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Here p, and g, are the numerators and denominators of the convergents of the
continued fraction expansion of x and 7** and s** are particular algorithmically
generated sequences of best approximates for the non-homogeneous diophantine
approximation problem of minimizing |nx+7y—m|. This generalizes results of
Bohmer and Mabhler, who considered the special case where y =0. This representa-
tion allows us to easily derive various transcendence results. For example,

*_, [ne+11/2" is a Liouville number. Indeed the first series is Liouville for
rational z, we [ —1, 1] with |zw| # | provided « has unbounded continued fraction
expansion. A second application, which generalizes a theorem originally due to
Lord Raleigh, is to give a new proof of a theorem of Fraenkel, namely [nx +y]7_,
and [na'+7'];_, partition the non-negative integers if and only if 1/x+1/2"=1
and y/a+y'/a’ =0 (provided some sign and integer independence conditions are
placed on 2, f, 7, 1'). The analysis which leads to the results is quite delicate and
rests heavily on a functional equation for G. For this a natural generalization of the
simple continued fraction to Kronecker’s forms |na+ 7 —m| is required.  © 1993
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0. INTRODUCTION
Consider the two examples
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and
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z Fiy
Here Fy:=0,F, =1, and F,, ,:=F,+ F,_, are the Fibonnaci numbers
and |z|, |w| < 1. An obvious consequence of (0.2) is that numbers like

| 1
g'j— (a1 + 502)]

are irrational numbers, because the continued fraction expansion is clearly
unbounded. These two wildly improbable looking identities are specializa-
tions of the following theorems. We suppose throughout that 0 <a is
irrational, that |y| <1, and that nax + 7 is never integral (unless otherwise
specifically noted). This is primarily to avoid special case considerations in
the continued fraction expansions. We use the notation [x] for the integer
part function and x* to denote x* :=max(0, x).

THeoreM 0.1, Ler |[z|<1, |w|<1, and |zw|#1. Suppose that
a+y<1, 1>a>0, y=0. Then

e &

G,,(z,x):= Y z'wlmt7)

n=1

z l—w 2 (— 1)+t iR s

= 0-
1—:+ w "go(l—:""w”")(l—z""*'n"’"") 0.3)

and
o [na+ 7]
Fo(z,wy=3) z" Y w”

n=1 m=1
o (_1), ". Ry Ex ]

= Z . (0.4)

o (1 _Z‘In“ ﬂn)(l _:‘In‘lePn+l)

Here {p,}, {g.}, {t¥*}, and {s**} are given by the non-homogencous
continued fraction algorithm, Algorithm 0.3 (p,/q, are just the partial
quotients of the continued fraction for «).



GENERATING FUNCTION OF INTEGER PART 295

We have picked a convenient domain of convergence but not the most
general possible. This theorem is proved in Section 3 without the assump-
tion x + 7 < 1. Dropping this assumption may make necessary the inclusion
of some additional initial terms. Moreover, whenever gamma is positive the
positive part in (0.3) and (0.5) is superfluous.

Note that

F,(z1)=Y [na+y]* =" (0.5)

n=1

and (0.1) follows from (0.5) and explicit computation of the quantities in
Algorithm 0.3.
Note also the duality relation

W W

(=) 1—w) 1—w

F,.(z,w)= G, (z,w) (0.6)

From Theorem 0.1, with y=0, we can deduce the following continued
fraction expansion.

THEOREM 0.2.

1 —w o€
( ") Y 2wl : 1 (0.7)
n=1 —

T+ 1
n+n+
where
1/zw —1
T):=—
O w—1
and

T o ]/(:4,,_:w/),.f:)[l//(zt/nfxwnfp;)u,,h_ l]
n - [l/zq";llvpnhl_l]

with {a,} the convergents and {p,/q,} the partial quotients of the continued
fraction expansion of a.

The continued fraction (0.2) is now an obvious corollary of this theorem
with x :=(1+ \/g)/Z. Theorem 0.2 is proved in Section 4.

The analysis of Theorem 0.1 requires, indeed leads to, the following
non-homogeneous continued fraction algorithm for approximations of
form |no+y—m|.
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ALGORITHM 0.3. Suppose o, ye [0, 1) and « irrational.
Let

Ag =0, Yo =7
and
I [ Yn [ 7n

& =, n =—— .

n+1 a, [1”] Y +1 a, [an:’
Let

1 |7
an+l:= ;; ’ Cn+l'= —“: .

Let

pn+l:=an+1pn+pn»lv p0:=0’ pfl:::l
qn+l:=an+lqn+qn 1 qO:: 1’ ‘1—1:=0
sn:=sn71+(an+l+(_1)"+lCn+l)pn’ S*l:=1

tn::ln—1+(arl+l+(_l)”+]Cn+l)qn’ t—lzzl'

Finally, define 1** and s** by

e ,_{tzn ifcanir=0and 1,, < gy, + gany
2n - —
t2n_q2n e]SC
pE* ._{t2n+l ifC2n+2=Oandt2n+1<‘12n+1+q2n+2
Ity = :
r2n+l~q2n+2 else
T San ifc3ni2=0and 1,, < gy, + Gan 4
2n =
g S2n—P2n else
gk ,_{52n+1 ifeyo=0andt,,, 1 <Gay )+ Gauss
2n+ 11—
Son+1 " Pans2 else.

