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Rational Approximation to Lipschitz and 
Zygmund Classes 

P. B. Borwein and S. P. Zhou  

Abstract. In this paper, characterizations for lim.~(R,(f)/oJ(n-1))= 0 in H '~ 
and for lim.~o~ n'+'R,(f) = 0 in W ~ Lip c~, r > 1, are given, while, for Z, a 
generalization to a related result of Newman is established. 

1. Introduction 

Let C[_ 1,1] be the class of cont inuous functions which have r cont inuous deriva- 
tives on [ - 1 ,  1], for notat ional  convenience, let C t_ 1,11 = C~_ 1,1j, 

L i p ~ = { f ~ C t _ 1 , l l : ~ o ( f , t ) < t ' } ,  0 < ~ < 1 ,  

Z = { f ~  Ct_l . l l :  o92(f, t) < t}, 

where 

re(f, t ) :=  max Ilf(x + h) - f(x)l l t-  1,1-h], 
O<_h<_t 

~ t ) :=  maXo_<h_<,,,j=o~(--x)m-~(7)f(x+jh)t-1,1 

tlf/la: = suplf (x) l ,  [Ifll :=  Ilfllt-l,l~. 
x ~ A  

Also, for any set H, 

- mh] 

W'H = { f  ~ C[_ 1,1~: f(r)~ H}. 

Rational  functions are a classical tool in approximat ion theory that turn out 
to be more  convenient in many  cases than polynomials.  After the classical results 
of  Zolotarjov,  substantial progress was made in 1964 when Newman  (see [3]) 
showed that  [x[ is uniformly approximated by rationals much better than by 
polynomials.  Newman 's  result stimulated the appearance of  many  substantial 
results in this field. 
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In the case of polynomial approximation to Lip 1 functions, the error bound 
is well known to be O(1/n), and this is unimprovable. For rational approximation 
to Lip 1 functions the story is different. Newman conjectured that 

lim n R , ( f )  = 0 
n--* oo 

for any fixed f e Lip 1. Here, for f e C t_ 1,11, 

R , ( f )  = inf t lf-  rll, 
r E R n , n  

where 

and I-I. is the class of all polynomials of degree < n. 
Newman's conjecture was proved by Popov [7]. Further interesting results of 

Popov, Petrushev, and others concern rational approximation for the class of 
absolutely continuous functions, bounded variation functions, and convex func- 
tions (see [6]). For example, they established the following results: 

1. I f f  is defined on [ -  1, 1] and f(') is absolutely continuous for r > 1, then 

R , ( f )  = 0 n - r - 1  max If('+l)(x + h) - f(r+l)(x)[ dx , 
O < h < n  - I  - 1  

2. I f f  is defined on [ -  1, 1] and f(') is convex and bounded for r > 1, then 

R . ( f )  = O ( n - ' -  2). 

On the other hand, Newman [4] showed if f ~ Z and f ' ( x )  exists almost 
everywhere on [ - 1 ,  1], then 

lim n R , ( f )  = 0, 

and thus gave another proof to his own conjecture. 
A natural question now arises: If dropping the assumption that f ' ( x )  exists 

almost everywhere (which is guaranteed by such conditions as absolute continuity, 
bounded variation, convexity, etc.), can we still get some benefit from rational 
approximation? 

Newman's work [5] shows that if f ~ Lip a, 0 < a < 1, and for almost all 
x e [ - 1 ,  1], 

lim h - ~ ( f ( x  + h) - f ( x ) )  = O, 
h--','O+ 

then 

lim n ' R . ( f )  = O. 
n ~ c o  
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(1) 

(2) 

Define 

Let co(t) be a nondecreasing continuous function on [0, oo) with 

co(t) > 0 for t > 0 ,  

o~(o) = 0.  

H ~ = { f  e C[_ 1,11: co(f, t) <_ co(t)}. 

