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ABSTRACT

This paper considers the trigonometric rational system

1+sin/ 1+sin/
1,-

cost — al cost — a2

on IR (mod 2n) and the algebraic rational system

1 1
1,-

on the interval [—1,1] associated with a sequence of distinct poles (a^)f=l in U\[—1,1]. Chebyshev
polynomials for the rational trigonometric system are explicitly found. Chebyshev polynomials of the first
and second kinds for the algebraic rational system are also studied, as well as orthogonal polynomials with
respect to the weight function (1 — x2)~1/2. Notice that in these situations, the 'polynomials' are in fact
rational functions. Several explicit expressions for these polynomials are obtained. For the span of these
rational systems, an exact Bernstein-Szego type inequality is proved, whose limiting case gives back the
classical Bernstein-Szego inequality for trigonometric and algebraic polynomials. It gives, for example, the
sharp Bernstein-type inequality

\P'(*)\< „ ! . . X ^ * " ! * max \p(y)\ fo rxe[ - l , l ] ,

where p is any real rational function of type (n,n) with poles afcelR\[—1,1]. An asymptotically sharp
Markov-type inequality is also established, which is at most a factor of 2n/(2n— 1) away from the best
possible result. With proper interpretation of V(al— 0» most of the results are established for
(a*)* î m C\[— 1,1] in a more general setting.

0. Introduction

Let K be either the interval [—1,1] or the unit circle (which is identified as
U (mod In) via the mapping z = elt). A Chebyshev system {«J£1O on £ is a set of N+1
continuous functions on K, such that every nontrivial linear combination of them has
at most N distinct zeros in K. A Chebyshev polynomial

TN = aouo + alu1 + ...+aNuN (0.1)

for the system is defined by its equioscillation properties [1, 5, 6, 11, 12, 16]. More
specifically, when K is the unit circle, Af must be even [12, p. 26], TN has U°(K) norm
1, and it equioscillates N times on K. That is, there are points x0, xl5.. . , xN-l such that

0^xo<xx< ... <xN_1<2n (0.2)
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and

yj f o r ; = 0,1,2, ...,N-l. (0.3)
xeK

When A"is the interval [— 1,1], 7^ again has U°{K) norm 1, and it equioscillates N+ 1
times, that is, there are points xo,xx ...,xN such that

1 ^ x o > x 1 > ... >xN^-\ (0.4)
a n d TN(xj) = (-iym<ix\TN(x)\ = (-\y fory = 0,l ,2, . . . ,JV. (0.5)

xeK

In this case the Chebyshev polynomial is also unique and if {uo,ux, ...uN_^ is also
a Chebyshev system then a~^TN can be characterized as the only solution to the
extremal problem

min
c}eR

[11, 12]. So the best uniform approximation to uN by linear combinations of
uo,u1,...,uN_1 is uN-a~N

1TN.
Typical examples of Chebyshev systems are the trigonometric system

{1, cos t, sin t,..., cos nt, sin nt} for t e [0, In) (0.6)

on the unit circle, and the algebraic system

{\,x,x2,x\...,xn} forjce[-l,l] (0.7)

on the interval [—1,1].

For the trigonometric system (0.6), the Chebyshev polynomials are

cos nt = (eint + e~int)/2, sin nt = (eint - e-
lnt)/(2i), (0.8)

and their linear combinations or shifts

V{i) = cos {nt - a) = cos a cos nt + sin a sin nt. (0.9)
Note that the Chebyshev polynomials for the system (0.6) are not unique. In addition
to the equioscillation property, they satisfy the following identities

(COSH/)' = — Hsin«/, (sinnt)' = ncosnt, (0.10)
a n d 2 / + i 2 / 1 V'(t)2 + 2V(tY 2 \ V ( T ) \ 2 , (0.11)

where V is a linear combination of cos nt and sin nt. The Bernstein-Szego inequality

^ «2max|/7(r)|2 (0.12)
reR

for all real trigonometric polynomials p of degree at most n, that is, for all p in the
real span of (0.6), and the equality holds if and only if p is a linear combination of
COSH/ and sinnt.

The Chebyshev polynomial Tn for the system (0.7) on [-1,1] is obtained
from a Chebyshev polynomial (cos nt) for the trigonometric system (0.6) by the
transformation

x = cost forxe[-l,l],fe[0,7E], (0.13)
and therefore we get

Tn(x) - cos (n arccos x) for x e [ -1,1 ]. (0-14)
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This is the unique Chebyshev polynomial for the algebraic system (0.7). Indeed, it is
easy to verify that Tn equioscillates n+ 1 times on [—1,1], since

Tn(x}) = (-\y max \Tn(x)\ = ( - 1 ) ' for x, = cos(jn/ri), j = 0,1,2, ...,n.
-1 <a:<l

The Chebyshev polynomial of the second kind is defined by

Un(x) = sin((n+\)t)/smt for x = cos / ,xe[- 1,1], te[0,n] (0.15)

and (1— x2)ll2Un{x) satisfies the equioscillation property. The Bernstein-Szego
inequality (0.12) can be converted to the algebraic system (0.7) by the transformation
(0.13) and so we have

