The Average Norms of Polynomials

Peter Borwein

_

http://www.cecm.sfu.ca/~pborwein.

July 2001

Average Norms of Polynomials

Let $n \ge 0$ be any integer and

$$\mathcal{F}_n := \left\{ \sum_{i=0}^n a_i z^i : a_i = 0, \pm 1 \right\}$$

be the polynomials of height 1 and degree n. Let

$$\beta_n(m) := \frac{1}{3^{n+1}} \sum_{P \in \mathcal{F}_n} ||P||_m^m.$$

Here $||P||_m^m$ is the mth power of the L_m norm on the boundary of the unit disc.

So $\beta_n(m)$ is the average of the mth power of the L_m norm over \mathcal{F}_n .

Typical of the results we get is is:

Theorem For $n \ge 0$, we have

$$\beta_n(2) = \frac{2}{3}(n+1),$$

$$\beta_n(4) = \frac{8}{9}n^2 + \frac{14}{9}n + \frac{2}{3}$$

$$\beta_n(6) = \frac{16}{9}n^3 + 4n^2 + \frac{26}{9}n + \frac{2}{3}$$

The Littlewood polynomials \mathcal{L}_n are defined as follows:

$$\mathcal{L}_n := \left\{ \sum_{i=0}^n a_i z^i : a_i = \pm 1 \right\}.$$

Now let

$$\mu_n(m) := \frac{1}{2^{n+1}} \sum_{P \in \mathfrak{L}_n} ||P||_m^m$$

be the average of the mth power of the L_m norms over \mathcal{L}_n .

Here

$$||P||_m := \left\{ \frac{1}{2\pi} \int_0^{2\pi} |P(z)|^m d\theta \right\}^{\frac{1}{m}}, \quad (z = e^{i\theta})$$

We are interested in finding exact formulae for $\mu_n(m)$.

Theorem For $n \ge 0$, we have

$$\mu_n(2) = n + 1,$$

$$\mu_n(4) = 2n^2 + 3n + 1,$$

$$\mu_n(6) = 6n^3 + 9n^2 + 4n + 1$$

$$\mu_n(8) =$$

$$24n^4 + 30n^3 + 4n^2 + 5n + 4 - 3(-1)^n$$
.

That $\mu_n(2) = n+1$ is trivial since $||P||_2 = n+1$ for each $P \in \mathcal{L}_n$.

The above result for $\mu_n(4)$ is due to Newman and Byrnes.

The results for $\mu_n(6)$ and $\mu_n(8)$ are new and are the tip of an iceberg.

What is striking, and perhaps surprising, is that such exact formulae exist at all.

One interesting generalization is the following. Let

$$\mathcal{F}_n(H) := \left\{ \sum_{i=0}^n a_i z^i : |a_i| \le H, a_i \in \mathbb{Z} \right\}$$

be the set of all the polynomials of height H of degree < n. Let

$$\beta_n(m,H) := \frac{1}{(2H+1)^{n+1}} \sum_{P \in \mathcal{F}_n(H)} ||P||_m^m$$

Then

$$\beta_n(4,H) = \frac{2}{9}H^2(H+1)^2n^2$$

$$+ \frac{1}{45}H(H+1)(19H^2+19H-3)n$$

$$+ \frac{1}{15}H(H+1)(3H^2+3H-1).$$

There are many limiting results concerning expected norms.

The expected norms of random Little-wood polynomials, q_n of degree n, satisfy

$$\frac{\mathsf{E}(||q_n||_p)}{n^{1/2}} \to (\Gamma(1+p/2))^{1/p}$$

and for their derivatives

$$\frac{\mathsf{E}(||q_n^{(r)}||_p)}{n^{(2r+1)/2}} \to (2r+1)^{-1/2} (\Gamma(1+p/2))^{1/p}.$$

There is a considerable literature on the maximum and minimum norms of polynomials in \mathfrak{L}_n . In the L_4 norm this problem is often called Golay's "Merit Factor" problem.

The specific old and difficult problem is to find the minimum possible L_4 norm of a polynomial in \mathcal{L}_n . The cognate problem in the supremum norm is due to Littlewood.

Both of these problems are at least 50 years old and neither is solved.

As before let $n \geq 0$ be any integer and

$$\mathcal{L}_n := \left\{ \sum_{i=0}^n a_i z^i : a_i = \pm 1 \right\}$$

be the set of all Littlewood polynomials of degree n. Let

$$\mu_n(m) := \frac{1}{2^{n+1}} \sum_{P \in \mathcal{L}_n} ||P||_m^m$$

be the average of the mth power of the L_m norm over \mathcal{L}_n . We are interested in finding exact formulae for $\mu_n(m)$.

