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Various quadratic mean iterations like

a,+b, (g, +b)
2 7 LT 8a b,

a1 =

are explicitly analysed. The limits of these iterations and the uniformizing functions
are usually expressible in terms of infinite products of the form

¥

IT (1 +ag™).

n=0

Thus we provide a storehouse of examples of mean iterations which are neither
elementary nor intimately related to the arithmetic-geometric mean iteration.

{1 1991 Academic Press, Inc.

1. INTRODUCTION

Various mean iterations, for example,

. a,+ hn
Apyy = 2

and

2
b e
" Ya, + 1/b,

have algebraic limits. In the above case, if we commence with ag, b,>0
then the common limit of {a,} and {b,} is \/aoh,. While another small
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RATIONAL MEAN ITERATIONS 365

class of examples are related to the arithmetic-geometric mean iteration of
Gauss, Lagrange, and Legendre, that is

_a”+b’1
an+1 e 2
and
bn+1 = anbn'

In this case the common limit commencing with a,:=1 and b, :=x is,

/2
J’”Z do
o J1—(1—x%)sin’@

which is (essentially) an elliptic integral of the second kind and is the
solution of a linear differential equation of the second order with algebraic
coefficients. For much more on these matters see [3].

The kind of examples we wish to explore in this paper are iterations like

an + b" (an + bn)3
ady 1 = 2 ’ bn+1: 8a b
and
an + bh (a)l + bn) anbn
an+1: 2 s bn-+—1= a2+b2

In both cases the limits are expressible in terms of non-clementary (in fact
hypertranscendental) infinite products, as are the uniformizing parameters.
Definitions of these terms are provided in the next section.

2. THE MAIN CONSTRUCTION

For the purposes of this paper a mean is any function of two variables
M:RxR—R

defined in some neighbourhood U,, of (1, 1)~ {x>0, y>0} that satisfies

M1, 1)=t (2.1)

M(ix, iy)=AM(x, y), (x, y), (4x, Ay)e Uy (2.2)

min(x, y) < M(x, y) < max(x, y), (x, y)e Uy,. (2.3)
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A mean iteration is a two term iteration given by
an+l=M1(an’br1); bn+lmM2(an’ bn) (24)

with starting values (a,, b,) in some neighbourhood of (1, 1). In all the
cases we will look at, the means are analytic functions in each variable in
some complex neighbourhood of (1, 1). Such means we call analytic means.
In this case, there exists a complex neighbourhood U of (1, 1) so that if

(ag, by)e U
then {a,} and {b,} converge to a common limit which we denote by
M, ®M,(ay, by). (2.5)
Furthermore, the convergence is quadratic, that is
|Gy 1= by il = O(la, —b,|%) (2.6)

(This is all dealt with in [3, Chap. 8].)
F and G are called uniformizing parameters of the iteration if, F and G
are functions that satisfy

F(g*)= M (F(g), G(9)) (2.7)
and
G(q*) = M,(F(q), G(q)). (2.8)

where F and G are defined in a neighbourhood of the origin and F(0)=
G(0)=1.

For the arithmetic-geometric mean iteration the uniformizing
parameters are squares of theta functions, namely,

F(q)=( Y q) =:(05(¢))° (2.9)

and

%

2
G(q):< 5 (—q)”z) — (64(g)) (2.10)

n= —x

note that if ¥ and G uniformize M, ® M, then, with (2.7) and (2.8)

M, @ M,(F(q), G(g))= -~ =M, @ M,(F(¢*), G(¢™"))
=M, ®M,(1, 1)=1 (2.11)
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so with (2.2)

Hq) > 1
M, =5, 1]=——0. 2.12
oM (G(q) G(q) 242

In particular identifying the uniformizing parameter goes a long way
towards analyzing the iteration. (See, in particular, [1,3,5])

We will call T(-,-) an (analytic) multiplier if T maps some
neighbourhood U of (1, 1) to R and satisfies

(1, 1)=1 (2.13)
and
T(x, y)= T(f, 1). (2.14)
y

We use the notation T(x):=T(x, 1). Note the ratio of two means forms a
multiplier. The main construction is the content of the next theorem. In all
the cases we consider 7(x) is analytic in a (complex ) neighbourhood of 1.

THEOREM 1. Let M(-, -} be an analytic mean and 1(-, -) be an analytic
multiplier. Let R be a solution of the functional equation

R(¢*)=T(R(q)) (2.15)

analytic is a neighbourhood of 0, and satisfying R(0)=1. Then the iteration

Ay = M(an’ bn) ' T(an’ bn) = N(an’ bn) (216)
and
bn+l=M(an’bn) (217)
satisfies
N®M(R(q), 1)= [ M(R(g™), 1). (2.18)

n=0

The uniformizing parameters are given by

R
Blgy= (@) (2.19)

w=o M(R(g™), 1))

and
1
Glg)= - 2.20
w0 M(R(g%), 1) (&20)
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S0

N®@M(F(q), G(g)) =1 (2.21)
for g in some complex neighbourhood of zero.

