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Preamble: Over the last quarter Century and especially during the last decade, a dramatic ‘re- exper-
imentalization’ of Mathematics has begun to take place. In this process, fueled by advances in hardware,
software and theory, the computer plays a laboratory role for pure and applied mathematicians; a role which
in the eighteenth and nineteenth centuries the physical sciences played much more fully than in our century.

Operations previously viewed as non-algorithmic, such as indefinite integration, may now be performed
within powerful symbolic manipulation packages like Maple, Mathematica, Macsyma, Scratchpad to name
a few. Similarly, calculations previously viewed as “practically” non-algorithmic or certainly not worth the
effort, such as large symbolic Taylor expansions are computable with very little programming effort.

New subjects such as computational geometry, fractal geometry, turbulence, and chaotic dynamical
systems have sprung up. Indeed many second-order phenomena only become apparent after considerable
computational experimentation. Classical subjects like number theory, group theory and logic have received
new infusions. The boundaries between mathematical physics, knot theory, topology and other pure mathe-
matical disciplines are more blurred than in many generations. Computer assisted proofs of “big” theorems
are more and more common: witness the 1976 proof of the Four Colour theorem and the more recent 1989
proof of the non-existence of a projective plane of order ten (by C. Lam et al at Concordia).

There is also a cascading profusion of sophisticated computational and graphical tools. Many math-
ematicians use them but there are still many who do not. More importantly, expertise is highly focused:
researchers in partial differential equations may be at home with numerical finite element packages, or with
the NAG or IMSL Software Libraries, but may have little experience with symbolic or graphic languages.
Similarly, optimizers may be at home with non-linear programming packages or with Matlab. The learning
curve for many of these tools is very steep and researchers and students tend to stay with outdated but
familiar resources long after these have been superceded by newer software. Also, there is very little method-
ology for the use of the computer as a general adjunct to research rather than as a means of solving highly
particular problems.

We are currently structuring “The Simon Fraser Centre for Experimental and Constructive Mathemat-
ics” to provide a focal point for Mathematical research on such questions as

“How does one use the computer
- to build intuition?
- to generate hypotheses?
- to validate conjectures or prove theorems?
- to discover nontrivial examples and counter-examples?”

(Since we will be offering a number of graduate student, post-doctoral and visiting fellowhips we are keen to
hear from interested people.)

0. INTRODUCTION. Our intention is to display three sets of analytic results which we have obtained
over the past few years entirely or principally through directed computer experimentation. While each set
in some way involves Pi, our main interest is in the role of directed discovery in the analysis. The results we
display either could not or would not have been obtained without access to high level symbolic computation.
In our case we primarily used Maple, but the precise vehicle is not the point. We intend to focus on the
pitfalls and promises of what Lakatos called “quasi-inductive” mathematics.

1. CUBIC SERIES FOR PI.

The Mathematical Component. Ramanujan [10] produced a number of remarkable series for 1/x
including
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This series adds roughly eight digits per term and was used by Gosper in 1985 to compute 17 million
terms of the continued fraction for m. Such series exist because various modular invariants are rational
(which is more-or-less equivalent to identifying those imaginary quadratic fields with class number 1) see [3].
The larger the discriminant of such a field the greater the rate of convergence. Thus with d = —163 we have
the largest of the class number 1 examples
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a series first displayed by the Chudnovskys [10]. The underlying approximation also produces
7 ~ 31og(640320)/v163
and is correct to 16 places.

Quadratic versions of these series correspond to class number two imaginary quadratic fields. The most
spectacular and largest example has d = —427 and
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A = 212175710912V61 + 1657145277365
B := 13773980892672v/61 + 107578229802750
= [5280(236674 + 30303V61)]°.

This series adds roughly twenty-five digits per term, \/6/(1214) already agrees with pi to twenty-five places
[3]. The last two series are of the form
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Here t is the appropriate discriminant, j is the “absolute invariant”, and E, F4 and Fg are Eisenstein series.

For a further discussion of these see [2] where many such quadratic examples are considered. Various of
the recent record setting calculations of pi have been based on these series. In particular the Chudnovskys
computed over two billion digits of @ using the second series above.

There is an unlimited number of such series with increasingly more rapid convergence. The price one
pays is that one must deal with more complicated algebraic irrationalities. Thus a class number p field will
involve p'" degree algebraic integers as the constants A = a(t), B = b(t) and C' = ¢(t) in the series. The
largest class number three example of (x) corresponds to d = —907 and gives 37 or 38 digits per term. It is
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where

C' =4320 * 22/3 5 31/3(—4711544446661617873062970863 + 52735595419633 % 27211 /2)1/3
— 4320 % 2%/% % 31/3(4711544446661617873062970863 4 52735595419633 + 27211/2)1/3
— 16580537033280