In trigonometric approximation, the sufficient condition for which 1 

(3) E . ( f )  = o(co(n- 1)), n --* 0% 

is equivalent to 

(4) co(f, t) = o(co(O), t ~  0 + ,  

is exactly the following condition: 

fj co(u) (5) t ~ T -  du = O(co(t)), 

where En(f)  is the best uniform approximation to f by nth-degree trigonometric 
polynomials (see [1]). 

Moreover, we can show that if we want (4) to hold for all functions satisfying 
(3), then condition (5) is also necessary. 

It should also be noted that H '~ is not the class for which the rational 
approximation is better than the polynomial one. Szabados [9] proved that under 
the condition 

lim co(t) - - =  +oo,  
t - , 0 +  t 

there exists a function f e H ~' such that 

R~(f)  
lim.~sup ~ > 0. 

Following Newman, with some careful calculation, we prove the following 
theorem which gives a characterization for lim._.~o n'+~Rn(f) = 0 in W' Lip a for 
0 < c ~ <  1, 

Theorem 1. 

(6) 

if and only if  

(7) 

Let  r be a nonnegative integer, 0 < ~ < 1, f ( x )  e W" Lip cc Then 

lim n'+~R,( f )  = 0 
n--~ ao 

fish lim h-~ ] flr)(x + h) - ft')(x)l dx = O. 
h ~ O +  

t In (3) and (4) "o" can also be replaced by "O" or "~ ' ,  
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Remark 1. Recall that (see [6]) R,(x ~) = O(e-~'/~) for any positive noninteger e, 
so we see that the condition (7) for r = 0 cannot guarantee that f e Lip e without 
additional assumptions. 

In the particular case r = 0, we have the following theorem. 

Theorem 2. 
(1), (2), (5), and 2 

(53 

Assume f ( x )  e H'L Then 

(8) 

if and only if 

(9) 

Let go(t) be a nondecreasin9 continuous function on [0, oo) satisfying 

f l  ~~ du = O(~o(t)). 
U 

R. ( f )  
lim - 0 
. ~  ~o(n -1)  

lim [ f (x  + h) - fix)[ dx = O. 
h-~O+ ~ - 

Remark 2. From an example given by the referee, we see that condition (5') is 
required for Theorem 2 to hold for all f e H ~ This is another difference between 
rational approximation and polynomial approximation. 

In the Zygmund class we have the following theorem. 

T h e o r e m  3. 

(10) 

then 

(Ii) 

where 

Let r be a nonnegative integer, f ( x )  e W'Z.  I f  

F~(x) converges to zero in measure as h ~ 0+ ,  

lim nr+lRn(f) = O, 

{ f(~)(x + hi) - f(')(x) f~')(x) - f( ')(x - h2) 
F~(x) = max ht h2 

O < h  1,h2<_h, x + h  i , x - h z e [ - 1 , 1 ] ~ .  
J 

Remark 3. Since f( '+ 1)(x) exists almost everywhere on [ -  1, 1] implies (10), we 
see that Theorem 3 improves the result of Newman [4] mentioned above. 

2 Condition (5') is one of the "equivalence conditions" in [1]. 
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2. Proof of Theorem 2 

First we deduce (8) from condit ion (9). Fix an e, 0 < e < 1. Note  that  convergence 
in mean implies convergence in measure, so there is an h, > 0 such that, for every 
h , O < l h ] < h , ,  

mes{x: I f ( x  + h) - f(x)l _ ~co(IhD} < ~2. 

Write 

Sh := {x: I f ( x  + h) --  f (x) l  ~ e~o(lhl)}, 

we then have, for every h, 0 < lhl -< h~, and x e  [ - 1 ,  l ] \Sh ,  x + h e [ - t ,  t] ,  

] f i x  + h) - f (x )  l < ea)(lhD. (12) 

Let 
[~-I] 

Sh(~) = U Sjh/t,~-,l, 
j = l  

where [x] is the greatest integer not  exceeding x, then evidently, 

mes(Sh(e)) < e. 

Given n such that  

- -  . 

