
Constr. Approx. (1992) 8:343-362 

CONSTRUCTIVE 
APPROXIMATION 
�9 1992 Springer-Verlag New York Inc. 

Remez-, Nikolskii-, and Markov-Type Inequalities for 
Generalized Nonnegative Polynomials with 
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Peter Borwein and Tamers Erd61yi 

Abstract. Sharp Remez-, Nikolskii-, and Markov-type inequalities are proved 
for functions of the form 

f(z) = I~ol filz-zjl 'J (co, zj~C;O<rjeR;j=l,  2,...,m) 
j=l 

under the assumptions 

r~ < N and ~ rj < K, 0 < K <N.  
j=l U:lzjl< II 

The Remez- and Nikolskii-type inequalities are new even for polynomials of 
degree at most n having at most k (0 < k < n) zeros in the open unit disk. 

1. Introduction 

Generalized nonnegative polynomials were studied in a sequence of recent papers 
[4], [6], [7], [8], and [9]. A number of well-known inequalities in approximation 
theory were extended to them, by utilizing the generalized degree in place of the 
ordinary one. Our motivation was to find tools to examine systems of orthogonal 
polynomials simultaneously, associated with generalized Jacobi, or at least gen- 
eralized nonnegative polynomial weight functions of degree at most F > 0. In a 
recent paper [10] we gave sharp estimates, in this spirit, for the Christoffel function 
on [ - 1 ,  1] and for the distances of the consecutive zeros of orthogonal poly- 
nomials associated with generalized nonnegative polynomial weight functions of 
degree at most F. Typically, the extension of a polynomial inequality to gen- 
eralized nonnegative polynomials is not trivial, and the proof is far from a simple 
density argument. However, there is an inequalitY, the less known Remez in- 
equality, which can be extended quite simply to generalized nonnegative poly- 
nomials, preserving at least the best possible order of magnitude. Based on this 
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extended Remez-type inequality, several other important inequalities were ob- 
tained for generalized nonnegative polynomials [4], [6], [8], [9]. 

In this paper we study Remez-, Nikolskii-, and Markov-type inequalities for 
generalized nonnegative polynomials of the form 

f ( z ) = l ~ o [ f i l z - z j [  "j (~o, z j ~ C ; O < r j ~ R ; j = l ,  2 , . . . ,m )  
j = l  

under the assumptions 

~, r j_<N and ~ rj_<K, 0 < K < N .  
j = l  {j:lzJl<l} 

The Remez-type inequality will play a central role again. First, we establish it for 
ordinary polynomials of degree at most n having at most k (0 < k < n) zeros in the 
open unit disk. This is the content of Theorem 3.1. In Theorem 3.2 we extend a 
numerical version of Theorem 3.1 to generalized nonnegative polynomials. Based 
on Theorem 3.2, we will prove our Nikolskii-type inequality (Theorem 3.3) and 
Markov-type inequality (Theorem 3.4) for generalized nonnegative polynomials 
with restricted zeros. Our theorems contain the earlier results (without any 
constraints on the zeros) as special cases. 

2. Notations 

Let 17, be the set of all real algrebraic polynomials of degree at most n. The function 

(2.1) f (z)  = 09 f i  (z - z j) rj (0 ~ co; zj ~ R; j : 1, 2, . . . ,  m) 
j = l  

will be called a generalized complex algebraic polynomial of (generalized) degree 

(2.2) N = ~ rj. 
j=l 

To be precise, in this paper we will use the definition 

(2.3) z r = exp(r loglzl + ir arg z) (zeC,  0 < r e R ,  - n  _< arg z < rt). 

When each rj > 0 is an integer in (2.1), then f is an ordinary polynomial of degree 
N with complex coefficients. Obviously, for an f defined by (2.1), we have 

(2.4) If(z)[ = Io)l f i  Iz -- zFJ. 
j = l  

Denote by GCAPN the set of all generalized complex algebraic polynomials of 
degree at most N. The set {Ifl :  f E  GCAPN} will be denoted by IGCAPJN. It is 
easy to see that, restricted to the real line, every f ~[GCAPIN of the form (2.4) can 
be written as 

(2.5) f (z )  = Io91 f i  ((z -- zj)(z -- e j)) ~'/2 (z ~ R), 
j = l  



Remez-, Nikolskii-, and Markov-Type Inequalities 345 

therefore, restricted to the real line, the elements of IGCAPIN can be considered 
as generalized nonnegative polynomials. Denote by H,,k (0 < k < n) the set of all 
p ~ 17. which have at most k zeros (counting multiplicities) in the open unit disk. 
Let IGCAPImr (0 < K < N) be the set of all f �9  of the form (2.4) for 
which 

(2.6) Z rj < K. 
{J:lz21< 1} 

We will denote by m(A) the one-dimensional Lebesgue measure of a set A c R. 
To formulate our Remez-type inequalities and their proofs briefly, we introduce 
the classes 

I-I,,,k(S ) = {pEI-In, k: m({x�9 [--1, 1]: Ip(x)l < 1}) > 2 - s} 

and 

I GCAPImK(s) = { f  �9 K: m({x �9 [-- 1, 1]: f(x) < 1) > 2 -- s}, 

where 0 _< k ___ n are integers, 0 _< K ___ N, and 0 < s < 2 are real numbers. We will 
use the standard notation 

and 

(;~ V/P 
IJfJtp = 1 [ f ( x ) f  d x )  

IIfJIoo = max If(x) l. 
-l_<x_<l 

if 0 < p < o %  

3. New Results 

To establish a sharp Remez-type inequality for the classes IIn, k(S), we need the 
weighted Chebyshev polynomials T~, k of the form 

(3.1) T~Ax) = (x + ly-~Q(x), Q �9 n~ (o <_ k <_ n) 

satisfying the properties 

T~,k equioscillates k + 1 times in [ - 1 ,  1], (3.2) 

(3.3) max I T~,k(x) l = 1, 
- l<x_<l  

and 

(3.4) T~,k(1 ) = 1. 

