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There is an explicit formula for the L4
norm of an example of Turyn’s that is con-
structed by cyclically permuting the first
quarter of the coefficients of f,. This is
the sequence that has the largest known
asymptotic merit factor. Explicitly,

R.(2) = Z (k+ [q/41) Lk

k=0 q

where [-] denotes the nearest integer, sat-
isfies

2
”Rqu — % —q— % — Yq
where
[ h(—q)(h(—q) —4) if ¢=1,5 (mod 8),
Vg = 4 12(h(—9))? if g=3 (mod 8),
L0 if ¢g=7 (mod 8).

Here h(—q) is the class number of Q(1/—q)



A mathematician named Erdos
Eccentric, perhaps even wierdos
Could never endeavour

No matter how clever

To publish a paper in Kurdos
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PROBLEM OF ERDOS
AND SZEKERES (1958)

Conjecture (Wright et al). For any N
there exists p € Z|x| (the polynomials with
integer coefficients) so that

p(z) = (z—1)Nq(z) = Ypapz”

and
ll(p) = Zk\ak\ = 2N.

In general how small can the [; norm be.
This is a problem with many interesting
variants.

Note that the degree of the solution is not
the issue. The problem is in terms of the
size of the zero at 1.



An entirely equivalent form of the above
conjecture asks to find two distint sets of

integers |aq,...,an] and [B1,...,0n] so
that

Otl—l-...—I-OéN:ﬂl—I-...—FﬁN
4. ok =0+ .+ 5%

af tH.tay t=0 BN

This equivalence is an easy exercise in New-
ton’s equations. The later form is the
usual form in which the problem arises
and is stated.
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One approach to the Prouhet-Tarry-Escott
problem is to construct products of the
form

p(x) = (H(l - :vo‘%)) .

k=1
Obviously such a product has a zero of

order N at 1 and the trick is to minimize
the [; norm.

Problem (Erdds and Szekeres). Minimize
over {ay,... ,an}

ll (H(l — a:ai))

k=1
Call this minimum EY,;.

The following table shows what is known
for NV up to 13.
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{051, c. ,OJN}

{1}

11,2}

{1,2,3}

{1,2,3,4}

{1,2,3,5,7}
{1,1,2,3,4,5}
{1,2,3,4,5,7,11}
{1,2,3,5,7,8,11,13}
{1,2,3,4,5,7,9,11,13}
{1,2,3,4,5,7,9,11,13,17}
{1,2,3,5,7,8,9,11,13,17,19}
{1,...,9,11,13,17}
{1,...,9,11,13,17,19}
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For N := 1,2,3,4,5,6,8 this provides a
ideal solution of the Prouhet-Tarry-Escott
problem. For N = 7,9,10,11. that these
kind of products cannot solve the Prouhet-
Tarry-Escott problem. For N = 7,9,10
the above examples are provably optimal.

Conjecture. FEzcept for N =1,2,3,4,5,6
and 8
EN > 2N + 2.

Erdds and Szekeres conjecture that EY%,
grows fairly rapidly.

Conjecture. For any K
Ey > N¥.

for N sufficiently large.
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Erdos and G. Szekeres showed that subex-
ponential growth is possible.

The best upper bound to date for EY% is
that of Belov and Konyagin

B < exp(O((log n)*)
Previously Atkinson and Dobrowolski proved
the upper bound of
exp(O(nz logn))
then Odlyzko proved the upper bound of

)

and Kolountzakis proved the upper bound
exp(O(n'/3logn))

W=
Wik

exp(O(n3(logn)
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LiTTLEWOOD TYPE PROBLEMS

Here we are primarily concerned with poly-
nomials with coefficients in the set {+1,—1}.
Since many of these problems were raised
by Littlewood we denote the set of such
polynomials by £, and refer to them as
Littlewood polynomials. Specifically

( )
n

Ly = 1 p:p(az):Zaja:j, a; € {—1,1} ».

i=0

\ /

The following conjecture is due to Lit-
tlewood probably from some time in the
fifties. It has been much studied and has
associated with it a considerable signal
processing literature
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Conjecture (Littlewood). It is possi-
ble to find p,, € L,, so that

C’lvn + 1 S |pn(z)| S CQ\/’IZ + 1

for all complex z of modulus 1. Here the
constants C1 and C5 are independent of
n.

Such polynomials are often called “locally
flat”. Because the Ls norm of a polyno-
mial from £,, is exactly v/n + 1 the con-
stants must satisty C7 <1 and Cy > 1.

It is still the case that no sequence is known
that satisfies the lower bound.
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A sequence of Littlewood polynomials that
satisfies just the upper bound is given by
the Rudin-Shapiro polynomials:

po(2) =1, qo(z):=1
and
D1 (2) = pn(2) + 22 gn(2),

Qn+1 (Z) ‘= pn(z) — ZQHQn(z)

These have all coefficients +=1 and are of
degree 2™ — 1. From

|pn+1|2 T |q'n+1’2 = 2(|pn|2 T ’CIn‘Q)

we have for all z of modulus 1

Pa(2)] < 22" = V2+/deg(py,)

and

n(2)] < 2V2" = V2\/deg(qn)
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This conjecture is complemented by a con-
jecture of Erdos.

