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INDIVIDUAL DIGITS OF PI

e We give algorithms for the computation of the d-th
digit of certain transcendental numbers in various bases.

e These algorithms can be easily implemented (multiple
precision arithmetic is not needed), require virtually no
memory, and feature run times that scale nearly linearly
with the order of the digit desired.

e They make it feasible to compute, for example, the
billionth binary digit of log (2) or 7 on a modest work
station in a few hours run time.
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These calculations rest on three observations.
e First, the d-th digit of 1/n is “easy” to compute.

e Secondly, this allows for the computation of certain
polylogarithm and arctangent series.

e Thirdly, very special polylogarithmic ladders exist for
certain numbers like 7, 72, log(2) and log®(2).

For example the critical identity for 7
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e It is widely believed that computing just the d-th digit
of a number like 7 is really no easier than computing all
of the first d digits.

e From a bit complexity point of view this may well be
true, although it is probably very hard to prove.

e What we will show is that it is possible to compute just
the d-th digit of many transcendentals in (essentially)
linear time and logarithmic space.



e We are interested in computing in SC, polynomially
logarithmic space and polynomial time.

Actually we are most interested in the space we will de-
note by SC* of polynomially logarithmic space and (al-

most) linear time (here we want the time = O(dlog®" (d))).

e It is not known whether division is possible in SC,

similarly it is not known whether base change is possible
in SC.

e The situation is even worse in SC*, where it is not
even known whether multiplication is possible. If two
numbers are in SC* (in the same base) then their prod-
uct computes in time = O(d?log®"(d)) and is in SC
but not obviously in SC*.



e We will show that the class of numbers we can com-
pute in SC* in base b includes all numbers of the form

= 1
Z p(k)bck:

k=1

where p is a polynomial with integer coefficients and c
is a positive integer.

e Since addition is possible in SC*, integer linear combi-
nations of such numbers are also feasible (provided the

base is fixed).

e The algorithm for the binary digits of 7, which also
shows that 7 is in SC* in base 2, rests on the following
remarkable identity:



Theorem.
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Proof. This is equivalent to:

dx.

/Vﬁ AV/2 — 83 — 44/25% — 8P
7'[' p—
0
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which on substituting y := v/22 becomes
1
/ 16y — 16 p
T = :
oyl -2y +dy 4"
The equivalence follows from the identity

1/v/2 k-1 1/v/2 o ,
/ dx :/ Zxk_H&’ dx
0 1— a8 0 :
1=0
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Identities. As usual, we define the m-th polylogarithm
L., by

0o .
z’L

=1

The most basic identity is
—log(1—27") = Ly(1/2")

which shows that log(1—27") is in SC* base 2 for integer
n.

e [.ess obvious are the identities

T =

36L5(1/2) — 36L5(1/4) — 12L5(1/8) + 6Lo(1/64)

log®(2) =

AL5(1/2) — 6L2(1/4) — 2L2(1/8) + La(1/64) .

These rewrite as

7T2 > a;
36 — Z 2142 la;] =[1,-3,-2,-3,1,0]
1=1



2,-10,—7,—10,2, —1] .

10g2(2) B = b
2 _;2%'2’ ]

e Thus we see that 72 and log®(2) are in SC* in base 2.

e These are polylogarithmic ladders in the base 1/2 in
the sense of Lewin.

We found them by searching for identities of this type
using an integer relation algorithm. We have not found
them directly in print. However they follow from known
results pretty easily.
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e There are several ladder identities involving Lj:
35/2¢(3) — m*log(2) =

36L3(1/2) — 18L3(1/4) — 4L5(1/8) + L3(1/64),

2log”(2) — 7¢(3) =
—24L3(1/2) 4+ 18L3(1/4) +4L3(1/8) — L3(1/64),

101og®(2) — 272 log(2) =
—48L5(1/2) 4 54L3(1/4) + 12L5(1/8) — 3L3(1/64) .
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e The favored algorithms for 7 of the last centuries in-
volved some variant of Machin’s 1706 formula:

T 4 ¢ 1 ¢ 1
— =4 arctan — — arctan — .
4 5 239

There are many related formula but to be useful to us
all the arguments of the arctans have to be a power of
a common base, and we have not discovered any such
formula for 7 .

e One can however write

78 1
5 = 2arctan — + arctan —

V2 V8

This rewrites as

21+ 1

Var =4f(1/2)+ F(1/8): f(@) =

=1

and allows for the calculation of /27 in SC*.
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e Another two identities involving Catalan’s constant
G, 7 and log(2) are:

0. @)

mlog(2) Ci
G — = —_—,
8 ; ol ;2

where

;] = [1,1,1,0,-1, -1, -1, 0
and )

5 5 log”(2) > d;

96" 8 _ggt’tlm’
where

[d;] =[1,0,-1,—-1,—-1,0,1,1]

e Thus 8G — mlog(2) is also in SC* in base 2.