More precisely, (3.2) and (3.3) mean that Zn, k achieves the values 

__+ max_l_<;_<1 IT~,k(x)l = •  

k + 1 times in [ -  1, 1] with alternating sign. The existence and uniqueness of such 
weighted Chebyshev polynomials T~, k are well known from the theory of weighted 
Chebyshev approximation. Explicit formulas for T~. k seem to be known only when 
k = O , k = n - l ,  o r k = n .  
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Theorem 3.1. Let 0 ~ k <_ n be arbitrary integers and let 0 < s < 2 be an arbitrary 
real number. Then 

/'2 + s'~ 
max Ip(x)l < Tn, k[~--~_] 

- l < x < l  \ ~ - ~ /  

for every p ~ II,,k(s ). Equality holds if and only if 

/ ' + 2 x  s ) 
p(x) = + T. + 

The case k = n (when there are no restrictions for the zeros) of Theorem 3.1 
gives the Remez inequality [11, pp. 119-121] or [2] as a special case. When k = 0, 
Theorem 3.1 yields the corollary of the theorem from [3]. 

By estimating T,,k((2 + s)/(2 -- s)), we give a sharp numerical version of Theorem 
3.1, and we extend this to the classes I GCAPIN, K. 

Theorem 3.2. Let 0 < K < N and 0 < s < t be arbitrary real numbers. Then 

max f (x)  < e x p ( q ( ~  + Ns)) 
- l _ < x _ < l  

for every f ~ [GCAPIN, K(s) and for some cl < 9. 

We do not discuss what happens when 1 < s < 2, since the case 0 < s < 1 is 
completely satisfactory for our applications. 

As a consequence of Theorem 3.2 we will prove the following Nikolskii-type 
inequalities for I GCAPIN, K. 

Theorem 3.3. Let X be a nonnegative, nondecreasing function defined on [0, oo) 
such that )~(x)/x is nonincreasing, and let O <_K < N and O < q < p < co be 
arbitrary (extended) real numbers. There is an absolute constant 0 < c 2 _< 81e 2 such 
that 

[Ix(f )lip < (c2 max{l, qZNK, qN}) l/q- I/PIIz(f)IIa 
for every f ~ I GCAPIN, K. 

The case K = N in Theorem 3.3 was proved in [9, Theorem 6]. If qK > 1, then 

the Nikolskii factor in the unrestricted case (K = N) is like (x~2qN) 2/q- 2iv, while in 

our restricted cases it improves to ( ~ 2 q x / N K )  2/q- 2/p. 
Theorem 3.2 will play a significant role in the proof of our Markov-type 

inequality for I GCAPIN, K as well. Throughout  this paper f '  denotes the derivative 
o f f  with respect to a real variable. Note that i f f  E IGCAPIN is of the form (2.4) 
with each rj > 1, then f'(z~) does not exist when zj e R and rj = 1, but I f(zj) l (and 
[f'(x)l for every real x) is well defined as the absolute value of the one-sided 
derivatives. This is our understanding, whenever we have I f '(x)l (x ~ R) in the rest 
of the paper. 
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Theorem 3.4. Let  0 <_ K <_ N be arbitrary real numbers. There is an absolute 
constant c 3 > 0 such that 

(3.5) max If'(x)l < c 3 N ( K  + 1) max f ( x )  
- l < x < l  - l < x _ < l  

for  every f ~ I GCAPIN,~ o f  the form (2.4) with 1 < rl E R, j = 1, 2 . . . .  , m. 

The condition that each r i >  1, j =  1, 2 , . . . ,m,  is needed to insure that 
[ f'(z~)l < ~ if zj e R. Theorem 3.4 is a generalization of a number of earlier results. 
Inequality (3.5) was proved in [1] for polynomials f e YI,, k (0 < k < n) having only 
real zeros. Another proof of (3.5) was given in [5] for all f ~ 1-I,. k (0 < k < n). Less 
general or less sharp results can be found in [12], [13], [14], [151 and [16]. The 
unrestricted generalized polynomial case (K = N) of Theorem 3.4 was established 
in [4]. Up to the constant ca, Theorem 3.4 is sharp even for the classes 1-I,, k [15, 
Example 1]. 

4. Proof of Theorems 3.1 and 3.2 

To prove Theorem 3.1 we need a series of lemmas. 

Lemma 4.1. Let  0 < k < n be f i xed  integers and let 0 < s < 2 and 1 <_ A be f i xed  
real numbers. I f  !p(1)l < A holds for  every p~H,,k(S),  then max_~_<x_<~lp(x)l < A 
holds for  every p ~ H.,k(S ) as well. 

Proof. The proof of the corresponding step in [23 works here as well, we present 
it for the sake of completeness. Let p ~ 1-I,,k(S ) be arbitrary. We choose a point 
- 1  < _ y < l  such that 

(4.1) Ip(y)l = max Ip(x)l. 
-l_<x_<l 

It is easy to see that p e 17.,k(S) implies either 

(4.2) m({ - 1 _< x < y: [p(x)l < 1}) > ~1 + y)(2 - s) 

o r  

(4.3) m({y < x < 1: Ip(x)l < 1})>__ ~1 - - y ) ( 2 -  s). 

Without loss of generality we may assume that (4.2) holds, otherwise we study 
p(x) = p ( - x ) e  II,,k(S ). Note that (4.2) implies 

(4.4) q(x) := p((y + 1)x/2 + (y - 1)/2)~ 1-I,,k(S), 

which, together with (4.1) and the assumption of the lemma, yields 

(4.5) max Ip(x)l = IP(Y)I = tq(1)l < A, 
-l '_<x_< 1 

and the lemma is proved. 
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Lemma 4.2. Let 0 <_ k <_ n be fixed integers and let 0 < s < 2 and 1 <_ A be fixed 
real numbers. I f  Ip(1)l_<A holds for every p6Hn,k(s) of the form p (x )=  
(1 + x)n-kQ(x) with Q ~ Hk, then Ip(1)l < A holds for every p ~H~,k(s ) as well. 