Conjecture (Erdos 1962). The constant
C5 in the conjecture of Littlewood 1s bounded
away from 1 (independently of n).

This is also still open. Though a remark-
able result of Kahane’s shows that if the
polynomials are allowed to have complex
coefficients of modulus 1 then “locally flat”
polynomials exist and indeed that it is
possible to make C7 and C5 asymptoti-
cally arbitrarily close to 1. Another strik-
ing result due to Beck proves that “locally
flat” polynomials exist from the class of
polynomials of degree n whose coefficients
are 1200th roots of unity.
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Because of the monotonicity of the L, norms
it is relevant to rephrase Erdos’ conjec-
ture in other norms. Newman and Byrnes
speculate that

pllz > (6 — d)n?/5

for p € L£,, and n sufficiently large. This,
of course, would imply Erdds’ conjecture
above. Here

lallp = ( / N \q<9>|pd9/<2w>)

is the normalized p norm on the boundary
of the unit disc.

1/p
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It is possible to find a sequence of p,, € L,
so that

lpnll3 =< (7/6)n".

This sequence is constructed out of the
Fekete polynomials

=S (%)

k=0 p

where <5> is the Legendre symbol. One

now takes the Fekete polynomials and cycli-
cally permutes the coefficients by about
p/4 to get the above example due to Tu-
ryn.

Computations suggest that the 7/6 con-
stant may be too large. Although it is
conjectured to be best possible.
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There is an explicit formula for the L4
norm of an example of Turyn’s that is con-
structed by cyclically permuting the first
quarter of the coefficients of f,. This is
the sequence that has the largest known
asymptotic merit factor. Explicitly,

R.(2) = Z (k+ [q/41) Lk

k=0 q

where [-] denotes the nearest integer, sat-
isfies

2
”Rqu — % —q— % — Yq
where
[ h(—q)(h(—q) —4) if ¢=1,5 (mod 8),
Vg = 4 12(h(—9))? if g=3 (mod 8),
0 if ¢g=7 (mod 8).

Here h(—q) is the class number of Q(1/—q)
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Conjecture. Show for some absolute con-
stant 0 > 0 and for all p,, € L,

plla > (1+6)vn

or even the much weaker

p||la > v/n + 4.

There is a large literature on this prob-
lem sometimes called the “Merit Factor”
problem.

A very interesting question is how to com-
pute the minimal L4 Littlewood polyno-
mials (say up to degree 200).
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A Barker polynomial

p(z) = Z apz”
k=0

with each ar € {—1,+1} so that

p(z)@ = Z cpz”

k=—n

satisfies co = n + 1 and
ci| <1, 7 =1,2,3....

Here

n—j
cj = E Ak Qo — L and C_j = Cj.
k=0
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If p(z) is a Barker polynomial of degree n
then

plla < ((n + 1)2 i Qn))l/zl

The nonexistence of Barker polynomials
of degree n is now shown by showing

pnlla > (n+ 1Y% + (n+1)71/2)2.

This is even weaker than the weak form
of Erdos conjecture and is still open.

It is conjectured that no Barker polyno-
mials exist for n > 12.
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Mahler raised the problem of the maxi-
mum Mahler measure.

Problem. Does there exist a sequence of
Littlewood polynomzals p,, € L,, so that

lim M{(pn) =
N

This i1s also a weak form of the one Erdos
conjecture.
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AN ArRC LENGTH PROBLEM

In 1958 Erd6s, Herzog and Piranian raised
a number of problems concerned with the
lemniscate

Ey = En(p) :={2 € C:[p(z)] =1}

where p is a monic polynomial of degree
n, SO

p(z) =1 (2 — oy) a; € C.

Problem 12, conjectures that the maxi-
mum length of FE,, is achieved for

p(z) = 2" — 1.

This is of length 2n + 0(1).



25

This problem has been re-posed by Erdos
several times, including at the Budapest
meeting honouring his 80th birthday. It

now carries with it a cash prize from Erdos
of $250.

Up to 1995 the best partial to date was
due to Pommerenke who showed that the
maximum length is at most 74n?. We im-
proved this in 1995 to derives an upper
bound of 8mwen, which at least gives the
correct rate of growth.

Theorem. Letoaq,as,...,a, € C. Then
the length of

E, ={2€C:|lIl(z2 — ;)| =1}

is at most 8men (< 69n).
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The proof relies on two classical theorems.

Cartan’s Lemma. If p(z) :=[],_,(z —
a;) then the inequality

p(2)] > 1

holds outside at most n circular discs, the
sum of whose radii 1s at most 2e.

Poincaré’s Formula. Let I' be a rectifi-
able curve contained in S (the Riemann
sphere). Let v(I',x) denote the number
of times that a great circle consisting of
points equidistant from the antipodes *+x
intersects I'. Then the length of I', Lg(T'),
18 given by

Ls(T") = i/SU(F,:U)dx

where dx 1s area measure on S.