2 + n2p(x)2^n2 max \p(y)\2 (0.16)

for all real algebraic polynomials of degree at most n, where the equality holds if and
only if p is a constant multiple of Tn in (0.14). This inequality combined with an
interpolation formula can be used to obtain the Markov inequality

max \p'(x)\ ^ n2 max \p(x)\ (0.17)

for all real algebraic polynomials of degree at most n [12,16]. Since T'n{\) = n2, (0.17)
is sharp. The Chebyshev polynomials Tn also form an orthogonal system on [— 1,1]
with respect to the weight function (1 — x2)~1/2. That is,

dx =cn6mn for n,m = 0,1,2,.. . , (0.18)

where c0 = n, and cn = n/2 for n = 1,2,3,....
It seems that (0.8) and (0.14) are essentially the only families of Chebyshev

polynomials with known explicit expressions. However, explicit formulae for the
Chebyshev polynomials for the trigonometric rational system

1 ±sint 1 ±sint 1 + sin/ ] rA /mm
for/e[0,27i) (0.19)cos t — a1 cos t — a2 cos t — an)

and therefore also for the algebraic rational system

1,—, — ,...,-M forxG[-l,l] (0.20)
x-ax x-a2 x-anj

with distinct real poles outside [—1,1] are implicitly contained in [1]. By constructing
a finite Blaschke product (which corresponds to eint in (0.8)), we can derive analogue
Chebyshev polynomials of the first and second kinds for these systems. We encounter
a problem of language in that our Chebyshev 'polynomials' are actually rational
functions. A pleasant surprise is that almost all properties parallel to (0.8) to (0.18)
hold in this case. The classical results are the limiting cases of the results on letting
all the poles go to + oo.

In this paper, we give several expressions of the Chebyshev polynomials
associated with the rational systems with fixed poles {flfc}*=1 <= IR\[—1,1] and the
orthogonal polynomials with respect to the weight function (l—x2)'1'2. A mixed
recursion formula is then obtained for the Chebyshev polynomials. Most of the
results in this paper are formulated in a more general setting, allowing arbitrary
(possibly repeated) poles in C\[-1,1] .



504 P. BORWEIN, T. ERDELYI AND JOHN ZHANG

Highlights of this paper include an exact Bemstein-Szego type inequality for the
rational systems (0.19) and (0.20) which generalizes the classical inequality from the
trigonometric polynomials to the rational trigonometric functions (and which
contains the classical inequality as a limiting case). An asymptotically sharp Markov-
type inequality for certain rational systems (0.20) is also established, which is at most
a factor of 2n/(2n — \) away from best possible.

Chebyshev polynomials are ubiquitous and have numerous applications, ranging
from analysis, statistics, numerical methods, to number theory (cf. [1, 5, 6, 9, 10, 11,
12, 16]), and so their rational analogues should also be of interest.

1. Chebyshev polynomials of the first and second kinds

We are primarily interested in the linear span of (0.20) and its trigonometric counter
part obtained with the substitution x = cos t. Denote by &n the set of all real algebraic
polynomials of degree at most n, and let ^ be the set of all real trigonometric
polynomials of degree at most n. Let

p(x)
0>n(a1,a2,...,an) =

Y\\cost-ak

(1.1)

(1.2)

where {ak}l_x c C\[— 1,1] is a fixed set of poles. (This is an assumption we put on
(flfc}fc-i throughout the paper.) When, in addition, all poles {ak)l=1 are distinct and real,
(1.1) and (1.2) are simply the real span of the systems

1,-
1 1 1

1 •* " 2

1 4- sin t 1 + sin /

on [-1,1],

1 + sinr
on[0,27r),

(1.3)

(1.4)
cost — al cost — a^ cost — anj

respectively.
We can construct the Chebyshev polynomials of the first and second kinds for the

spaces 0^(alta2, ...,an) and ^n(ax,a2, ...,an) as follows. Given {ak}
n

k=l c C \ [ - l , l ] , w e
define the numbers {c^}^ by

ak = f(cfc + qx) for \ck\ < 1, (1.5)
that is,

c = (i — \/\ci — I) t o r \c \ <c 1 ( I n i

Note that (ak + V(4 -1)) (ak - V("l — 1)) = 1. In what follows, y/(a\ - 1 ) will always
be defined by (1.6) (this specifies the choice of root). Let D = {zeC:\z\ < 1},

k l / 2

(1-7)
k-\

where the square root is defined so that M*(z) = znMn(z
 x) is analytic in a

neighbourhood of the closed unit disk D, and let

(1.8)
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Note that / ; ; is actually a finite Blaschke product. The Chebyshev polynomials of the
first kind for the spaces SPn{ax^a2, ...,an) and 2Tn{ax,a2, ...,an) are defined by

Tn(x) = l(fn(z)+fn(zy) forx = fa + z-1),\z\ = l, (1.9)
fn{t) = Tn (cos 0 for t e U, (1.10)

respectively. While the Chebyshev polynomials of the second kind for these two
systems are defined by

Un{x)=fn{z)~f^y for x -

Un{t)=Un{cost)sint, (1.12)

respectively (compare with [1, pp. 250-251]). As we shall see, these Chebyshev
polynomials preserve almost all the elementary properties of the classical trigono-
metric and algebraic Chebyshev polynomials. This is the content of the next three
results.

