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Hypergeometric Analogues of the 
Arithmetic-Geometric Mean Iteration 

J. B o r w e i n ,  P. B o r w e i n ,  a n d  F. G a r v a n  

Abstract. The arithmetic-geometric mean iteration of Gauss and Legendre is 

the two-term iteration a.+ 1 = (a. + bn)/2 and b.+ 1 = axfa~,b, with a0:= 1 and 
b 0 := x. The common limit is 2F1(�89 �89 1; 1 - x2) - 1 and the convergence is quad- 
ratic. 

This is a rare object with very few close relatives. There are however three other 
hypergeometric functions for which we expect similar iterations to exist, namely: 
2F1(�89 - sl, �89 + s; 1; .) with s -- ~,1 g,x g. 

Our intention is to exhibit explicitly these iterations and some of their 
generalizations. These iterations exist because of underlying quadratic or cubic 
transformations of certain hypergeometric functions, and thus the problem may 
be approached via searching for invariances of the corresponding second-order 
differential equations. It may also be approached by searching for various 
quadratic and cubic modular equations for the modular forms that arise on 
inverting the ratios of the solutions of these differential equations. In either case, 
the problem is intrinsically computational. Indeed, the discovery of the identities 
and their proofs can be effected almost entirely computationally with the aid of 
a symbolic manipulation package, and we intend to emphasize this computational 
approach. 

1. Introduction 

T h e  a r i t h m e t r i c - g e o m e t r i c  m e a n  i t e r a t i o n  o f  G a u s s  a n d  L e g e n d r e  is a n  e x a m p l e  

o f  a t w o - t e r m  m e a n  i t e r a t i o n .  H e r e  t h e  m e a n s  a r e  

(1.1) Ml(a, b)._ h+ and M2(a, b):= x/ /~.  
2 

W e  i t e r a t e  t h e  m e a n s  b y  

(1.2) a , +  1 : =  M l ( a , ,  b,)  

a n d  

(1.3) b . + l  : =  M 2 ( a , ,  b.)  
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commencing with a o .'= a and bo := b and denote by 

(1.4) M 1 Q Mz(a, b)=  l i m a ,  = l i m b ,  
n---~ oo ?/---~ oo 

the common limit when it exists. (We will use the notation generally for the limit 
of any mean iteration.) Then the key fact about the arithmetic-geometric mean 
iteration is the identification of the limit. That is 

(1.5) M1 | M2(1, x) = 1/2F1(�89 �89 1; 1 - x 2) 

and this holds at least for 0 < x < 1. The convergence is quadratic in the sense that 

[a,+l -- b,+ l] = O(la, - b,] 2) 

and hence this process provides a remarkably rapid algorithm for computing the 
above hypergeometric function (roughly 2" digits for n iterations). The fact of 
convergence and the speed of convergence is an easy exercise; the finding of the 
limit is much more complicated. See [3]. Proving (1.5) is equivalent to proving 
that F(x)..= 2Fl(�89 1; 1 ; 1 - x 2 )  satisfies the functional equation 

(1.6) F ( X ) -  l + x \ l  + xJ  

and we may verify this by checking that both sides of (1.6) satisfy the right 
second-order hypergeometric differential equation with rational coefficients (and 
have the right behavior at 0 so the two solutions are the same). We discuss this 
further in later sections but here wish only to observe that if we can guess the 
functional equation (1.6) we can easily prove it. 

An entirely different approach to this problem is to start with the Jacobian theta 
functions 

(1.7) 03(q):__ - ~ qn2 and 04(q):=O3(--q). 

These are modular forms, a fact which will be important later. (In the notation of 
Whittaker and Watson O~(q) -- 8~(0, q).) Currently we wish to observe that we may, 
by reasonably elementary means [3], prove that 

02(q) + O](q) 
(1.8a) 02(q 2) -- 

2 

and 

(1.8b) O2(q 2) Ox/~)O](q). 

