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We consider the problem of approximating x" by reciprocals of
polynomials on the interval [0, 1|. We derive precise estimates for

I
A %" = 1/pu(x) 0, 1)

where I1,, denotes the set of all algebraic polynomials of degree at most m
and where || - ||, 5 denotes the supremum norm on [a, b]. For the case
m = n we show that

Lin
(jinf 1= Up)l) = 27/64 (1)

This sharpens estimates derived by Newman in [2] and answers question 7
posed by Reddy in [4]. Our method is to first solve an easier approximation
problem using known L’ results. This is similar to the approach used by
Schénhage [S| to approximate e * on [0,00) and by Rahman and
Schmeisser [3] to approximate x~" on |1, o).

Our main result is the following:

THEOREM 1. There exists p,, € I1,, so that

(4.72)n (n +m)! 3n—2)!
Q=17 (n=)@Bnt+m—1)""

[| x" — 1/Pm(x)”[o, <

For each g, € 11,

(0.18) (n + m)! (3n)!
Qi+ D)7 - DI Gn+m+ 1)

[ x" — 1/qm(x)||[0.l] >
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The related least-squares result is

Tueorem 2. [l,p.196| Let n,ay,..,a, be distinct positive real
numbers. The least-squares distance on {0, 1| from x" to the subspace
spanned by {x®,..., x*"} is

1 " n—ay

V41 ,Uo ntao+ 1

This result allows us to deduce the supremum norm bounds in the next
theorem.

THEOREM 3. There exists p,, € I, so that

n (n+m)! (3n—2)!
Cn—1D"7 =) @n+m— D’

127"+ () = X" ljo, 1) <

For each q, €11,

1 (n + m)! (3n)!
Cn+ D7 =1 @ntm+ D

szn () _an[O, ) 2

Proof. The proof is identical to that used in deducing tne supremum
norm version of Miintz’s theorem from the L? version (see [1,p. 197]). The
lower bound is immediate from Theorem 2 with

a;,=2n+i fori=0, 1,..., m.

To derive the upper bound we observe, as in [1, p. 198}, that

2n+m ) 1 2n+m . 2 1/2
o N A g(J N e dt) .
j=2n [0,1] 0 j=2n

We now apply Theorem 2 with
a;=2n—1+1i for i=0,l..., m

The remainder of the paper is concerned with deriving Theorem 1 from
Theorem 3. We need the following somewhat technical lemmas.

LeEmMMA 1. Let a >0 and let 1/p,, be the best uniform approximation to
x" on |a,b] from the set of reciprocals of elements of 1I,. Then p,, is
decreasing on [0, a].
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Proof. We know |1, p. 161] that 1/p,, interpolates x" at m + 1 points on
[a, b|. By Descartes’ rule of signs, since 1 —x".p, has m + 1 zeroes on
|a, b], we deduce that p,(x) = ax™ + lower order terms, where

a=(—1)"|a|#0.

Thus, there exist a < a, < --- < a,, < b so that

(—1+x"p,(x)=x""'n+m)a [ml (x—a,)

and
m

(x - Pou(x) + 1p () = (1 + m)(—1)"|al ”1 (x —a). 2)

Suppose that there exist points ¢, and ¢, with 0 <¢, <¢,<a, so that
Pw(c,) = ph(c,) = 0. Then, from (2) it follows that

Pmlc2) <Pmler) <pn(0). 3)

We note that p,(a,) > 0 and hence, by (2), p,(a,) < 0. Thus, the maximum
of p,, on the interval |0, a,] occurs at 0. It also follows from the above that
the only way p,, can have a local max. or min. in (0, &) is if, in fact, p/, has
two zeros 0<d,<d,<a, so that p,(d)<p,(d,). This, however,
contradicts (3) and we see that p, must be decreasing on [0, «,|.

LEMMA 2. If there exists p,, € IT,, so that

n

1Pm) = X)X sy 1y <P
then there exists q,, € I1,, so that
%" = 1/47() 10,y < (2 + €) p".
Proof. For xe& |p+p/n, 1]

_ p 1
— n g—g

and

X" pplX) 27
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Thus,

Hx" - l/pm(x)||[p+p/n. 1]
_n xZn
= et (55 0)
< 2p". (4)

lo+o/n, 1]

Suppose that 1/g,, is the best approximation to x" on |p + p/n, 1] from the
reciprocals of elements of I1,,. From the previous lemma we see that g,, is
decreasing on [0, p + p/r] and hence,

wnwmgmmmmm<ma( ,w+wmj

1
an(p + p/1)
From (4) and the above we have

1

m <x" = /g o 4 o, 11 + (0 + £/1)"

2"+ (p+pn)' <2 +e)p"
and

%" = 1/@(¥)llio, 1 < (2 + €) p".

LEMMA 3. [f there exists p,, € II,, so that

szn * P(X) *x"“[pu/n, e

then there exists q,, € Il,, so that
||x2” G pu(X) 7-"7"”[0. 1] Lep.

Proof. Let q, € 11, satisfy
szn ' Qm(x) - x"HIp +oin 1) prnellr'll ||x2n P — xn“[D+p/n, 1]
As in the proof of Lemma 1, if g,,(x) =ax™ + .-+, then

(" gux)) =x"""(n+ m)(=1)"a| [] (x—a), @ €lp+p/ml]
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It follows that x" . g,,(x) is non-decreasing and positive on [0, p + p/n] and
that

n

p

l’m) &l

1X" - @) = U0, g < MaX (

We complete the result by noting that this shows that
1X*" - 4(xX) = X" [0, 51 s < (0 + p/0)" < p".

Proof of Theorem 1. Theorem 3 guarantees the existence of P €11, 50
that

n (n+m)! (3n—2)!

@ D7 =D Gnim_11 %"

szn Pm(x") _xn“(o, 1<

Thus,

||x2" “P(x) — x"“[5+8/n, s 0"

and by Lemma 2, there exists g, € I1,, so that
12" = 1/gm()ljo, 1y < (2 + ) 8",
We now establish the lower bound. We know by Theorem 3, for all P €1,

. ) 1 (n+m! @B
I o) = 2l 1) > Qe+ D7 =D Gntm+ 1) 7

n

By Lemma 3,

)

n n r
”x2 'Pm(x)fx ”[p+o/n,ll>?'

This, as we shall show, finishes the proof by implying that

pn
”xn - l/pm(x)H[erp/n, 1] 2 2" .

e
This final inequality can be seen as follows.
Suppose, for n > 1, that

] P
1" =1/ i n, 1) < 55 -



246 PETER B. BORWEIN
Then, for x € [p +p/n, 1],

L > x" p >
JNES) 207 2

and
X" - pm(x) g 2.

This, however, contradicts (5) by implying that

2n

“x 'pm(x)_x"||[n+p/'lv1l

=| (x" — l/pm(x))(x" : pm(x)|l[n+n/n. 1]

n

<t
e
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