THEOREM 1.1. Let fn and Un be defined by (1.10) and (1.12) from

(a) fne&n(a1,a2,...,an) and Une^'n(a1,a2, ...,an);
(b) max_^^J7;(0l = 1 andmax_n^t^n\Un(t)\ = 1;
(c) there are numbers t0, tv ...,tn such that 0 = tQ < tx < ... < tn = n and

TO = Tn(-t,) = (-1) ' forj = 0,1,2, ...,«;

(d) there are numbers s^s^ ...,sn such that 0 < s1 < s2 < ... < sn < n and

W = -#„(-*,) = (-1)'"1 forj=\,2,..,n;

(e) fn{tf + Un{tY = 1 holds for every teU.

Proof. It is easy to see that there are polynomialspx€&n and p2e^_x so that

TM = TM = - M^)MSe-t; -f^-^. (1.13)

,-,,s „ , x- e A ^ ( e ) e M > ) ^2(cosr)sinr ,, ,„!/.(«)-t/. (cost) ant- 2^ ,LM ,e± = f — ! • ( U 4 >

thus (a) is proved. Since \ck\ < 1 and/£ is a finite Blaschke product (cf. (1.8)), we have

|/n(z)| = l whenever \z\ = 1. (1.15)

Now (b) follows immediately from (1.8) to (1.12) and (1.15). Note that fn(t) is the real
part and Un(t) is the imaginary part of fH(eP). That is,

0 for/eR, (1.16)
which, together with (1.15) implies (e). To prove (c) and (d), we first note that
Tn(t) = ± 1 if and only if/n(>u) = ± 1, and Un(t) = ± 1 if and only i f />") = ±i. Since
\ck\ < 1, for k = 1,2,...,«, it follows t h a t / | has exactly 2« zeros in the open unit disk
D. Since / J is analytic in a region containing the closed unit disk D, (c) and (d) follow
by the Argument Principle.
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With the transformation x = cost = \(z + z~1) and z = eu, Lemma 1.1 can be
reformulated as follows.

THEOREM 1.2. Let Tn and Un be defined by (1.9) and (1.11) from

(a) TnePn(alta»...,an) and UnePn(altav...,aH);
(b) max_1<s<1|7;W| = max_1 < ,< 1 | ( l - J :Ta t / .WI - 1 /
(c) there are numbers x o , x v . . . , x n such that 1 = x o > x x > ... > x n = — 1 and

(d) //iere are numbers y x , y2, ..., yn such that 1 > y1 > y2 > ... > y n > — 1

(e) (7n(x))2 + ((l - * T 2 t/n(x))2 = 1 /or *e[-1,1] .

Parts (c) and (d) of Theorems 1.1 and 1.2 are the equiosciUation property of the
Chebyshev polynomials, which extends to linear combinations of Chebyshev poly-
nomials. In the polynomial case this is the fact that

cos a cos nt + sin a sin nt = cos (nt — a)

equioscillates In times on U (mod 2n).
Our next theorem characterizes the Chebyshev polynomials of &'n(al,a2,...,an)

and records a monotonicity property of them.

THEOREM 1.3. Let {afc}£=1 <= C\[— 1,1]. Then (i) and (ii) below are equivalent:
(i) there is an a 6 U so that V = (cos a) fn + (sin <x)Un, where fn and Un are defined

by (1.10) and (1.12);
(ii) Ve yn{ax, a2,...,an) has supremum norm 1 on the unit circle and it equioscillates

2n times on the unit circle. That is, there are 0 ^ tQ< t1 < t2< ... < t2n_x < 2n so that

Furthermore, if V is of the form in (i) (or characterized by (ii)), then
(iii) V = (cos a) T'n + (sin a) U'n is strictly positive or strictly negative between two

consecutive points of equiosciUation; that is, between t}_x and t},forj = 1,2, ...,2n— 1,
and between t2n_x and 2n + t0.

Proof. (i)=>(ii) By Theorem 1.1 (e) and Cauchy's inequality, we have

|(cosa)7; + (sina)^J2^(cos2a4-sin2a)(f2
l+f/2) = 1 (1.17)

on the real line. From Theorem 1.1 (c) and (d), we have that tn/Un oscillates be-
tween + oo and — oo exactly 2« times on U (mod 2n), and hence it takes the value
cot a exactly 2n times. At each such point, (1.17) becomes equality, namely,
cosarn + sinat/n = ± 1 with different signs for every two consecutive such points.

(ii) => (i) Let V be as specified in Part (ii) of the theorem. Let t* be a point where
V achieves its maximum on U, so V{t^) = 1. We want to show that V is equal to
P = UU) fH + Un(u) Un. In fact, V(tJ = />('*) = 1 and V'{Q = //(/„) = 0 which
means that V—p has a double zero at /„,. There are at least 2n — 1 more zeros (we
count every zero without sign change twice) of V—p, with one between each pair of
consecutive points of equiosciUation of p if the first zero of p to the right of t + is
greater than the first zero of V to the right of t+. (If the first zero of p to the right of
t+ is not greater than the first zero of V to the right of /„,, then there will be one zero
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of/?— V between each pair of consecutive points of equioscillation of V.) This implies
that V—p has at least 2n + 1 zeros (counting multiplicities), and proves that V—p = 0.