N L 30 J -> h~-I 

Set S :=  SN ,(~). Denote  

=[ - -  + J + l  1 Ij - 1  + j - 1  j = 0 ,  1,..  2 N -  1, N' -N-_l' ' 

A = {I~: 1 i ~ S , j  = 0, 1 . . . . .  2 N -  1}. 

Lemma 1. L e t I = [ a , b ] ~ A ,  

f ( b )  -- f ( a )  
l(x) - (x --  a) + f (a ) ,  

b - a  

then, f o r  all x ~ I, 

I f ( x ) -  l (x) [_  6r 

Proof. 
that 

and 

Since I ~ S, there is a y E I \ S .  For  any given x e I, we have a y;, ~ I such 

j N -  1 
lY--  Y'I - for some j, O_<j_< [e-l], [e- ' ]  

N - !  
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Hence, by (12), 

~ l f ( x ) -  f(Y)I < I f ( x ) -  f(Y;,)l + I f ( f ) -  f(Y)l 
< 2(o(eN-l) + era(N-l) < 3e)(eN-i). 

Thus it follows that  

b - x  
x - a ( f ( y )  _ f (b ) )  + ~ a If(Y) - l(x)l _< b - a - -  ( f ( y )  - f (a) )[  <_ 3o~(eN- i), 

and we get 

If(x) -- l(x)l <_ f f ( x )  -- f (Y ) I  + If(Y) --/(x)l -< 6o~(~N- 1). 

Now break up each I of {I j : I~  c S, 0 <_j <_ 2 N - 1 }  into K = [l /e]  equal 
subintervals. Denote the collection of all such subintervals by B. Note that 
rues(S) < e, so B contains at most  Ne of the {I j}, consequently B has at most 
N ~ K  < N subintervals. 

Lemma 2. 

then, f o r  all x e I, 

L e t  I = [a, b] e B, 

f ( b )  - f ( a )  
l(x) - (x - a) + f (a) ,  

b - a  

If(x) - / (x ) [  _< 2co(eN- i). 

Proof. Write 

and 

then 

g(x) = f ( x )  -- l(x) 

Ig(Y)I = max [g(x)], 
x~[a,b] 

19(x)] _< ]g(y) - g(a)[ < i f (y)  -- f(a)[ + f ( b ) -  f(a)a (y  - a). 

Since f e H '~ 

SO 

i f (y)  - f (a)[  <-- oo(ly -- aJ) _< co(eN- 1), 

f ( b )  -- f(a)" 
b - Z  (y - a) _< o)(eN- 1), 

I f ( x )  -- l(x)l < 2cn(eN-1). �9 
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Define L(f, x) as follows: For  each I e A w B, let L(f, x) be equal to f (x)  at the 
endpoints of the interval I, and be linear in between. Combining Lemmas 1 and 
2, we obtain, for all x e [ - 1 ,  1], 

(13) If(x) - L(f,  x)] < &o(eN- 1). 

Lemma 3 [2, p. 175]. Let f ~ C[_ 1,11 and r >_ 1. Then there exists an nth-degree 
polynomial p,(f, x) such that 

] I f -  P.(f)]l - C(r)~r(f, n-l) ,  

Itp~)(f)[] __% C(r)n'o#(f, n-1), 

where here and throughout the whole paper, C(x) always indicates a constant 
dependin9 upon x only (C(x) may have different values in different places). 

Let I = [a, b] be a subinterval in A u B. With x e I, by direct calculation, 

IPM(f, X) - -  g(pM, x)[ < P~(f' b) - PM(f, a)[( x a) -}- [PM(f , x) PM(f, a)] 
- b a ] 

<- 2]Ip'M(f) I]N- 1, 

and with Lemma 3, we have 

(14) ]p~(f, x) - L(PM, X)] < CMco(M-1)N -1 

Moreover, 

(15) I t ( f ,  x ) -  L(pM, X)[ ~ Cllf  - PMN <-- Co)(M-l) 

also follows from Lemma 3. 

