Approximation of x^n by Reciprocals of Polynomials

PETER B. BORWEIN*

Mathematical Institute, Oxford, England†
Communicated by E. W. Cheney
Received May 27, 1980

We consider the problem of approximating x^n by reciprocals of polynomials on the interval [0, 1]. We derive precise estimates for

$$\inf_{p_m \in \Pi_m} \|x^n - 1/p_m(x)\|_{[0,1]}$$

where Π_m denotes the set of all algebraic polynomials of degree at most m and where $\|\cdot\|_{[a,b]}$ denotes the supremum norm on [a,b]. For the case m=n we show that

$$\left(\inf_{p_n \in \Pi_n} \|x^n - 1/p_n(x)\|\right)^{1/n} \to 27/64. \tag{1}$$

This sharpens estimates derived by Newman in [2] and answers question 7 posed by Reddy in [4]. Our method is to first solve an easier approximation problem using known L^2 results. This is similar to the approach used by Schönhage [5] to approximate e^{-x} on $[0, \infty)$ and by Rahman and Schmeisser [3] to approximate x^{-n} on $[1, \infty)$.

Our main result is the following:

THEOREM 1. There exists $p_m \in \Pi_m$ so that

$$||x^n - 1/p_m(x)||_{[0,1]} \le \frac{(4.72) n}{(2n-1)^{1/2}} \cdot \frac{(n+m)! (3n-2)!}{(n-1)! (3n+m-1)!}.$$

For each $q_m \in \Pi_m$

$$||x^n - 1/q_m(x)||_{[0,1]} \ge \frac{(0.18)}{(2n+1)^{1/2}} \cdot \frac{(n+m)! (3n)!}{(n-1)! (3n+m+1)!}.$$

^{*}Supported by the National Science and Engineering Research Council of Canada.

[†] Present address: Mathematics Department, Dalhousie University, Haifax, Nova Scotia B3H 4H8, Canada.

The related least-squares result is

THEOREM 2. [1, p. 196] Let $n, \alpha_0, ..., \alpha_m$ be distinct positive real numbers. The least-squares distance on [0, 1] from x^n to the subspace spanned by $\{x^{\alpha_0}, ..., x^{\alpha_m}\}$ is

$$\frac{1}{\sqrt{2n+1}}\prod_{i=0}^m\frac{|n-\alpha_i|}{n+\alpha_i+1}.$$

This result allows us to deduce the supremum norm bounds in the next theorem.

THEOREM 3. There exists $p_m \in \Pi_m$ so that

$$||x^{2n} \cdot p_m(x) - x^n||_{[0,1]} \le \frac{n}{(2n-1)^{1/2}} \cdot \frac{(n+m)! (3n-2)!}{(n-1)! (3n+m-1)!}.$$

For each $q_m \in \Pi_m$,

$$||x^{2n} \cdot q_m(x) - x^n||_{[0,1]} \ge \frac{1}{(2n+1)^{1/2}} \cdot \frac{(n+m)! (3n)!}{(n-1)! (3n+m+1)!}.$$

Proof. The proof is identical to that used in deducing the supremum norm version of Müntz's theorem from the L^2 version (see [1, p. 197]). The lower bound is immediate from Theorem 2 with

$$\alpha_i = 2n + i$$
 for $i = 0, 1, ..., m$.

To derive the upper bound we observe, as in [1, p. 198], that

$$\left\| x^{n} - \sum_{j=2n}^{2n+m} \lambda_{j} x^{j} \right\|_{[0,1]} \leq \left(\int_{0}^{1} \left| nt^{n-1} - \sum_{j=2n}^{2n+m} j \lambda_{j} t^{j-1} \right|^{2} dt \right)^{1/2}.$$

We now apply Theorem 2 with

$$a_i = 2n - 1 + i$$
 for $i = 0, 1..., m$.

The remainder of the paper is concerned with deriving Theorem 1 from Theorem 3. We need the following somewhat technical lemmas.

LEMMA 1. Let a > 0 and let $1/p_m$ be the best uniform approximation to x^n on [a,b] from the set of reciprocals of elements of Π_m . Then p_m is decreasing on [0,a].