Proof.  Let p E 1-In,k(S ) be arbitrary. Then there are polynomials w ~ gl,,_~, o and 
Q e H k such that  p = wQ and w(x) > 0 for every - 1 _< x _< 1. By an observation 
o fG.  G. Lorentz  [14] every w ~ H._k .O,  nonnegat ive in [ - -  1, t ] ,  can be written as 

n-k 
(4.6) w(x) = ~ a~(1 + x)J(1 -- x) "-k-~ with all aj > 0. 

j=0 

Using the nonnegativi ty of the coefficients a j, we obtain 

(4.7) ]p(x)l-> Jag(1 + x)"-kQ(x)l 

for every - 1  _< x <_ 1. Hence, p ~ I-In, k(S ) implies that either p(1) = 0 or 

(4.8) q(x) .'= a0(1 + x)"-kQ(x) e H.,k(S), 

and the assumption of the lemma yields Ip(1)l = Iq(1)l < A, thus the lemma is 
proved. �9 

Denote  by fl.,k (0 < k < n) the set of all polynomials p of the form p(x) = 
(1 + x)"-kQ(x) with Q e I I  k. We introduce the classes f~.,k(S)= f~..k C~ H.,k(s) 
(0 _< k < n, 0 < s < 2). It is rout ine to check that  f~.,k(S) is a closed and bounded,  
hence, compact  subset of H .  in the uniform (and hence in any) norm on [ -  1, 1], 
so we omit the details. Hence, for every 0 _< k < n integers and 0 < s < 2 real 
number  there exists a P* = P.,k,~* ~ f~.,k(s) such that  

(4.9) [p*(1)l = sup Ip(1)l. 
pefa~,k(s) 

In our  next proposi t ions we examine the properties of p*, following the method  
used in [2]. 

Proposition 4.3. Every polynomial p*~ f~,,k(s) satisfying (4.9) has all its zeros in 
[--1, 13. 

Proof. 
nomial  

Let p* ~'~n,k(S) satisfy (4.9). If p*(z)= 0 for a nonreal  z, then the poly- 

g(X -- 1) 2 ) 
p(x) .'= (1 + q)p*(x) 1 - (x - z)(x - 2) 

with sufficiently small ~/> 0 and e > 0 is in ~,,k(S), and contradicts the maximali ty 
of p*. If p*(z) = 0 for a real z outside [ -  1, 1], then the polynomial  

( X - x )  
p(x) = (1 + rl)p*(x ) 1 -- ~ sgn(z) 

z 

with sufficiently small q > 0 and ~ > 0 is in f~,,k(S) and contradicts the maximali ty 
of p*. Thus the proposi t ion is proved, i l  
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Associated with a p*e  f~,,k(S) satisfying (4.9) we will study the set 

(4.10) M(p*):= {xe  [ - 1 ,  1]: ]p*(x)] < 1}. 

Obviously, M(p*) is a disjoint union of at most n closed subintervals Ij of [ -  1, 1]. 
These intervals Ij will be called the components of M(p*). 

Proposition 4.4. I f  p* ~ D,,k(S) satisfies (4.9), then each component of  M(p*) contains 
at least one zero of p*. 

Proof. By Lemma 4.3, p* has all its zeros in [ -  1, 1]. Let v = deg p*. If p* does 
not have any zero in a component of M(p*), then applications of Rolle's Theorem 
would show that the derivative of p* has at least v zeros (counting multiplicities) 
in [ - -1 ,  1], a contradiction. �9 

Proposition 4.5. I f  p*~f~,.k(S) satisfies (4.9), then the set M(p*) has only one 
component. 

Proof. Assume that M(p*) has at least two components, and let I~ be the closest 
component to 1. Then p* ~ ~,,R(S) is of the form 

r~! m2 

(4.11) p*(x) = c 1-[(x -- x~)i-i(x - yi) ( ceR,  m 1 + m2 _< n), 
i = 1  j = l  

where xi, i = 1, 2 . . . . .  ml, are the zeros of p* lying in I1 and yj, j = 1, 2 . . . . .  m2, 
are the remaining zeros of p* (every zero is listed as many times as its multiplicity). 
Let ~/and r/' be the left-hand endpoint of 11 and the right-hand endpoint of the 
component next to 11, respectively. Then it is easy to see that 

ml m2 

(4.12) p(x):= c I ]  (x - xi + h) [ I  (x - yj) 
i = 1  j = l  

with 0 < h _< t / -  t/' is in f~.,k(S), and ]p(1)l > [p*(1)l, a contradiction. �9 

Proposition4.6. If p*e~.,k(s) satisfies (4.9), then Ip*(x)]_<l .for every 
- l < _ x < _ l - s .  

Proof. If 1 _ k _< n, then p ( -  1) = 0 and the lemma follows immediately from 
Proposition 4.5 and the relation p* 6 ~,.k(s). When k = 0, denote the only compo- 
nent of M(p*) by [a, fl]. Assume that - 1 < e. Then deg(p*) >_ 1, and by Proposi- 
tions 4.3 and 4.5, p* has all its zeros in [e, fl], therefore Ip*l is strictly increasing 
in [fl, oo). Now it is easy to see that the polynomial p(x) = p*(x + 1 + a) is in 
f~,,k(S) and Ip(1)l = [p*(2 + a)] > ip*(1)], a contradiction. Thus the proposition is 
proved. �9 

Lemma 4.7. I f  p* ~f~n,k(S) satisfies (4.9), then 

p*(x) = +_ T., k + (x e C), 

where the weighted Chebyshev polynomials T., k (0 <_ k <_ n) are defined by (3.1)-(3.4). 
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Proof. Let T..k. ~ be the polynomials  T., k, t ransformed linearly from [ - 1 ,  1] to 
[ - -1 ,  1 - s ] ,  namely 

2x s 

Then T~.k,~ is of the form 

(4.13) T.,k,s(x) = (x + 1)"-kQ(x), Q �9 Hk, 

satisfying the properties 

T.,k,s equioscillates k + 1 times in [ - -1 ,  1 - s], (4.14) 

(4.15) max [ T.,k,s(X) l = 1, 
- - l < _ x < l - s  

and 

(4.16) T.,k, j l  -- s) = 1. 