L e m m a 4 [ 4  3 . Let T ( x ) = ] x - l l + ] x + l ] - 2 ] x ] , t h e n  

N* 

L(f, x) -- L(pM, x) = ~ yj T(2j(x -- x j)), 
j= l  

where N* < 5N, [yj[ < Cco(M -1) (see (15)), - 1  _< xl  < xz < "'" < xN, < 1, and 
each 2j is either N or NK. 

Lemma $ [4]. There exists a t(x)~ R2m+ l,2m+ 1 such that 

C 
I T ( x )  - t(x)  l N e -  " / ~  

l + x  2 

on the whole line. 

Write 

N* 

R ( x )  = x j)), 
j = l  
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f r o m  L e m m a s  4 a n d  5, 

N* 1 
[L(f, x ) -  L(pM, X ) -  R(x)l < Cco(M-1)e -'f2/~ j~=l 

- 1 + ,~ . (x  - x j) 2 '  

let x e [ x i - .  xiJ, and ,  say  j > i, f r o m  2j > N a n d  I x -  xj[ > l i - - j l N - 1 K  -1, we 
have  

1 K 2 
< 

1 + 2 ~ ( x -  xj) 2 - 1 + [ i - j [  2 '  

a s imi la r  conc lus ion  a lso  ho lds  for  j < i. S u m m i n g  over  all j we get 

N* 1 ~ 1 
F~ ~(x x~) ~ -< tr ~ f '  

j=l 1 + -- i=o 1 + 

so we o b t a i n  for  all x ~ [ - 1 ,  1] that 

1 
(16) IL(f ,  x) - L(pM, x) -- R(x)l < Ce-2co(M-~)e -'f~7~ j~=n__ 

1 + j 2  

< Ce-2co(M - 1)e- m.f~ ' 

and  c o m b i n i n g  (13), (14), a n d  (16), we get 

(17) I I f  - PM(f) -- RII < I l f  - g ( f ) l l  + IIL(pM) - PM(I)II + l iE(f)  - L(pM) -- Nil 
< 6CO(eN -1)  + CMCO(M-1)N -1 + Ce-2co(M-1)e-x~/m-~. 

L e m m a  6.1. Let co(t) be a nondecreasing continuous function on [0, oo) satisfying 
(1), (2), and (5). Then there exists a constant M o > 1 such that,for all t, 0 < t < M o 1, 

co(Mo t ) 
- -  <- � 8 9  

co(t) 

Proof. Let  

f ~ co(u) 
~ -  du < Mlt-lco(t). 

S u p p o s e  0 < t < t l  < 1. Since co(t) is nondec reas ing ,  

du >_ , ~ du 

ft  du >- co(tx) u2 
1 

= r 1 -- 1), 

hence  

cO(tl)(t ~- 1 _ 1) < M t t -  l~o(t), 
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thus there is a constant  M 2 for 0 < t < t 1 < 1 such that  

t ; l co ( t l )  < M 2 t - l c o ( t ) ,  

and in the case 0 < t~ < t 2 < 1, 

r176 f t t2du f t  t2 co(u) r 
- -  < M 2 du < M 1 M  2 - - ,  

t 2 , u - ~ 7 -- t 1 

or 

o)(t2) log t2 co(t1) 
_ _  _ < M t M  2 - -  

t2 tl t l  

In  particular when t2 = eZM~M2tl, 

co(t2) 1 co(t1) 

t 2 -- 2 t 1 

Take M o = e 2ulu2, then, from above discussion for M o t < 1, 

co(Mot ) 1 co(t) - - <  
M o t  - 2 t 

that  is, 

co(Mot) 
- -  <_ � 89  o. �9 ~o(t) 

Lemma 6.2. L e t  oJ(t) be a nondecreasing cont inuous func t ion  on [0, oo) sat is fying 
(1), (2), and (5'). Then  there ex is t s  a cons tant  M 1 > 1 such tha t , for  all t, 0 < t <_ 1, 

co (M;  10 
- - < _ � 8 9  

co(t) 

