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MARKOV’S AND BERNSTEIN’S INEQUALITIES ON
DISJOINT INTERVALS

PETER B. BORWEIN

1. Introduction. In 1889, A. A. Markov proved the following
inequality:

IngQuaLIiTY 1. (Markov [4]). If p, is any algebraic polynomial of degree
at most n then

2"

”pn,H[a.b] = h—a Ilpn“[a,b]
where || || 4 denotes the supremum norm on A.
In 1912, S. N. Bernstein established

INgQuALITY 2. (Bernstein (2]). If p, is any algebraic polynomial of
degree at most n then

, n
Ipn (x)l é ((x _ (l) (b __ x))1/2 Hpn”[a,b]
for x € (a,b).

In this paper we extend these inequalities to sets of the form
la, b] \J [c, d]. Let II, denote the set of algebraic polynomials with real
coefficients of degree at most #.

THEOREM 1. Let a < b = ¢ < d and let p, € T,. Then

X

- 1/2
Ipn,(x)l = ((CZ _ :XJ) ((/) _ x)gc — a))l/z Hpnll[a,b] U [e.al
for x € (a,b).

We note that Inequality 2 is a special case (b = ¢ = d) of the above
theorem.

CoROLLARY 1. Let a < b < ¢ < d and let p, € M,. Then

o\ 12
lp’(x)' é (;C . 2) ((x __ C)(’:li _ x))l/2 HPHH['I,Z)] U le,aly

for x € (¢, d).

Received May 1, 1979.
201



202 PETER B. BORWEIN

COROLLARY 2. Let a < b < ¢ < d and let p, € 1L,. Then,

d — b\ o’
lpa' || tear = (d——E) 7 Ibllea viea

Thus, we obtain sharper bounds than those we achieve by applying
Inequality 1 or Inequality 2 directly to [c, d].

On sets of the form [—b, —a] \J [a, b] we can derive an asymptotically
“best possible” form of Markov's inequality.

THEOREM 2. a) If 0 < a < b, n is even and p, C II,, then

9\ #%
[0 ||l i—bat U ety = (1 + ;E) 7 = o2 ballio—a v

provided that n is large enough to satisfy

b;(;naz + (b ;;) CL) (1 _|_ 2)266(02"02)5abn g 1.

b) For each even n there extists p, € 10, so that

2.
n'b

Hpﬂ’H[—b,ka] Uled] = g2~ i HPnll1—0,—a1 U ta,01

COROLLARY 3. Suppose n is even and n = 50. If p, C 11, then
9\ 2n°
on' -2 ~nune = (1 = P) 3 Hpalli=2,~11 U 11,21

2. Characterizing polynomials that maximize Markov’s or
Bernstein’s inequalities. In this section we show that polynomials
that maximize |p,’(¢)|, subject to ||p,ll ; £ 1 where I is compact, must be
of the form

ax” + Bx"1 — g, o(x)

where ¢,_» € I,y is the best approximation to ax® + 8x*! on I. In
particular, we show, as Bernstein did for the interval [0, 1] (see [2]), that
the polynomial that satisfies ||p,]| ; £ 1 and has maximum derivative at
max 7 is of the form

pn(x) = ax" -~ Qn—l(x)

where ¢,—1 € II,—; and ¢, is the best approximation to ax" on I.

TurorEM 3. Let I be any infinite compact set of real numbers and let
¢ € R. Suppose p, € 1, satisfies

= max ¥
Pall r gnertn [lgnll 2

an7=0
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Then, there exist o and 8 so that p,(x) = ax® + Ba™1 — s,_2{x) where
Sp—z € IL,_z 15 the best Chebyshev approximation to ax® + px" ' on I. (The
best Chebyshev approximation is the one thal minimizes the supremum norm.)