Proof. We know [1, p. 161] that $1/p_m$ interpolates x^n at m+1 points on [a, b]. By Descartes' rule of signs, since $1 - x^n \cdot p_m$ has m+1 zeroes on [a, b], we deduce that $p_m(x) = \alpha x^m + 1$ lower order terms, where

$$\alpha = (-1)^m |\alpha| \neq 0.$$

Thus, there exist $a \leq \alpha_1 \leq \cdots \leq \alpha_m \leq b$ so that

$$(-1 + x^n \cdot p_m(x))' = x^{n-1}(n+m) \alpha \prod_{i=1}^m (x - \alpha_i)$$

and

$$(x \cdot p'_m(x) + np_m(x)) = (n+m)(-1)^m |\alpha| \prod_{i=1}^m (x - \alpha_i).$$
 (2)

Suppose that there exist points c_1 and c_2 with $0 < c_1 < c_2 < \alpha_1$ so that $p'_m(c_1) = p'_m(c_2) = 0$. Then, from (2) it follows that

$$p_m(c_2) < p_m(c_1) < p_m(0).$$
 (3)

We note that $p_m(\alpha_1) > 0$ and hence, by (2), $p'_m(\alpha_1) < 0$. Thus, the maximum of p_m on the interval $[0, \alpha_1]$ occurs at 0. It also follows from the above that the only way p_m can have a local max. or min. in $(0, \alpha_1)$ is if, in fact, p'_m has two zeros $0 < d_1 < d_2 < \alpha_1$ so that $p_m(d_1) < p_m(d_2)$. This, however, contradicts (3) and we see that p_m must be decreasing on $[0, \alpha_1]$.

LEMMA 2. If there exists $p_m \in \Pi_m$ so that

$$\|(p_m(x)-x^{-n})x^{2n}\|_{[\rho+\rho/n,1]} \le \rho^n$$

then there exists $q_m \in \Pi_m$ so that

$$||x^n - 1/q_m(x)||_{[0,1]} \le (2+e)\rho^n$$
.

Proof. For $x \in [\rho + \rho/n, 1]$

$$|p_m(x) - x^{-n}| \le \frac{\rho^n}{(\rho + \rho/n)^n x^n} \le \frac{1}{2x^n}$$

and

$$x^n \cdot p_m(x) \geqslant \frac{1}{2}$$
.

Thus,

$$||x^{n} - 1/p_{m}(x)||_{[\rho + \rho/n, 1]}$$

$$= ||(p_{m}(x) - x^{-n}) \left(\frac{x^{2n}}{x^{n} \cdot p_{m}(x)}\right)||_{[\rho + \rho/n, 1]}$$

$$\leq 2\rho^{n}.$$
(4)

Suppose that $1/q_m$ is the best approximation to x^n on $[\rho + \rho/n, 1]$ from the reciprocals of elements of Π_m . From the previous lemma we see that q_m is decreasing on $[0, \rho + \rho/n]$ and hence,

$$||x^n - 1/q_m(x)||_{[0, \rho + \rho/n]} \le \max.\left(\frac{1}{q_m(\rho + \rho/n)}, (\rho + \rho/n)^n\right)$$

From (4) and the above we have

$$\frac{1}{q_m(\rho + \rho/n)} \le ||x^n - 1/q_m(x)||_{\{\rho + \rho/n, 1\}} + (\rho + \rho/n)^n$$
$$\le 2\rho^n + (\rho + \rho/n)^n \le (2 + e)\rho^n$$

and

$$||x^n - 1/q_m(x)||_{[0,1]} \le (2+e)\rho^n$$
.

LEMMA 3. If there exists $p_m \in \Pi_m$ so that

$$||x^{2n} \cdot p_m(x) - x^n||_{[\rho + \rho/n, 1]} \le \rho^n$$

then there exists $q_m \in \Pi_m$ so that

$$||x^{2n} \cdot q_m(x) - x^n||_{[0,1]} \le e \rho^n$$
.