Proof. The p roof  is somewhat  similar to that of  Lemma 6.1. Let 

f l  c~ <_ Aco(t), du 
U 

then, since co(t) is mono tone  for 0 < tl < t, 

r log = co(t1) - -  < du < Aco(t), 
U U 1 I 

therefore when t / t  a >_ e 2a we have 

co(t0 _< �89 

Let 

M 1 = e2A 
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it follows that, for all t, 0 < t < i, 

m ( M 1 1 0  < �89 

Fix a natural  number  l satisfying 

8 < 2- t  < 2e, 

set 

8o 1 = M~,  

then 

(18) 8o 1 ~ Mo(loge)/( log2) = 8-(logMo)/(log2).  

On applying Lemma 6.1, we have 

(19) e)(eo ln-1  ) -~< IM o t~o'Ml-lo n -1,) 

< 2 - t e o l m ( n - ! )  

_< 2880 l~o(n- 1). 

Take 

and 

[;o 1 N = /~1/2 , 

rn = [ ~ -  ~/2], 

F rom (17)-(19), 

U f - p M ( f )  - R [I 
< C{c_0(81/2n-1) + 81/2ag(n-1) -b e- l - ( l~176176 ,/2~ ,/4(.O(rt_ 1)}, 

thus, for small enough 8, 

Ilf - P M ( f )  - R[I < 6o9(~1/2n- 1), 

while 

deg(p~(f)  + R) = 15Nm + M < n. 

Taking Lemma 6.2 into account,  we obtain 

]i f  - P~ t ( f )  - RH < C21~176162 n -  1) 

and we have proved the sufficiency part. 
Now we turn to the necessity part  of Theorem 2. 

P. B. Borwein and S. P. Zhou 
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Lemma 7 [6, p. 162]. Let r(x) e R .... then 

f l Ir'(x)l dx <_ 2nllrll. 
-1  

Now applying Lemma 7, in a way similar to the proof of Petrushev and Popov 
[6, p. 163], we have 

Because 

Xfh [h-ll 
I f (x  + h) - f(x)l dx < Ch ~ R,(f). 

n = l  

R.(f) 
lira O, 
._ .~  co(n- 1) 

there is a sequence e,, lim._~ o e, = 0, such that 

By standard method, 

R.(f) <_ e, oo(n-1). 

[h- ~/21 
2 R.(f) < C 

n= l  

co 1 co(u) 
E - < c E  u 

n= l  n= l  d 1/(n+ 1) 

similarly. 

~h I (/)(U) 
- -  du <_ C du, 

1/2 7 

Therefore, 

[h-l] ~k 1 (/)(U) 
R.(f) < C max ~k ~T- du. 

n=[h-U2]+ 1 h - 1 / 2 < k ~ h - I  

[h- 11 [h- 1/2] [h- 1] 

2 R . ( f ) =  2 R.( f )+ 2 R.(f) 
n = 1 n= 1 n=[h-l/2]+ 1 

~" co(u) ~1 co(u) 
<- [ ~.2 du + max ekJh ~ - c l u .  

Jhl/2 . U h - I / 2 ~ k < h - I  

Combining all the above estimates and condition (5), we get 

;x , f(x + h ) -  f(x), dx <_ C{hl/2co(hX/2) + max {ek}CO(h)}, 
, X-I- hE[-- 1,1] h - l / 2 ~ k ~ h  -1 

lim max {ek} = O, 
h--+O h - l / 2 ~ k < h - I  

and, with Lemma 6.1, 

ht/2oo(hl/2) 
< 2-,.o+ 1 

,o(h) 
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where 
log h 

m 0 = 
2 log M 0" 

Altogether, we have now obtained (9) and finished the proof of Theorem 2. 

3. Proof of Theorem 1 

It is easy to deduce (6) from condition (7) by using Theorem 2 and the following 
lemma: 

Lemma 8 [6, p. 244]. Iff ~ C[_ 1, 1], then the estimate 

R , ( f )  < C(r)n-r-2 ~ jRj(f(,)),  
j=O 

holds. 