That G is itself in SC* in base 2 is a recent result of
Broadhurst.
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The Algorithm.

eWe wish to evaluate the n-th base b digit of

1
(k)bck

T
-

by evaluating the fractional part of

b
(k)bck

M]3

s

(%)

-
I
—_

Here p is a simple polynomial and c is a fixed integer.

e Evaluating the fractional part of the second sum will
evaluate the first sum to as many base b digits after the
n-th place as the precision of the calculation.

e The keys are that the fractional part of (*) is the same
as the fractional part of

= b"~* mod p(k)
p(k)

(+%)

k=1

and that 5"~ °* mod p(k) can be evaluated quickly.
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e Fast evaluation of " ~°* mod p(k) is well understood;
it rests on the simple fact that if

b = r mod k

then
(b™)? = r? mod k.

The allows for fast exponentiation mod k by the so called
binary method.

e (According to Knuth this trick goes back at least to
200 B.C.)

e One evaluates =™ rapidly by successive squaring and
multiplication. This reduces the number of multiplica-
tions to less than 2log,(n).

e Note that this is entirely performed with positive in-
tegers that do not exceed c? in size. Further, it is not
subject to round-off error, provided adequate numeric
precision is used.
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e The key observation is that the the fractional part of
b™ /k can be computed quickly.

e For example, in base 10. If we solve

10" = o mod k
then Lo
Q
- ——€eZ
PR

and so 10" /k and a/k have the same fractional parts.

e In particular a/k gives the digits of 1/k staring after
the n-th place.

e This allows for the calculation of the n-th digit of
1077 /k from the computation of

10" 7 = amod k.

This explains (**) above.
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e We are now in a position to evaluate the n-th “digit”
(base b) of any series of the type

= 1
S —
,;) b p(k)

where p is a polynomial with integer coefficients. We
seek the fractional part of b".S and so write

o0 bn—ck:

b"S mod 1 = mod 1 =
kzzo p(k)
|n/c] pn—ck i pn—ck
mod 1 + mod 1
k=0 p(k) k=|n/c|+1 p(k)

e For each term of the first summation, the binary ex-
ponentiation scheme is used to evaluate the numerator

mod p(k).

e The second summation, where powers of b are nega-
tive, may be evaluated as written using floating-point
arithmetic. It is only necessary to compute a few terms
of this summation.

e This is then converted to the desired base b.
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Computations.

e Each of our computations employed quad precision
floating-point arithmetic for division and sum mod 1
operations.

e Quad precision is supported on the Sun Sparc/20,
the IBM RS6000/590, and the SGI Power Challenge
(R8000), which were employed in these computations.
Quad precision was also used for the exponentiation al-
gorithm on the Sun system.

e On the IBM and the SGI systems, however, we were
able to avoid the usage of explicit quad precision, at
least in the exponentiation scheme, by exploiting a hard-
ware feature common to these two systems, namely the
106-bit internal registers in the multiply-add operation.
This saved considerable time, because quad precision
operations are significantly more expensive than 64-bit
operations.

e Our results are given below. The first entry, for exam-
ple, gives the 10°-th through 10° 4 13-th hexadecimal
digits of 7 after the “decimal” point. We believe that
all the digits shown below are correct.
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e We did the calculations twice. The second calculation,
performed for verification purposes, was similar to the
first but shifted back one position (this changes all the
arithmetic performed).
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Constant: Base: Position: Digits:

T

log(2)

log*(2)

log(9/10)

16

16

10

10°
108
10"

10
10°

106
10?

106
10°

106
10°
1010

26C65E52CB4593
ECB840E21926EC
921C73C6838FB2

418489A9406EC9
B1EEF1252297EC

685554E1228505
437A2BA4A13591

2EC7EDB82B2DF7
8BA7C885CEFCE8

80174212190900
44066397959215
82528693381274
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THE FORTY TRILLIONTH BIT OF P11s 0

Between April 19, 1998, and February 9, 1998, one hun-
dred and twenty-six computers from eighteen different
countries set a new record for calculating specific bits
of Pi. This is due to Colin Percival.

The calculation took a total of about 84,500 cpu hours,
and was done using ’idle’ time slices (time slices which
no other program wants to make use of ) under Windows

95 and Windows NT.

