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Abstract. We prove that there exists an absolute constant ¢ > 0 such that

, | k1))
! < L : —-1<y<
. <y>|_cmm{n<k+1),( D) ple)l —1sy<

for every real algebraic polynomial of degree at most n having at most k& zeros in
the open unit disk {z € C : |z| < 1}. This inequality, which has been conjectured
for at least a decade, improves and generalizes several earlier results. Up to the
multiplicative absolute constant c, it is a sharp generalization of both Markov’s and

Bernstein’s inequalities.

1. INTRODUCTION, NOTATIONS

Bernstein’s inequality [LOL, pp. 39-41] asserts that

/
. max < max
(1 1) —7r<aiJf<7r |p (t)| =N —n<lt<lm |p(t)|

for every p € 7,,, where 7,, denotes the set of all trigonometric polynomials of
degree at most n with real coefficients. The corresponding algebraic result [LO1,
pp. 39-41], known as Markov’s inequality, states that

2 '(z)| < n? ;
(1.2) _max [p'(z)] <n”_max |p(z)

for all p € P,,, where P,, denotes the set of all algebraic polynomials of degree at
most n with real coefficients. The Chebyshev polynomials @),, € 7,, and T,, € P,
defined by

(1.3) Qn(t) := cos(nt + a), aeR
and
(1.4) T, (z) := cos(n arccos ), -1<z<1

show that inequalities (1.1) and (1.2) are sharp. The substitution z = cost in (1.1),
together with (1.2), yields

5 ()] < min § n?, ——— : ~1<y<
(1.5) |P(y)|_mln{n» l_yz}_{%aéllp(ﬂ")la 1<y<1



for every p € P,. Markov-Bernstein type inequalities in weighted spaces and in L,
norms play a key role in proving inverse theorems of approximation and of course
have their own intrinsic interest.

Denote by P(n, k) the set of all p € P,, having at most k zeros (by counting
multiplicities) in the open unit disk {# € C : |z| < 1}. Markov-Bernstein type
inequalities for constrained polynomials have been the subject of many research
papers and the classes P(n,k), 0 < k < n, have been of special interest. One
might correctly suspect that the restrictions on the zeros of a polynomial imply an
improvement in inequality (1.5). In 1940 Erdés [ERD(”)S] proved that there is an

absolute constant ¢ > 0 such that

en  c\/n
. < x)|, —-1<y<L
1o Wolnn{ G Y e @l 1<y<

for every p € P(n,0) having only real zeros. By taking the polynomials p,, € P(n,0)
defined by p,(z) := (1 +x)""}(1 — ), it is easy to see that the constant e/2 in
(1.6) is asymptotically sharp. In 1963 G. G. Lorentz [LO2| showed that there is an

absolute constant ¢ > 0 such that

max |p(z)], —-1<y<1

—1<2<1

(1.7) [p'(y)] < cmin {" ﬂ}

for every p € P,, of the form

n

(1.8) p(z) = Z%(l +2)7(1 — )"~ with all a; > 0 or all a; < 0.
7=0

By an observation of G. G. Lorentz [SCH], every p € P(n,0) is of the form (1.8),
therefore (1.7) holds for every p € P(n,0). Inequality (1.7) is sharp up to the
multiplicative absolute constant ¢ > 0; namely it was shown in [ER1] that there is

an absolute constant ¢ > 0 such that

P’ ()] vn
1.9) sup —————— > cmin{ n, ——
(1.9 pEP(n,0) Max Ip(z) NS

—1<z<1
for every n € N and y € [—1,1]. In 1972 Scheick [SCH] found the best possi-
ble constant in Lorentz’s Markov-type inequality. Extending Erdés’s Markov-type

inequality, he proved that

. < °
(1.10) max |p/(e)| < G max jp(o)|
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for every p € P, of the form (1.8), hence for every p € P(n,0). In 1980 Szabados

and Varma showed that there is a constant ¢(k) > 0 depending only on & such that

, |
. < ;
(1.11) _max [p'()] < c(k)n _max |p(z)

for every p € P(n, k), 0 < k < n, having only real zeros. Subsequently Maté proved
that

1.12 ()| <6 k
( ) _?éa;;l |p'(x)] < nexp(7r\/_) _111%3;);1 Ip(z)]

for every p € P(n,k), 1 < k < n, having n — k zeros in R\(—1,1). Szabados’

conjecture, proved by P. Borwein, [BO] establishes the Markov-type inequality

A
. max < max :
(1 13) i<z<1 |p (ac)| < 9n(k + 1) max |p(r)|

for every p € P(n, k), 0 < k < n, having n — k zeros in R\(—1,1). Inequality (1.13)
was extended in [ER2] to all p € P(n, k), 0 < k < n. Another proof of (1.13) for all
p € P(n, k), 0 < k <n,is obtained in [ER3] with the constant 11 instead of 9. The
fact that (1.13) is sharp up to the multiplicative constant was shown by Szabados
[SZA, Example 1]. While (1.13) is essentially sharp, it is only a good estimate for
|p'(y)| with |y| close to 1.