We need the following lemma for the proof of this theorem:

LEmMaA 1. Let p, € 1L, and let ¢ be any point that is not a root of py.
Suppose that there exist at most kB < n — 2 points x1 < x3 < ... < xy where
Pn changes sign. Then there exists g, € 11, so that

a) sgn ¢, (¢) = sgn p,'({),

b) sgn q,(x) = —sgn p,(x), except possibly at the roots of q,.

Proof. Let

56) = — (sgn pa(—0)) (—1* [T (e — %)
and consider ¢,¥(x) = s(x)(x — ¥)2 Then, if s(¢) # 0,

@:;Ji). = =GO+ = 0IC)

which as a function of y changes sign at ¢{. Thus, for an appropriate vy close
to {, ¢, satisfies a) and b).

Proof of Theorem 3. Let p, satisfy the assumptions of the theorem (that
such a p, exists is a simple consequence of II, being finite dimensional).

Suppose p, has at most # — 2 changes of sign and suppose p,({) # 0.
If g, satisfies the conclusion of Lemma 1, then for sufficiently small ¢ > 0,

bn + equll 1 < 20l 7 and (£, () + e/ ()] > 2 ()]

which contradicts the assumption that p, satisfies (1). Now suppose
p.(8) = 0 and p, changes sign at x; < ... < x;. If

gu(x) = — (sgn Pn(—oo))(—l)k(l;l1 (x — xi)) x —¢)°
then, for sufficiently small ¢ > 0,

1£n + €qall r < lIpull; and  [p)/(©) + g/ ()] = [£/ )]

which also contradicts the assumption that p, satisfies (1). Thus, p, has
at least # — 1 sign changes.

We now suppose that the coefficient of x™ is non-zero for p,. It follows
that p, has n real roots x; < x3 < ... < x,. We claim that in each interval
(%}, x,41) there exists a point y; € I so that

@) eyl = lpull 1

If (2) is false then as in the proof of the lemma, we can, for a suitably
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chosen y, construct

s) = — Gen pu(—eo) (-1 ( [T 6 =) ([T v = 20)

=42
X (= y)*
where
a) sgn ¢,'(¢) = sgn p,/(¢)
and
b) sgn g, (x) = ~sgn p,(x),

except possibly for x € {x1, ..., x,, ¥} \U [x,, x,11]. We note that since the
y of Lemma 1 can be chosen from an interval, we may assume that
P2 (¥)| # [lpall 1. It follows from a), b) and the assumption

”an[zj.xjH] < ||pn”1
that for sufficiently small ¢ > 0,

Hpn + Eqn” 1 < ”an 1

and

' () + e’ )] = |4 (0.
This contradiction establishes (2).
We may by a similar argument show that there exists y, so that
Yo € LM (—00,x1) or 3, €IN (%4, 00)

and

[a )] = llall 1.

Thus, if p,(x) = ax™ + Bx"™! — s5,_2(x) where a # 0, then p.,, achieves
its maximum norm, with alternate sign, at # points <y < oo < Yy
in I. This suffices to establish the theorem.

If p, is actually of degree n— 1, then p,(x) = x"! — gn2(x). A
similar argument shows that ¢,_.(x) is the best approximation to gx"!
on I.

THEOREM 4. Let I be any infinite compact set and let ¢ = & = max I.
Suppose p, € 11, satisfies

@ 25O1_ a6

||Pn||1 qn€lly HQnHJ )

an=0

Then p,(x) = ax™ — g,—.1(x) where g, € I, and Qn—1 15 the best Cheby-
shev approximation to ax™ on I.
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Proof. Let v = min I. The preceding theorem guarantees the existence
of n — 1 points vy < %; < ... < &,-1 < & where p, changes sign. We first
show that p, has # distinct roots in [v, 8]. Suppose p, does not change
sign at any point in [y, 8] other than x, ..., x,,. Consider

0'(&) = —sen <pn<a>>('jj] 6 = 5)) =

= §,(x)(y — %)
then

d gnlz ( 26”2
dx

; = Sn,(g_)<y - f) - S"(f)

Since sgn s,/ (¢) = sgn 5,(¢) # 0 we may, for a suitable choice of ¥ >,
set ¢, = ¢,Y where

a) sgn tn, <§-) = sgn pnl (g-)
b) sgnt, = —sgn p, on I.