Wi thout  loss of generality we may assume that p*(1) > 0, otherwise we study the 
polynomial  - p * .  It follows from (4.9), T,,k ,s �9  T,,k, J l  ) > 0, and p*(1) > 0 
that 

~,k,~(1) 
(4.17) 0 < i / . -  - -  _< 1. 

p*(1) 

We claim that T.,k, ~ -- q p * � 9  I-I. has at least n + 1 zeros (counting multiplicities) 
in R, and hence p* - qT,,,k,~. To see this note that  T.,k,~ -- qp* has n - k zeros at 

- 1; it has at least k zeros (counting multiplicities) in ( -  1, 1 - s] (if 0 < k < n - 1) 
or in [ -  1, 1 - s] (if k = n) because of (4.14), (4.17), and Proposi t ion 4.6; finally, 
it has a zero at 1 because of the choice of q. Hence ~IP* - T.,k,s. If 0 < t/ < 1, then 
the polynomial  T.,k,~e~.,k(S) would contradict  (4.9). Therefore ~/= 1, and the 
lemma is proved. �9 

Using Lemmas 4.1, 4.2, and 4.7, we can prove Theorem 3.1 easily. 

P roof  of Theorem 3.1. The inequality of the theorem follows immediately from 
Lemmas 4.1, 4.2, and 4.7 and the extremal proper ty  (4.9) of p*. To  find all the 
extremal polynomials  p �9 Hn, k(S ) for which 

T //2 + s'~ 
(4.18) max Ip(x)l = . ,k~_~_s] ,  

- l_<x_<l  

we choose a point  y �9 [ -  1, 1] such that  

(4.19) ]p(y)l = max Ip(x)[ = T.,k/2 
+ S'~ 

- - l _ < x < l  

First we show that - 1  < y < 1 contradicts (4.19). Indeed, p �9 H.,k(S) implies either 
(4.2) or (4.3). Without  loss of generality we may assume that  (4.2) holds, otherwise 
we study P(x) = p ( - x ) � 9  H.,k(S). Then 

(4.20) q(x) := p((y + 1)x/2 + (y - 1)/2) �9 H.,k(S) 
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and 

(2+q 
(4.21) q(1) -- , ,k\ 2 _ S f  

Now qef~.,k(S), otherwise it would be possible to find a qsf~,,k(S) such that 
[~(1)1 > [q(1)l, by utilizing the Lorentz representation of a polynomial from II,_k, o, 
similarly to the proof of Lemma 4.2, and this, together with (4.21), would contradict 
the already proved part of the theorem. Hence, Lemma 4.7 yields that 

+ , 

thus m({x E [ -  1, 1]: Ip(x)l < 1}) = ~ 1  + y)(2 - s) < 2 - s, e.g., p r II,,k(S), a con- 
tradiction. Therefore y = _+ 1, and Lemma 4.7 implies that 

(4.23) p(-I- x) ---- +_ T,, t(  2~_ s 2 @ s )  + 

which finishes the proof of the theorem. �9 

(4.24) 

(4.25) 

and 

(4.26) 

To prove Theorem 3.2 we will n e e d t o  estimate the zeros of the constrained 
Chebyshev polynomials T~, k. To formulate our next lemma we introduce some 
notations. Let ~ > ~z > "'" > ~2k be the zeros of the shifted Chebyshev poly- 
nomial T2k(X -- 1) = cos(2k arccos(x - 1)) (0 < x < 2) of degree 2k. Let 1 < k, 
2k < n, m = n -  2k, 

k 

tk(x) ,=  1- ] (x  - ~j), 
j = l  

q,(x) := (x + 2mlk)m+ktk(X), 

h,(x) := q,((1 + m/k)x + 1 - m/k) 

(we have shifted from [-2re~k, 2] to [ -  1, 1]). The following lemma was proved 
in [1] .  

Lemma 4.8. Let ~1 < ~2 < " ' "  < ~k and Pa < P2 < " ' "  < Pk be the zeros of h. 
(defined by (4.26)) lying in ( -  1, 1), and the zeros of  T,,k (defined by (3.1)-(3.4)) lying 
in ( - 1 ,  1), respectively. Then pj < 7j for every j = 1, 2 , . . . ,  k. 

From Lemma 4.8 we will easily obtain the following. 

Lemma 4.9. Let T,, k (0 <_ k <_ n) be the weighted Chebyshev polynomials defined 
by (3.1)-(3.4). We have 

z (2 + exp(cl(,j  + ns)) 

for every 0 <_ k <_ n integers and 0 < s <_ 1 real numbers, where c I = 9 is a suitable 
choice. 
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Proof. 
we obtain 

/'2 + s'~ T,,k(1 + 2s) 
(4.27) Tn, k [ ~ - ~ l  ~ T n k(1 q- 2s) - 

\Z - - s /  ' r.,k(1) 

P. Borwein and T. Erd6lyi 

First let 1 < k < n/2. Using 0 < s < 1, Lemma 4.8, (4.24), (4.25), and (4.26), 

From the well-known explicit formula 

(4.28) T2k(X) = ~(x  + x / ~  -- 1) 2k + (x - , ~ 7  _ 1)2k) (x ~ R \ ( -  1, 1)), 

we can deduce that  

(4.29) T2k(1 + 2(n -- k)s/k) <_ exp(2k(x/4(n - k)s/k + 4(n - k)s/k)) 

_< e x p ( S ( x / ~  + ns)). 