So a .'= 0 z and b := 0 ] uniformize the arithmetic-geometric mean iteration quad- 
ratically in the sense that 

(1.9a) a(q z) = M l(a(q ), b(q)) 
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and 

(1.9b) b(q 2) = M:(a(q), b(q)). 

(The uniformization would be cubic if the change of variables in q is q ~ q3.) There 
is a third relation which is 

(1.1o) zF 1 1, 1; 1; 1 - ~a4(~//= O2(q). 

Now any two of (1.6), (1.8a, b), and (1.10) imply the third, essentially because of 
the uniqueness of solution of the analytic functional equations involved. Also (1.6) 
lends itself to computational proof as already observed and so does (1.8a, b) 
because these are identities on entire modular forms and can be verified by 
checking the vanishing of a predetermined number of the coefficients of the series 
expansion. The third equation (1.10) lends itself to being uncovered computation- 
ally. We wish to "discover" the corresponding formula for the three other cases 
where the underlying behavior is based on modular forms and thus derive 
algorithms for the three hypergeometric functions 

 (1111 ) 
(1.11) F , (x) :=2 1 ~ s ' 2  +-;s  1 ;x  , s = 3 , 4 , 6 .  

These various identities package into the following four theorems: We will need 
the following modular forms and functions: 

(i.12) Oz(q):= ql/4 ~ q,,2+,,, 
n =  - o 9  

O~(q)..= ~ q"~, 

04(q):= ~ (--q)"~=O3(--q), 
n :  - - o 9  

a6(q) :--- 

b6(q)'= 

qn2+nm+m2=O3(q)O3(qa)+O2(q)O2(q3), 
n , m =  - ~  

3a6(q 3) -- a6(q) 

c6(q):= 
a6(q 1/3) -- ae(q) 

j(q2) := 4(0~(q) - O~(q)O~(q) + 0S(q)) 3 

27(O2(q) O3(q)O,~(q)) 8 
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Here 02, 03, and 04 are the Jacobian theta functions. The function a 6 is a modular 
form of weight 1 on F(3) and J is Klein's absolute invariant and is a modular 
function on F. Note also that 02, 02, and 0 ] are all modular forms of weight one 
on at least F(8). From a computational point of view it makes sense to use the 
sparse theta functions as the building blocks for the other modular forms and so 
we have defined all our forms rationally in 02, 0a, and 04. 

Theorem 1 (s = oe, 1/s -- 0). The underlying modular forms are 

ao~ = ( 0 3 ( q ) )  2 and b~ = (04(q)) 2. 

They satisfy 

Fo~(1 ao~(q)/b~~ = aoo(q). 

(a) Quadratic Iteration. Let 

a + b  
Ml(a, b ) : = -  

2 

and 

M2(a, b) = x / ~ .  

Then 

M 1 |  x ) -  
F~(1 - x2) " 

The uniformizing variables (in q ~ q2) are a~ and bo~. 

(b) Cubic Iteration. Let 

U = ~ a  2 - ~ ( a  2 - b2), 

U + ~((3a 2 - U 2 + (4ab 2 - 2a3)/U) 
Ml(a, b):= 

3 
~ :  A ,  

bA + ab 
M2(a, b ) . -  - Ml(b, a). 

3A - a 

Then 

M I |  x ) -  
F~(1 . x z) 

The uniformizing variables are the same as in part(a) only q ~ q3. 
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T h e o r e m  2 (s = 6). 

a6(q) : =  
n , m ~  - -o0  

They satisfy 

(a) Quadratic Iteration. 

The underlying modular forms are 

q,2+,m+m2 and b6(q) :=  

- -  \a-~/# = a6(q)" 

Let 

3a6(q 3) -- a6(q) 

M i ( a ,  b):= ~ 3  a 3 + 2 ~ - a 3 b  3 + ~ 2 b  ~ -  a 3 -  2x/b 6 -  aab 3 

and 

then 

M 2 |  x ) -  
F6(1 - x3)" 

The uniformizing variables (in q ~ q2) are a 6 and b 6 . 