Proof. Tt is standard that (2.15) has an analytic solution of the requisite
form (see, for example, [5]) though in the applications of the Theorem we
exhibit the solution explicitly.

Note also, since M and R are “analytic” and M(R(0), 1) =1, that F and
G and the product (2.18) are well-defined analytic functions in some
neighbourhood of the origin. Furthermore, by (2.19) and (2.20)

(q)

F
... 222
G(g) R(q) (2.22)
so0, by (2.15)
F(q?) (F(q)>
=T|—=) 223
G(g*) G(g) (22)

In order to establish the limit formula (2.18) it suffices to observe that
N ®M(F(q), G(g)) =N®@M(N(F(q), G(g)), M(F(q), G(g)))
since the limit must be invariant on replacing (a,, b,) by (4,1, b, ) thus

N@MI(F(g), G(g)) = N®M(N(F(q). G(¢)). M(F(q). G(q)))
= M(F(q), G(q)) N® M(T(F(g), G(F(g)), 1)

_ M(F(q), G(q) N®M (T(%) 1)

= M(F(q), G(¢)) N®M(R(g*), 1),

where we have used homogeneity and (2.23) to deduce the equalities. If we
divide through by G(g¢) we derive

N®M(R(g), 1) = M(r(g), 1) N®M(R(g*), 1)

[T M(R(g™). 1).

n=0

I
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While we assumed the existence of the limit of the iteration to derive the
result, and the existence is apparent in the examples we treat, the existence
is, in fact, guaranteed by the convergence of the above product (see [3]).
Since

1
im0 M(R(g™), 1)

Glq) =

it follows that
N®@M(F(qg), G(q)) = G(q) N®M(R(g), 1) =1
and that
N®M(F(g°), G(¢*)) = G(¢*) N® M(R(¢%), 1) = 1.
However, we deduced above that
N®M(Flg), G(9))= M(Flq), G(q)) N®M(R(¢>), 1)

s0

G(q*) = M(F(g), G(g)).
Similarly

F(q®)=N(F(9), G(q))
and we see that F and G are the uniformizing parameters. 1

We should note that, the iteration of the above theorem need not be a
mean iteration because N(-, -) need not satisfy property (2.3) of being a
mean.

3. EXaMPLES WITH T RATIONAL

Particularly interesting examples are generated from Theorem 1 in the
case where T and R are both rational functions. This can arise in the
following way
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LemMma 1. (A) If

1+ag
1+bq

R(q) =

and

(bx —ay) +a(x—y)’

Tlx y)i= (bx —ay)* +b(x—y)°

then

(B) If

and

Tix )_(a2+a—2)(x2+y2)+2(a2—a+2)xy
&4 T (@ —a=2)(x*+y)+2Aa’ +a+2)xy

then
R(q*)=T(R(g), 1).

Proof. In both cases the proof is an entirely rational calculation, and

‘as such is most amenable to being checked symbolically (in Maple, or
Macsyma or one of the other symbol manipulation packages). |1

It is in fact, rather hard to find non-trivial rational R and 7, that satisfy

R(q*)=T(R(g), 1)

(with R(0)=1). For such a solution to exist T(x, 1) must be of the form
(ax® + bx + ¢)/(dx* + ex +f).

We list, in tabular form a number of specializations corresponding to
different @ and b in the above lemma, coupled with a variety of different
means in Theorem 1. The notation is that of Theorem 1. All the following
examples are derived in this fashion, the mean and the choices of a and b
are specified in each case. In every case the underlying convergence is
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quadratic. In a number of places we have simplified using the identity of
Euler

- " 1
(14¢7)=—.
n];IO 1mq

It is the judicious choice of M, g, and b, that determines the simplicity
of the examples. See Table L.

TABLE 1
N(aru bn) M(a”, b,,,) Limit
(a, + b,)(a? + b?) a,+b, 1+ - 1
1. s NOM|{ —21)=]] ——
4a,b, 2 EM| 5 —q ,,I:IU (1—4")
(@u+b)al+6a,b,+b)  a,+b, 1-2g . 1
2 < 2 2 N®M =
3a}+2a,b, + 3b2 2 ® 1+2¢ "[1(){1+2qz)
2 2 % 2N 1
3. Gth wb, NeM (24 ) L
/ 1— e @)
2\/0,,[),, q "jﬂl q
(a2 +h2)? al+p? l+g¢ 1 = 1
4 B LT A o1 NoM{ — 1 |=o—— [] ——
2a,+b,)a,b, a,+b, ® l—gq (l*qz)nljo(l—qz)
- al+ bl al+b? l1+gq = (14347
5. ol n —t NOM|— 1)=01-g s S,
2a,b, a+e; N OM Ty =t )"]1 1-¢%
4a’h? 2 1—g ;
6. T NoM|[— 1= 1—g?
(@ +b)@+b2)  a,+ 1, ® <1+q ”UO( o
: 2 - 1 N 1
7 a, +ab; 2a,+(x—1)b, NOM +acqq] _ H _
(1+a)b, a1 g I=q) " (1—¢")
aa’ (x+1)a,—b, 1 . 1
8. = N®M . 1= D
(x—1)a,+b, 2 ® 1 —ag (1 —ag) HO(1~otq2)
2a? a,+b 1 1 : 1
9. 1 " n N M ’1 —
3a,—b, 2 = <14q > (1744)}1(1—2512)
(a,+5,) a,+b, l+qY’ LA
0. 2l il NeM{{-"2) 1}= ,
0 8a,b, 2 e —q (1—q‘>£1 (1—=¢*y
2 1+q\? [ 1
11. M a,b, N@M((J)J): 7 l"[ 5
4 Ja,b, —-q (T—q) (1 —g%)