(iii) Let Ve^n(ax,a^, ...,an) be so that || K||L»(R) = 1 and Vequioscillates In times
between ± 1 . Assume that there is a t^e[0,2n) so that \V(t^)\ < 1 and V'(t^) = 0.
Then V(t^) # 0, otherwise, the numerator of V would have at least 2« +1 zeros in
IR(mod27r) (with multiplicities), which is a contradiction. Observe that there is a
trigonometric polynomial q€^\n so that

no 2 - v(uy = ^ .
Yl (cos t-ak) (cos t-ak)
k-l

Then q has at least An +1 zeros in U (mod 2ri) (with multiplicities), which is
contradiction again. Therefore V'(t) # 0 if \V(t)\ < 1, which means that Kis strictly
monotone between two consecutive points of equioscillation.

2. Derivatives of the Chebyshev polynomials

In this section we calculate the derivative of the Chebyshev polynomials of the first
and second kinds. We also study the identities they satisfy. The similarity to the
identities satisfied by COSH* and smnt is striking. These identities will help us to
examine the size of f'n and U'n on U and the magnitude of T'n and U'n on [— 1,1]. The
results of this section will then be applied in Section 3, where we prove the
Bernstein-Szego type inequalities and the Markov-type inequalities.

As in (1.5) or (1.6), {cfc}£=i is defined from {ak}
n
k^ c C \ [ - l , 1] by

ck = ak-V(al-l) for|cj<l. (2.1)

We introduce the functions

0) and *0 -*<«0-£«gS^) , (2.2)

where the choice of y/(a\ — 1) is determined by the restriction \ck\ < 1 in (2.1). Because
of their role in the Bernstein-type inequalities, we call Bn and Bn the Bernstein factors.
Note that

+c2
k-2ck

for every xe[— 1,1].
The following theorem generalizes the trigonometric identities (cos nt)' =

— n sin nt, (sin nt)' = n cos nt, and [(cos nt)']2 + [(sin nt)']2 = n2, which are limiting cases
(note that if neN and teU are fixed, then limBn(t) = n as all ak->• ±oo).

THEOREM 2.1. Let fn and Un be determined from {ak}
n
k=l by (1.10) and (1.12).

T'n{t) = -Bn{t)Un{t), U'n(t) = Bn(t)fn(t) forteU, (2.3)
f'n(t)*+U'nW = BH(t)* for ten, (2.4)

ie Bernstein factor Bn is defined by (2.2).

Proo/. If we differentiate the Chebyshev polynomials of the first kind (cf. (1.7)
to (1.10)), we get

\JV) ye 2. - Bn(t)Un(t),
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since . .
L

— _ V ^ k k ' I V ^ k

= 1 V(fl-1) 1A#1-1) -
2& a*-cos* 24tlff*cosr n

(cf. the definition in (2.2)). Note that in the last step, we have used the relation
ck — c~k

x = 2\/(a2
k — \) and ck + c~k

x = 2ak. This proves the first part of Theorem 2.1.
Similarly, for the derivative of the Chebyshev polynomials of the second kind, we

1 / f (t\ \ pu f (pu)

U' (t) = — T (elt)+ " ieu = n f(t) = B (t) f (t)

and (2.4) follows from (2.3) and the identity t\ +1)\ = 1 (cf. Theorem l.l(e)).

The identities (2.3) and (2.4) can be coupled to get two other identities

fl = Bl and (U'J + BlUl = B\. (2.5)

In fact, a similar formula holds for linear combinations of fn and Un, which will be
used in the proof of the Bernstein-Szego type inequality of Theorem 3.1.

THEOREM 2.2. If V = (cos a) fn + (sin a) Un with some <xeU, then

(Vy + BIV* = BI (2.6)

holds on the real line, where a e R and the Bernstein factor Bn is defined by (2.2).

Proof. Since on the real line we have

= (cos2 a){{t 'J + B\ f2
n) + (sin2 a)((U'nY + B\ Wn)

the identities (2.3) and (2.5) yield (2.6).

We now calculate T'n{\). This will be used in the proof of the Markov-type
inequality of Theorem 3.5.

THEOREM 2.3. Let Tn be defined by (1.9). Then

where the numbers ckfor k = 1,2,...,«, are defined by (2.1).

Proof. We prove only the first equality, the proof of the second one is similar.
Since Tn(cos0 = fn{t) for every teU (cf. (1.10)), by taking the derivative with
respect to t, we have - T'n (cos 0 sin t = f'n(t) = -Bn(t) Un(t) (cf. (2.3)). Hence

T'n{\) = l i ^ 4
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where Un(0) = 0 (cf. Theorem l.l(d)) is used. Note also that U'n = Bn fn (cf. (2.3)) and
!Tn(0) = 1, so we have

where we have used the relations 2^{a\ —l) = ck
1 — ck and 2ak = ck

1 + ck (cf. (2.1), or
(1.5) and (1.6)). The derivative T'n{—\) can be calculated in exactly the same way.