(b) Cubic Iteration. Let 

a + 2 b  
Ml(a, b ) . -  

3 

Mz(a' b):= 3N/b(aa + ab + bZ 

Then 

1 
M 1 | M2(1, x) - 

F6(1 --  x3)" 

The uniformizing variables are the same as in part (a) only q ~ q3. 

T h e o r e m  3 (s = 4). The underlying modular forms are 

a4(q) :-= dO~(q) + O~(q) and b4(q) ,= O~(q). 

They satisfy 

-- \~4(q),} i t = a4(q)" 
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(a) Quadratic Iteration. Let  

a +  3b 
M l ( a ,  b ) . -  

4 

and 

Then 

(b) Cubic Iteration. 

1 
M 1 | M2(1, x) = - -  

F ~ ( 1  - ~)" 
The uniformizin9 variables (in q ~ q2) are a~, and b 2. 

Let 

M i  ra,t b ) : = / a ~  + 3B(b z - -  B 2) 
b 

B :=  M2(a, b):= U + V / ~  - U 2 - (2a2b)/U, 
3 

where 

Then 

U = x/b  2 + ,~/b2(a 4 -  b4), 

M I |  x ) -  
F4(I  - x4)" 

The uniformizing variables in (q ~ q3) are a4 and b 4. 

Theorem 4 (s = 3). The underlying modular forms are 

aa(q) = ~ +  8a6(q)c~(q) and b3(q) = V6/1 + x / l ?  
1/J(q) 

They satisfy 

a3(q). 

- \ a ~ J  ] = a3(q)" 

(a) Quadratic Iteration. Let 

A :=  Ml(a, b). '= ( 5 ( a 6  + 8b 6 - 8a3b 3 + 4b3/2(b 3 - a3)l/2a 3 - 8bg/2(b 3 - a3)1/2) ~/3 

+ 1-~(6 a 6 + 8b 6 _ 8a3b 3 _ 4b3/2(b 3 _ a3)l/2a~ 

+ 8b9/2(b 3 _ a3)1/2)1/3 + ~a2) 1/2 
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and 

then 

{22b3A z - 2aeb 3 - l la3A 2 - 22a2A 3 + a 5 + 32A5~ 1/3, 
Mz(a, b):= 

�9 ;(16~ ~ ]-1~) ) 

1 
M, | M2(1, x) - F~(1 - x 3"') 

The uniformizin9 variables (in q -~ qZ) are a~ and b 2. 

The quadratic iteration of Theorem 1 is classical and is due to Gauss and 
Legendre and others. This is discussed at length in [3]. The cubic iteration is new. 
Theorem 2(b) is derived in [4] but part (a) is new. Theorem 3(a) is discussed in 
[6], part (b) is new. Theorem 4 is new. The complicated nature of this iteration 
seems inevitable since the underlying modular function is 

1 4 ( l _ ( b 3 ( q ) ' ] 6 " ] ( b 3 ( q ) ) 6  

whose quadratic modular equation is moderately complex. The iterations all 
converge either quadratically or cubically, so they essentially double or triple the 
number of correct digits. They all converge uniformly in some complex neighbor- 
hood of 1. Some relatives of these iterations are presented in the following 
theorems. 

Theorem 5. Let 

a + 3 b  
Ml(a, b):= - -  

4 

and 

+ b 
M2(a, b ) . -  "~ 

2 

Then 

M 1 | M2(1, x ) =  1/3F2~�89 2 / "  x, �89 1, 1; 27x2(14 -- x))'~ 

= 1/2F1 7, �89 1; 4 " 
\ 

The uniformizing variables (in q ~ q2) are a2(q) and (O4(q)O4(q3)) z. 
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T h e o r e m  6. Let 

a +  i5b 
m~(a, b ) . -  - -  

16 

and 

M2(a, b):= 
b + x/b((a + 3b)/4) 

Then 

1/ F~{1 - 27x2(1 - x))  
M a |  x ) =  /3 2\6, ~, �89 4 

- ~ , ~ 2 ;  1; 4 " 

The uniformizin9 variables (in q -* q2) are 08(q) + O](q) - O~(q)O4(q) and O~(q)O4(q). 