This, together with (4.27), (4.28), (1 + s) "-k <_ exp(ns), and TEk(1) = 1, yields 

/'2 + s'~ e x p ( 9 ( V / ~  + ns)) (4 .30)  Tn,kt~-8~ 8) ~ 

for every 1 < k <_ n/2 and 0 < s < 1. If k = 0, then T.,k(S ) = 2-"(1 + x)", and the 
desired inequality follows immediately. If n/2 < k < n, then Theorem 3,1, (4.28), 
and T.,. = T. yield 

/ 2  + s'~ /'2 + s'~ 
(4.31) T. ,kt~_ s) < T~..t~_ s) < T~(1 + 2s) 

< (1 + 48 + 2V/s)" < exp(n(4s + 2w/s ) 

< e x p ( 4 ( ~ s  + ns)) (0 < s <_ 1), 

hence the lemma is completely proved. �9 

Combining Theorem 3.1 and Lemma 4.9 we obtain 

(4.32) max Ip(x)l -< e x p ( c t ( ~  + ns)) 
- - l_<x_<l  

for every peII, ,k(S) and 0 < s _< 1. To prove Theorem 3.2 we extend (4.32) for 
every f e l G C A P l m r ( s ) ,  when 0 < K < N and 0 < s < 1 are arbitrary real num- 
bers. 

s= ~ 1 pj 

(2  + 2s~ ~-k i~ 1 +  2 s - - , s  

= (I + s) "-~ t~(2 + ~(n - k)s/k) 
tk(2) 

_< (i + s) "-k T2k(1 + 2(n -- k)Vk) 

T~(1) 
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Proof of Theorem 3.2. Let f e IGCAPIN.r(S) be of the form (2.4) and first assume 
that each r j , j  = 1, 2 . . . . .  m, is rational, thus rj = vj/v with suitable positive integers 
vj and v. Note that 

m 

(4.33) p(z) := [a~[ 2 ~ [-I (z - zj)~(z - ~j)"J e HEN~, 2r~(s) 
j = l  

and 

(4.34) f ( z )  = p(z) 1/~2~), z e R. 

Hence, applying Theorem 3.1 to p defined by (4.33) and taking its 2vth root, we 
get the theorem. The case when each r j, j = 1, 2, . . . ,  m, is arbitrary positive real 
follows from the already proved rational case by a limiting argument, and the 
theorem is proved. �9 

Now we prove Theorem 3.3 as a straightforward application of Theorem 3.2. 

Proof of Theorem 3.3. It is suffcient to prove the theorem when p = oo, and then 
a simple argument gives the desired result for arbitrary 0 < q < p < c~. To see 
this, assume that 

I[x(f)[loo < M1/~liz(f)llq 

for every f e I GCAPIN, r and 0 < q < ~ with some factor M. Then we easily obtain 
that 

Ilz(f)[t~ = Ilg(f)P-q+qlll < Ilz(f)ll~-qllz(f)ll~ 

< My~a- X l lz( f )[ l~-~l lz( f ) l lg ,  

and therefore 

][z(f)]]p -< M1/q-1/vltx(f)llq 

for every f ~ IGCAPIN, K and 0 < q < p < oo. Thus, in the sequel let 0 < q < p -- 
oo. Using Theorem 3.2 with 

(4.35) s = min(1, (c2q2NK)-t ,  ( c lqN)- l } ,  

and recalling the conditions prescribed for ~(, we can easily conclude that 

(4.36) m({x~ [ - -1 ,  1]: (•(f(x))) q >_ e-2llz(f)llL}) 

> m({x ~ I--1,  1]: f (x)  > e-2/qll(f)ll | 
>_ m({x e [ - 1 ,  1]: f (x)  > exp(-c1(  Nx/-N~ + Ns)ll(f)ll ~}) > s 

for every f e I GCAP IN.r- Now integrating only on the subset E of [ -  1, 1], where 

(4.37) (x(f(x))) q > e-  2 II z(f)11~, 

and using (4.35) and (4.36), we obtain that 

e2f  Itx(f)][~ -- m ~  (z(f(x))) q dx <_ c2 max{l, q2NK, qN}]lz(f)l]~ 
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for every f~ IGCAP[N,K  where  c2 = c2e z. Since c~ = 9 is a suitable choice in 
T h e o r e m  3.2, so is c2 = 81e 2 in this theorem.  �9 

5. Proof of Theorem 3.4 

To  p rove  T h e o r e m  3.4 we need a series of  lemmas.  O u r  first l e m m a  guaran tees  
the existence of  an  ext remal  funct ion.  

L e m m a  5.1. Given r j > 1, j = 1, 2 , . . . ,  m, ~j% l r j < N, and - 1 < ~ < 1 real 
numbers, there exists a 0 ~ f ~ [ GCAP IN, K of  the form 

(5A) f = (-I lPJI" 
j = l  

such that 

(ej(z) = A j z  + Bj; A 2, B j ~ C ; j  = 1, 2 . . . . .  m) 

If ' (1)[  If ' (1)l  
(5.2) - - L, 

m a x  f ( x )  sup f m a x  f ( x )  
-l<_x<_h - l < x < _ 6  

where the supremum in (5.2) is taken for all f ~ [GCAP]N,K of the form 

(5.3) f = f i  ]pj[o (Pj(z) = c~(z -- z j); c j, zj ~ C; j = 1, 2 , . . . ,  m). 
j = l  

Proo~ 

(5.4) 

such tha t  

Let  

0 ~ fi = f i  IPj,~I rj~ [GCAPIN, K 
j = l  

(P j, i(z) = cj, i(z -- zj, i); cj, i, zj, i ~ C; j = 1, 2 , . . . ,  m; i = 1, 2 . . . .  ) 

If'i(1)l 
(5.5) > min{L  - 1/i, i} (i = 1, 2 , . .  ,). 

m a x  f i ( x ) -  
--l<x_<~ 

W i t h o u t  loss of  general i ty  we m a y  assume tha t  

(5.6) m a x  [Pj,~(x)l = 1 (j = 1, 2 . . . . .  m; i = 1, 2 . . . .  ). 
- l _ < x _ < l  