3. Bernstein and Markov type inequalities

Bernstein and Markov type inequalities play a central role in approximation
theory, and have been much studied [1, 3, 5, 6, 8,12,14,16]. In this section, we first
prove a sharp Bernstein-Szego type inequality with the best possible constant for the
spaces $~n{ax,a2, ...,an) defined by (1.2), and ^{ax,a2, ...,an) defined by (1.1). In the
case when all the poles are distinct reals outside [—1,1], (1.1) becomes

^n(a1,a2,...,an) = span\l,-^-,-^-,...,—?—). (3.1)
{ x-ax x-a2 x-aj

The limiting case of the Bernstein-Szego type inequality (letting the poles approach
+ oo) is the classical Bernstein-Szego inequality. We also establish an asymptotically
sharp Markov-type inequality for the same space. (It is at most a factor 2n/(2n— 1)
away from the best possible.)

THEOREM 3.1. Let {ak)l=1 <=. C\[ —1,1] and let the Bernstein factor Bn be defined
by (2.2). Then

p'(tf + Bn(t)
2p(t)2 < Bn(t)

2 max \p(z)\2 with te U (3.2)
T6R

for every p in $~n{ax, a2,..., an) and equality holds in (3.2) if and only if t is a maximum
point of\p\ {that is, p{t) = + ||/>||L»(R)), or p is a linear combination of fn and Un.

If we drop the second term in the left-hand side of (3.2), we have the Bernstein-
type inequality.

COROLLARY 3.2. Let {ak}kal be as in Theorem 3.1. Then

| / ( 0 l < Bn(t)max\p(T)\ with teU (3.3)
TSR

for every p e $~n{ax, a2,..., an), where the Bernstein factor Bn is defined by (2.2). Equality
holds in (3.3) if and only if p is a linear combination of fn and Un and p{t) = 0.

Proof of Theorem 3.1. Let pe$'n{a1,a2,...,an) with 0 < ||/?||j»(R) < 1. It is
sufficient to show that

£ Bn{tf (3.4)

for every fixed teU. Then a scaling and limiting process implies that (3.2) holds for/?
with arbitrary norm. First we claim that for every fixed te U there is an a € U so that

V = (cos a) fn + (sin a) Un (3.5)

has the same value as p at the point t, and the signs of their derivative at t also match,

t h a t l s ' V{t)=p{t) and p'{t)V'(t)Z0. (3.6)
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Indeed, since t is fixed, we may view V as a function of a. Let

0(a) = (cos a) fn(0 + (sina) Un(t).

Then 0(a) = cos (a — 9), where 9 is determined by cos 9 = fn(t) and sin 9 = Un(t)
(recall that fn

2+U% = 1 on U by Theorem 1.1 (e)). Since \p(t)\ < 1, it follows that
0(a) takes the value of p(t) twice on every translation of the interval [0,2ri). Hence
there are ax and a2 in U so that 0(ax) = 0(a2) = p(t), and (a2 — 0) + (a2 — 9) = 2n. We
thus get two linear combinations

K/-) = (cosa,)fn(-) + (sinaJ) Un(-) for j = 1,2,

such that Ky(0 = p(t) for7 = 1,2. To see that one of V1 and V2 is a suitable choice to
satisfy (3.5) and (3.6), it is sufficient to show that V\(t) V'2(t) < 0. This can be verified
quite easily, as follows. Now V'^t) = (cosa,) f'Jj) + (sin a,) U'n(t) and by (2.3) and the
choice of 9, we get

V]{t) = Bn(t) [ - (cos a,) Un(t) + (sin a,) fn(t)) = 5,(0 sin (a, - 9).

Consequently, V'^t) V'2(t) = 2?n(O2sin(a1-0)sin(a2-0). Hence
2 2 ^ < 0

since (a1 — 9) + (<x2-9) = In and \p(t)\ < 1. Therefore there is an <xeR, so that (3.5)
and (3.6) hold. From now on let V be a function of the form (3.5) satisfying (3.6)
(where teU is fixed). We now prove that

\pV)\^\V'(t)\. (3.7)

If the above does not hold, then by Theorem 1.3(iii) we have, without loss of
generality, thatp\i) > V\t) > 0, hence there is a S > 0 such that/? - V > 0 on (/, t + 3)
and p — V < 0 on (/ — 3, t), since pit) — V{i) = 0. Let t} and ti+1 be the two consecutive
equioscillation points of Kso that ti < t < tj+l (cf. Theorem 1.3(iii)). Then V{t^) = — 1
and V(tj+1) = 1, and so p— V > 0 at t} and p— V < 0 at tj+1. Thus, there are at least
3 zeros ofp— Kin (tp tj+1). It is easy to see that there are at least In— 1 zeros of/7— V
outside (tp tj+1) in a period of length 2n, since p—V has the same sign as V at the
points t where V(i) = ± 1. This gives rise to at least 3 + {In -1) = In + 2 zeros of/? — V
in a period of length 2n, which is a contradiction, since every non-zero element in
y~n(av a2, ...,an) has at most 2n zeros in a period of length 2n. This finishes the proof
of (3.7). From (3.6), (3.7) and Theorem 2.2, we have

p\tf+Bn{tyP{ty ^ v\ty+Bn{tyv{tf = Bn(ty.

Thus (3.4) is proved. As we pointed out earlier, this finishes the proof of (3.2). From
Theorem 2.3 we know that (3.2) holds with equality when p is a linear combination
of fn and Un.