Note that {a,}, {«,}, {p.}, {g.} are the quantities that arise in the
usual simple continued fraction for ae (0, 1).

The properties of this algorithm are explored somewhat in
Appendixes 1-3. In particular

¥ Fo 4y — s>
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are best one sided approximants in the appropriate range. Also, {s**} and
{t¥*} are algorithmic solutions to the Minkowski problem

1
|t,’,"*oz+*,'—s,’,"*|<;—*. (0.8)
n

These sequences have various other continued fraction like properties.
For example, a is a quadratic irrational and 4 is of the form ua + v, with
u, ve Q if and only if the convergents {a,} and {c,} are periodic. This
however is tangential and will not be proved here.

The hard work in this paper is the derivation of Theorem 3.2 and its
equivalence to expansion (1.6). Theorem 0.1 is a special case of this. This
rests heavily on the functional equation (2.1) and the rather delicate
analysis of Algorithm 0.3. This constitutes Sections 1 to 3 and Appendixes 1
to 3. Two pretty applications which follow from this have proofs presented
in Sections 5 and 6. Section 7 contains some examples.

THeEOREM 0.4. Suppose z :=1/p and w := 1/q, where p and q are positive
integers and pqg> 1. Then

(a) if « is irrational then G, (1/p, 1/q) is irrational and if the partial
quotients satisfy limsup g, ,/q,>3, then G, _(1/p, 1/q) is transcendental
(and not of normal rate of rational approximation);

(b) if o has an unbounded continued fraction then G,.(l/p, 1/q) is
Liouville. In particular F, ,(1/p, 1/q) as a function of a in [0, 1] is Liouville
on a set of measure 1.

The transcendence of the F, o(u, v) when u and v are algebraic is treated
by Loxton and van der Poorten [11,12], who follow up work of
Mahler [13].

The second application is to give a proof of Fraenkel’s generalization of
a theorem of Lord Raleigh. Raleigh’s theorem is the y :=0 case of the
theorem below, which is sometimes also referred to as Beatty’s theorem
(see Schoenberg [16, p. 32]). Fraenkel gives a proof of Theorem 0.5 and
more in [7]. Our proof, once we have developed the other machinery of
this paper, is considerably shorter.

THEOREM 0.5. Assume o> 1, o irrational, ye[0, 1), and na+y never
integral. Then

{lna+yY}7.,  and  {[nd'+7']1},
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partition the positive integers if and only if

1 1

—+~7=I and =0.
o o4

P
o d o d

Theorem 0.1 in the case where 7=0, and hence ¢}*=g¢,+¢,,, and
s¥*=p. +p,.., is due to Mahler [13] and is discussed by Loxton and
van der Poorten [11]. A version of it is implicit in Hardy and Littlewood
[10]. A different development is given in [3].

A single variable version of Theorem 0.2 (z :=1) is due to Bohmer [1].
It was rediscovered by Davison [6] in the more special case a=
(1+ \/3)/2’ which is presented in [8].

Algorithm 0.3 resembles the multi-dimensional Jacobi-Perron algorithm
[4, 14]. Though it is not truly multi-dimensional some of the same
complications of analysis arise.

The series F, 4(z, 1) has been studied from various points of view. For
example, it represents a rational function if and only if « is rational [ 14, 15,
19].

The standard number theory we need is available in [2, 5,9, 17, 18].

Finally, we need a few further pieces of notation. Let

gy omyplnxsy]

GY (z,w) == ——— (0.9)

x5 1 — z9%yp PN

and
W w

T -w) 1-w

FY o (z,w): Gi‘f},(z, w). (0.10)

These will provide rational approximations to G, , and F, ,. Also, let

Byi=1—zwr (0.11)

and
9N

Ayi= Y b, (0.12)

n=1

1. THE RATIONAL APPROXIMATION

We commence by constructing simple Padé like approximants for F and
G. For 720, and « irrational in [0, 1] we consider
Ea *’K
ByG—A\= Z YIS Z zav ity tpy]
n=gn+1 n=1
s
T WL I S R NN
n=1

with ey :=agy —pu-
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Now Lemma A2.1 shows that there is at most one integer 1 <ny<gy,,
with [nyx+7]+# [#va+7+¢&y], where n, is defined to be the smallest
such integer (and may exceed gy, ;). Hence

BuG—dy=(—1)V 122 e

+O(::"N+"N”+'w””*”"“*‘ -l) (1'])
where my 1= [nya+7]+ (1 +(=1)")/2. We may now write

1—w
. N+1 [ 4N+ 1N PN+ My
ByAy, 1 — By Ay=(-1) " A TR

R AL +raen WoN-1 +my + O(zqw +ans1+ 1 )} (12)
Now the left-hand side is of degree gy + ¢y, in z and Proposition A2.2

shows that at most one of the two terms on the right-hand side has degree
that low. The left-hand side cannot vanish identically and so

Ayiy Ay 1—w Z'Rwk
== (= Ny PN AN+ PN 1) (1.3)
By By wo (L= zwPY)(1 — 9 Pt
where
* _{”N‘*‘IN if ay<gni
N= .
Avi it dne 1 =Ny i ny>quniy- (1.4)
. {mN‘*’PN if Ay<qgyy,
N = .
Myt Pt if ny>qn..