Table continued
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TABLE 1—Continued

Uniformizing Parameters Derivation

o

L. Il (1=(—9)) g=1 b= —1in Lemma L, ()
n=10
1a-¢
n=90
2 M1 +2=9%) a= —2,b=2,inLemmal, (2)
n=90
I (1+2¢%)
n=0
(= P\ 172
3. I —(——")—z a=1.b=—1,in Lemma 1, (a)
el (—9)
o0 1-—q2” 1/2
(H 1+qz">
n=0
4, a-¢ 1 a — (=) a=1,b= —1,in Lemma L, (a)
n=0
(1-¢> [1 0—d")
n=0
A _ _ 2"
5. __L o ___———1 ( q")ﬂ a=1,b=—L,in Lemma 1, (a)
1—q° 4 1+ 3¢*
T e
1-¢° Eol+3q2"*‘
6 I1 (1=(—¢"N"" a= —1,b=1,in Lemma 1, (2)
n=0
a-¢n
n=0
7 (1+ag) I C1 —q%) =a,b=—1,in Lemma 1, (a)
n=0
(1—¢) [T =49
n=>0

Table continued
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TABLE I—Continued

Uniformizing Parameters Derivation
1—ag \ 5 7 -
8. == [T (1 —2g™) a=0,b= —z% in Lemma 1, (a)
B {1~q n=10

9. IT (1—2¢" a=0h= —4, in Lemma I, (a)

10. (I=¢3 I] (1 —(=g)") a=2,in Lemma 1, {b)

11. (I+q) JT 1 =(=9)") a=2,in Lemma 1, (b)

4. AN ExaMPLE RELATED TO THE AGM

Let

AG(1, x)

denote the common limit of the arithmetic geometric mean iteration

_ all + b”
Ayy1= 2

and

—_—
bn+1=\/anbn

4
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commencing with a,:=1 and b, :=x. Then

/2
j"/z db '
o /1—(1—x%)sin>0

We now state the following theorem.

AG(1, x) =

THEOREM 2. Let m be an integer. The iteration

(an+bn)2m
A== Mla,, b,)
U e fab,

b 2m—1
bn+l= (a"+ ”) :=N(an7 bn)

22m— l(anbn)m -1
commencing with ay:=1 and by := x has limit

(AG(1, x))* !

x2n71

M®N(1, x) =

Proof. We use the following identities that may be found in [3]. If

oo o6 2
h(q):=< 5 (wq)"z/ 5 q"2> (1)

and
ENE
T(x) =T (4.2)
then
h(g*)=T(h(q)). (4.3)
Also
o 2"
a6, =11 (F54) (44)
and
1 - 1
AG|——, 1 )= . 4.5
(mw > ll h(g*") =)
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We now apply Theorem 1| with R :=h; T as above, and with

(x iy y)Zm
M(x, y) =

4»1(\/6)2»1— 1
to deduce that

2%

M®N(h(g), 1)= [] M(h(g™), 1)

n=0

which simplifies with (4.4) and (4.5) to the desired result. |

5. COMMENTS

The function

P.(x):= ﬁ (1 +cx?) (5.1)

n=0

that arises in many of examples, except for ¢ #0, 1 where it is rational, is
a hypertranscendental function. That is, it satisfies no algebraic differential
equation of any order. See [9, 10, 11]. The theta function parametrizing
the AGM as well as the limit are not hypertranscendental. Thus, these
examples are analytically quite distinct. The results of [10, 11] also show
that P.(x) is transcendental for x and ¢ algebraic ( #0, 1). Some alternative
representations of P, include

x

Px):= Y ()" X", (5.2)

n=0

where 6(n) is the number of ones in the binary expansion of #. Also, for
x| <1,

P(x)i=l+ex+ex ¥ ] (1 +cex?) (5.3)

n=0 k=0

and

- 2k
1 «© n x_/_

=1+ex—(l+cex)x —.

P(.(x) ,,go kl:[() 1+ szk :

(5.4)
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In most of the examples we considered the ratio M(x, y)/N(x, y) is a
quadratic rational function. Another example with quadratic ratio is

a,+b,
an+1: 2

2 2

b _an+bn

| =

" a"+b"

which is studied in [8]. This does not appear to be intimately related to
any of the examples we have raised here. (See [6], see also [2, 3, 7] for
additional material on quadratic mean iterations.) Reference [12] has
some related mean iterations, particularly ones with algebraic limits.

11.
12.
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