Since the set {p: p(z) = Az  + B, A, B ~ C, m a x _  1 _< x_< t [p(x) [ = 1} is c o m p a c t  in the 
un i fo rm norm,  for every j = 1, 2 . . . . .  m there  is a subsequence  of  {P j, i}/~= 1, w i thou t  

P ~ itself, which  converges  to loss of  general i ty  we m a y  assume that  this is { j,~}~=l 
a Pj of the fo rm Pj(z) = ~ j z  + ~j with ~ j , / 3 j  ~ C in the un i fo rm (and hence  in 
any) n o r m  on [ - 1 ,  1]. N o w  it is easy to check that  f = I-I~'= 1 P j  satisfies the 
requirements ,  The  fact f~IGCA~PIN,~ comes  f rom fi ~[GCA P IN, K, i = 1, 2 . . . . .  and  
Hurwi tz ' s  Theorem.  �9 
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L e m m a  5.2. Assume that 0 ~ f e IGCAPIm K satisfies (5.1) and (5.2). Then f has 
only real zeros. 

Proof.  Assume that  f (~)  = 0 for ~ ~ R. Wi thou t  loss of generali ty we m a y  assume 
that  Pl(e)  = 0. Vieta 's  formula  for the p roduc t  of the zeros of  a po lynomia l  shows 
that  if l~[ > 1, 0 < ~ < 1, and  

(5.7) (fl -- ~)(~ -- ~) -- e(/~ - 1) 2 = 0, 

then I/~[ > 1. We s tudy the function 

(5.8) L(z) := (1 -- e) f  (z) Zz~_ fl a " 6  IGCAPIN, K 

which is obviously of  the fo rm (5.1). The relation f~ ~ I GCAPImK i s s t ra igh t forward  
f rom f~IGCAPIN,~  if I~[ < 1, while it follows f rom (5.7) and f e l G C A P I m K  if 
I c~l - 1. By (5.7), restricted to the real line, we have 

(Z - -  1) 2 r,/2 (Z e R), 
(5.9) f~(z) = f ( z )  1 - e (z 2 ~ z  ~ ~) 

hence - 1 < 6 < 1 and ~ r R imply 

(5.10) max  f~(x)<  max  f (x )  
- l _ < x _ < 6  - 1 _ < x _ < 6  

if e > 0 is sufficiently small. This, together  with (5.8) and 

(5.11) I f',(1)l = f '(1),  

contradicts  (5.2), and the l emma  is proved.  �9 

We remark  that  if 6 = 1, then (5.10) does not  necessarily hold any more,  and 
the above  p roof  fails to work.  This explains the technical assumpt ion  - 1 < 6 < 1 
in L e m m a  5.1. 

I f f  ~ I GCAP[N is of the form (2.4) with pairwise different zj ~ C, j = 1, 2 . . . . .  m, 
then we say that  the multiplicity of  zj in f is rj. O u r  next l emma  is a Rolle-type 
theorem for the classes I GCAPIN, K. 

L e m m a  5.3. IfO g~ f ~ IGCAPIN, K (0 < K <<_ N) is of the form (2.4) with all rj > 1, 
j = 1, 2 . . . . .  m, and f has only real zeros, then I f ' I e lGCAPImx+ 1 has only real 
zeros as well, and the multiplicity of at least one of any two adjacent zeros of lf'l is 1. 

We remark  tha t  IGCAP[mK+ 1 is defined to be [GCAPImN= IGCAPIN if 
K + I > N .  

Proof. 

(5.12) 

Every f~IGCAPIN,  K having only real zeros is of  the form 

f ( z )  --- [col f i  Qj(z),i/2 (z ~ R) 
j = l  
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with 

(5.13) Qj(z) = (z - z j) 2 (zj ~ R, j = 1, 2 . . . . .  m), 

where Zl < Z 2 <:: ' ' "  <:: Z m ,  

(5.14) ~ r j<_N and 2 r j ~ K .  
j = l  { j : l z ) l<  1} 

Using the product rule to differentiate f ( z )  in (5.12), we obtain 

(5.15) ] f ' ( z ) [ -  f i l z - z j F ' J - l l P ( z ) l  with a Pe r lm_l .  
j = l  

By applications of Rolle's Theorem, If ' l ,  and hence P has a zero in each of the 
intervals (z 1, z2), (z2, z3) . . . . .  (zm-1, zm). Since P ~ 1-Ira_ 1, this, together with (5.14) 
and (5.15), shows that [f ' l  e IGCAPtN, r+ i has only real zeros, and the multiplicity 
of at least one of any two adjacent zeros of If'[ is 1, indeed. Thus the lemma is 
proved. �9 

Our next result is a Chebyshev-type inequality on the size of g(y) when 
g E IGCAPIN, K has all its zeros in ( - o %  1]. 

Corollary 5.4. There is an absolute constant c 4 > 1 such that 

g ( y ) < c  4 max g(x) ( - I < _ y < I + ( N ( K + I ) ) - I )  
- l < _ x _ < l  

for every f elGCAPlN, K (0 <_ K <_ N) which has all its zeros in ( -oo ,  1]. 

Proof. This follows from the Remez-type inequality of Theorem 32 for the classes 
]GCAPIN, K , transformed linearly to the interval [ - 1 ,  y] if 

..... !' I < y < I + (N(K + 1))-1 �9 

Our next lemma is a Markov-type inequality at 1 for the classes [GCAP[N,K 
(under some additional assumptions which will be dropped later). 

Lemma 5.5. 

(5.16) 

(5.17) 

and 

(5.18) 

Then 

Assume that 0 <_ K <_ N, 

f e [GCAP]N,K is of  the form (2.4) with all rj > i, 

f has only real zeros 

f(1) - f(1 -- h) 
lim > O. 

h ~ O  + h 

If'(1)] -< c4N(K "4- 1) max 
- - l_<x_<l  

where c4 is the same as in Corollary 5.4. 

f(x), 

j = 1, 2 , . . . ,m,  
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Proof. In addition to (5.16), (5.17), and (5.18), first assume that 

(5.19) f has all its zeros in [ - 1 ,  1]. 