(See also Appendix 3.) Since 4 ,/B), converges to G, . we have for each N

, l—w &
G, (2 W) =GY (=, w)+—l—“— Y (=)
v n=N

"'n‘ u"j‘:
X .
(1 — 29 Pn)(1 — z9+ Ly Pre1)

(1.5)

We provide an explicit construction of ¥ and s¥ in the next section.
Meanwhile, we observe that if y=0 then t* =gy +gn.1: S¥=pr+Prvi1s
as follows from Lemma 4.1 in [3] or as in Lemma A2.1.

From (1.5) and (0.6) we have

sy
Zhnwn

F,.(z w)=F:,I,(z, w)+ i (—1)" , (1.6)

Fag¥ (1 —z9wPry(1 — 9+ typPrrt)




300 BORWEIN AND BORWEIN

which for y:=0, N :=0 yields Mahler’s series since F°=0 in this case. In
the next section we derive a similar series via a functional equation
approach and in Section 3 we see when the two are the same.

2. A FuncTtioNaL EQUATION APPROACH

Assuming as before that nx + y is never integral (n > 1) we derive

w
F, zw)y+F,1 _,iw, 2)=——, 2.1
5 W) Fant e O ) = s 2.1
since either | <Km<[na+7y] or 1 <n<[ma ' —ya~'] and not both. This
is the basic functional equation. There is a more complicated version of
(2.1) if nx+y=m. We now proceed to use the non-homogeneous continued
Sfraction

W, 1t a, =0, a,.,=[a"!
oy =0, Yo =720 1 ! " w1 =la, ]1 (NHA)

‘y"+ 1 + Chy1= }',,0(; ’ Cpyy = [‘ynarj

detailed in Algorithm 0.3 and Appendix 1. Some tedious but straight-
forward manipulation allows us to replace « ' by «,, and —ya~! by —y,
in (2.1). Indeed, in general with z,:=z, wy:=w

I W

F, . (zg, W zTF, _ {zy,w)=z tm————————
20, 50 (205 Wo) + - (2 wi) (1—z,)(1—w,)

D,, (22)

where z, :=z§'w,, w, :=2z,, and
Dy =z 4+ (1 —z¢)w,.
Similarly

Fo o znw)+zPF, (2, wy) =27 (2.3)

(1 —z,)( —w,)
where z, :=z7w,, w, 1=2z,.

This is simpler since [na, +y,] is always positive while [nx, —y,] is not
(for n < ¢,). Combining (2.2) and (2.3) with 0 replaced by any even integer
gives

2Cn+l o

- <2 1
alm‘;’:n("l"’ w2")_"2n+l"2 i Fazz,Hz Pin+ 7("2n+2’ w2n+")

i - ,42",,{ Zon 1 Wany . Zame2Wans2 }
= Itz
! ! (1_z2n+l)(1_w2n+l) (1_22n+2)(1_w2n+2)
1__7"2n+2 -

+ “2n+1 “2n+2 , (24)

1—_22n+] l_zln+2
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where z,, ==z} 'wi, w,, =2, and &, ¥, ay, ¢, are generated by
(NHA). We observe that the right-hand side of (2.4) can be rewritten as

z, +122‘"2n+l z;z"*21+' z;f‘z;.u
A2" . 7 id n + 1 (24)/

T =2y )1 —23) (1= zpy )1 = 2304 1)

while if ¢,,, , =0 this is also equal to

L Zans 122020, ! Zons2Zoms 122, 0" 4)"
A= I L4
(=2 Ml —220) (I ~zp, )1 =25, ¢)
Let
= TR L= 1)y
x, =[] zk =Xy 12
k=0
and write
N-1
Fz,-,*(z’ w)’_xZNFzzN.y:N(ZZNa WZN) = z XZnAZn' (25)
n=0

Next we make x,, z; explicit. Inductively, we deduce that z, = z%w" and
then that x, = z"™-'w**-! where

me—ne_ =(=1)""" e,y 1qp, n_ =0 (2.6)
Pr—Pi—1=(—=1)f" ers i pu, p_:=0.
Let 1, :=q.+qi.+n, and s, :=p, + p, .+ pi S0 that
o=t @ + (=D e ) gus t =1 .
(z.7)

se=5, 1+ (@ (=1 o) pes s_;=1

Then some more manipulation with (2.4} yields
Zin = 9y Sin = P2n z’2n4 174214 24521 = Pont 2

(1= 2o )1 =22,) (1= 2ap )1 =230, 1)

XZnAZn =

Moreover, since |F,,, ,,.(Zan, Won)I < |zonl [Wonl  while  xonzonywon =
zW-tw2v -1 tand t, — oo (Appendix 3) we see that (2.5) yields

(2.8)

oL 020 = 42n 1,520~ PIn o241 2+ 240520+ 17 P2t 2
z W Z W

F..(z,w)= —
' Z = Za e i N1 —23,) (1 =23, 201 — 25,4 )

n=0
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In the case ¢,,,, =0 we observe from (2.7) that the bracketed term equals
-.IZn Wi —,-’Zn + St 1

(1—zp0, =230 (1= 2o )1 = 2200 1)

We now define +** and s**, as in Algorithm 0.3, by

I**'— t2'l lfc'.’n+2:()and t2n<q2n+q2n+l
) .
- tz,, - ‘hn else
ot '“{t2n+] isz,,+~, 0and a1 S9m4 1V 9242
2n+1 -7
Loy —G2n42 else
. (2.9)
PP £ ifes, ,»=0and 15, < qs, + Gan 4
2n
g S2n = Pan else
¥ . {32n+1 1fC2,,+2:()andtz,,+|<q2,,+|+q2”+2
2n+l =
Son+1 " P2ms2 CISC.