To prove the converse, let ||/?||/,»(R) = 1, and assume that there is a teU, such
that |/7(f)| < 1. By the above argument, there is an aeR, so that p and V =
(cos a) fn + (sin a) Un take the same value at /, and/7' V is nonnegative at t. Since both/7
and Vsatisfy (3.2) with equality, and \p(t)\ = \V(t)\ < 1, we have \p'(t)\ = \V'(t)\ > 0.
Therefore we may assume thatp'(t) = V'(t)(> 0). Consequently p — V has a zero at
/ with multiplicity at least 2. Since V equioscillates 2« times on K= R(mod27r) with
L°°(R) norm 1, and ||p||L»(B) = 1, it is easy to see that p— V has at least 2n— 1 zeros
(by counting multiplicities) in (R\{0)(mod27r). Hence p— Fhas at least 2n+ 1 zeros
(by counting multiplicities) on [0,2n), which yields /? — V = 0.
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Using the fact that /J€^(a15a2, ...,an) implies p(cos{•))Ej'n{al,a2, ...,an), from
Corollary 3.2 we immediately obtain the following.

COROLLARY 3.3. Let {ak)l_x c C \ [ - l , 1]. Then

(1 -x*)p'{xf + Bn{xYp{xy < Bn{xf max \p(y)\* with xe[-1,1] (3.8)

for every p e ̂ n (ax,a2, ...,an), where Bn is defined by (2.2). The above holds with equality
if and only if p(x) = + || /̂ llx.00!—i. xj or P ^ a constant multiple of Tn.

Again, if we drop the second term in the left-hand side of the above, we have
another form of a Bernstein-type inequality.

COROLLARY 3.4. Let {ak)l=l c C\[-1,1] . Then,

l/»'(*)l ̂  m
 l

 2,t*
 V(al~l) max \p(y) \ with xe(-l,l) (3.9)

V l ' ^ J t - i ak~X ye[-ll]

for every p 6 ̂ (a15 a2,..., an), where V(al ~ 1) w determined by (2.1). Equality holds in
(3.9) if and only if p is a constant multiple of Tn and p(x) = 0.

REMARK. An immediate consequence of (3.9) is that if (afc)^=1 is a sequence in
R \ [ - l , l ] a n d

^_L_L Je—i < oo for some x e ( - l , 1),

that is, if (flfc)™.! is a sequence in U\[-1,1] and

then the real span of
1 1

1,
x — a1 x — a2

is not dense in C[- 1,1] (cf. [1, p. 250]).

The Bernstein-type inequality (3.9) does not give good estimates of the derivatives
when x is close to ± 1. The following Markov-type inequality remedies this, at least
when the poles are real.

THEOREM 3.5. Let {ak)l^ a U\[-1,1]. Then

max \pXx)\^-^-(t\^] max \p(x)\
-1 < x ^ 1 Z7I 1 \k_i 1 \Ck\J _i ^ -j ^ i

holds for every pe0^(ava2, ...,an), where the numbers {c^-x are defined from {a^l^
by (2.1).

The following lemma will be used in the proof of Theorem 3.5.
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LEMMA 3.6. Let {ak}
n
k=l c C \ [ - 1,1], let

0*00 =
\+y \+y

(3.10)

and let ck(y) for k = 1,2,..., n, be defined by

Ov-iy) = h(cJy) + cJyY1) with \cJy)\ < 1. (3.11)

max \p(x)\

for everyp60>n(alta2,...,an).

Proof. It can be shown by a simple variational method (cf. [11]) that

( 3 1 2 )

( 3 1 3 )

where the supremums in (3.12) and (3.13) are taken for all pe^ia^a^ ...,an), with
p T£ 0 and Tn is the Chebyshev polynomial defined by (1.9). Now the lemma follows
from Theorem 2.3 by a linear transformation (we shift from [—1,1] to [—l,.y] if
0 ^ y ^ 1 or to [y, 1] if - 1 ^ y ^ 0).

Applying the Bernstein-type inequality (3.9) at 0, we get

1/(0)1 < t^(V{al~l)) max \p(x)\ (3.14)

for e v e r y / j e ^ ^ , ^ , . . . , ^ ) , where the values ^{a\-\) for/: = 1,2,...,«, are defined
by (2.1). Note that if {flfc}J.xczR\[-l, 1] is an arbitrary set of real poles, then (3.14)

y i 6 l d S | / ( 0 ) | < « max \p{x)\ (3.15)

for every/?e^(a15a25 ••• >fln)' an<^ fr°m t m s ' ^y a n n e a r transformation, we obtain the
following corollary.

COROLLARY 3.7. Let {afc}£Dl <= R\[— 1,1] be an arbitrary set of poles. Then

1^)1 l ^ ) l ( 3 1 6 )m a x

for every pe^Xa^az, ...,an) andye(-\,\).

Proof. This follows from (3.15) by a linear transformation (we shift from [—1,1]
to [2y-\,\] i f 0 ^ < l , o r t o [ -1 ,2^+1] if - \ <y^0).



CHEBYSHEV POLYNOMIALS AND MARKOV-BERNSTEIN TYPE INEQUALITIES 513

Now we prove Theorem 3.5.