Now we turn to the necessity part of Theorem 1. 

n > r ,  

Lemma 9 [33, Let R(x) ~ R . . . .  A c ( -  oo, oo). Then, for each given 6 > O, there 
exists a set e c ( -  ~ ,  co) with mes(e) <_ 6 such that, for  all x ,  x' ~ A \e ,  

2n 
IR(x) - RKx')l < ~-  I I R N A I X  - x ' l .  

Lemma 10 [3]. Let r > 1. Assume f e C t _ , , l  I and 

R j ( f )  l ll,+l) 
< 

Then, fi)r each given 6 > 0, there exists a set E] ~ ( -  oo, ~ )  with mes(E]) <_ 6 such 
that f ( x )  has r continuous derivatives on A,, := [ - l ,  I ] \E]  and 

l.~.s'"~'~, A,) :=  LI.U~(x) - R ~ , % L  x)llA,, 

-< a" (k_>t./2,\U~l 
where R,(.]~ x) is the best rational approximant to f f rom R, , , .  

Let r _> 1. In our case, from Lemma 10, for each given 6 > 0, there exists a set 
E] = ( -  ~ ,  ~ )  with rues(El) _< 6/2 such that 

' " "  z 1.~.i , A.) _< 6" t k > _ ~ . / 2 , \ ~ )  

=o(T +') 
= o ( a  "n ~), n ~ oo.  
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Write 

(20) l . ( f  ~'), An) = 6-'e*(n + 1) -=, 

e* ~ O ,  n ~  oo, 

t .(x) = R~.'~(L x). 

For any given h > 0, fix k satisfying 

then 

2 k < h - 1  < 2 k + l ,  

k 

Iftr)(X + h) - ft~)(x)l ~ 212~(f t'), Av) + ~ IAhPj(x)l + IAnPo(X)l 
j = l  

for x, x + h e A2,, where 

Po(X) = t l (X  ) - -  to(X), 

P , (x)  = t~ (x )  - t~,_,(x), 

and 

j = l ,  2 . . . . .  k, 

Ahf(X ) = f ( x  + h) - f(x) .  

By (20), we can find a sequence of sets e* with mes(e*) _< 6j/3 such that, for 
x ~ [ -  1, 1]\e*, 

l o ( f  ~r), [ -  1, 1]\e*) < 6o'er ,  j = 0, 

I z j ( f  ~), [ -  1, 1]\e*) < fifre*~Z-J', j = 1, 2 . . . . .  k. 

At the same time there is another sequence of sets e~ with mes(e~) _< 6j+ 1/3 such 
that, for x e [ -  1, 1]\e~, 

~ - r  c,* 9 - J  ~ I v ( f  ~), [--  1, 1]\e~) < ,.j+ lo2j. , j = 0, 1 . . . . .  k - 1. 

While, by applying Lemma 9, we have the third sequence of sets e~' with 
mes(e~) _< ~/3  such that, for x, x + h ~ [ -  1, 1]\ey, 

IAhPj(x)I _< 2nb;~h]lPjllt_,,q\,,'j, j = O, 1 . . . . .  k. 

Altogether for x, x + h e [ -  1, 1]\ej, 

2 
IAhPot < 6o h(l~ [ -  1, 1]\eo) + I i ( f  ('), [--1,  1]\eo) ) 

C(r)  
< b~0T/eoh, j = 0 ,  

2 
IAhejl < ~j 2Jh(12J(f ~, [ - 1 ,  1]\ej) + lzj-~(f ~'~, [ - 1 ,  1]\ej)) 

C(r) 
< ~ evh2 j ~  j = 1, 2 . . . . .  k, 
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where 

t t/ ej := e]  to e j _  1 k9 e j ,  mes(ej) < 6j, e"  1 = ~ ,  

Zo = max{z*, a*}, 

z2J = max{e}_,, z}}, j = 1, 2 . . . . .  k. 