Then Lemma A3.1 and Proposition A3.3 show that ¢,<t¥*<gq,+q,.,
and (2.8) becomes

_ i (_l)n ," .5'.‘
= (L= 29w (1 =z ity

(2.10)

We now have two representations for F,
(2.10). We define

namely (1.6) with N=0 and

SR

N-1 JREAIG
Z( 1)“ — . (2.11)

:‘lnnvl’n)(l —_— z’ln+ ! u.l’rw 1)

For sufficiently large # in Appendix 3 we show that t}** =¥ s**=s* and
so derive our general identities. Correspondingly we let

N—1 20

FY:=Y (=1y : (2.12)

(1 __:‘lnwvﬂn)(l _:‘In*lnnl’n+l)

3. THE MAIN IDENTITY

We wish to see when (1.6) and (2.10) generate the same series
expansions.

LEmMMA 3.1. With B, as in (0.11), with t¥,s¥ as in (1.4), and with 1**
s¥* as in (2.9) we have
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(i) Fy—Fy=YN 4 (=1)"(z"w"/B,B, )
(i) Fy,—FY, =330, (1Y (z""x""/B,B,, )

n=AM
(1) if dog > Copyy then t¥=1¥* and s¥ =s** for alln>2k + 1 and

3

SO
Fl—Fl=F) —F),  forall N>M>2+1 (3.1)
and
F=F{,. (32)

Proof. Part (i) follows from definition (2.12) and (ii) from (2.11).
Part (iii) follows from Proposition A3.4. Since both F} and FJ, converge
to F,,, (3.1) implies (3.2). §

THEOREM 3.2. Assume O<a<l,a irrational, 0<y<l1,nx+y never
integral for n>90. Then

(a) For N22k+1if aye > o iy

hhd N
:I" Sy

-1
—1)
nZ::O = (1 — 9wl (1 — 4 1whe-t)

zw w2 oMyl vl

TU=(1—w) T—w  1—zvur

(3.3)

with t¥*, s¥* given by (2.7), (2.9).
In particular if a, > c, as happens if x +7 <1 or y <o and so if y€ [0, 3],
then (3.3) holds for all N=1,2,3, ...

(b) Moreover,

Py ' an  na e +y]
In WAz Iy

Q=) 1—w) 1—w T—zmw  (I—z)(1—z%wr)

where I is an integral polynomial in z, w with degree (I,)<qy. .
Proof. Part (a) follows from Lemma 3.1 and in (b) we write

oy la+y] _wlr+end
Iy(z, w)=wz l—i——— 2N PN 1——"——-——
1 —w l—w

N -1
+ Z, ([(n+1)a+;']-—[na+},]):nlw[nﬂ,]}_ i
n=1

Note that [a+7]=0 or 1 while [y +¢&4,] is 0 or —1, actually zero for
N even or N large and 7> 0.
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For w:=1 we have, for y =0,

o

S [ma+ylz"= Y (~1)"

n=1

Mdd

z'n

(1 _z‘ln)(l __Z(In+l)

(34)

and
Nil (_ 1)" z!,,‘- _ IN(Z’ 1)
Zy (=) (1= 2)(1 =)

is an approximation of order 3* > g.

4. Proof ofF THE CONTINUED FRAcTION Expansion 0.2

Let
Q" = Z*‘lnwyfpn_ 1
dn
7 " dnyy Pn Z an[mx].

n=1

Let T, be as in Theorem 0.2. Observe that by (1.3) (with y =0)

P

n -

Poi Py (=1 ((1—wyw)
Qn+l Qn_ Qn+lQn+1

and hence

Poo P (=D (A=w)w) Ty
Qn+2 Qn Qn+2Qn .

We deduce the recursion

Lo = o)+ lo!]

with P_, =0, Po=1, Q_;=w™'—1, Qg=z"'w®—1. It follows that the
T, are the convergents of a continued fraction. However, since

&_, e 2yl
Qn n=1
we deduce (on dividing by w™! —1 so that Q_,/(w '—1)=1) that
1 . —w
T0+ =
1 r— 1 o0 Z" J[nx]?
T, + (w )2 w

T2+
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from which the result flows. (Note that the above normalization makes the
{P,} the denominators and the {Q,} the numerators.) ||

5. TRANSCENDENCE

The transcendence estimates are fairly straightforward. Let

11
G =G,, (—, —).
"\pP g

We now use the approximation (1.1) in the form

L ver (L2 W)
‘G—E—(A,WL(—I)

z9N + RN PN + mN)
N w

- O(Zq“'+ AN+ PN RPN i )’

where w :=1/q, z:=1/p. We deduce that there exist approprimants to G
that satisfy

hy
0< \G — k—'

