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Abstract: Some results on zeros of par-

tial sums.









Introduction

Theorem 1 (Szego (1922)) A func-
tion ¥3° anz™, where the an take only a
finite number of different values, is ra-
tional if it can be continued analytically

beyond the unit circle.

Theorem 2 (Duffin & Schaeffer (1945))
A function X3° anz", where the a, take
only a finite number of different values,
s a rational function if it is bounded in

a sector of the unit circle.



Duffin and Schaeffer give the example
aS |
1

of a function with integer coefficients
which is bounded in the sector of the
unit circle where —n/4 < argz < 7w/4
and which is not rational and has the

unit circle as a natural boundary.

This follows because the terms satisfy

the Fabry gap theorem.



Fabry’s gap theorem

Let f(2) = S cpz™. Let {\,} be an in-
creasing sequence of non-negative in-
tegers satisfying the Fabry gap condi-

tion: A\p/n — oo.

Fabry's gap theorem asserts that, un-
der this condition, every point on the
boundary of the disk of convergence is

a singular point.



Theorem of Pdlya - proved by Carleson.

Theorem 3 (Polya and Carlson (1921))
A function ¥3° anz™ which converges in
the unit circle and where the ay are in-
tegers is a rational function if it can be
continued analytically beyond the unit

circle.

Theorem 4 (Jentzsch (1914)) Each
point of the circle of convergence of a
power series y¥3° anz™ having finite pos-
itive radius of convergence is a limit
point of the set of zeros of the se-

quence of its partial sums.



New Results and Proofs

We reprove a result:

Theorem b Supposel, is a a sequence
of polynomials with bounded integer
coefficients (or with coefficients from
a finite set). Then l, cannot tend to
zero uniformly on any arc on the unit

circle.



Proof. Consider

£(2) = %;ln(z)zA”

where the [, are polynomials with co-
efficients from a finite set and A\, in-
creases rapidly enough to satisfy the
Fabry gap condition. Then we know
from Duffin and Schaeffer (1945) that
f cannot be bounded in any sector (or

it would be rational and extend-able).

What does this tell us about the se-

quence [,7?



If the [,, tend to zero on a piece of arc
then by judicial choices one can force
a contradiction. Make a subsequence

I}, small enough so that
= /
2 1n(2)
1

converges uniformly for z on the arc.
Now choose the A\, growing rapidly enough

to ensure the uniform convergence of

f(2) = gfzg(z)z%

in the sector with the arc as boundary

and also so that the sum has Fabry

gaps.



Call ® the class of analytic functions
with coefficients just O or 1 in their

Taylor series expansions.

Theorem 6 If f is a rational function
in © then

f(2) 1= pm(2) + 2" HL T

where py, Is a 0,1 polynomial of degree
m and qn is a 0,1 polynomial of degree

n.

If f has no zeros in the unit disk then
(1 — 2" Hpm(z) + (™ )an is cyclo-

tomic.



Proof. Note that if fis a rational func-
tion than it is a quotient of two polyno-
mials with rational coefficients. Since
f(1/2) is rational the binary expansion
of f(1/2) (which is just the coefficients
of f) is ultimately periodic. The result

follows immediately.

There is a similar result if the coeffi-
cients of f come from a bounded set
of integers. See Pdlya and G. Szegd,
Volume 2, P158, Ex. 158.



Theorem 7 Every infinite sequence of
Littlewood polynomials has zeros dense

in the unit circle.

This holds for any sequence of polyno-
mials with coefficients from any fixed
finite set. This can also be deduced
from Theorem 3.4.1 in [?] due to P.

Erdds and P. Turan.

Proof. Suppose a sequence [,, of poly-
nomials with {0, 1} coefficients (or co-
efficients from any fixed finite set) has

NO zeros in a a closed disk D centered



at a point ¢ on the unit circle. Suppose
these polynomials do not vanish at O.
Let D1 be a closed disk centered at ¢

and contained in the interior of D.

Let m, denote the (positive) minimum
modulus of [, on the boundary of D;.
We claim that m, does not tend to
zero and hence the [, are bounded away

from zero on D;.

Suppose mp, does tend to zero. We
can then assume, by passing to a sub-

sequence if necessary, that there there



exists a convergent subsequence of points
pn, ON the boundary of D1 where I,(pn)
tends to zero. Let p denote the Iimit

of the p, then [,(p) tends to zero

Let E:=Dn{lz| <1} and F := DN
{|z] = 1}.

We can assume, by passing to a subse-
quence if necessary that [, converges
to a power series f with {0,+1} co-
efficients and that the convergence is
uniform on any compact subset of the

interior of E.



We can also assume, by passing to a
subsequence if necessary that [} (here
* denotes the reciprocal polynomial)
converges to a power series g with {0, +1}
coefficients and that the convergence
IS uniform on any compact subset of

the interior of F™.

Note that p € Dy cannot be in the in-
terior of either E or F' since then the
[, would ultimately have zeros interior
to D. It follows that there is a piece of

arc in the interbf of £ and F' where [,



trends to zero uniformly and this is im-
possible. (Take a piece of arc with end-
point p that extends toward the closest
boundary point of ENF. To see the uni-
formity consider repeating the above
argument on disks like D1 with increas-
ing radii and use the fact that the min-
iImum modulus decreases on this larger
set. )

We have shown that the sequence [,
is uniformly bounded below on com-
pact subsets of D. Thus by Montel's

theorem there is a subsequence of 1

n



that converges to an analytic function
on compact subsets of D and hence
the same subsequence of [,, converges
to to an analytic function on compact
subsets of D. This would gives the con-
tradiction that f has a convergent ex-
pansion with {0,£1} coefficients in a

region outside the unit disc.