T h e o r e m  7. Let 

a + b  
Ml(a, b ) : = - -  

2 

and 

F 

3x/b((b + 2a)/3) - b 
M2(a, b) 

2 

Then 

MI |  x) = 1/2F~ �89 2; 1; (1 - x) 1 + . 

The uniformizin9 variables (as q ~ q2) are 

a = 0303(q 3) + 0202(q 3) = a6 

and 

b2(q) 3a6(q 3) - -  a6(q) 
b - b 6 ( q 2 )  , b6 = 2 

Moreover, i f  R is this limit mean and B denotes the limit mean in Theorem 5, then 

x,2= (1 
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Theorem 8. Let 

and 

•/a2 + 8x /~b  
Ml(a, b):= A = 9 

( ( ~  + 2b)/3)2/3((a + x f ~  + b)/3) 2/3 
M2(a, b) A1/3 

Then 

/ {  ( (4x 'a(1-x)~;  1/2 
M~| x2/3)--1 3F2 �89189189 (i+8xx)- / J  " 

The uniformizing variables (as q ~ q3) are 

O2(q) and (303(q9)-}-O3(q)) z. 

Note that this is slightly cleaner as a tree term iteration with c = x /~ .  

Theorem 9. Let 

a + 2 b  
Ml(a, b).-  

3 

and 

M2(a, b):= 1/3 al/3 

Then, for x > �89 + 2x/~, 

M1 | M2(1, x):= 1/2F1(�88 �88 1; 4X3(1 +i] +~x~ 2 x)3(2 - x - x2)) 

The uniformizin# variables (in q --* q3) are 02(q) and [302(q 3) - 02(q)]/2. 

bl/3(bl/a21/a(a + b) 2/a + 22/3(a + b)l/3a 2/3 _ b2/3a~/a) 

Theorem 10. Let 

and 

M2(a, b):= 

a + 80b 
Ml(a, b).-  

81 

bl/3(32/ac2/3(a + 26b) + 9cbl/3(31/3cl/3 + 3bl/3)) 

81c 

where c.= 8b + a. 
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Then 

( 6 4 x 3 ( I  - x)~ 
M 1 | M2(1, x):= 1/2 F4 1 5 . 1" 

s~,s~, , l + 8 x  J" 

The uniformizin9 parameters (as q -+ q3) are a6(a~ + 8c6 3) and a6b ~. 

The remainder of this paper is an exposition of how these iterations can be 
found and proved. The necessary theory of hypergeometric function may be 
accessed in [1], [3], and [9]. The modular function and form theory is in [3], 
[14], and [15]. Various aspects of mean iterations are discussed in [3], [4], [5], 
and [6]. The relationship between such iterations and fast algorithms for pi and 
the elementary functions is pursued in [3], [8], and [13]. In [10] the theory of 
basic hypergeometric series is presented. Many of the underlying transformations 
for hypergeometric functions have basic analogues and so much of the theory of 
this paper can be explored from this point of view. Finally, the ghost of Ramanujan 
walks these pages. It was through work of his that we uncovered much of Theorem 
2 initially. See [2], [11], and [12]. 

2. Derivations 

The route we follow is very classical and begins with the inversion of ratios of 
hypergeometric functions. The difference for us is that the calculations involved 
can now be done with great ease and at various points it makes sense to substitute 
exact machine computation for thought. Let 

1 1 1 1 ) 
+ - ;  1; x (2.1) ul(x):= 2F~ s' 2 s 

and 

/ 
(2.2) u2(x):= ~ 

+ 
( (11) cos(x/s) (�89 - l/s).(�89 + 1/s). 2~(n + 1) - T ~ + - + n 

rc .=o (n!) 2 s 

- 2  1 s ' 2  + - ; 1 ; 1 - x s  ' 

Then u 1 and u2 are conjugate solutions of 

1 - (2/s) z 
(2.3) f " + I I + x S l l f ' - - ( - 4 ~ ( l  ~ ) j  = 0. 
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So 