N

=0(1/k(151+4N“/4NI'/‘2+E))~ (5.1

To see (5.1) we argue as follows. If

1\ 9~ +nN 1>PN +my 1\ (av+ane 2 rq (px+pn+1)2
— _ s p— —_
GGG 6

0 !
- (gn+an+1)2 q(pN+p:v+ 172
as an approximation. If

1\9rtny s\ Py+my 1 (gn+qn+1)/2 1\{Prtrve 1)/2
—_— f— > — _—
<P> (‘1) (P) <CI>

1 1
\G_—B_<AN+(—1)N+! (l _q)pq,~+n,~qp~v+m~'>

N

1
=0 <qu+t1N+lqu+p_w-1>

as an approximation.

we use
A
By

we usec
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We consider the first case. Now

and

So
k:=p™q" By
is an integer and

kyl<ptq™

while n, := p?q”¥ A, is a rational number with bounded denominator of
size <p’*' Now, for large N

1 1 n
0< G(—,—)——ﬂ <(g—1)
! p g/ ky 7

gy + AN PN+ My
P q

1
+0<pq~+t/_-,.1qmv+ﬂ~¢l l)

1
=0 ( (an +an+ A2+ 0)
P

q(ﬂw +oN )2+ u))

and (5.1) follows since |ky| <p?¢g”¥ and py = agy. The non-vanishing of
the form follows from (1.1) and above directly. The second case is similar.

So provided g, ,>(3+¢) gy holds infinitely often we deduce from
Roth’s theorem [17] that { is transcendental (and not of usual (Roth class)
rate of approximation). The irrationality is immediate from (5.1) since
liminf gy, ,/gy> 1. Clearly if o has unbounded continued fraction then
from (5.1) we deduce that { is Liouville.

6. PROOF OF THE GENERALIZED RALEIGH THEOREM (.5
Let s:=a+1, t:=a"+ 1. Then

{lns+313,20 and {49130, (6.1)
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partition the positive integers if and only if

X

Ga,;r(zsz)+Gz'.)r' :,:): Z :frll:z+l)+‘,*]+ Z :[n(x'+l)+y‘]
n=1 n=1 (62)

x -

— M _
= =
R

n=1
Note by (2.1)

w

Az, w et 2y ———. 6.3
Fo W)+ Foo _yi(w, 2) =1 =) (6.3)
So with the duality relation (0.6)
F,.(z, W)= Gyt _yp (W, 2) (6.4)
and
W
F, iw2)= G, .(z,w). (6.5)
T I—w ™
Thus (6.2) re-writes as
11—z w
Gy g, 2)+————G, (2, W)= . (6.6)
’ z 1—w 1—w
If we set z :=w in (6.6) we deduce on comparison to (6.2) that
Gt -2, 2)=Gp (2, 2) (6.7)
Thus (6.1) holds if and only if for large n
[no= ' —ya~ '] =[na'+7] (6.8)

It follows easily (by uniform distribution) that
o =0 and —ya =y
or, with s=a+1 and t=a"+1,

11 by
-+-=1 and +==0
st t

U =2

and the result follows on noting that s and r play the role of « and o’ in
the statement of Theorem 0.5.
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7. EXAMPLES

As one might expect explicit examples are fairly rare, as they are for
simple continued fractions.

ExaMpLE 1. Let x:=(e—1)/2 and y := (e — 1)/4; then

{a;},=1=101,6,10,14,18,22,26, ..]
{¢.;};=1=10[0,3,0,7,0,15,0,..]
(2%}, _o=1[1,4, 74,571, 18589, 217568, 10590502, ...]

{s¥*}._o=1[1, 4, 64,491, 15971, 186922, 9098734, ...].
If we generate the simple continued fraction to (e — 1)/4 we get
{a;},_,=12,3,20,7,36,11, 52,15, ..]
{g:}:_o=1[1,2,7, 142, 1001, 36178, 398959, 20782046, ...]
{p:}i—o=10,1,3,61,430, 15541, 171381, 8927353, ...].

The interesting observation, and the key to verifying these numbers, is
that

t**=qn+qn+l_1
" 2

and
Sy*=pptPuin-

EXAMPLE 2. Let a:=1/,/2 and y:= 1/(2/2); then
la;}io =01,2,2,2,2..]
{c};21=100,1,0,1,0,..]

(1¥*},_o=1T1,2,8, 15, 49,90, 288, ...]
{(s¥*},_o=[1,2,6, 11, 35,64,204, ..].

If, once again, we derive the simple continued fraction to y := l/(2ﬁ) we
have

{a:'}i=l= [2’ 1’ 49 1, 4, 1, 4, 1, ]
{g:}ico=11,2,3,14,17,82,99, 478, ..]
{pi}ico=10,1,1,5,6,29,35,169, ..]
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and, again

t**:qll+qn+l—l
" 2

s:*=pn+pn+l'

In each case given the form of {a}} easy but somewhat tedious inductions
establish the claimed form for 7** and s}**. This is also true in (0.1).