The ’average’ computer participating was a 200MHz
Pentium-based system.

The answer, starting at the 39,999,999,999,997th bit of
Pi:

1010 0000 1111 1001 1111 1111 0011 0111 0001 1101
For more information see the PiHex webpage at

http://www.cecm.sfu.ca/projects/pihex/
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Logs in base 2. It is easy to compute, in base 2, the
d-th binary digit of

log(1—27") = L1(1/2").
So it is easy to compute logm for any integer m that
can be written as
(291 —1)(2%2 —1)--- (2% — 1)
(261 —1)(2b2 —1)--- (2% —1)°

m =

e In particular the n-th cyclotomic polynomial evalu-
ated at 2 is so computable. The beginning of this list
is:

{2,3,5,7,11,13,17,31,43,57} .

e Since
218 _1=7.9.19.73,

and since 7, v/9 and 73 are all on the above list we can
compute log(19) in SC* from

log(19) = log(2'® — 1) — log(7) — log(9) — log(73).

e Note that 2'' — 1 = 2389 so either both log(23) and
log(89) are in SC* or neither is.

One can show that no formula of the type on the previ-
ous page exists for log(23).
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Questions.

e The hardest part of our method is finding an appro-
priate base b expansion.

e We cannot, at present, compute decimal digits of =«
by our methods because we know of no identity like
Theorem 1 in base 10. But it seems unlikely that this
is inherently impossible.

e This raises the following obvious problem.

1] Find an algorithm for the n-th decimal digit of 7 in
SC*.

e It is not even so clear that 7 is in SC in base 10. This
is a result of Plouffe.

e Numbers that are not given by special values of poly-

logarithms aren’t susceptible to our methods. Is this
necessarily the case?

2] Are e and v/2 in SC (SC*) in any base?

e Similarly the treatment of log is incomplete.
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3] Is log(2) in SC* in base 107

4] Is log(23) in SC* in base 27
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Cyclotomic polynomials with coefficients +1

We characterize all cyclotomic polynomials of even de-
gree with coefficients restricted to the set {+1,—1}. In
this context a cyclotomic polynomial is any monic poly-
nomial with integer coefficients and all roots of modulus
1. Inter alia we characterize all cyclotomic polynomials
with odd coefficients.

The characterization is as follows. A polynomial P(x)
with coefficients +£1 of even degree N — 1 is cyclotomic
if and only if

P(.’E) — j:q)pl (j:aj)q)pz (Zl:xpl) T (I)pr (:txplpz---pr_l),
where N = pips---p,- and the p; are primes, not nec-

essarily distinct. Here ®,(z) := wmp__ll is the pth cyclo-
tomic polynomial.

We conjecture that this characterization also holds for
polynomials of odd degree with 41 coeflicients. This
conjecture is based on substantial computation plus a
number of special cases.
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Mahler raised the question of maximizing the Mahler
measure of Littlewood polynomials. The Mahler mea-
sure is just the Lo norm on the circle and one would
expect this to be closely related to the minimization
problem for the L, norm (which has been much stud-

ied).

Of course the minimum possible Mahler measure for a
Littlewood polynomial is 1 and this is achieved by any
cyclotomic polynomial.

For us a cyclotomic polynomial is any monic polyno-
mial with integer coefficients and all roots of modulus
1. While ®,,(x) denotes the nth irreducible cyclotomic
polynomial (the minimum polynomial of a primitive nth
root of unity).
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As above we show that a polynomial P(x) with coeffi-

cients +1 of even degree N — 1 is cyclotomic if and only
if

P(z) = +®p, (+2)Pp, (£2P*) - - - B, (FaPP27P7 1),

where N = pips---p, and the p; are primes (not nec-
essarily distinct). The “if” part is obvious since ®,, ()
has coefficients +1.

We also give an explicit formula for the number of such
polynomials.

This analysis is based on a careful treatment of Gra-
effe’s root squaring algorithm. It transpires that all cy-
clotomic Littlewood polynomials of a fixed degree have
the same fixed point on iterating Graeffe’s root squar-
ing algorithm. This allows us to also characterize all
cyclotomic polynomials with odd coefficients.
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Substantial computations, as well as a number of spe-
cial cases, lead us to conjecture that the above charac-
terization of cyclotomic Littlewood polynomials of even
degree also holds for odd degree. One of the cases we
can handle is when IV is a power of 2.