Then If ' l  is increasing in [1, ~).  Using Corollary 5.4 with y = 1 + (N(K + 1)) -1, 
the Mean Value Theorem, and the monotonicity of If ' l  in [1, oo), we obtain 

f (y )  - f(1) c4 
If '0)[  < I f ' ( 0 [ -  < max f (x)  

y - 1  - y - 1  -l_<x_<l 

< c4N(K + 1) max f(x), 
- l < x < l  

where ~e(1, y) is a suitable number. Now we get rid of assumption (5.19). Let 
f e  IGCAPIN, K be of the form (2.4), where each z~, j = 1, 2 . . . . .  m, is real. By an 
observation of G. GI Lorentz, for every zj r R \ [ -  1, 1] there are numbers Aj > 0 
and Bj > 0 such that 

(5.20) I z - z ~ l  =a j (1  + z) + nj(1 --z) (--1 _<z< 1). 

Now (5.20) implies that 

(5.21) 1--[ Iz -- zjl  ~j ~ 17 (Aj(1 + z)) ru 
U:lz~l> 1} U:I~jI> x} 

We define 

( - l _ < z < _  1). 

(5.23) F(z) <_ f(z) ( -  1 < z < 1), 

(5.24) F(1) = f(1), 
f(1) -- f(1 -- h) 

(5.25) [F'(1)l > lim 
h ~ O  + h ' 

(5.26) FE IGCAP[N,K is of the form (2.4) with all r i > 1, 

and 

(5.27) 

Then from (5.20), (5.21), (5.22), (5.16), (5.17), and (5.18) we can deduce that 

j = 1, 2 , . . . ,  m, 

F has all its zeros in [ - 1 ,  1]. 

Since F satisfies the assumptions of the already proved case (see (5.26) and (5.27)), 
by (5.23), (5.24), and (5.25) we obtain 

[f'(1)l < IF'O)[ < c4N(K + 1) max F(x) 
- l _ < x _ < l  

< c4N(K + 1) max f(x), 
- 1 < x _ ~ 1  

thus the lemma is proved. �9 

The next lemma is needed for technical reasons, to prove our other important 
tool, Lemma 5.7. 

(5.22) F(z):= I~ol 1-I I z - z T J  l--I (Ajll +z[ )  rj. 
U: IzJl-< 1} {J: IzJl > 1} 
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L e m m a  5.6. Assume that 

(5.28) g ~ IGCAPIN, K + 1 (0 <_ K <_ N) has all its zeros in [ - 1 ,  1], 

(5.29) g ( 1 ) =  max  g(x), 
- l _ < x _ < l  

(5.30) Ig'l is increasing on [?, oo), 

where ? is the largest value from [ - 1 ,  1)for which 

(5.31) g ( ? ) = � 8 9  max  g(x). 
- l _x_< l  

Then we have 

(5.32) 

and 

(5.33) 

[g'(Y)l < c4N(K + 2) max g(x) (7 < Y < 1) 
- l < x < l  

c 5 1 
? <  1 N ( K  + 2) with C5 = 2c~. 

As before, IGCAP]N,K+I is defined to be IGCAPIN if K + 1 _ N. 

Proof.  

(5.34) 

Let 

6 - and ? < y < 1. 
N ( K  + 2) 

Using the Mean  Value Theo rem and (5.30), we can find a r E (y, y + 6) such that  

g(y + 6) - g(y) 
(5.35) 6 = [g'(0[ ~ Ig'(y)l. 

N o w  L e m m a  5.4 and (5.34) yield 

(5.36) g(y + 6) <_ c 4 max  g(x), 
- - l _ < x < l  

which, together  with (5.35) and (5.34), implies (5.32). Using (5.29), (5.31), the Mean  
Value Theorem,  and (5.32) we can find a ~ ~ (7, 1) such that  

1 max g(x) = g(1) -- g(?) = (1 -- 7)lg'(~)l 
- l < x _ < l  

< (1 -- ?)e4N(K + 2) max  
- l _ ~ x _ ~ l  

whence (5.33) follows. Thus  the l emma is proved.  

g(x), 

Our  next l emma  examines what  happens  if assumpt ion  (5.18) fails to hold in 
L e m m a  5.5. 
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Lemma 5.7. 

(5.37) 

Further, let g = [f '[  and 

(5.38) 

Then 

Assume that (5.16) and (5.17) hold, but instead of(5.18) we have 

f(1) - f (1  - h) 
lim < 0. 

h-~O§ h 

g(1)=  max g(x). 
- l _ < x - <  1 

g(y) >_�89 max g(x) 
- l ~ < x _ < l  

for  every y e [1 -- cs (N(K + 2))- 1, 1], where c 5 is the same as in Lemma 5.6. 

Proof. F rom (5.16), (5.17), (5.37), and Corollary 5.4 we can deduce that  

(5.39) g -- [ f ' l  e IGCAPtN.r+I has only real zeros, 

(5.40) at least one of any two adjacent zeros of g has multiplicity 1, 

(5.41) the largest zero of g in ( - ~ ,  1) has multiplicity 1. 