Proof of Theorem 3.5. Since {ak)
n
k_x c R \ [ - l , 1], it follows from (3.10) and (3.11)

that
1**001 >l«*l and \ck(y)\ < \ck\ < 1 with k= 1,2,...,« (3.17)

hold for every ye[ — 1,1]. Therefore Lemma 3.6 yields

'™ (3I8)

for every ps^n(ax,a^ ...,an) and for every y with 1— n~x ^ \y\ ^ 1. If \y\ < 1— /T1,
then Corollary 3.7 gives

\p'(y)\ ^ -rA—, max \p(x)\
i \ y \

max l / ' W I ^ f Z i r r i T max |/>(x)| (3.19)
* \ C \ J

for every /?e^(a15tf2, . . . ,an), which, together with (3.18), yields the theorem.

4. Chebyshev and orthogonal polynomials

In this section, we study some additional properties of the Chebyshev polynomials
for the rational system (0.20) with distinct real poles outside [—1,1], and their
orthogonalizations with respect to the measure (1—x2)~1/2 on [—1,1]. We start
with an explicit partial fraction formula for the Chebyshev polynomials, then we
record a contour integral form of the Chebyshev polynomials, from which a mixed
recursion formula follows. The rest of the section will be devoted to orthogonality.
Many aspects of orthogonal rationals and their applications can be found in the
literature, for example, in [1, 4, 7, 18, 19]. The novelty of our approach is that we
derive the orthogonal polynomials from the Chebyshev polynomials (cf. §1).

If (flfc)*=1 is a sequence of real numbers outside [—1,1], then the related
(cfc)*-i in ( -1 ,1 ) is defined by

tffc = l0* + O > ck = ak-V(a2
k-l), c f c e ( - l , l ) , (4.1)

where the choice \/{a2
k— 1) is determined by cke(—1,1), and the associated

Chebyshev polynomials of the first and second kinds are defined by (cf. (1.9) and
(1.11))

Mn(z)

Mn(z)

respectively, where Mn(z) = n!fc-i(z~cfc)an(*x = Kz + z 1 ) - F i r s t w e c a n easily get the
partial fraction forms of the Chebyshev polynomials.
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PROPOSITION 4.1. Let {ak)l=1 c C\[— 1,1] be a sequence of distinct numbers such
that its nonreal elements are paired by complex conjugation, and let Tn and Un be the
Chebyshev polynomials of first and second kinds defined by (1.9) and (1.11), respectively.
Then , .

Tn(x) = A0,n + ̂ + . . . + ^ - , (4.4)

(4.5)
n ( ) + +

x-a, x-an

where

1-'-cJt (4.6)

\ 2 n 1 — c c

n - ^ ^ for k= 1,2,...,n, (4.7)
J )-l Ck~Cj

for k= 1,2,...,n. (4.8)

Proof. It follows from Theorem 1.1 (a) and Theorem 1.2(a) that Tn and Un can
be written as the partial fraction form of (4.4) and (4.5). Now it is quite easy to
calculate the coefficients Ak n and Bk „. For example,

= lim ( x - a

lim Hz-c )(1 •-'.-')

~l\2 n ] —r r

The coefficients i5fc n can be calculated in the same fashion.

We now give a contour integral expression for Tn, which can be used to derive
a mixed recursion formula.

LEMMA 4.2. Let {ak}
n

k.x c C \ [ - l , 1]. Let Tn be defined by (1.9). Then we have

vv/iere y is a circle centred at the origin, with radius r satisfying

1 < r < rnind^"1!: 1 ̂ j ^n),

and where the square root is chosen to be an analytic function of t in an open disk
containing y.
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Proof. Using Cauchy's Integral Formula and the transformation x = ^
we obtain ,

1n\x) - T

1 f l Mn(t) , . | d{

—z t—z '

dt,f }
2mJyt

nMn(r
1yt2-2tx+l

where y is a circle as stated in the lemma.
It is now quite simple to obtain a mixed recursion formula for the Chebyshev

polynomials associated with rational systems. To do this, we need some notation. Let
Sn denote the Chebyshev polynomials with respect to the rational system

u
x-ax x-an_2 x-an_2

missing the function \/(x — an_1), so by Lemma 4.2

We remark that if n is fixed, then in order to define Tn and Sn correctly, one needs only
to assume that an_x is real, and that the nonreal poles in {alt ...,an_2,aj are paired by
complex conjugation. However, in order to define Tn and Sn correctly for all
n = 1,2,..., the assumption that (afc)£-iis i n "A[~ *> ^ i s needed. This remark is valid
for most results in this section. Sometimes this assumption is adopted for the purpose
of simplicity. We have the following lemma.

LEMMA 4.3. Let (rn)*_0 and (SX-i be defined from (ak)™-i in U\[-1,1] by (4.2)
and (4.10). Then,

C C l T n _ 1 - S n ) for n = 2 ,3 , . . . , (4.11)
cn c n - l

where (c^^ is defined from (<3fc)*_! by (4.1).

Proof. By the contour integral formulae in Lemma 4.2 and (4.10),

f rf-^-fi ic»c-i-yf-c-i i-0*)] t~x

2tx+\

= f n 4 l dt
2ni}Yl\l-tcjl(l-tcn_1)(\-tcn)\t2-2tx+\ '

which, again by the contour integral expression in Lemma 4.2, is Tn(x).
The ordinary Chebyshev polynomials cos(«arccosx) for « = 0,1, . . . , are

orthogonal with respect to the weight function (1 —x2)'112 on [-1,1] . The Chebyshev
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polynomials Tn for n = 0,1,..., defined by (4.2), are not orthogonal with respect to
(l-x2)~1/2. However they are almost orthogonal in the sense of the following two
theorems, and they can be modified to orthogonalize the rational systems

1, , , . . .> and
x — a 1 x — a2 J

respectively, where (at)2Lx in M\[— 1,1] is a sequence of distinct numbers.