A =27136 (2581002591670714650084289323501202067163298721
+ 99780432501542041707016500 * 2721%/2)1/3
— 27136 (—2581002591670714650084289323501202067163298721
+ 99780432501542041707016500 * 2721'/2)'/3 4 37222766169818947772

B =193019904 % 907'/3
(6696886031513505648275135384091973612 4 22970050316722125 * 2721'/2)1/3
— 193019904 % 907" /3
(—6696886031513505648275135384091973612 + 22970050316722125 * 2721'/2)'/3
+ 3521779493604002065512

The series we computed of largest discriminant was the class number four example with d = —1555. Then

C' = — 214772995063512240 — 96049403338648032 + 5'/?
— 1296 * 5'/2(10985234579463550323713318473
+ 4912746253692362754607395912 % 5'/2)1/2

A =63365028312971999585426220 4 28337702140800842046825600 % 5'/2
+ 384 % 51/2(10891728551171178200467436212395209160385656017
+ 4870929086578810225077338534541688721351255040 + 51/2)1/2

B =7849910453496627210289749000 + 3510586678260932028965606400 + 5'/*
+ 2515968 + 3110'/2 (6260208323789001636993322654444020882161
+ 2799650273060444296577206890718825190235 % 5'/2)1/2

The series (1.4) with these constants gives 50 additional digits per term.

The Computational Component. The absolute invariant, and so the coefficients A, B, and C' satisfy
polynomial equations of known degree and height. Thus the problem of determining the coefficients of each
series reduces to algebra and can be entirely automated. This is really the dream case for computer aided
analysis. Indeed from the expressions for j(t), a(t), b(t) we straightforwardly computed their values to several
hundred digits. The lattice basis reduction algorithm, as implemented in Maple, now provides the minimal
polynomials for each quantity. In addition, a higher precision calculation actually provides a proof of the
claimed identity. This last step requires knowing a priori bounds on the degrees and heights of the invariants.
While somewhat mathematically sophisticated, the computation required is fairly easy though a little slow.

2. FRAUDS AND IDENTITIES.

2a. The Mathematical Component. Gregory’s series for m, truncated at 500,000 terms gives to forty
places
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= 3.141590653589793240462643383269502884197.
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To one’s initial surprise only the underlined digits are wrong. This is explained, ex post facto, by setting
N equal to one million in the result below:



Theorem 1. For integer N divisible by 4 the following asymptotic expansion holds:
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where the coefficients are the even Fuler numbers 1, —1, 5, —61, 1385, —50521....

The Computational Component. The observation (2.1) arrived in the mail from Roy North. After
verifying its truth numerically, it was an easy matter to generate a large number of the “errors” to high
precision. We then recognized the sequence of errors in (2.2) as the Euler numbers ~ with the help of Sloane’s
‘Handbook of Integer Sequences’. The presumption that (2.2) is a form of Euler-Maclaurin summation is
now formally verifiable for any fixed N in Maple. This allowed us to determine that (2.2) is equivalent to a
set of identities between Bernoulli and Euler numbers that could with effort have been established. Secure
in the knowledge that (2.2) holds it is easier, however, to use the Boole Summation formula which applies
directly to alternating series and Euler numbers (see [5]).

This is a good example of a phenomenon which really does not become apparent without working to
reasonably high precision (who recognizes 2, —2, 10 7), and which highlights the role of pattern recognition
and hypothesis validation in experimental mathematics. It was an amusing additional exercise to compute
Pi to 5,000 digits from (2.2). Indeed, with N = 200,000 and correcting using the first thousand even Euler
numbers, we obtained 5,263 digits of Pi (plus 12 guard digits).

2b. The Mathematical Component. The following evaluations are correct to the precision indicated.
Sum 1 (correct to all digits)

where o(n) counts the odd digits in n: 0(901) = 2, 0(811) = 2, 0(406) = 0.
By comparison
Sum 2 (correct to 30 digits)

— 2m 3069
where e(n) counts the even digits in n.
Sum 3 (correct to 267 digits)
i [ntanh7| 1
~ 1 8l

where | | is the greatest integer function: [3.7| = 3.
Sum 4 (correct to in excess of 500 million digits)

i |_7L€‘/1637r/9J
an

n=1

= 1280640

Sum 5 (correct to in excess of 42 billion digits)

o 2
(% ) —) — .

n=-—o<

The Computational Component. Analysis of these and other seemingly rational evaluations may
be found in [6]. Sum 1 occured as a problem proposed by Levine, College Math J., 19, #5, (1989) and
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Bowman and White, MAA Monthly, 96 (1989), 745. Sum 2 relates to a problem of Diamond’s in the MAA
Monthly, 96 (1989), 838. Sums 2,3,4 all have transcendental values and are explained by a lovely continued
fraction expansion originally studied by Mahler. Computer assisted analysis lead us to a similar more subtle
expansion for the generating function of |na + §]:

Z [na + 32",
n=0

Sum 5 arises from an application of Poisson summation or equivalently as a modular transformation of
a theta function. While asymptotically rapid, this series is initially very slow and virtually impossible for
high-precision explicit computation.