Thus, for sufficiently small ¢ > 0,
pn + el < Ipallz and  [p) ) + e’ ()] > |2/ ()]

which is a contradiction. Thus, p, has » distinct roots v £ x; < %2 < ...
< x, < 8. We now show that

12, = [2.(V)| = £l 1.

This, coupled with (2) of the proof of Theorem 3, suffices to complete the
result. We will only show that |p,(8)| = |p.||; since the proof that
1pa(¥)| = || pall 1 is similar. Suppose [$,(8)] < |lpnll 7. Let

n—1
gn(x) = —(sgn 1>n(—00))(—1)"ﬁ1(1_11 (x — xz-)) (y — %)
where, as before, y > { is chosen so that

sgn gn/ (g‘) = sgn Pn’ (g-)

Then, for sufficiently small ¢ > 0, p, + g, contradicts the assumption
that p, satisfies (1).

3. Bernstein’s inequality on [a, b} \J [c, d].

Proof of Theorem 1. Let A = [a,b]\J [¢,d] and let » € 4. Let p, € II,
satisfy

Ipn, (7') gn’ (T)

= max
lPall 4 el |10n]]a
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and

1£nlla = 1.

We may, by the proof of Theorem 3, assume that P, has all its roots in 4
with the possible exceptions of a root \; € (b, ¢) and a root \s > d or
A2 < a. We treat the case where \; € (b, ¢) and A > d. The other cases
proceed analogously. We observe that if we increase ¢ or a and if we
decrease b or d we strengthen the inequality in the statement of the
theorem. Thus, we may also assume that for y ¢ {a, b, ¢, d},

[La)] =1 and [p)/ ()] # 0.

(If there is no point z € (b, ¢) where |p,(z)| = 1 then we can deduce the
result from Inequality 2.) We have guaranteed the existence of points

b<a<i<M<8H<e<c
and

d < e <8< Ay <y
so that

P/ () =0  i=1,23
and

|pa(8:)] = 1 i=123,4

We deduce from Theorem 3 and a comparison of roots and leading terms
that

(b’ (%)) (x — @) (@ — D) (x — ¢) (x — d) (x — 81) (& — 82) (x — &)

X (x = 54)
= nz((Pn(x))z - 1)(36‘ . 51)2(95 - 62)2(35 = 63)2.
Thus, if 7 € (a, b),
F 2 TLZ(T — 62)2 . (T - 61)2
R Ty G Ty Y )y Y gy
(r — &))" < n'(r — ¢’

=) —8) T | —a)F =) — 0 — )

and the result now follows.

Corollary 1 follows immediately from Theorem 1. Corollary 2 is a
consequence of Corollary 1 and the next inequality.

INEQUALITY 3. (Schur (3] p. 41). If p,—y € I,_; and

Ipn—l(x)! é ((.’)C — a)(-Lb — x))1/2 fora <x < b,
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then

2Ln
Hpn—l(x)ll[a.b] = b—a
4. Markov’s inequality on [—b, —a] \JJ [a, b]. We require the follow-
ing results for the proof of Theorem 2.

THEOREM 5. (Achieser [1], p. 287). Let n be an even integer. The poly-
nomial p, € II, with leading coefficient 1 that deviates least from zero on
[—b, —a) \J [a, b] is

where T, 1s the n'* Chebyshev polynomial (T, = cos n cos™'x).

LEMMA 2. Let n be even and let S, be defined as in Theorem 5. Then,

(S|t U ta0 _ |5’ ()] _ 2nzb .
ISI—s—a vt ISllcs—a Ut B —a

The proof of Lemma 2 is straightforward and is omitted.