It was proved in [ER-SZA] that there is an absolute constant ¢ > 0 such that

< cy/n(k +1)2

(1.14) P ()] < max _|p(z), —l<y<1

/T—y2 —l1<a<1
for every p € P(n, k), 0 < k < n. Subsequently it was shown in [ER3| that there is

an absolute constant ¢ > 0 such that

kE+1
evnlk+1) max_|p(z)], -1<y<l1

1.15 "(y)] <
(1.15) ' (y)] < 1—y2 —1<e<1

for every p € P(n,k), 0 < k < mn. When y = 0, inequality (1.15) is sharp up to
the multiplicative constant ¢ > 0; namely it was verified in [ER2| that there is an

absolute constant ¢ > 0 such that

(1.16) sup A > cy/n(k+1)

peP(n) _MAX |p(z)] —
for every 0 < k£ < n. The unpleasant thing about the Berstein-type inequalities
(1.14) and (1.15) is the fact that none of them matches inequality (1.5) in the un-
restricted case k = n (note that P(n,n) = P,,). To formulate a Markov-Bersnstein
type inequality for P(n, k), 0 < k < n, which contains all of the earlier results as

special cases, the following result was conjectured in [ER-SZA].



(S

Theorem. There is an absolute constant ¢ > 0 such that

n(k 1/2
|p'<y>|3cmin{n<k+1>,((’”—+?) } max (n(o)|

I-y
for every p € P(n, k), 0 <k <n.

The purpose of this paper is to prove the above theorem, which seems to be the
“right” Markov-Bernstein type inequality for the classes P(n,k), 0 < k < n. The

proof relies on a series of lemmas, some of which are interesting for their own merit.

2. PROOF OF THE THEOREM

First we prove the following Bernstein-type inequality for trigonometric polyno-

mials p € 7,, having 2n — 2k zeros at 0.

Theorem 1. Let 0 < k < n, n > 1 be integers. There is an absolute constant

c1 > 0 such that

(2.1) max [/ (t)] < e1/n(k + 1) max|p(t)]
teR teR

for every p € T,, of the form

(2:2) plt) = (sin(t/2)*""q(t),  q €T

Theorem 1 implies immediately the following result for higher derivatives by

induction on s.

Corollary 2. Let0<k<mn,n>1 and s > 1 be integers. Then

‘ (s ) <
(2.3) max [p"*)(¢) H n(k +j) )maX|p( )|

for every p € T,, of the form (2.2).
The proof of Theorem 1 rests on the following.

Theorem 3. Let 0 < k <n andn > 1 be integers. There is an absolute constant

co > 0 such that

(2.4) p(2)] < 2 max|p()]

for every p € T, of the form (2.2), and for every z € C such that |Im(z)| <
(n(k+1))71/2.

To prove Theorem 3 we need four lemmas.
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Lemma 4. Leta < b and r > 0 be arbitrary real numbers. Assume that P € Py,

and

(2.5) P(®)] = max [P(x)]

Then P has at most canr'/?(b — a)™Y2 zeros (by counting multiplicities) in the

interval [b — r,b] with some 0 < c3 < 4.

Lemma 4 is proved in [ER4, Corollary 1] with a slightly larger constant. The
fact that c3 < 4 was pointed out by Lorentz and von Golitschek. Our next lemma

is a special case of [BO-ER, Theorem 3.2].
Lemma 5. Let 0 < k < n and n > 1 be integers. For every cy > 0 there is a

constant c5 = c5(ca) depending only on cq such that

2.6 P < P
( ) a§w§b+c‘1(€ria(f)c(n(k+1))—1 | (33)| =6 aréla:a%(b| ($)|

holds for every P € Py, of the form
(2.7) P(z) = (z —a)" ?Q(z), Q€ Pa.