APPENDIX 1; A NON-HOMOGENEOUS CONTINUED FRACTION ALGORITHM

For O0<ua<1, a¢Q, and 0<y< | consider oy :=2a, y,:=7, and

1 1 ‘”’7 y”
an+l:=—-—[—:|; yll-#l::./—.—[i_—]' (All)
&, &y, Xy, %y

Writing a,,,, :=[1/«,] and ¢, , , := [7./«,] we have

1 Vn
an+l+an+l:=;; yn+l+crx+l:=;—’ (A12)

n

and [0, qa,,..a,,..] is the standard simple continued fraction for «. In
particular, @, > 1 while 0<c,<a,.

PrOPOSITION Al.l. Let sequences p,, q,, 4, be defined by

(1) Pns1 =@y PutPu_1sPo :=0’p—]:1
(i) gnir =Gy 19.+4n-1-90:=1,9_,=0

(i) A,e1:=a,1dnt i 1+ Chi1rt0:=0,4_ ;=0
Then for all n=0

a_an+lpn+pn+l

(A1.3)
an+lqn+qn+l
and
“:an+l;"n+'{n+l+‘yﬂ+l (Al4)

an+lqn+qn+l

Proof. Both are easy inductive arguments. |

641:43/3-5
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Let s, and ¢, be as in (2.7):

$pi=8, 1t @+ (=1 e, )P s =1

(A1.5)
tn::tn—]+(an+l+(_1)"+]Cn-+—l)qn9 f,]:=1.
PROPOSITION Al.2. For all N20
—1 N 1—
(i) tNa+}'—SN:yN+l+( )7 ( A1)
Gry+1 T on 1 Gn
. (- 1"
(M) gya—py=——"—""—  (=¢p)
/YR K VY Y
(_1)N+1a
(iii) qN+1a_PN+1="——"_“M' (=eni1)
Gr 1T 08N N
In particular
(iv) tN°‘+'Y_5N:3N+5N+1+(_1)N5N?N+1- (A1.6)

Proof. Parts (ii) and (iii) are standard and follow from (Al.3) and
dn1Pnv—Prnergn=(=1)"""1 To prove (i) we write

) +a Wyt
[Na_+_y_SN:/’N+1 N+1Wn N
L ANIRNT JVEe o/ SV

where Wy =t Py —Snan T+ Ans U = IaPNo 1 — St + An, as follows
from (A1.3) and (A1.4). Now we check that w_, =1, wo=—1,0_,=—1,
vo=1 and that

(@) wyyp(=vn, (b) szaN+l(wN+(—l)N)+wN—l'
It follows inductively that v, =(—D", wy=(-1)"*". |

ProOPOSITION Al.3. For some m, sy > Copmy 1. Precisely, if ¢y, 1=
gy Jor m=0, .., m then q,,; . <2/(1—7).

Proof. If ¢y, ., =a,,,, for m<m then c,,,,,=0 and so
O0=1_1—qo=1to—Go= " =lam_ 1~ qom
= Uy = G2m ~ Q2w Qo 1 = Comt 1) = Lo — Gom

=lmst ~Qom+2 " Com+292m+ 1 = lom+1 — G2m+ 2
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Similarly

O=s5_1—Po=S0—P0= """ =S2m—Pom=S5m+1—Pam+2-

Thus 15,1 =qom+2 and sy, ., =pr,,2+ 1. Hence Proposition A1.2(iv)
gives

1—=y=2e0, 2+ (1 = Vami1) €2ms 1< 26242
so that
1—y<2/q35 4,5 |

Since g, 4 3 = Fa . « (Fibonacci), independent of « and F, =3, F,=8: if
7 < 2 either a, > ¢, or a;>c;.

APPENDIX 2: ONE SIDED APPROXIMATIONS

LEMMA A2.1. Let a non-negative integer N and 1>a>0,1>9>=0 be
given with « irrational. If n, >n, =1 are such that

[na+y+ey]#nat+yln=ng,n, (A2.1)
then
ni—ny=kqny1t1t,, forsomekz=l1, 120k teZ

[ We define n,, to be the smallest positive solution to (A2.1) (such an integer
exists by uniform distribution).]

Proof. We establish only the even case. The odd case is parallel. We
have integers m, and m, with

no+yteyz2m>no+y
and so
(ny—m)ateyzm —my>(n —ny)a—ey.
Setting n:=n, —n,, m:=m, —m, and using a > py/q, (N even) we derive
(n+qn)en>may—npy> —Exqy.

Let k:=mgy—npy. Since |ey| <1/gn.1, k=20. If k=0 then m, —m, =
tpy, ny—n,=1tqy for some r>1 in N. Hence

my,+tpy>(ny+tgy)a+y
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and
My>N0+ Y+ ENZ R0+ 7+ Exn =My,
a contradiction. Thus &= 1. Since py . gy —9gn .1 Py=1 we have
mgy—npy=kpy 1V gn—(Kqn ) PN
and as ¢, and p,, are relatively prime (N >0)
m=kpy,i+ Py
n=kqn, +1py

for k=1 and 1t in Z. But (n+qy)en=k implies n>kqgy, , —qy so that ¢
must be non-negative, and the conclusion obtains (even for N=0). |

PROPOSITION A22. If ny, <qy then ny=ny, + 4y, In particular
either ny+qy or Ry +quy,, exceeds Gy + gy, .