It is worth commenting on the experimental aspects of
this paper. (As is perhaps usual, much of this is care-
fully erased in the final exposition). It is really the
observation that the cyclotomic Littlewood polynomi-
als can be explicitly constructed essentially by inverting
Graeffe’s root squaring algorithm that is critical. This
allows for computation over all cyclotomic Littlewoods
up to degree several hundred (with exhaustive search
failing far earlier). A construction which is of interest
in itself. Indeed it was these calculations that allowed
for the conjectures of the paper and suggested the route
to some of the results.
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Cyclotomic Polynomials with Odd Coefficients.

We discuss the factorization of cyclotomic polynomials
with odd coefficients as a product of irreducible cyclo-
tomic polynomials. To do this, we first consider the fac-
torization over Z,[x| where p is a prime number. The
most useful case is p = 2 because every Littlewood poly-
nomial reduces to the Dirichlet kernel 1+z+--- 42V 1
in Z5[z]. In Z,[z], ®,(x) is no longer irreducible in gen-
eral but ®,(x) and ®,,(x) are still relatively prime to
each other. Here, as before, ®,,(x) is the nth irreducible
cyclotomic polynomial.

Lemma. Suppose n and m are distinct positive inte-
gers relatively prime to p. Then ®,(x) and ®,,(x) are
relatively prime in Z,|z].

The following lemma tells which ®,,(z) can possibly be
factors of polynomials with odd coefficients.

Lemma. Suppose P(x) is a polynomial with odd coef-
ficients of degree N — 1. If ®,,,(x) divides P(x), then m
divides 2N .
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In view of the Lemmas every cyclotomic polynomial,
P(x), with odd coefficients of degree N — 1 can be writ-

ten as @
P(z)= || 7" (=)
d|2N

where e(d) are non-negative integers.

For each prime p let T}, be the operator defined over all
monic polynomials in Z[x| by

N

T,[P(a)] := | [ (& —af)

i=1
for every P(z) = Hﬁil(az — ;) in Z|z].

We extend T, to be defined over the quotient of two
monic polynomials in Z[x| by

To(P/Q) ()] := Tp|P(z)l/Tr|Q(x)].

This operator obviously takes a polynomial to the poly-
nomial whose roots are the pth powers of the roots of
P. Also we let M, be the natural projection from Z[z]
onto Z,[z]. So,

M,[P(z)] = P(z) (mod p).
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Lemma. Letn be a positive integer relatively prime to
p and v > 2. Then we have

When P(z) is cyclotomic, the iterates T7'[P(x)] con-
verge in a finite number of steps to a fixed point of T},
and we define this to be the fixed point of P(z) with
respect to 1,.

Lemma. If P(z) is a monic cyclotomic polynomial in
Z|x|, then

My [T P(z)]] = Mp|P(z)],

in Z,|x], where M, is the above natural projection.

The Lemma shows that if T,[P(z)] = T,|Q(z)] then
M,|P(z)] = M,[Q(z)]. The next result shows that the
converse is also true.
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Theorem. P(z) and Q(x) are monic cyclotomic poly-
nomials in Z[x] and M,[P(z)] = M,[Q(x)] in Z,|x] if
and only if both P(x) and Q(x) have the same fixed point
with respect to iteration of T),.

From the Theorem we can characterize the monic cyclo-
tomic polynomials by their images in Z,[x] under the
projection M,. They all have the same fixed point un-
der T,. In particular, when p = 2 we have

Corollary. All monic cyclotomic polynomaials with odd
coefficients of the degree N —1 have the same fized point
under iteration of Ty. Specifically, if N = 2°M where
t >0 and (2,M) =1 then the fixed point occurs at the

t + 1-th step of the iteration and equals

(zM — 1) (z — 1)L,

The Corollary when N is odd (¢ = 0) shows that T P(z)]
equals to 1 +x + - -- + 2™V~ for all cyclotomic polyno-
mials with odd coefficients and we have the following
characterization of cyclotomic polynomials with odd co-
efficients.
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Corollary. Let N = 2*M with t > 0 and (2, M) = 1.
A polynomial, P(x), with odd coefficients of degree N —1
1s cyclotomic if and only if

e(d e2d e(2ttlq
H(I)() CD () ... D),
d|M

and the e(d) satisfy the conditions:

t+1
d)+> 27 e(2'd) =2 fort> 1

i=1
and is 2t — 1 fort = 1.