(2.4) q(x) : =  e -(~/e~ 

: =  x e  G(x), 

where 

(2.5) 

6(x) 
~ L 0  {[(�89 - l/s),(�89 + 1/s),]/(nl)2}(ZW(n + 1) - W(�89 + 1/s + n) - W(~2 - 1Is + n))x" 

. m  

ul(x) 

is analytic in a neighborhood of zero. 
We can now solve for x as a function of q. That is, we invert the series in (2.4) 

to get a function Xs(q) which is analytic in a neighborhood of zero. If we set 

(2.6) q = e i~t 

and consider Xs  as a function of t we observe that 

(2.7) Xs(t  + 2) = Xs(t  ) 

and 

(2.8) Xs( [ c ~  1 -  Xs(t). 

So the function 9(0 := Xs(t)(1 - Xs(t)) is invariant under the two linear fractional 
transformations 

 29, 

We hope now that 9(0 will be a modular function with respect to some finite index 
subgroup of F, in which case there will be a quadratic modular equation 

(2.10) Xs(q 2) = A(Xs(q)), 

where A is an algebraic function. We can then (essentially) invert (2.10) to get a 
quadratic iteration for the appropriate hypergeometric function. The cases where 
this happens have been much studied and give rise to the Schwartz functions [9]. 
This will happen when s = n and [cos(re~s)] 2 is rational. So for 1/s ~ [0, �89 we are 
limited to 1/s = 0, �89 �89 �88 and ~. The case 1/s = �89 is trivial because Fs = 1. The 
other four cases correspond to Theorems 1 to 4. 

We need to know very little of this theory to proceed (provided we have decided 
to look at the right cases, which is unlikely without prior knowledge). 

For f i xed  s. We first symbolically generate the power series expansion for Xs(q) 
by inverting (2.4). We then let 

(2.11) as(q) := Fs(Xs(q)) 
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and also symbolically generate its series expansion. In each case in Theorems 1 
through 4 this is the underlying modular form as. The underlying modular form 
bs is given by 

(2.12) 

So 

b~(q) := [1 - X~(q)] (1/2- */*)as(q). 

lb , (q) \  1/(1/2 - 1/s) 
(2.13) 1 -- X,(q) = ||\a~))J " 

The first point is that it is relatively simple to find initial terms of power series 
expansions for a~ and b,. The second point is that it is relatively simple to find a 
superset of the homogeneous polynomial relations (modular equations) of the form 

(2.14) P(a,(q), b,(q), a,(q2), bs(q2)) -=- O. 

These give rise to the mean iterations of the examples, which can now be proved 
via the following proposition. 

Proposition 1 (Mechanical Checking). Suppose we wish to prove that 

- , - + - ; 1 ; U ( x )  , M1 @M2(1, x):= 1 2F1 s 2 s 

where Ms(i, z), M2(1, z) are both analytic in a neighborhood of  1, U(z) is analytic 
in a neighborhood of 0 and v is a rational number. It  suffices to check that: 

where 

and 

(a) M " + a M " + b M = ( b o t ) M ( t ' )  2, 

(b) t "M + 2M't '  + a t 'M = (a o t)M(t') 2, 

1 - 2x 
a :=a(x)  x ( 1 - x ) '  

b : = b ( x ) -  
- 1  + (2/s) 2 

4x(1 -- x) ' 

M2(1, x) 
T ( x ) . -  

MI(1, x)' 

m ( x ) : = M l ( 1 ,  x), 

t(x) := U ( T ( U -  l(x)), 

M(x)  := m ( U -  l(x))-  1Iv. 

Note that if all of Ms,  M2,  and U are algebraic functions and v is a rational 
number then (a) and (b) amount to verifying an algebraic equation. This is always 
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a finite exact computation, certainly theoretically, but very often practically (in, 
for example, a symbolic manipulation package like Maple). 