Proof. Let $q_m \in \Pi_m$ satisfy

$$||x^{2n} \cdot q_m(x) - x^n||_{[\rho + \rho/n, 1]} = \min_{p_m \in \Pi_m} ||x^{2n} \cdot p_m - x^n||_{[\rho + \rho/n, 1]}.$$

As in the proof of Lemma 1, if $q_m(x) = \alpha x^m + \cdots$, then

$$(x^n \cdot q_m(x))' = x^{n-1}(n+m)(-1)^m |\alpha| \prod_{i=1}^m (x-\alpha_i), \qquad \alpha_i \in [\rho + \rho/n, 1].$$

It follows that $x^n \cdot q_m(x)$ is non-decreasing and positive on $[0, \rho + \rho/n]$ and that

$$||x^n \cdot q_m(x) - 1||_{[0, \rho + \rho/n]} \le \max\left(1, \frac{\rho^n}{(\rho + \rho/n)^n}\right) \le 1.$$

We complete the result by noting that this shows that

$$||x^{2n} \cdot q_n(x) - x^n||_{[0, \rho + \rho/n]} \le (\rho + \rho/n)^n \le e \rho^n.$$

Proof of Theorem 1. Theorem 3 guarantees the existence of $p_{\it m} \in {\cal H}_{\it m}$ so that

$$||x^{2n} \cdot p_m(x^n) - x^n||_{[0,1]} \le \frac{n}{(2n-1)^{1/2}} \cdot \frac{(n+m)! (3n-2)!}{(n-1)! (3n+m-1)!} = \delta^n.$$

Thus,

$$\|x^{2n} \cdot p_m(x) - x^n\|_{[\delta + \delta/n, 1]} \leqslant \delta^n$$

and by Lemma 2, there exists $q_{\mathit{m}} \in \mathcal{II}_{\mathit{m}}$ so that

$$||x^n - 1/q_m(x)||_{[0,1]} \le (2+e) \delta^n.$$

We now establish the lower bound. We know by Theorem 3, for all $p_m \in H_m$

$$||x^{2n} \cdot p_m(x) - x^n||_{[0,1]} \ge \frac{1}{(2n+1)^{1/2}} \cdot \frac{(n+m)! (3n)!}{(n-1)! (3n+m+1)!} = \rho^n.$$

By Lemma 3,

$$||x^{2n} \cdot p_m(x) - x^n||_{[\rho + \rho/n, 1]} \ge \frac{\rho^n}{e}.$$
 (5)

This, as we shall show, finishes the proof by implying that

$$||x^n - 1/p_m(x)||_{[\rho + \rho/n, 1]} \geqslant \frac{\rho^n}{2e}.$$

This final inequality can be seen as follows. Suppose, for n > 1, that

$$||x^n-1/p_m(x)||_{[\rho+\rho/n,1]}<\frac{\rho^n}{2\rho}.$$

Then, for $x \in [\rho + \rho/n, 1]$,

$$\frac{1}{p_m(x)} > x^n - \frac{\rho^n}{2e} \geqslant \frac{x^n}{2}$$

and

$$x^n \cdot p_m(x) \leq 2.$$

This, however, contradicts (5) by implying that

$$||x^{2n} \cdot p_m(x) - x^n||_{[\rho + \rho/n, 1]}$$

$$= ||(x^n - 1/p_m(x))(x^n \cdot p_m(x))||_{[\rho + \rho/n, 1]}$$

$$< \frac{\rho^n}{\rho}.$$

REFERENCES

- 1. E. W. Cheney, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
- 2. D. J. Newman, Approximation to x^n by lower degree rational functions, J. Approx. Theory 27 (1979), 236-238.
- 3. Q. I. RAHMAN AND G. SCHMEISSER, On rational approximation on the positive real axis, Canad. J. Math. 29 (1977), 180-192.
- 4. A. R. REDDY, Recent advances in Chebyshev rational approximation on finite and infinite intervals, J. Approx. Theory 22 (1978), 59-84.
- 5. A. Schönhage, Zur rationalen Approximierbarkeit von e^{-x} über $[0, \infty)$, J. Approx. Theory 7 (1973), 395–398.