From Lemmas 4 and 5 we deduce
Lemma 6. Let0 < k <n,n>1 bewntegers. Thereis an absolute constant cg > 0

such that

. <
(2.8) X |P(z)] < co _max |P(z)]

for every polynomzal of the form

(2.9) P(z) = (z —a)™ *Q(z), Q€ Po, ae[-1,1]

Proof. f n/2 < k < n, then inequality (2.8) holds for every P € P,,, by Bernstein’s
inequality [LO1, pp. 42-43]. Therefore, in the sequel we assume that 0 < k& < n/2.
Let b > 1 be the smallest real number for which

2.1 P(b)| = P(z)| = P(z)|.
(2.10) [PO)f = _max [P(z)]= _max |P(z)
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Since 0 < k < n/2, P has 2n — 2k > n zeros at a. On the other hand, Lemma 4
implies that P has at most c3n(b—a)/2(b+1)"1/2 zeros (by counting multiplicities)
in [a, b], hence

csn(b —a)2(b+1)"Y2 > n,

thus

(2.11) (b—a)l <2 = ¢

N oo

Now Lemma 5 and inequality (2.11) yield that

(2.12) max |P(x)| < max |P(x)|
—1<a< 14 (n(k4+1)) ! a<o<b(n(k+1))~1

< I s T P(zr) < cg argggblP(aﬂl = 5 _max |P(z)],

where ¢g = ¢5(c7) > 0 is an absolute constant, and the lemma is proved. d
From Lemma 6 we easily obtain.

Lemma 7. Let0 < k <n,n >1 be integers. There 1s an absolute constant cg > 0

such that

2.1 0)| < t
(213) (6)] < cs max p(0)
(i denotes the imaginary unit) for every p € T, of the form

(2.14) p(t) = (sin((t — @)/2))*""*q(t), q€ T, a€R

and for every 6 € R such that

(2.15) 6] < (n(k4 1))~/
Proof. Let
(2.16) p(t) := p(t)p(—t) = 4ni_k(cost —cos )’ g (t)q(—t).

Since ¢(t)q(—t) € 731 is an even trigonometric polynomial, by the subsitutions

r = cost and a = cos a, we obtain that

(2.17) B(t) = (@ — )" *Q(z). Q€ Pu, ac[-11]
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For the sake of brevity let
(2.18) P(z) := (z — a)>" 72 Q(x).
Now (2.15) — (2.18) and Lemma 6 yield

(2.19) [p(i6)]* = |p(i6)p(~i6)| = |5(i6)]
= |(cosh 6 — a)?>"~?*Q(cosh §)| < 1 e |P(z)]

< ) = p(t
< g _max [P(z)] = cqmax|p(t)

= cg max |p(t)p(—t)| < cg max |p(t)|?,
Cé tealR lp(t)p(—t)| < (’elteﬂR lp(®)["
and the lemma is proved. U

Theorem 3 follows from Lemma 7 immediately, while Theorem 1 can be obtained
from Theorem 3 by the Cauchy integral formula. Corollary 2, which follows from

Theorem 1 by induction on s, plays a key role in the proof of our next lemma.

Lemma 8. Let 0 < k <n, n > 1 be integers, let p € 7,, be of the form

(2.20) p(t) = (sin(¢/2))*" " **q(t),  q € Ts,

let ty € R be such that

(2.21) p(to) = max|p(t)| =1.

Then p has at most 2ecy\/n(k + 1)h zeros (by counting multiplicities) in the inter-

val
[to — h,to + ] for any 0 < h < (2ecy) ™ (k + 1)Y/2n=Y2 where ¢; > 0 is the same

as i Theorem 1 (and Corollary 2).

Proof. For the sake of brevity let
(2.22) s:=[2eci/n(k + 1)h] + 1,

where ¢; > 0 is the same as in Theorem 1. Assume that we can find {1 < t; <
-+ < t, in [tg — h,to + h] such that p has u; repeated zeros at ¢;, 1 < i < v, and
1%

> pi = s. Now let

=1

(2.23) Q) = (= = ta)™.
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Then, by a well-known relation for the remainder of the Hermite interpolation

polynomial, there exists a £ € [t1,t,] C [ty — h,to + h] such that

(2.24) p(to) — H(to) = —p(s)(ﬁ )2to),

where H € P,_1 and H(j)(t,-) = p(j)(ti) =0foreveryl <i<vand 0<j < p;—1,
so H = 0. Hence, by s! > (s/e)® and from (2.21) — (2.24), we can deduce that