Furthermore, if N is odd, then any polynomial, P(x),
with odd coefficients of even degree N — 1 is cyclotomic

of and only if

e(d
P@)= [] @59z«
d|N,d>1

where the e(d) are non-negative integers.
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This Corollary allows us to compute the number of cy-
clotomic polynomials with odd coefficients. Let B(n)
be the number of partitions of n into a sum of terms of
the sequence {1,1,2,4,8,16,---}. Then B(n) has gen-
erating function

Fz)=(1-2) [ -2*)".
k=0
It follows that

Corollary. Let N = 2'M with t > 0 and (2, M) = 1.
The number of cyclotomic polynomials with odd coeffi-
cients of degree N — 1 is

C(N) = B(2H)4M)~1. B(ot —1)

where d(M) denotes the number of divisors of M. Fur-
thermore,

log C(N) ~ (g log 2)(d(M) — 1) + (128 = D)*

log 4
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Cyclotomic Littlewood Polynomials.

We now specialize the discussion to the case where the
coefficients are all plus one or minus one.

One natural way to build up Littlewood polynomial of
higher degree is as follows: if P;(x) and Py(x) are Lit-
tlewood polynomials and P;(z) is of degree N — 1 then
Py (z)Py(z") is a Littlewood polynomials of higher de-
gree. In this section, we are going to show that this
is also the only way to produce cyclotomic Littlewood
polynomials, at least, for even degree.



37

To prove this, it is equivalent to show that the coefhi-
cients of P(x) are “periodic”. This is the key to the
next result.

Theorem. Suppose N is odd. A Littlewood polyno-
mial, P(x), of degree N — 1 is cyclotomic if and only
if

P(z) = £®p, (£2)Dp, (2 ) - - - By, (F2P1P2 7P,
where N = pi1ps - - - p, and the p; are primes, not neces-
sarily distinct.

Corollary. Suppose N is odd. Then P(x) is cyclo-
tomic in L of degree N — 1 if and only if
3 N; e+
Vi 4 (—1)
P(x) =% :
(z) Zl;[l plNi-1 4 (—1)eti

where e =0 or 1, Ngo =1, N; = N and N;_1 is a proper
divisor of N; fort=1,2,--- ,t.

Using this Corollary we can count the number of cyclo-
tomic Littlewood polynomials of given even degree.

Cyclotomic Littlewood Polynomials of Odd De-
gree. We conjecture explicitly tha the main Theorem
also holds for polynomials of odd degree.
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Conjecture. A Littlewood polynomial, P(x), of degree
N — 1 1s cyclotomic if and only if

P(z) = £®p, (+2)Pp, (£271) - - - Bp, (2?1271,

where N = p1ps - - - p, and the p; are primes, not neces-
sarily distinct.

We computed up to degree 210 (except for the case
N —1 = 191). The computation was based on com-
puting all cyclotomic polynomials with odd coefficients
of a given degree and then checking which were actually
Littlewood and seeing that this set matched the set gen-
erated by the conjecture. For example, for N —1 = 143
there are 6773464 cyclotomic polynomials with odd co-
efficients of which 416 are Littlewood. For N —1 = 191
there are 697392380 cyclotomic polynomials with odd
coefficients (which was too big for our program).

We can generate all the cyclotomics with odd coeffi-
cients from Corollary 2.7 quite easily so the bulk of the
work is involved in checking which ones have height 1.
The set in the conjecture computes very easily recur-
sively.

Some special cases also support the conjecture. Most
notably the case where N is a power of 2.
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LITTLEWOOD TYPE PROBLEMS

We are primarily concerned with polynomials with coef-
ficients in the set {+1,—1}. Since many of these prob-
lems were raised by Littlewood we denote the set of
such polynomials by £,, and refer to them as Littlewood
polynomials. Specifically

n

Ly, :=<¢p:plx)= Zajxj, a; € {—1,1}

j=0

The following conjecture is due to Littlewood probably
from some time in the fifties. It has been much studied
and has associated with it a considerable literature

Conjecture. It is possible to find p, € L, so that

Civn+1<|py(2)| < Covn+1

for all complex z of modulus 1. Here the constants Cy
and Cy are independent of n.

Such polynomials are often called “locally flat”. Be-
cause the Ly norm of a polynomial from L, is exactly
vn + 1 the constants must satisfy C7 <1 and Cy > 1.



40

It is still the case that no sequence is known that satisfies
the lower bound.

A sequence of Littlewood polynomials that satisfies just
the upper bound is given by the Rudin-Shapiro polyno-
mials:

and
Pnt1(2) == pn(2) + Z2nQn(z)7

Qn—l—l(z) = pn(z) — Z2“Qn(z)

These have all coefficients £1 and are of degree 2™ — 1.
From

|pn-|—1|2 + |Qn-|-1|2 = 2(|pn|2 + |Qn|2)

we have for all z of modulus 1

Pa(2)] < 2v2" =v/21/deg(pn)

and

g (2)] < 2v2" = v/24/deg(qy)

This conjecture is complemented by a conjecture of Erdés.
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Conjecture. The constant Cy in Littlewood’s conjec-
ture is bounded away from 1 (independently of n).