Proof. The proof is based on the fact that if 

i f ( x )  + e(x) f ' (x)  + f l (x) f(x)  = 0 

and if for suitable differentiable N, ~, fl, and t 

(al) N" + aN' + flU = (flo t)M(t') 2, 

and 

then 

(a2) t"N + 2N't '  + at 'N = ( ,  o t)N(t') 2, 

f * ( x )  = N(x) f ( t (x) )  

is also a solution of the above differential equation (see [3J and [5]). Now in the 
case we are in there is a unique solution that is analytic at zero. So in this case, 
f * ( x )  is a multiple o f f  Of f  is the original analytic solution). Since f*(0) = f(0) = 1 
they are the same. The proof amounts to checking that 

1 
. -  H ( x )  

( F J U ( x ) )  v 

satisfies the right functional equation, namely 

H(U(x)) = m(x)H(U(t(x)), 

or equivalently that, with y := U(x); that 

Fs(y ) = M(x)Fs(t(y)). �9 

3. More Computational Details 

Suppose we have generated say 100 terms of aoo(q).'= (03(q)) 2 and boo(q):= (04(q)) 2 
by inverting (2.4) and using (2.11) and (2.12). Then if P is a homogeneous 
polynomia ! of degree N in four variables and 

P(aoo(q), boo(q), aoo(q2), b,(q2)) = 0, 

then P := P(q) must vanish through 100 terms of its power series expansion. The 
converse is not true. An identity to 100 terms might not be an identity. (However, 
since O~(q), O~,(q), 05,(q z) are all entire modular forms of weight one on F(8) a 
subgroup of F of index 12.32, it follows that P(q) is an entire modular form of 
weight N on F(8) and can hence have a zero of order at most N- 32 at q = 0. So 
checking to 100 terms actually constitutes a proof for homogeneous identities of 
degree less than four). It is a straightforward computational exercise to generate 
a basis for the homogeneous relations of fixed degree (to a fixed number of terms). 



522 J. Borwein, P. Borwein, and F. Garvan 

This is a linear problem and just amounts to finding the kernel of a matrix. So, 
for example, for N = 2 there is a basis of five homogeneous, relations on aoo(q), 
boo(q), aoo(qZ), boo(q2). Here we have let a = ao~(q), b = bo~(q), A = aoo(q2), 
B = boo(q2). 

(1) A(a + b - 2A); 
(2) B(a + b - 2A); 
(3) (2A + a - b)(a + b - 2A); 
( 4 )  b 2 - 2bA + B2; and 

(5) b(a + b - 2A). 

Note that (1) is the identity 

aoo(q2),= aoo(q) + boo(q) 

while (4) and (1) give the identity 

b oo(q 2) := ~a-~(q)boo(q). 

These two are the arithmetric geometric mean identities. 
If we look for a homogeneous relation of degree 4 in aoo(q), boo(q) and a := aoo(q 3) 

we find just one 

16ab2a - 27a 4 + a 4 _ 8a3a + 1 8 a 2 ~  2 

from which we deduce (b) of Theorem 1. The other underlying identities may all 
be discovered similarly. Once discovered, the related mean iterations may then be 
proved by Proposition 1. However, in order to prove the modular identities that 
identify the uniformizing parameters we need a little modular form theory of the 
type discussed above parenthetically. The proofs are then entirely a matter of 
expanding the appropriate identity to a prerequisite number of terms 

Nit: G] 
1 + - -  

12 

where G is the group on which the corresponding functions are entire modular 
forms of weight 1 and N is the degree of the homogeneous identity. More of this 
is illustrated for a6 and b6 in [7]. 

However, given that we can identify G, all other steps of this development can 
be and were carried out computafionally in Maple. 

Acknowledgments. J. Borwein and P. Borwein's research was supported by 
NSERC of Canada. F. Garvan's research was completed while an NSERC 
International Fellow at Dalhousie University. 

Note Added in Proof  In Cubic modular identities of  Ramanujan, hypergeometric 
functions and analogues of  the arithmetic-geometric mean (preprint) a survey of the 
results of this paper and of related recent work is given. 
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