(2.25) P ()] > sh™ > (g)s (2601\/m)

S

2 @0 (ol 0 2 [l /ale 5
—H vk + 7)) max p(t)

for any 0 < h < (2ec;) " (k + 1)Y/2n71/2 (these bounds for h imply 1 < s < k + 1
by (2.22), which is used in the last inequality). Since (2.25) constradicts Corollary

2, our assumption is false, and the lemma is proved. O
By the substitution z + 1 = 2sin*(¢/2) (i.e. © = —cost), from Lemma 8 we
obtain

Corollary 9. Let 0 < k <n andn > 1 be integers, let p € P, be of the form

(226) ple) = (z+1)""q(x), g€ P
and let
(227) p(1)] = _max (o))

Then p has at most 4decyi/n(k + 1)h zeros in [1 — h, 1] for any

0<h<(4ec)) 2(k+1)n~!

Our next lemma constructs a polynomial with some nice properties, which will

be exploited in the proof of Lemma 11.
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Lemma 10. Letl <k <m <n, m+ k <n be integers, let 0 < cg < 1 be real

and let

k
(2.28) yi=1-"" and 0<z<1-22,
4in n

Let Q2 be the Chebyshev polynomial Ty, = cos(2k arccosz) transformed linearly
from [—1,1] to [y, 1]. Denote the zeros of Qai by

(I>)zy >2p > > x> & > T > ... 21(> y)

and define
k
(2.29) P(z):=(z+ 1) "a"—zmH T — ;).
=1

Let xy := 1 and xp41 == y. Let & € (zj,x;-1], j = 1,2,...,k+ 1, be the (only)

point for which

(2.30) P(&)|= max |P(a).

z;<e<a;a
Then

Proof. We have

(2.32) P(z)=(z+ 1)z —2)™ H(.’E — ;)

=1

k
=@+ )" e =)™ [[ (= - 7)) 7 Qui(x)
7=1

= (z+ 1) F(x - 2)™( ().

=1

For the sake of brevity let

(2.33)

<
[l
—_

[l
8y
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and
(2.34) G(z) = (z +1)""™ F(z - 2)™(x —y) "

Then P = FGQy. Since Qqp equioscillates & + 1 times on [(1 4+ y)/2,1], it is
sufficient to prove that both F and G are decreasing on [(1 + y)/2,1]. Since each
of its factors is decreasing on [(1+y)/2,00), so is F'. To show that G is decreasing

on [(1+4y)/2,1] we write

(2.35) G = GGy,

where

(2.36) Gy () := (x4 1) F(z — )=+
and

(2.37) Ga(z) = (z — 2)™(x — y) /2
We have

(238) G () = (z + )" o — )P (0 —m — k) (z —y) — 5(z +1))

(z —y)k
and
(2.39) G'2 (z) = (x — z)m—l(gg - y)k/Z—l (m(z — y) — %(a: ~2))

(z —y)*

. ko k
< (x—2)" Y —y) /2 (mcg— cgm) =0

4n 2 2n

for every x € [(1+ y)/2,1], and the lemma is proved. O

Lemma 11. Let k,m,n,co,y,2z,z; (j = 1,2,...,k) and P be the same as in

Lemma 10. Let

(2.40) P*(z) = (z 4+ 1)" "™ F(z — 2)™Q*(x), Q* € Py
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be the constrained Chebyshev polynomials of degree n on [y, 1], which equioscillates
k41 times on [y,1]'. Denote the zeros of P* on (y,1) by 1 > y; > yg > -++ >

ye(>y). Theny; < x; for everyj=1,2,... k.

Proof. This follows from Lemma 10, by proceeding exactly in the same way as in
the proof of [BO, Lemma 4]. Suppose that the statement of the lemma is false.
Choose the smallest j for which y; > x;. Then pick 7 so that

2.41 P* = P(zx)|.
(2.41) max [pP*(a) = max [P(z)

(We will specify the sign of 7 later.) We can deduce from the equioscillation of P*
that nP* — P has at least j — 1 zeros on [3,1], where 8 is the smallest number
greater than y;, where [nP*| achieves its maximum on [y, 1]. From Lemma 10 we
deduce that nP* — P has at least k — j zeros on [y, ), where a := ;41 (see (2.30)).