Proof. Again we establish this only for N even. Since, for some m,
Ny 2+ 7+ey <msny, a+7,
and since ¢, > —&n ., We derive
(Mycrtgue)oaty<m+py <Ay +gue)at+y+en.

Whence 1 :=ny,, +qx, , satisfies (A2.1) and hence either ny, , + gy, =
ny as claimed or (by Lemma A2.1)

Aveitdner—Ay=kqn,1+1qn, k=z1,t20

Now, since ny, ,<gyand ny =1, r=0and k= 1. Equivalently n,, ,=ny.
But now for some m’, m”

AN+ ey =y 0ty F ey, <m' Kny o a+y
=nyx+y<m’ <nyu+7y+ey.

This implies that ¢y—¢y, ;> 1, which is impossible. (Indeed 1+¢,=
a,aza=¢, while |ey|<ifor N>1.) 1|

As a by-product, with {x} denoting the fractional part of x:

ProposiTiIoN A2.3 (Best one sided approximation: if na +y — m is never
Zero).

Neven: {ma+7y} < {(ny+qy)a+y} isimpossible for gy<m<gqy_,+ny.

Nodd: {ma+7y}>{(ny+qy)a+7y} is similarly impossible.



GENERATING FUNCTION OF INTEGER PART 313

In particular, (ny+qy)a+7y is the best one sided approximation to an
integer in the range 1qn,gn+dn 1 + 0L (Recall that each t% is either
An+qn or Ay +qn.y)

Proof. We check much as in the previous arguments that if 7i:=m — g,
then [Ax+y]# [Ax+7+en]. We apply Lemma A2.1 again. Hence either
m=gy+ny or m=kqy,,+hqgy+ny for h, k=21 and the conclusion
follows. |

In particular, if ny<gqy,,, then ny+gq, gives the best one sided
approximation to an integer for gy <m<gy+gn. -

APPENDIX 3: THE RELATIONSHIP BETWEEN (% (1.4) AND %% (2.9)

We proceed to study % and ¢%*. Similar results hold for s¥ and s¥*. We
give these only where necessary.

LEMMA A3.l. For each k

Pok 2 G 1 Z29% 2
and these inequalities are strict if k=zm and if ¢4, | <Aoo -

Proof. Let m be the least integer with ¢,,, ; <d,,,.,; (Prop. AL3). As
therein, 15, =¢s,, 14+ 1 =42, for n<m—1. Then for m=m

Ly = t2m71+(a2m+ 1 —62m+l)q2m>q2m
and

Lams 1 = Gam+2 2 tom— G2 >0. |

PrROPOSITION A3.2. For all N one has t5* = qy. Moreover, t3* > qy for
N22m+ 1[76'2m+| <a2m+1~

Proof. We establish this inductively, in pairs 2N, 2N + 1.
(1) cone2>00 X =tn~qon=loy_1—Gon+(@ony  —Coni1) g2n- But
Cov+2>0 implies ayy, > Cony1(doy 1 =Con,y MmeAns ¢y, , =0 since
- — A ~1
Uv et —Vawv+ 1 = (1 —=72n) 25y >0 and 50 ya5 . /22y 41 <1). Hence
N2 a1~ Gan+ Gon 2 Gons

and, for N> M, t.n_ | > gy SO

* %
1"In > qan.
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Also,

B 1 =8+ CovirQave1 > Gone
(2) cans2=0and t,5>qon+qon. - €quivalently fon 1> goni 1 H o2
So t3¥=tyn—qon>qan and 13F, 1 =ty i1 —Gon 2> Gon -
(3) cov+2=0and 1,4 <qon+goy 12 NOW

t=tiy=tiv_1+(@ns1—Convi1) an Z Gan

(with strict inequality for N > m)

¥ =ty =tint (@avy 2+ Conia) Gan s
=bLhy—Gantqav+2
=N+ Gone2—9anv > Gon s 2

This covers all the cases. |

PROPOSITION A33. tX*<qgn+qun+ (N2 —1).

Proof. Again we proceed by cases inductively (in pairs 2N, 2N +1).
First note that t_,=1=¢g_, so that **<q_, +4q,- We will show that
13¥_ < qyn_1+ g2y implies the result for 2¥ and 2N + 1.

(1) c354+2>0: we have

B¥=tin—qin=tin _1—qan+ (@ans 1 — Con i 1) Gon

N

Liv_1— Qv tqansi1—q9an -1
=1 1t danve1—Gan—1
Sqivtgonsa-

Similarly
i =tive1— v 2= tav—qant Can s 29an 41
SN+ Qv 29on
SPnvi1 T nvtGonvi2—Gon
=qdon+1 T qana

(2) cons2=0 and t,5 < qon + qoni: then 1y ) S qony g + Gon 2 SO
tX¥=1,, t5¥, =1y, are as required.
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(3) cony2=0and t;n > qon + qoyy o then ¥ =ty — qon = oy, —
Gan+2=134,, and
o= qavt (@avi 1 —Covin )V Gan
SO¥_ 1t ana 1 9anSqv—1Hgavt Gane 1 — Qo -1
=@+ qoner- |
Finally

PROPOSITION A34. For N22m+1if a,, . > Comye

1 =r%, sE*=s%. (A3.1)

Proof. Apply Proposition A1.2 and observe that
(i) fyx+y—8:N=(14+7n, 1 —%2n11)Eon
(i) (v —Gaw) 2t +7—(Son—Pan) = (Pave 1 — %2v 4 1) E2n
(1) (fan—=2go8) 2+ 7= (s2n = 2P28) = (Vanv 41— Fov s 1— 1) €24 <0
(V) (Lays1—Gons2) 0+ 7= Gavir —Pava2) = (L =9ani2) €2y 4 <0

(V) (Lawer —Gonver —Gan2) X+ 7 — (Savyr = Poavs1 —DPawvs2) =
~Yanv+282n 41> 0.