LeEmMA 3. Suppose n is even. Then

b4 (0] n’b
max = -
onctls |[Pal ot Utat B° — @
P70

Proof. This is a direct consequence of Theorem 4, Theorem 5 and
Lemma 2.

LemMma 4. (Soble [5]). If p, € I, has non-negative coefficients then, for
x>0

PHOIESS" X0
Proof of Theorem 2. Suppose p, € II, satisfies

Ut llvcarvien _ o 180 |bma U s
Ubnllimv—at Utas)  anettn |1l l(~01—a1 U 1avt1

Suppose ¢ € [a, b] is a point where
12" = 1Pl icv-at U 10

and

2

b
1 /) > b—zﬂj*aé Hpnll t=b.~a1 U 1a.01-
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Then, by Inequality 2 applied to [a, b]

n’b n

A (o T
and

606 -asEe)l

Since either (b — ¢) = 3(b — a) or (f — a) 2 3(b — a), either

2(b b — o’ 20 b’ — 4

6-psTEYE =0 o ¢y g20tO0 o)

Suppose
_ 20+a) (" —d") _ 40’ —d")
@ G- =25 0o0) 20 ma)
Then, by Lemma 3 and (2), for » = 10,
’ 2

- [2n lib.—a) U 1ats £ v 12" () <2 ¢ ]

pn€llp Hpnl I[—b,—a] U la,81 pn€lly Hpnl I[-!'y—a] U [z 31 § —a

Pl Pn==0

2 2
= ( 4(bzn_baz))2 \ = (1 =+ ’%) ?n_iaz
b—————~] —a
bn

Suppose now that (¢ — @) < 4(b% — a?)/bn?. Write p,(x) = G ()7, ()
where g, (x) has all its roots in [—b, —a] and 7»(x) has no roots in
[—b, —a]. By Theorem 3, p, oscillates between its maximum and
minimum at least » times on [—b, —a] \J [a, b]. Hence, p, has at least
n-— 2 distinct roots in [—d, —a) \J [q, b]. By the proof of Theorem 3,
between any two roots of p, there is a point of [—b, —a] \J |a, b] where p,
attains its norm, Suppose now that m > 2 + 7/2. Then, p,(x) — p,(—x)
€ II.—1 has at least #/2 roots in [ —b, —a] and at least n/2 roots in [a, b]
and hence, p,(x) = —p,(—x). However, if P» 18 even, then it follows from
Theorem 3, Theorem 5 and Lemma 3 that #» = S, and we are done. Thus,
we may assume m < n/2 + 1. Similarly, since 7, has at least # — 2 roots
in [a, b], we may assume that 2 £ #n/2 + 3. We may also assume that
n = 10.

m
a+¢
Also, since g, (x) = all(x + x,) with x; = a,

|£Zm(§')| _ : (i‘ + xi) ( Ee a) ( 2(b2 _ az))<n+2)/z
) [qm(a)[_na+xi §H1+a+xi =\I+ abn?

< eﬁ(bQ—az) /5abn.

@) = 2 10,01,

B) e’ )] =
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By Inequality 1,
2
n
2\, +3
2h (2 )
G) IOl = 3= lInllen =7
Thus, by (3), (4) and (5),
22" ] = gn" O]+ | ) ]lgm ()]

|I7allta.-

2
+ 2 “(2
ﬂ;ﬂ“ HPnH le,8] T “—[;'—_ 7 ”’hH[a.blmm(fﬂ

fIA

2
n
2('2' =+ 3)

KiE _ M ’ Qm(g')J_
= 4a ”Pn“[a,b] + b — a “Pn”[a-bl |Qm(a)I
V' —db | (b +a) ( 6)2 6(b2—a2)/5abn) n'b
= ( 3abn + 2b 1+n ¢ b'—a’

X Ilpnllia.b]-
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