LEMMA 4.4. Let (Tn)™_0 be defined from (ak)^i c R \ [ - l , l ] by (4.2). Then

\ • • • cm+1 - c n
n(*) Tm{x) = U - l ) ( l + c\ cl) cm+1 cn forO^m^n,

VI1 ~x ) L

where {c^_x in (— 1,1) is related to (a^^ by (4.1), and the empty product is understood
to be 1 for m = 0 or m = n.

Proof Fix m with 0 ̂  m ^ n. By (4.2) and using the transformation
x — |(z + z"1), we have

-') M(z) \[zmM(z-1)
MJjz) \

Mn(z) \[zmMm(z-1) MJz) \ \z '

where y+ is the upper half unit circle. On expanding the product in the integrand,
keeping two terms over the upper half circle, and converting the other two terms to
the lower half circle y~, we get

dx

MJjz) Mm(z) Mn(z)
1) znMn(z^) Mm(z) \z

n\ Mn(z) MJz) Mn{z)
M{-')mMJ-') nM{-

which is the same as stated in Lemma 4.4.

Some partial orthogonality still holds for Tn (cf. [1, p. 250]). First we calculate the
following integral.

LEMMA 4.5. Let (Tn)^0
 be defined from (aX=l c R \ [ - l , l ] by (4.2), and let

aeR\[ - l , l ] . Then

„, , 1 dx In A c — c< . . . „ ,

where ce(— 1,1) is defined by a = \(c + c~l).
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Proof. Let y+ be the upper half unit circle. Applying the transformation
x = \£z + z~x), we get

MM 2dz

Hence
1 rfx 7rMn(z) 2

znMn(z'1)c~1-z
In

c~l-ctil—i

COROLLARY 4.6. Let (Tn)™_0 be defined from (aj^ by (4.2). Then

= ( - XTnc, - cn, (4.13)
)-i nv V ( i - .

1 dx
= Q for *«1,2,...,«, (4.14)

L, w re /a /^ /o (fl*)".! fej (4.1).

Proo/. The proof of (4.14) is a direct application of (4.12). To prove (4.13), we
can either repeat the proof of Lemma 4.5, or we can simply multiply both sides of (4.12)
by a, let a -* oo, and notice that a = fa + c'1) implies that c~l/a -*• 2.

Given a sequence (tffc)*=1 in U\[ — 1,1], we define

* o = l , K = Tn + cnTn^ f o r n ^ l (4.15)

and 1 / 2 \1/2

R

(cf. (4.2) and (4.3)). The following theorem indicates that these simple linear
combinations of Tn and Tn_x for n — 1,2,..., give the orthogonalization of the
rational system

x — ax x—a2

where (ak)^=1 in U\[— 1,1] is a sequence of distinct numbers.

THEOREM 4.7. Le/ GR*)£=o ^e fife^rf ^ (4.15) and (4.16). 77w?n

= ^ , n (4.18)* n v v my s / / •%

i_! v(l-
holdsfor n, m = 0,1,2,. . . .

Proo/. Let m ^ «. By Corollary 4.6,
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holds for k = 0,1,...,«— 1. Also by Corollary 4.6,

„ . .. dx

This implies that
dx

When m = n, we have

which, by Lemma 4.4, is

Therefore R* = (2(\—c2
l)/n)1/2Rn is the nth orthonormal polynomial.

It is also easy to orthogonalize the system

1 1 1 1 (4.19)
x-ax x-a2 x-a3

with respect to the weight function (1— x2)'1'2 on [—1,1] (where compared with
(4.17), the constant function 1 is removed). In fact we only need to take the linear
combination of Tn and Tn_x so that the partial fraction form (cf. (4.4) and (4.5)) does
not have the constant term.

COROLLARY 4.8. Let {a^x be a sequence in R\[—1,1], and define {c^x in
( - 1,1) by (4.1). / / ( 7 X . 0 is defined by (4.2), and (/-,)?_! « defined by

rn = cn(\ + c\ • • • cU) Tn + (\+cl-c2
n) Tn_x, (4.20)

then

1 1 1
[x — ax x — a2

and
dx

holds for n, m = 1,2,

The proof of the above is very similar to that of Theorem 4.7, and we can safely
omit it.

From the definition of Rn and rn, and from Proposition 4.1, we can get their
explicit partial fraction forms.
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Finally, by applying [15, Theorem 1.1], and noticing that (4.9) and (4.20) are both
Chebyshev systems (cf. [11]), we have our final result.

COROLLARY 4.9. Assume that ( f l ^ c R ^ - l . l ] . Let (TJ™^, (/?n)n-i> and
(rn)n-i be defined by (4.2), (4.15), and (4.20). Then Tn and Rn have exactly n zeros in
[— 1,1], rn has exactly n—\ zeros in[—\, 1], and their zeros strictly interlace the zeros
of Tn_1} /?„_!, and rn_x, respectively for every n = 2,3,
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