For any complex number z on the unit circle and any real number h, we have

$$|z+h|^2 + |z-h|^2 = 2(|z|^2 + h^2)$$

and

$$|z+h|^4 + |z-h|^4 =$$

$$2(|z|^4 + 4h^2|z|^2 + h^4 + h^2(z^2 + \overline{z}^2))$$

With similar more complicated expressions for sixth powers and eighth powers.

Hence for any polynomial P(z),

$$||zP(z)+h||_2^2+||zP(z)-h||_2^2=2(||P(z)||_2^2+h^2)$$

and

$$||zP(z) + h||_4^4 + ||zP(z) - h||_4^4 =$$

$$2(||P(z)||_4^4 + 4h^2||P(z)||_2^2 + h^4)$$

We also have, for induction purposes,

$$\sum_{P \in \mathcal{L}_n} \|P\|_m^m =$$

$$\sum_{P \in \mathcal{L}_{n-1}} (\|zP(z) + 1\|_m^m + \|zP(z) - 1\|_m^m).$$

Theorem For $n \ge 0$, we have

$$\mu_n(2) = n + 1,$$

$$\mu_n(4) = 2n^2 + 3n + 1$$

and

$$\mu_n(6) = 6n^3 + 9n^2 + 4n + 1.$$

The first formula is trivial because every Littlewood polynomial of degree n has constant L_2 norm $\sqrt{n+1}$. However we give a simple inductive proof because it is indicative of the basic method behind all the proofs.

Using the above formulae with m=2 for the 2 norm, we have

$$\mu_n(2) = \frac{1}{2^{n+1}} \sum_{P \in \mathcal{L}_{n-1}} (\|zP(z) + 1\|_2^2 + \|zP(z) - 1\|_2^2)$$

$$= \frac{1}{2^{n+1}} \sum_{P \in \mathcal{L}_{n-1}} 2(\|P\|_2^2 + 1)$$

$$= \mu_{n-1}(2) + 1$$

for any $n \ge 1$. It is clear that $\mu_0(m) = 1$ for any m. Thus we have

$$\mu_n(2) = \mu_0(2) + n = n + 1.$$

With m = 4, for the 4 norm

$$\mu_n(4) = \frac{1}{2^{n+1}} \sum_{P \in \mathcal{L}_{n-1}} 2 \left(\|P\|_4^4 + 4\|P\|_2^2 + 1 \right)$$
$$= \mu_{n-1}(4) + 4\mu_{n-1}(2) + 1$$

for any $n \geq 1$.

For the 6 norm we need two lemmas.

Lemma For $m \neq 0$, we have

$$\sum_{P \in \mathcal{L}_n} \int_0^{2\pi} |P(z)|^2 z^m d\theta = 0.$$

Lemma For $m \ge 1$, we have

$$\sum_{P \in \mathcal{L}_n} \int_0^{2\pi} |P(z)|^2 z^m P(z)^2 d\theta = 0.$$

Let $n \ge 0$ be any integer and

$$\mathcal{F}_n := \left\{ \sum_{i=0}^n a_i z^i : a_i = 0, \pm 1 \right\}$$

be the set of all the polynomials of height 1 of degree n. Let

$$\beta_n(m) := \frac{1}{3^{n+1}} \sum_{P \in \mathcal{F}_n} ||P||_m^m.$$

We can also obtain exact formulae for $\beta_n(m)$. The additional details involve observing that since

$$||zP(z) + 0||_m^m = ||P(z)||_m^m$$

The previous equations can be extended easily to allow summing over all the

height one polynomials. For example, for any polynomial P(z)

$$||zP(z) + h||_4^4 + ||zP(z) - h||_4^4 + ||zP(z) + 0||_4^4$$

$$= 3||P(z)||_4^4 + 8h^2||P(z)||_2^2 + 2h^4.$$

Theorem For $n \ge 0$, we have

$$\beta_n(2) = \frac{2}{3}(n+1),$$

$$\beta_n(4) = \frac{8}{9}n^2 + \frac{14}{9}n + \frac{2}{3}$$

$$\beta_n(6) = \frac{16}{9}n^3 + 4n^2 + \frac{26}{9}n + \frac{2}{3}$$

It is worth noting that the above technique can also be used to compute the averages of the norms of polynomials of height H. For example, one can show the following. Let $n \geq 0$ and $H \geq 1$ be integers and let

$$\mathcal{F}_n(H) := \left\{ \sum_{i=0}^n a_i z^i : |a_i| \le H, a_i \in \mathbb{Z} \right\}$$

be the set of all the polynomials of height H and degree $\leq n$. Let

$$\beta_n(m,H) := \frac{1}{(2H+1)^{n+1}} \sum_{P \in \mathcal{F}_n(H)} ||P||_m^m.$$