This is also still open. Though a remarkable result of
Kahane’s shows that if the polynomials are allowed to
have complex coefficients of modulus 1 then “locally
flat” polynomials exist and indeed that it is possible
to make C7 and (5 asymptotically arbitrarily close to
1.

Another striking result due to Beck proves that “locally
flat” polynomials exist from the class of polynomials of
degree n whose coefficients are 400th roots of unity.

Because of the monotonicity of the L, norms it is rele-
vant to rephrase Erdos’ conjecture in other norms. New-
man and Byrnes speculate that

pll3 > (6 — 6)n*/5

for p € L£,, and n sufficiently large. This, of course,
would imply Erdds’ conjecture above. Here

lally = ( / T la@)p d9/<27r>) Up

is the normalized p norm on the boundary of the unit
disc.
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It is possible to find a sequence of p,, € L£,, so that

1palls = (7/6)n°.
This sequence is constructed out of the Fekete polyno-
mials
) =3 (5]
k=0 \P

where (2—9> is the Legendre symbol. One now takes the

Fekete polynomials and cyclically permutes the coeffi-
cients by about p/4 to get the above example due to
Turyn.

Problem. Show for some absolute constant 6 > 0 and
for all p, € L,

Iplla > (1 +6)vn

or even the much weaker

Iplla > vV + 6.

A very interesting question is how to compute the min-
imal L4 Littlewood polynomials (say up to degree 200).
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A Barker polynomial

n

p(z) = Z apz”

k=0

with each a; € {—1,41} so that

p(2)p(z) = Z cpz”

k=—n

satisfies co = n + 1 and
ci] <1, 1=1,2,3....

Here

n—j
cj = g Ak —k and cC_j = Cj.
k=0

If p(z) is a Barker polynomial of degree n then

p|lsa < ((n+1)% + 2n))1/4

The nonexistence of Barker polynomials of degree n is
now shown by showing

Ipnlla > (n+ 1)Y2 4+ (n+1)71/2)2.
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This is even weaker than the weak form of the preceding
problem.

It is conjectured that no Barker polynomials exist for
n > 12.

We can compute the expected L, norm of Littlewood
polynomials (B and Lockhart).

For random ¢,, € L,,

E(llgnllp)

(D) s (1 (14 p/2)7

and for derivatives

E(l¢5]],)

n(2r+1)/2

= (2r 4+ 1)72(0(L + p/2)) 7.
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ExpriciT MERIT CALCULATIONS

Our main purpose is to give explicit formulas for the
L4 norms (on the boundary of the unit disc) and hence,
also the merit factors of various polynomials that are
closely related to the Fekete polynomials.

As usual the L, norm on the boundary of the unit disc
is defined by

1 2w »
o= (55 [ o) as)

The L4 norm of a polynomial is particularly easy to
work with because it can be computed as the square
root of the Ly norm of p(z)p(z) and hence, computes
exactly as the fourth root of the sum of the squares of
the coefficients of p(z)p(z). In contrast, the supremum
norm or other L, norms, where p is not an even integer,
are computationally difficult.

1/«

Let ¢ be a prime number and let (E) be the Legendre
symbol.
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The Fekete polynomials are defined by

Fyz) =1+ f)(z) =1+ qi <ﬁ> 2",

The half-Fekete polynomials are defined by

T SR

k=1 q
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If we cyclically permute the coefficients of f, by about
q/4 places we get an example of Turyn’s which we de-

note by
z) 1= qi:l <k—+ [q/4]> 2"
q

k=0

where [-| denotes the nearest integer, and we denote the
general shifted Fekete polynomials by

- 1<k+t> .
k=0

Note that R has one coefficient that is zero (from the
permutation of the constant term in f). For example

fiir=—a242% -2 — 2" — 28+ 42t 42— 42

and

Ry := 0 TSttt 1.
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The explicit formulas involve the class number of the
imaginary quadratic field of Q(v/—d) which is denoted
by h(—d). For any odd prime d it can be computed as

(d-1)/2
Med)=xi S (S) (C1)* = AGla(~1)

k=1

1 if d=1,7 (mod 8),
Ag =4 —1/3 if d=3 (mod 8),
—1 if d=5 (mod 8).
For primes d = 3 (mod 4) it can also be computed as

h(—d) = —fc'lc(il) _ —é Y (S) k

(this sum is 0 for d =1 (mod 4)).