Theorem 8 (Vitali’'s Convergence Thm)
Let frn(z) be a sequence of functions,
each regular in a region D, let |fn(2)| <
M for every n and z in D, and let fn(z)
tend to a limit as n — oo at a set of

points having a limit point inside D.

Then fn(z) tends uniformly to a limit
in any region bounded by a contour in-
terior to D, the limit therefore being an

analytic function of z.



Zeros at 1

Theorem 9 ( An Inequality of Schur)
Suppose

n .
p(z) == ) a2’
7=0

has m positive real roots. Then

ag| + |a +---+|an|) |

|aoan|

nf2§§2nlog(:



Theorem 10 (Pdlya and Szegd) Suppose
n :
p(z) = ) a;z’
j=0

has all its roots in the upper half plane
3(z) > 0. Suppose, for each k, the real

and imaginary part of

ap .— O -+ ’L,Bk
Then

n .
u(z) == Y a;2’
j=0
and

n .
v(z) := ) Bz’
=0
have only real zeros.



Suppose

r(z) i=cog+ciz+...+ cn_lzn_l + cpz™

has all real roots then

4
Vlcoen] €4 < leg| + le1] + - + |enl

or

Vlcoen| (1.284)" <co| + [c1|+ -+ |cnl.



Now suppose p is a Littlewood polyno-

mial of even degree then
p(iz) ;= +14c12z+.. .—I—cn_lzn_l—l—:l:zn

with each |¢;| < 1. (p Littlewood can

be relaxed a lot.)

So p must have at least one root in the

right half plane for n > 9 (whenever
(1.284)" > n +1.)



A Better Estimate

Let

n )
{z ajel,  ag| = lan| =1, |aj|s1}.
j=0

Theorem 11 Every P € K,, has at least
8v/nlogn zeros in every open disk D(zg, 6n)
centered at zg € 0D with radius

__ 33wlogn

On .
n \/ﬁ

whenever 6, < 1.



The proof of the theorem follows from
the combination of the two results be-
low. The first one is a difficult result

of Erdds and P. Turan,.

The second one is a consequence of

Jensen’s Formula.



Theorem 12 (Erdds and Turan) If

n

P(z) = ap2®
k=0

and zeros
2y — Ty eXD(’LQDV) , Ty > O, QO]/ & [O, 27'('),

then for every 0 < a < B8 < 2w we have

» o 1-°

vel(a,B) 27

n| < 16v/nlog R,

where

_ lag| + lag] + -~ + lan|

|a0an|

R :

and

I(a,8) = {v € {1,2,...,n} 1 a < gy < B}.



Lemma 1 Let o € (0,1). Every poly-

nomial in Ky, has at most
(2/a) log(1/a)
zeros in the open disk
D(0,1 — «)

centered at the origin with radius 1 — «

and outside the open disk
D(0,(1 —a)™ 1)

centered at the origin with radius (1 —

a) L.



Proof of Theorem. Let zg := €.
For v, > 0 let

S(z07 ’Yn) L=

{re?: 0<r<oo, o—ym <0< o+m}.

Tn - \/ﬁ ~

Assume that P € K, has m zeros in
C\S(2077’n)

It follows from Erdds and P. Turan that

21 — 2
_“n ’ynn§16\/nlogn,

m
2T



That is,

mgn—m—l—16\/nlogn,

T

hence

m < n — 16+y/nlogn.

Thus P has at least 164/nlogn zeros
in the sector S(zp,vn).

Now we use the above Lemma with
a = n—1/2 to conclude the statement

of the theorem.



Questions and stuff. Part 1

Question 1. Prove Duffin and Scha-

effer directly for the class ©.

That is prove

Theorem 13 If f isin © and fis bounded
in a sector of the unit circle then f is

a rational function.

Question 2. Is bounded just on a set
of positive measure in the circle enough

for Duffin and Schaeffer?



Question 3. Consider

£(2) = %;ln(z)z)‘”

where the [, are Littlewood polynomi-
als (or 0, £1 polynomials) vanishing at
1, and A\ increases rapidly enough to
satisfy the Fabry gap condition. Then
f cannot be bounded in any sector (or

it would be rational and extendable).

What more does this tell us about the

sequence [,



Question 4. \What is the minimum
number of zeros of modulus 1 of a real-
valued Littlewood polynomial of degree

n’

Littlewood [1966, problem 22] poses
the following research problem, which
appears to still be open: “If the nm
are integral and all different, what is
the lower bound on the number of real
zeros of ¥V_; cos(nmf)? Possibly N —
1, or not much less.”

Question 5. What is the minimum
number of zeros of modulus 1 of a re-
ciprocal 0,1 (as above) polynomial.



Question 6. Suppose [, IS a sequence
of Littlewood polynomials that is uni-
formly bounded in the half disk

{lz] £ 1} n{R(z) > 0}.
Show that a subsequence of [, con-

verges to a rational function.

T his follows from DS. So prove directly.

Question 7. (Erdélyi) Does every Lit-
tlewood polynomiala of degree n have
at least one zero in the annulus

& &
{1——<|z|<1-|——},
n n

where ¢ > 0 is an absolute constant.
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