay, ... ,an}
N
lh (H(l - wa)>
k=1

Call this minimum EY,.

The following table shows what is known for N up to
13.



@OO\]CDOT%OOL\DHZ

—
w N = O

Hlel
2

4

6

8

10
12
16
16
20
24
28
36
48
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{a1,...,an}

)

{1,2}

{1,2,3}

{1,2,3,4}

(1,2,3,5,7}
{1,1,2,3,4,5)
(1,2,3,4,5,7,11}
11,2,3,5,7,8,11,13)
{1,2,3,4,5,7,9,11,13}
11,2,3,4,5,7,9,11,13,17}
1,2,3,5,7,8,9,11,13,17,19}
{1,...,9,11,13,17}
1,...,9,11,13,17,19}
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For N :=1,2,3,4,5, 6,8 this provides a ideal solution of
the Prouhet-Tarry-Escott problem. For N = 7,9,10, 11.
that these kind of products cannot solve the Prouhet-
Tarry-Escott problem. For N = 7,9,10 the above ex-
amples are provably optimal.

Conjecture. Fzcept for N =1,2,3,4,5,6 and 8
EN > 2N + 2.

Erd6s and Szekeres conjecture that L3, grows fairly
rapidly.

Conjecture. For any K

E% > NK,

for N sufficiently large.

Erdés and G. Szekeres showed that subexponential growth
is possible.

The best upper bound to date for E7; is that of Belov
and Konyagin

By < exp(O((logn)")).
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Previously Atkinson and Dobrowolski proved the upper
bound of 1
exp(O(n? logn))

then Odlyzko proved the upper bound of

)

and Kolountzakis proved the upper bound exp(O(n'/3 logn))

W=
Wik

exp(O(n3 (logn)