There are two natural measures of smallness for the L4
norm of a polynomial p. One is the ratio of the L4 norm
to the Ly norm, ||p||4/||p||2- The other (equivalent) mea-
sure is the merit factor, defined by

Ipl2

MF — )
P) = o = T
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Littlewood polynomials are the set

n

L, :=<p:plr)= Zajxj, a; € {—1,1}

3=0

The Ly norm of any element of £,,_1 is 1/n and this is,
of course, a lower bound for the L4 norm.

The expected L4 norm of an element of £,, is is 21/4,/n.
The expected merit factor is thus 1.

The {R,} above are a sequence with asymptotic merit
factor 6. Golay gives a heuristic argument for this ob-

servation of Turyn’s and this is proved rigorously by
T. Hgholdt and H. Jensen

The Fekete polynomials themselves have asymptotic merit
factor 3/2 and different amounts of cyclic permutations
can give rise to any asymptotic merit factor between

3/2 and 6.
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Golay speculates that 6 may be the largest possible as-
ymptotic merit factor. He writes “the eventuality must
be considered that no systematic synthesis will ever be
found which will yield higher merit factors.”

Newman and Byrnes, apparently independently, make
a similar conjecture. As do Hgholdt and Jensen.

Computations by a number of people on polynomials

up to degree 200 are equivocal. See the web page of
A. Reinholz at http://borneo.gmd.de/~andy/ACR.html.

The Fekete polynomial f, has modulus ,/q at each gth
root of unity (as does f;) and one might hope that they
also satisfy the upper bound in Littlewood’s conjecture
but Montgomery shows that this is not the case.

Littlewood’s conjecture is that it is possible to find p,, €
L, _1 so that

Ci1vn < |pn(2)] < C2v/n

for all z of modulus 1 and for two constants C4,C5 in-
dependent of n.
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2. RESULTS

Theorem 1. For q an odd prime, the Fekete polyno-

mial,
q—1 L
f) =X (5)
=1 1
satisfies
5q 4
||fq||j1l = EN 3q + 3 — Yq
where
._{0 if ¢g=1 (mod 4),
Ta = 12(h(—q))? if q=3 (mod 4).

Theorem 2. For q an odd prime, the modified Fekete
polynomaal,

F,(2): =1+ qi <E> 2F

=1 \ 4
satisfies
5> 5
||FquLl: ?‘1‘9_ 3 — Vaq
where
._{O if ¢=1 (mod 4),
YT 120(—q) (W(—g) + 1) if g=3 (mod 4).
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Theorem 3. For q an odd prime the half-Fekete poly-

nomials
(qili/? 2
Gy(z) = (—) 2F.
k=1 q
satisfy
4 q2 q 1 )
Gl =L~ T4 2 —uh(-0)
where

0 if ¢g=1 (mod4),
Yo =% 2 if ¢g=7 (mod38),
6 if g=3 (mod8).

The exact same formulae above hold for the polynomials

(fq(2) + f4(=2))/2 and (fq(2) — fo(=2))/2.
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Theorem 4. For q an odd prime, the Turyn type poly-

nomsials <k+T[q/4]> }

qg—1
Ry(z) :=
k=0

where [-] denotes the nearest integer, satisfy
7q° 1

HRqu:?_q_g_W’q

and
hM—q)(h(—q) —4) 1f g=1,5 (mod 8),

Ve = 12(h(—q))’ if ¢=3 (mod 8),
0 if ¢=7 (mod 8).
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Theorem 5. For q an odd prime, the shifted Fekete

polynomials
Nkt
£ (5
k=0
satisfy
£33 =

2

! <n+t)
n

n=1

1 8
3(5(] +3q+4)+8t* —4qt— 8t—q— (1 — = <—>>

and
[f2=H)3 = 1 fell
if 1<t <(g—1)/2.

Montgomery shows that the maximum modulus of f,(2)
at the 2¢th root of unity is at least %\/ﬁlog logq.

Corollary 6. For g an odd prime, we have

qg—1

D1 fal—e I = S (Tg — 8)(g — 1) — 247

§=0

where v, s the same as in Theorem 1.
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Theorem 7. For q an odd prime, the shifted Fekete

polynomials
Ca (k + t) I
k=0

_ 5q°
Ifella = 72 HE = 7+8t2—4qt+0(Q(10gQ)2)
if 1<t <(g—1)/2.

satisfy

Theorem 7 follows from Theorem 5 on observing that
k—1 qg—1

(595 ()50 ()

This is coupled with the known estimate
k—1

> (%)

n=1 q

and the observation that

122 n
g (%)

equals the class number, h(—q), for primes ¢ = 3 (mod 4)
and is zero for primes ¢ =1 (mod 4). The asymptotics
of Turyn et al mentioned previously are the above the-
orem in the case where t is a constant multiple of q.