These evaluations ask the question of how one develops appropriate intuition to be persuaded by say
Sum 1 but not by Sum 2 or Sum 37 They also underline that no level of digit agreement is really conclusive
of anything. Ten digits of coincidence is persuasive in some contexts while ten billion is misleading in others.
In our experience, symbolic coincidence is much more impressive than undigested numeric coincidence.

3. THE CUBIC ARITHMETIC GEOMETRIC MEAN.
The Mathematical Component. For 0 < s < 1, let ag := 1 and by := s and define the cubic AGM by

a, + 2b,
3

Un41 =
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which converge cubically to a common limit

1
3.1 AG5(l,s) =
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where the hypergeometric function F(s) :=2F1(1/3,2/3;1;s) = nz::(] %9" In particular, the hypergeo-

metric function possesses the simple cubic functional equation
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This can be validated symbolically once known! As an example

1
2F1(1/3,2/3;1;1— 100-3)

AG3(1,1/100) =

and 4 iterations of (AG3) will compute the hypergeometric function at 0.999999 to 25 significant digits. Any
direct computation so near the radius of convergence is doomed.
Continuing, we let

(o]

(32) L(q) = Z qn2+nm+m2
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M(q) := (3L(¢") — L(q))/2.

Theorem 2. The functions L(q) and M(q) “parametrize” the cubic AGM in the sense that if a := L(q)
and b:= M(q) then
a+ 2b

3
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and
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while AG3(1,M(q)/L(q)) = L(q).

Thus a step of the iteration has the effect of sending ¢ to ¢®. From this, one is led to an easy to state
but hard to derive

Cubic iteration for w. Let ag:=1/3, s¢:= (\/5 —1)/2 and set

(142s,)(1+2s5_,) =3 where s*:=/1— s
an = (14 2s,)%an_1 — 3" '[(1 + 25,)% — 1],

then 1/a, converges cubically to =.
This iteration gives 1, 5, 21, 70, - - - digits correct and more than triples accuracy at each step.

The Computational Component. Thisis the most challenging and most satisfying of our three examples
for computer assisted analysis. We began with one of Ramanujan’s typically enigmatic entries in Chapter
20 of his notebook, now decoded in [1]. It told us that a “quadratic modular equation” relating to F' was

(3.3) (1—u*)(1—2v*) = (1 —uv)’.

JFrom this we gleaned that some function R should exist so that u := R(q) and v := R(¢?) would solve
(3.3). We formally solved for the coefficents of R and learned nothing. Motivated by the analogy with the
classical theory of the AGM iteration [2] we looked at F(1 — R(g)*) which produced

F(1-R(q)*) =1+46q+6¢°+6¢" +12¢" +6¢° + 6¢'% + 12¢"° 4+ 6¢'° + 12¢"° + 12¢** +6¢*° +---.

This was “pay-dirt” since the coefficients were sparse and very regular. Some analysis suggested that
they related to the number of representations of the form m? + 3n?. From this we looked at theta function
representations and were rewarded immediately by the apparent identity F(1 — R(q)*) = L(q). Given the
truth of this it was relatively easy to determine that R(q) = M(q)/L(q) with M and L as in (3.2).

It was now clear that the behaviour as ¢ goes to ¢ should be at least as interesting as (3.3). Indeed,
motivated by the modular properties of L we observed symbolically that

- 3 (1-R(q) ]3
(3.4) 1=R(q)°+ [(1+2R(q)) .

At this stage in [4] we resorted rather unsatisfactorily to a classical modular function proof of (3.4) and
so to a proof of Theorem 2. Later we returned with Frank Garvan [8] to a search for an elementary proof.
This proved successful. By searching for product expansions for M we were lead to an entirely natural
computer-guided proof — albeit with human insight along the way.

It is actually possible, as described in [8], to search for, discover and prove all modular identities of the
type of (3.3) and (3.4) in an entirely automated fashion. Again, this is possible because we have ultimately
reduced most of the analytic questions to algebra through the machinery of modular forms.

As a final symbolic challenge we observe that (3.1) may be recast as saying that

I(ane bn) = I(an+1v bn+1)

where
tdt

Ia,b) =/0 \3/(t3+a3)(t3+b3)2.

This invariance should be susceptible to a direct — hopefully experimentally guided — proof.

4. CONCLUSIONS. The sort of experiences we have had doing mathematics interactively has persuaded
us of several conclusions. It is necessary to develop good context dependent intuition. It is useful to take
advantage of the computer to do the easy — many unimaginable hand-calculations are trivial to code. (So
trivial, in fact, that one has to resist the temptation to compute mindlessly.) The skill is to recognize when
to try speculative variations on a theme and to know when one has actually learnt something from them.
The mathematical opportunities are virtually unlimited but only in a relatively painless to use high level
and multi-faceted environment.
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