Choose 

a 0 =- (go)l / ( r+2)  + (g2,2i(1-~)) 1/(r+2) (gO)l/(r+2), 

i=1 

6j  = (eO) 1/(r+2) + (ezi2i(1-~)) 1/(r+2) (g2J2J(1-~)) 1/(r+2), 
i=l 

then, for x, x + h~A2~,\e:= A*, e = Uk=o ej with mes(e) < 6/2, 

I f(r}(x + h) - f(~ 

j = 0 , 1  . . . . .  k, 

j = l ,  2 . . . . .  k, 

<_ C(r)6-'e2~2 -~k + C(r)6 - r -  lh 

x ( Z z~ <'+2)2j(1-=)/('+2) + max{z~ ('+1)} 
0 <_j<_ k/2 j>_ k/2 

~< C ( r ) ( ~ - r - l ( h ( l + e ) / 2 +  max{z~}h ~) 
j>_k/2 / 

:= Crh6-'- lh~ ' 

2j(1 -=)/(r+ 2)) r+ 2 

k/2<j<_k ' 

where 

lim 
x+hEA*,h-'*O+ 

for each x e A*. 
From the above discussion we obtain 

~ h = O  

mes{{x} w {x + h}" h-~lf( ' )(x + h ) -  f(r)(x)[ > O'h 6 - r - l }  : =  mes(E~) < 26. 

Thus, for any given e > 0, we have 

f 
l - h  

h -~ [f(~(x + h) - f(~)(x){ dx 

< h - = ( f ~  + - 1 , 1  - h ] \Eh~  ) ]f(r)(x + h ) -  ft')(x)[ dx 

<_ 2z + 2~rhz -~- * 
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since f t r )~  Lip c~, so, for small enough h, 

h -~ If(r)(x + h) - f(r)(x)] dx  < 3e. 

So we have proved  T h e o r e m  1. 
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4. Proof of  Theorem 3 

Fix an e, 0 < e < �89 and assume r = 0. There  is an h e > 0 such that, for every 
O < h < _ h ~ ,  

mes(Sh) := mes{x: F~ > e} < e, 

we then have, for all 0 < hi, h2 < h, and x E [ -  1, 1]\Sh, 

(21) f ( x  + hi) - f ( x )  f ( x )  - f ( x  -- h2) 

hi h2 - 

Given n such that  N = [e4/Sn/84] _ h i  1, set S := SN-,, 

Ii-- - 1 + - 7 ,  j=0,1, 2N-1, 

{ , } A =  l f m e s ( I  i c ~ S ) _ < ~ , j = 0 ,  1 . . . . .  2 N - 1  , 

and break up each interval in 

{ 1 } 
1i: m e s ( I j ~  S) > ~ , j  = 0, 1 , . . . , 2 N - -  1 

into K = [1/el equal subintervals.  Denote  the collection of all (at most  
4 N e K  <_ 4N) such small subintervals by B. 

L e m m a l l .  Le t  I = [ a, b ] s B, 

f ( b )  - f ( a )  
l(x) - 

then, for  all x ~ I, 

Proof. Let 

and 

(x - a) + f (a) ,  
b - a  

I f (x)  -- l(x)l ~ eN-1 .  

g(x) = f ( x )  -- l(x) 

[g(y)[ = max  ]g(x)[. 
xE[a,b] 
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Wi thout  loss we may  suppose y <_ (b - a)/2. F r o m  g(a) = 0 and f ~ Z, 

Ig(x)l <- 21g(y)l - I g ( 2 y  - a)l < Ig(a) + g(2y - a) - 2g(y)l 

= I f (a)  + f ( 2 y  - a) - 2f(y)l < [y - a[ < 8N -1,  

which is the required result. 
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L e m m a  12. Let  I = [a, b] ~ A,  

f ( b )  - f ( a )  
l(x) - (x - a) + f (a) ,  

b - a  

then, f o r  all x e I, 

[ f ( x )  - - / ( x ) l  < 168N- 1. 