< g2 logg
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Theorem 8. Let

{—2 if n=0,1 (mod 4),
1 if n=2,3 (mod4).

The above example of Littlewoods depends on the as-
ymptotic series for

because, in the above notation,

sin?(j%m/n)
L,|li = 2
| Lnlls = n® + Z sin?(jm/n)
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Let g be a prime and x be a non-principal character
mod q. Let

for 1 <t < g be the character polynomial associated to
X (cyclically permuted ¢ places).

Theorem 9. For any non-principal and non-real char-
acter x modulo q and 1 <t < g, we have

4
Ifi(2)|i = 2¢* + O(¢*? log” q)

3
where the implicit constant is independent of t and q.
Here || - |4 denotes the Ly norm on the unit circle.

It follows from this that all cyclically permuted charac-
ter polynomials associated with non-principal and non-
real characters have merit factors that approach 3.

We also compute the averages of the L4 norms:

Theorem 10. Let q be a prime number. We have

> i = (2g—3)(g—1)
x (mod q)
where the summation is over all characters modulo q.
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PROOF OF THEOREM 5

Let ¢ be a prime number and, as before, let

qg—1
n n
he =Y ()
n=1 q
be the Fekete polynomial. Define

._{1 if ¢g=1 (mod 4),
“T i if g=3 (mod 4).

Then we have the following well-known result
I k
fo(W") = €qv/q a :
for k=0,1,---,9— 1, where w := e27/4,

Lemma 1. For any 1 <t < q, we have

(1) a5 ()
S\ w1 Vi a /)

()
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Lemma 2. If1 <k <gq, then

g—1
Z nm:%(q2—6q—1—|—6k—|—3qk—3k2).

n,m=1
k+n+m=0 (mod q)

Lemma 3. If1 <k <gq, then

g—1 w(a—b)k 1 ) ,
) (ot 1 = 120 D@ H60+5-12k—6gk-+64%)
a,b=1

a#b

As before let f(z) be the shifted Fekete polynomial ob-
tained by shifting the coefficients to the left by ¢ where
1 <t<gq. So fi(z) = fq(z). Then we have

fo®) = w™* fo(w")

for any 0 < kK < g — 1. We are going to evaluate the
following summation

g—1

AT

k=0



60

We use the basic approach of T. Hgholdt and H. Jensen
which is by interpolation at the 2qth roots of unity. Us-
ing the Lagrange interpolation formula at the gth roots
of unity, we have

. 1901, .
HOEESY W fl(w?).

q “—o z — wJ
It follows that
Kok 16 1|28 W 4
t k4 _ te .7
—w = — . )
DI = G Y )
16 <2 _
=i 2 F@O ) et
q a,b,c,d=0
" K 1 whk 1 Wk
k_owk+wawk _|_wbwk_|_wcwk+wd°

We then group the terms in the above summation over
a,b,c and d by the following cases:

(1) a=cand a # b #d,

(2) a=b=c#d,

(3) a=b+#c=d,

(4) a=b=c=d,

(5) a#b#c#d,
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and we obtain the following formula

g—1

S IfH(—wh) = (A + B+C + D)
k=0 q
where
g—1
A= L@+ Y s
a=0
B

_ wa_|_wb

Y A @OP R £ + £ ) Faw")w) ((w - wb)2>

a#b
LN e [ JE@ @) 4 fw0) fi(w)w
C = _Za’b’czo2|fq(w )| ( (wb—wa)(wc—w“)
aF£b#c
@ FHW) U@ Fiwe)w + FHw)? FE(WP) fh(we)wb e
4 Rl (Wb — w?) (W€ — w?)
a#b#c
2
p—_2
4
{2 LR+ ST + i) o)
(o P

a#b



62

Here A, B,C and D are the sum of terms according to
the above cases (1), (2), (3) and (4) respectively and
the sum of terms corresponding to the case (5) is zero.

We now evaluate A, B, C and D separately. The details
are formidable.

To prove Theorem 4 we need .

Lemma 4. Let q be a prime and q > 3. Then we have

-1, h(—q¢)—1 if ¢=1 (mod 4),
<_) Y if ¢=3 (mod 8),
h(—q) if ¢=7 (mod 8).
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