Theorem For $n \ge 0$ and $H \ge 1$, we have

$$\beta_n(2,H) = \frac{1}{3}H(H+1)(n+1),$$

$$\beta_n(4,H) = \frac{2}{9}H^2(H+1)^2n^2$$

$$+ \frac{1}{45}H(H+1)(19H^2+19H-3)n$$

$$+ \frac{1}{15}H(H+1)(3H^2+3H-1)$$

$$\beta_n(6, H) = \frac{2}{9}H^3(H+1)^3n^3$$

$$+ \frac{1}{5}H^2(H+1)^2(3H^2+3H-1)n^2$$

$$+ \frac{1}{315}H(H+1)$$

$$(164H^4 + 328H^3 + 56H^2 - 108H + 15)n$$

$$+ \frac{1}{21}H(H+1)(3H^4 + 6H^3 - 3H + 1).$$

Derivative and reciprocal polynomials

If we replace z by z/w in the critical identities then we have homogeneous forms like

$$|z + hw|^{4} + |z - hw|^{4}$$

$$= 2(|z|^{4} + 4h^{2}|z|^{2}|w|^{2} + h^{4}|w|^{4}$$

$$+ h^{2}|w|^{4}(\left(\frac{z}{w}\right)^{2} + \left(\frac{\overline{z}}{\overline{w}}\right)^{2})).$$

Let $P^{(m)}(z)$ be the mth derivative of P(z).

Theorem For $n \ge 0$, we have, for $m \le n$

$$\frac{1}{2^{n+1}} \sum_{P \in \mathcal{L}_n} \|P^{(m)}\|_2^2$$

$$= m!^2 \sum_{l=m}^n {l \choose m}^2;$$

$$\frac{1}{2^{n+1}} \sum_{P \in \mathcal{L}_n} \|P^{(m)}\|_4^4$$

$$=2m!^{4}\left(\sum_{l=m}^{n}\binom{l}{m}^{2}\right)^{2}-m!^{4}\sum_{l=m}^{n}\binom{l}{m}^{4}.$$

A polynomial P(z) of degree n is **recip-rocal** if $P(z) = P^*(z)$ where $P^*(z) = z^n P\left(\frac{1}{z}\right)$. Now

$$||P(z) + z^{n+1}P^*(z)||_4^4 + ||P(z) - z^{n+1}P^*(z)||_4^4$$

$$= 12||P||_4^4.$$

This lets us prove that if n is odd the average $||P||_4^4$ over the reciprocal Littlewood polynomials in \mathcal{L}_n is

$$3n^2 + 3n$$

if n is odd and

$$3n^2 + 3n + 1$$

if n is even.

The Complex Case

Lemma For $m \ge l \ge 0$, we have

$$\sum_{j=0}^{\min(l,m-l)} {m \choose 2j} {2j \choose j} {m-2j \choose l-j} = {m \choose l}^2.$$

Lemma Let $1 \le m < k$ and $\zeta_k = e^{\frac{2\pi i}{k}}$. Then for any complex number z, we have

$$\sum_{j=0}^{k-1} |z + \zeta_k^j|^{2m} = k \sum_{l=0}^m {m \choose l}^2 |z|^{2l}.$$

Let $n \geq 0$ and

$$\mathcal{L}_{n,k} := \left\{ \sum_{i=0}^{n} a_i z^i : a_i^k = 1 \right\}$$

be the set of all polynomials of degree $\leq n$ whose coefficients are kth root of unity.

Theorem For $n \ge 0$ and m < k, we have

$$\frac{1}{k^{n+1}} \sum_{P \in \mathcal{L}_{n,k}} ||P||_{2m}^{2m}$$

$$= \sum_{l_1=0}^{m} \sum_{l_2=0}^{l_1} \cdots \sum_{l_n=0}^{l_{n-1}} {m \choose l_1}^2 {l_1 \choose l_2}^2 \cdots {l_{n-1} \choose l_n}^2.$$