We need only to observe that if we choose the sign of 1 so that

(2.42) sign(nP*(0)) = —sign(P(a)),

then nP* — P must have at least two zeros in («, ). Thus, together with the

n —m — k zeros at —1 and m zeros at z, nP* — P has at least
(n—-—m-Ek)y+m+G-1)+(k—-j)+2=n+1

zeros, a contradiction. Therefore y; < x; for every j = 1,2,...,k, and the lemma

is proved. (I

From Lemma 11 we prove the following

Lemma 12. Let k,m,n,cqg,y and z be the same as in Lemma 10 and 11. There is

a constant c19 = c19(cg) > 0 depending only on co such that

. <
(2.43) [p(e)] < ex0 max |p(e)

11t is well-known from the theory of Chebyshev approximation that there is a “constrained
Chebyshev polynomial” P* € Py, of the form (2.40) such that P*(vy;) = (—1)k+1=J max, |P*(z)|
y<a<

for every y=1,2,..., k+1withsomey <71 <7v2<--- <7941 < 1.
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for every p of the form
(2.44) p(z) = (z + )" F(z — 2)™q(x), q € Pk,
and for every

(2.45) a € [1,1+ (nk)™1].

Proof. By a compactness argument and a variational method it is routine to show
that it is sufficient to prove (2.43) for p = P*, where P* is the constrained Cheby-
shev polynomial of degree n on [y, 1] defined in Lemma 11. Recalling the definition

of y and z, and using Lemma 10, (2.45) and the well-known formula
o1
Toi(x) = 5 (= + Va2 =17 + (z — Va2 —1)%), 2z eR\(-1,1)

for the Chebyshev polynomial of degree 2k on [—1, 1], we obtain

P P
@40 e = [P
yZe1 -
B (a—}—l)n_m_k (a—z)ml—[ a—y,
2 1—=2 o 1 -y,
< a+ 1\ fa— 2 mHa—xj
- 2 1—-=2 i1 11—z

n—m—k m —17.—2
1 1 Top(1+ 8¢y k%)
<14 — 1 =<
- ( + 2nk> ( + chk> Tor(1) = <10,

where ()3, is the Chebyshev polynomial T5; = cos(2k arccos z) transformed linearly

from [—1,1] to [y, 1], and c19 depends only on cg. The lemma is now proved. O
Lemma 12 and Corollary 9 allow us to prove the following.

Lemma 13. Let1 <k <n,0<m <n—Fk beintegers, let —1 < a < 1. There is

an absolute constant c11 > 0 such that

2.4 < :
(2.47) Ip(e)] < e _max |p(z)
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for every p € P, of the form
(2.48) p(z) = (x+1)" " (x — a)™q(x), q € Pk
and for every

(2.49) a € [1,1+ (nk)™1].

Proof. Without loss of generality we may assume that

(2.50) Pl = _max |p(=)].

Any other case can be reduced to this by a linear transformation. We distinguish
two cases.
Case 1: 1 < k < m. We show that there is an absolute constant ¢y € (0,1] such

that
(2.51) a<1- 20
n

Indeed, let 0 < ¢y < (4ec;)™2. By Corollary 9 p has at most

decq \/n(k +m + 1)cgmn=1 < 8ecy/cgm

zeros (by counting multiplicities) in [1 — cgmn~!,1]. Therefore (2.51) holds with
cg = (8ecy)™?%, since p has a zero at a with multiplicity m. Since (2.51) holds,
Lemma 12 can be applied to yield the desired result.

Case 2: 0 < m < k. Now p € P, has all but m + k£ < 2k zeros at —1, hence
[BO-ER, Theorem 3.2] (cf. Lemma 5) gives the conclusion of the lemma. O

Transforming the result of Lemma 13 linearly from [—1,1] to [—]b],1] (-1 < b <

1), we immediately obtain

Corollary 14. Let1 < kE < n,0 < m < n —k be integers and let —1 < b < 1.
There 1s an absolute constant c19 > 0 such that
2.52 )| < r)| < ;
(2.52) Ip(@)] < c1z _nax lp(z)| < c1z _max p(x)]|
for every p € P, of the form
(2.53) plz) = (z+0)" "z —b)"q(z),  q€ Py,
and for every

(2.54) a € [1,14 (2nk)™1.

Corollary 14 plays a key role in the proof of our next lemma.



Lemma 15. Let1 <k <n, 0<m < 2n — 2k be integers. We have
2.55 60)| < t

(2.55) [p(i0)] < v/erz max|p(t|

(i denotes the imaginary unit) for every p € 7T,, of the form

(256)  plt) = (sin((t +7)/2))2 " (sin((¢ + 7 — 7)/2))"a(0).

with q € T, and v € R, provided

(2.57) § € (=(8kn)~2, (8kn)~1/%).