Let g ~ I GCAPIN, r+I  be of the form 

(5.42) g(z)=l~l[Ilz-~y~ (0 # &e  C; ~ i e R ;  ?j > 0 ; j  = 1, 2 , . . . ,  rh). 
j = l  

Note that  for every ~j e R \ [ -  1, 1], there are numbers A~ > 0 and/~j > 0 such that  

Iz - zjl = fi~,(l + z) +/3,(1 - z) (--1 _< z _< 1), (5.43) 

and 

(5.44) 

We define 

(5.45) 

1--[ Iz-z~(~>~ 1--[ (hj(1q-z)) ~j ( - - l<z<l) .  
{j:[~'j] > 1} {J:I~yl > 1} 

G(z):= I~1 [ I  Iz - ~jl ~ 1-] (~jl  1 + ~1)~. 
U:I~jl < 1} {j:l~y] > 1} 

Then, from (5.39)-(5.43), we can easily deduce 

(5.46) G e IGCAPIN, K+ 1 has all its zeros in [ - 1 ,  1), 

(5.47) G(z) < g(z) (--1 _< z _ 1), 

(5.48) g(1)= G(1)= max G(x)= max g(x) 
- l _ < x _ < l  - - l _ < x _ < l '  

and 

(5.49) [G'l is increasing in (7, m), 

where ? is the largest value from [ - 1 ,  1) for which 

(5.50) G(7) = �89 max G(x). 
--l_<x_<l 
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Observa t ion  (5.49) needs some further explanation.  F r o m  (5.39)-(5.42), (5.45), 
and (5.48) we conclude that  G ~IGCAPIN, K+ I is of  the form 

# 

(5.51) a(z)  = I~1 ~ Iz - wjl p~, 
j = l  

where 0 ~ ~ ~ C, ( -  1 < )wl  < w 2 < ""  < w , ( <  1), pj > 0 for every j = 1, 2 . . . . .  /~, 
and  p ,  = 1. Now,  similarly to the p roof  of L e m m a  5.3, we obta in  that  I G'I is of  
the form 

g 

(5.52) I a '(z)l  = I~1 1--[ Iz - wj[ p~-I IP(z)I, 
j = l  

where P ~ rI~_ 1 has a simple zero xj on each of the intervals (wj, wj+ 1), J = 1, 
2 , . . . , /~  - 1. This, together  with pj  > 0 (j = 1, 2, . . . ,  #) and p ,  = 1, implies that  I G'I 
is of  the form 

(5.53) 
#-1 Z-- Xj VJ[Z 

Ia '(z)l  = I~1 I-I - -  - xjl ~j 
j= l  I z -- wj 

with some 0 ~ e C ,  - l < w j < x i < l ,  y j > 0 ,  and 6 j > 0 ,  j = l ,  2 . . . . .  / z - 1 .  
Since every factor in (5.53) is nondecreasing for z > maxl_<j.<,_~ xj, so is the 
product .  Hence (5.49) holds, indeed. 

Note  that  G e[GCAPIN,K+I satisfies the assumpt ions  of  L e m m a  5.6 (see (5.46), 
(5.48), and (5.49)), hence L e m m a  5.6, together  with (5.47) and (5.48), implies 

g(y )>G(y)>�89  max G ( x ) = � 8 9  max  g(x) 
- I _ < x < l  -l_<x_<l 

for every y e IV, 1] where 7 -< 1 - cs(N(K + 2))- 1. Thus  the l emma  is proved.  �9 

N o w  we are ready to prove  Theorem 3.4. 

Proof of  Theorem 3.4. First we prove  that  there is an absolute constant  c6 ~> 0 
such that  

(5.54)  I f ' ( 1 ) l  ~ c6N(g -b 1) max f(x) 
--l_<x~l 

for every fEIGCAPIN, Ir satisfying (5.16) and  (5.17). To  see this, wi thout  loss of  
generality, we may  assume that  

(5.55) If ' (1) l  = max  I f ' (x ) l .  
--l<_x_<l 

(If (5.55) does not  hold, then we take a point  Xo~ [ - 1 ,  1) such that  If ' (x0)l  = 
max-l_<x_<llf ' (x)[ ,  and  use a linear t ransformat ion  such that  - 1  ~ - 1  and 
x 0 ~ 1 i fxo  > 0, or 1 ~ - 1  and x o ~ 1 i f x  o < 0.) Now,  if (5.18) holds in addit ion 
to (5.16), (5.17), and (5.55), then L e m m a  5.5 gives (5.54). O n  the o ther  hand,  if (5.37) 
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holds in addition to (5.16), (5.17), and (5.55), then Lemma 5.7 yields 

1 f~ t (5.56) If'(1)[ = g(1) < 1 - ~ 2g(x) dx 

- I f ' ( x )  l dx < f'(x) 
1 - 7 c 5 

2g(g  + 2) 2N(K + 2) 
_< l f(1) - f(~')] < max f(x). 

C5 (75 -l_<x_<l 

Hence (5.54) follows for every f e  ]GCAP[N,x satisfying (5.16) and (5.17). Now we 
show the validity of (5.54) without the assumption (5.17). By the Remez-type 
inequality for [GCAPIN, K (Theorem 3.2), for every e > 0 and N > 0 there is a 
6 = ~(e, N) e (-- 1, 1) such that 

(5.57) max f(x) < (1 + e) max f(x) 
-l_<x_<l -l_<x_<6 

for every f ~  IGCAPIN, K (0 <_ K <_ N). Now, from (5.54) and (5.57) we obtain 

(5.58) If'(1)l-< (1 + e)c6N(K + 1) max f(x) 
- l < x < J  

for every f e lGCAP I~V,K satisfying (5.16) and (5.17), which, together with Lemmas 
5.1 and 5.2, implies (5.58) for eve ry f  e ]GCAP]~, x satisfying only (5.16). Therefore 

(5.59) [f'(1)l _< c6N(K + 1) max f(x) 
--l_<x_<l 

for every f e IGCAP[N.K satisfying (5.16). Now let 0 _< y _< 1. It follows from (5.59) 
by a linear transformation that 

2c6 
(5.60) [f'(y)[ _< ~ N(K + 1) max f(x) 

--l<x_<y 

<_ 2c6N(K + 1) max f(x) 
--l_<x_<l 

for every f e I GCAPIN, x satisfying (5.16). Finally, if f e [GCAPIN,r, then f ( x )=  
f ( -  x) e [ GC AP IN, K, hence (5.60) implies that 

(5.61) I f ' ( -Y)I  < 2c6N(K + 1) max f ( - -x)  = 2c6N(K + 1) max f(x). 
--l_<x_<l --l<x_<l 

By (5.60) and (5.61) the theorem is completely proved. �9 
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