27

Pommerenke shows that if the roots in the
Theorem are all real then the length is at
most 47r.

Pommerenke also shows that if the set E,,
is connected then the length is at least 27,
with equality only for z™.

When E,, is connected one can find a disc
of radius 2 that contains it. So in this case
the length of F,, is at most 47n.
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One of the results of Erd6s, Herzog, and
Piranian is:

The infimum of m(F(f)) is 0, where the
infimum is taken over all monic polyno-
mials f with all their zeros in the closed
unit disk (n varies and m denotes the two-
dimensional Lebesgue measure).

With the related result:

Let F' be a closed set of transfinite di-
ameter less than 1. Then there exists a
positive number p(F') such that, for ev-

ery monic polynomial whose zeros lie in
F, the set E(f) contains a disk of radius

p(F).
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SOME INEQUALITIES

Let P,, denote the algebraic polynomials
of degree at most n with real coefficients.

Markov’s Inequality. The inequality

Hp/HLOO[—l,l] < n2‘|pHL°°[—1,1]

holds for every p € P,.

Bernstein Inequality. The inequality

n

m ”p”LOO[—l,l]

holds for every p € P, and y € (—1,1).

' (y)| <
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It had been observed by Bernstein that
Markov’s inequality for monotone poly-
nomials is not essentially better than for

arbitrary polynomials. Bernstein proved
that if n is odd, then

||| Loo[—1,1] _ <n + 1>2

up
P HPHLOO[—l,l] 2

where the supremum is taken over all 0 #
p € P,, that are monotone on |—1,1].

This is surprising, since one would expect
that if a polynomial is this far away from
the “equioscillating” property of the Cheby-
shev polynomial, then there should be a
more significant improvement in the Markov
inequality.
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In the short paper in the Annals in 1940.
Erdos gave a class of restricted polyno-
mials for which the Markov factor n? im-
proves to cn. He proved that there is an

absolute constant ¢ such that

p'(y)| <min{ —Y" Sl e
(1 L y2)2 2 [ ’ ]

for every polynomial of degree at most n
that has all its zeros in R\ (—1,1).

Generalizations of the above Markov- and
Bernstein-type inequality of Erdds have
been extended in many directions by many
people including Lorentz, Scheick, Szaba-
dos, Varma, Maté, Rahman, Govil, Erdélyi,
PB and others.



33

Many of these results are contained in the
following,

There is an absolute constant ¢ such that

' (y)| <

, n(k+ 1
cmm{\/ 1(—y2)’ n(k+1)} HpHLOO[—l,l]

for every polynomial p of degree at most
n with real coefficients that has at most k
zeros in the open unit disk.
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Another attractive result concerns the growth
of polynomials in the complex plane. Specit-
ically

p(2)| < |Tn(2)] - max |p(z)]
re[—1,1]

for every polynomial p € P,, and for every
z € C with |z| > 1. Here T,, denotes the
usual Chebyshev polynomial of degree n.
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DISTRIBUTION OF ZEROS

Erdos and Turan established a number of
results on the spacing of zeros of orthogo-
nal polynomials with respect to a weight
w.

Let
(1>)x10 > 22> > Tpp (> —1)

be the zeros of the associated orthonormal
polynomials p,, in decreasing order and let

Ty.n = COSOy 0<0,, <m,
Then there i1s a constant K such that
Klogn

0,.1,—0 <
v+1,n v,n n

This result has been extended by various
people in many directions.
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The following result of Erdés and Turan
is especially attractive.

Theorem. If p(z) = Y °_ja;z’ has m
positive real zeros, then

‘v|a0an|

m? < 2n log (CLO + lag| + -+ + an|> ,

This result was originally due to Schur.
Erd6s and Turan rediscovered it with a
short proof.
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In this same paper Erdos and Turén dis-
cuss the angular distribution of the zeros
of polynomials in terms of the size of the
coefficients.

The result says that “if the middle coeffi-
cients of a polynomial are not too large
compared with the extreme ones” then
the angular distribution of the zeros is
uniform.

This has been further explored by Blatt,
Krod, Peherstorfer and others.
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CyYCcLOTOMIC POLYNOMIALS

The cyclotomic polynomial C), is defined
as the monic polynomial whose zeros are
the primitive nth roots of unity. So

Cn(x) = H (/4 — 1)#d)
d|n
For n < 105, all coefficients of C,, are 1
or 0. For n = 105, the coefficient 2 oc-
curs for the first time. Denote by A, the
maximum over the absolute values of the
coefficients of C,,.

Schur proved that
lim sup A4,, = oo.

Emma Lehmer proved that, for infinitely
many n,
A, > ent/3.
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Erdos proved that for every k,
A, >nF

for infinitely many n.

This is implied by his even sharper theo-
rem to the effect that

A, > exp[c(logn)*/?]

forn=2-3-5----pr with k sufficiently
large.

Many recent improvements and general-
izations of this are due to Maier
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