Proof. The proof is quite similar to that of Lemma 7. Let

(2.58) p(t) := p(t)p(-1)

= 457" (cost — cos7)*" 7" * (cos t + cos 7)™ q(t)a(~1).

Since q(t)q(—t) € Ty is an even trigonometric polynomimal, by the substitutions

x = cost and b = cosy, we obtain that

(2.59) Bt) = (o — DG 4 b)mQr), Q€ P,
where () € Py, . Let

(2.60) P(z) := (z — b)*" ™™ 2 (4 b)"Q(x).

Now (2.57) — (2.60) and Corollary 14 yield

(2.61) p(i6)* = |p(i6)p(—i6)| = |p(i6)]
= |(cosh & + b)2"™™2%(cosh § — b)™Q(cosh &)
< < D
= L 88 TS g0

_ _ 2
= crzmax [p(t)p(=1)] < exa max [p(t)[",

and the lemma is proved. (I

We will use a slightly different version of Lemma 15, namely the following.
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Corollary 16. Letl1 <k <n,0<m <n, m+ 2k < 2n be integers. We have

(2.62) [p(2)] < Verz max|p(t)]

for every p € T, of the form

(2.63) p(t) = (sin(t/2))*" =" (sin((t - 7)/2))"a(?).
with q € Ty, , provided

(2.64) [Im(z)| < (8kn)~1/2.

Proof. Let p(t) := p(t — ), v € R, and apply Lemma 15. O
Corollary 17. Let1 <k <n, 0 <m < 2n — 2k be integers. There 1s an absolute

constant c13 > 0 such that

2. ()] < k t
(2.68) rgéaﬁglp( )| < e13vn ntaea}lglp( )

for every p € T, of the form

(2.69)  p(t) = (sin ! +2ﬂ/2>2n_m_2k (sin ! _;/2)7” at), g€

By the substitution « = sint, from Corollary 17 we deduce
Corollary 18. Let1 <k <n, 0<m <n—k be integers. We have

Vnk

/

. y < ’ R _ y
(2.70) P ()| < 13 T p(z)]. l<y<l1
for every p € P, of the form
(2.71) plz) = (z +1)""" ez - 1)"¢(z), q€ Py,

where ci13 > 0 15 the same as in Corollary 17.

Now we are ready to prove the Theorem stated in Section 1.
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Proof of the Theorem. The case k = 0 follows from the case k£ = 1, hence, without
loss of generality, we may assume that 1 < k. A simple compactness argument

shows that for every —1 < y < 1 there is a p € P(n, k) such that

=1, e
(2.72) AC)I N ()|
_max [P@)] pepeur) _max [p(x)]

Observe that p cannot attain its maximum modulus on [—1,1] at y, otherwise
7' (y) = 0, a contradiction. We will show that p has at most £+ 1 zeros (by counting
multiplicities) different from £1. First we prove that p has only real zeros. Indeed,
if p(a) = 0 for an a € C\R, then p(a) = 0, and a simple calculation shows that,

with a sufficiently small € > 0,

(2.73) pe(z) := p(x) (1 N Sxa;(i)— E))

is in P(n, k) and contradicts the extremality of p € P(n, k).

Next we show that p can not have more than one zero (by counting multiplicities)
in R\[-1,1]. Indeed, if there are a # b € R\[—1, 1] such that p(a) = p(b) = 0, or
there are a = b € R\[—1, 1] such that p(a) = p'(a) = 0, then the polynomial

)

(2.74) pe(z) == p(x) (1 — esign(ab)

with sufficiently small € > 0 is in P(n, k), and it contradicts the extremal property
of p. Since p € P(n.k), p has at most k + 1 zeros (by counting multiplicities)
different from +1, hence Corollary 18 and the extremal property of p € P(n,k)
yield

(2.75) ' (y)| < cis

for every p € P(n, k). The uniform bound

(2.76) _max [p'(e)] < 9n(k+1) max |p(e)]

for every p € P(n,k) is proved in [ER2, Corollary 1.3] extending [BO]. Other
proofs of (2.76) are given in [ER3, Theorem 1] and [BO-ER, Theorem 3.4] with
slightly larger multiplicative constants than 9. By (2.75) and (2.76) the theorem is

proved. O
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