We first show (A3.1) for N even.

(1) Suppose ¢, 2>0: then o,y <yan.1 and so (ii) is non-negative.
This, with (iii), shows that

[(tan —2go0) 2+ 7] =508 — 2Py — |

[(tan —2g,0) +a+ 7 +E3x] = 5San — 2P

Since fHn—qan = 13¥€ 1qans Qan+qan 1], 1=ty —2q,y lies in [1, o]
and so by Lemma A2.1, n=n, and

IN=lhiv—qon=Nnt oy =13y

— — -
SoN = Son — Pan =My + Poy = Saon.

(2) Suppose cyn, ;=0 and 1,5 <Gy +qyn,1: NOW Ayny <Py, and
(1) and (ii) show

[(tav—gan) a+ 7] =538 —pan— 1
[(tan —gan) 2+ 7+ o8] =S58 — Pan-
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Again g,y < Iy —Gon+qan s+ SO Loy —(ay is the only candidate for n,y
and

ok, _ —
BY=tyy=nn+ qan=1n

n

IN=Son =May+ Pany = S3n.
(3) Suppose ¢,y . >,=0and 15,2 q>ny+ga2n,,: Iin this case
i =tivei —Ganvs 2= v —Gan=135=qan + Gon 4 1-
Then (iv) and (v) yield
[(an i1 —Fave 1 —Ganv s 2) 2+ VI =Son o1 = Poave 1 —Ponv sz
[(fav i1 —Ganvs 1 —Gons2) 2+ Y+ en 1] =Sons1 —Panve1 —Pav+2— L
By Propositions A3.2 and A3.3, 13¥,,>q,n., and so
Y1 —qanvs 1 =Nan 1 Sqn-

Hence, by Proposition A2.2,

_ k% _
Non=Moy 1t qonve 1 =0En 1= vyt —Gav 2= lav — qon
and
Xk
In=1n—qan

In particular t¥, = n,, = t¥¥. Similarly
sS¥v=myy=m + =5 — =§ v = = gk*
Sinv N =Mooy 1 T Panv s v+l Panvg2 an =Pon 2N

Finally, we treat the case in which N is odd. We have (iv), (v), and
(vi) (tays1—Ganvs 1) 2+ 7 —(Sons1 —Pans1)
= —Ens1(Vavi2tH v 2)>0
(Vil) oyt F+y—Sov 1 =(1 = Vanvso—%ni2) Eans
(viii) (fh o+ oy )a+7— (San 41 +p2N+l)
=(2—yavi2—Aan42) E2nv 41 <O.
We consider three more cases:
Case 1. 1oy, 1€ qGans1+qanssand aon,,+7vonv,2> 1 Then ¢y, =0
(else 3%, 1=tn,1—dani2>qan ) NOw £y, is a “violator,” hence

either 5, =nynyy OF lony i =Money HhGan,2t5qan (520, k21).
Thus s=0 and k=1, whence

Lvy1—Gan+2=NMan 4
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Since cyn,2=0,1,x<gn+49:x+ and the even analysis (2) yields
Iy — oy =nyy. Thus

Mav=ln—On=livs 1= Gav+2=Man s 1-
But the argument in Proposition A2.2 rules this out. Hence n,y ., =ty -

Case 2. iy 1 Sqanvi1+Gave2 and ayy 5 +75y,2<1. Then again
Cove2=0 and t,n,;~¢qonvyy 15 a “violator” Since ¢y, <liy, <
Govet a2 Wesee that moy,  =low 1 —Gons1-

Case 3. tyn,,>qans1+qin..- Then as before using (iv) and (v),
Iive1—Gonve1—qane2 18 @ “violator” which lies in the range
(L, e2¥ 1 —ganea] imside [1,g5v,.] Thus n,y, i =tn, 1 —Gone, —
qan+2-

In Case 11 ¢y 2=0 50 13 =ty 1 =Ny and Moy +qoy =
Tane1tqdan 1> qanv 42+ Gav s DY Lemma A3.1. Thus

*k — ¥
vy 1=Manv 1 =0n -
. — _ gk : :
In Case 20 nyy,.\ = lyney — Ganer = 1501 — qan. (again since

Can 4+ 2="0). Hence

* %k
2N

- _ %
Gonve1FGonv2Z2 Gn 1 =Mav i Hqanv 1 =880

. % % — — — %k
In Case 3. 13F, | =tiver1—Qavs2=Hanv 1 HGanv 1 =i

Similarly s¥¥,,=s%,,, in each case.
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