Proof.  Write 

and 

then, from (21), 

g(x) = f ( x )  -- l(x) 

[g(y)[ = max  Ig(x)l, 
x e [a, bl\S 

_g(y ) (b -  a )  f ( b )  - f ( y )  f ( y )  ~ f (a )  

( y - a ) ( y - b )  = b y y - a  - 
< 8, 

that  is, 

(22) Ig(Y)l-< 8 N - l -  

N o w  we show that  

(23) sup [g(x)[ < 168N -1. 
x~[a,b]nS 

Suppose (23) does not  hold, which is equivalent  to the existence of a z E S such 
that  

(24) 

Assume by symmet ry  that  

Since 

Ig(z)l > 168N -1 .  

b m a  
z ~  

2 

1 
mes([a, b] c~ S) _< ~ ,  
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there is a point u ~ [a, (b - a ) /2] \S  such that 

(25) 

consequently, 

g(u)(z -- a) 

(u - -  a ) ( u  - z )  

1 
u - a > _  

8 N '  

g(z) = g(z)_ - -  g(u) g(u) -- g(a) 

u - - z  z - -  u u - - a  

f(z)_ - f ( u )  f ( u )  - f ( a )  

z - u  u - - a  

which follows from (21) together with u ~ [a, (b - a) /2]\S.  At the same time, by 
(22) and (25), 

g(u)(z -- a) 
( u Z - ~ ( u - - z )  <- 8 e U - ~ l u -  z1-1, 

and, with assumption (24), we get 

Ig(z) l q(5) > _ _ .  
(u - a)(u - z) u - z 2 l u - z l  

That is, 

Ig(z)l < 2~lu - zl < 2~N- 1., 

which leads to a contradiction to (24). Therefore Lemma 12 follows from combin- 
ing (22) and (23). �9 

Define L ( f ,  x) as follows: For  each I e A u B, let L( f ,  x) be equal to f ( x )  at the 
endpoints of the interval I, and be linear in between. Combining Lemmas 11 and 
12, we get, for all x e [ -  1, 1], 

(26) If(x) -- L(f, x)] < 16eU -1. 

Applying Lemma 3, we can find an Mth-degree polynomial PM(f, X) such that 

][f - PM(f)[[ <-- C(r) M-~,  

(27) [[P~t(f)[[ -< C(r)M. 

Hence, for I = [a, b] e A w B and x e I, on considering 

Pu( f ,  a) = L(pM, a), PM(f, b) = L(pM, b), 

we have 

( P u ( f  , x) - L (pu ,  x))(b - a) 
( x Z  a ~ - - - ~  = ]Pu(f' fl) - P~t(f, ?)1 

--[[P~t(f)[[ ] f l -  Y[ 

<_ C N - I M  
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f rom (27), where  fl, 7 e (a, b), t ha t  is, 

(28) IPM(f, x) -- g(p~t, x)l _< C N -  2M 

for x ~ I .  

At last ,  as in the  p r o o f  of  T h e o r e m  2, us ing  L e m m a s  4 a n d  5, we can  d e d u c e  
t ha t  there  is a r a t i o n a l  R(x)E R42Nm,42N m such t ha t  

(29) l iE(f)  - g(p~t) - Nil <- Ce-  2 M -  Xm -5. 

A l t o g e t h e r  f rom (26), (28), a n d  (29), 

IIf(x) - PM(f, x) - R(x)ll < C{eN -1 + N - 2 M  + e - Z M - l m - 5 } .  

N o w  choose  

N = e 4/5 , 

m = E~-4/5], 

a n d  

W e  have  

a n d  

M = [n~9/~] .  

I I f  - pM(f) - e l l  ~ C~ 1/5n-1 

deg(pM(f)  + R) = 42Nm + M <_ n. 

F o r  gene ra l  r > 1, the resul t  (9) fo l lows by  a p p l y i n g  the a b o v e  resul t  a n d  L e m m a  
8. The  p r o o f  is comple te .  �9 
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