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HYPERTRANSCENDENCE OF THE 
FUNCTIONAL EQUATION g(X2) = [g(X)]2 + CX 

PETER BORWEIN 

(Communicated by J. Marshall Ash) 

ABSTRACT. The functional equation g(x2) = [g(x)]2 + cx has a unique non- 
trivial solution that is analytic at zero. We show, for c > 0, that the solution 
of this equation satisfies no algebraic differential equation. 

1. INTRODUCTION 

The functional equation 

(1.1) g1(x )21g1(X)]2 +cx 

has a unique non-trivial analytic solution in a neighbourhood of zero. Hence, 
on setting g(x) g, (x 2)/x, the functional equation 

(1.2) g(x2)=[g(x)] +c 

has a unique meromorphic solution with a simple pole at zero. This functional 
equation was studied by Wedderburn [11], who observed that the solution to 
(1.1) when c = 2 arises as a generating function in a bracketing problem. 
Specifically the nth coefficient of g, counts the number of commutative non- 
associative bracketings of n objects. The more familiar problem of bracket- 
ing n objects in a nonassociative, noncommutative fashion, or equivalently, of 
making sense of an n-fold exponential 

x 

gives rise to a simpler functional equation, namely 

f(X) = [f(X)] + x 

which has the algebraic solution 

f(x) = 1 4x f (2n - 2)! n 
2 giv(e - 1tCanux 

and gives rise to the Catalan numbers. 
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Wedderburn [ 1] analyses the analytic nature of the solutions of (1 .1). Much 
more recently and entirely independently Mahler [8] also treated in detail the 
analytic nature of the solutions of (1.1). 

The main content of this paper is contained in Theorem 1. Theorem 1 shows 
that the solutions of (1.1) or (1.2), for any positive c, satisfy no algebraic 
differential equation of any order (see ?2). An algebraic differential equation is 
an equation 

Q := Q2(xi f(x) i f(x) X, fn(x)) = 0 

where Q is a polynomial in n + 2 variables. A function that satisfies no such 
equation is called hypertranscendental or transcendentally transcendental. AMost 
special functions, precisely because they arise as solutions of such equations, 
are not hypertranscendental. An exception is the gamma function which was 
proved hypertranscendental by Holder. For more on hypertranscendence see 
[5], [6] and particularly [10]. 

The functional equation (1.2) also arises in an entirely different way. Con- 
sider the two-term iteration 

(1.3) a an a,+bn a= 
n i 2 ' 

and 

a2 
2 

(1.4) b an +nb b =x. 

this iteration converges quadratically in a neighbourhood of 1 to an analytic 
function. The iteration and its various relatives were studied by Lehmer in [4] 
(see also [2]). 

It had arisen previously in a letter of Stieltjes to Hermite in 1891. Stieltjes 
had constructed a formal power series L that uniformized the iteration in the 
sense that 

(1.5) L(q2) = L(q) + L(-q) 
2 

and 

(1.6) L(q2 L (q) +L (-q) 

The normalization L(O) = 1 ensures that L is unique. Stieltjes apparently 
thought that L had zero radius of convergence, though in fact the radius of 
convergence is .634... . If we set 

2) 4 
G(q2) L(-q) 

+ 2 
L(q) 

then G has a simple pole at zero and, from (1.5) and (1.6), 

G(q) = G(q) + 2. 
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Thus G satisfies (1.2) with c = 2. In particular G is hypertranscendental and 
sois L. (See[1].) 

This is in sharp contrast to the more familiar quadratic iteration, the AGM. 
The arithmetic-geometric mean iteration of Gauss and Legendre is 

an + bn (1.7) a - b, a- 1 n+1 2 ' 01 

(1.8) bn+la= bo=x. 

It is uniformized by the square of the theta function 63(q) . If 

00 22 
T(q) := [3(q)]= 

[ qn2 

then 

(1.9) T(q2) T(q) + T(-q) 
2 

and 

(1. 10) T(-q2) = T(q)T(-q). 

The common limit of (1.7) and (1.8) is an elliptic integral and solves a second 
order linear algebraic d.e. The theta function 6 3 is a modular form and satisfies 
a nonlinear algebraic d.e. and thus is not hypertranscendental. For more on 
these matters see [1], [2], [3] and [10]. 

Much of the point of this paper is to show that Lehmer's and Stieltjes's 
iteration belongs to a different analytic preserve than the arithmetic-geometric 
mean iteration. 

2. HYPERTRANSCENDENCE OF WEDDERBURN'S FUNCTION 

Lemma 1. The functional equation, with m > 1 and n? > n2 > 0 

x R(xm + c) = Ax R(x) + B 

has no nonconstant rational solution if c > 0. 

Proof. Suppose the above equation has a solution of the form p(x)/q(x) where 
p and q are polynomials (with no common roots). A consideration of the 
degrees shows that q(x) cannot be constant. Thus comparing poles on both 
sides shows that for some h > 0 

q(xm + c) = x +(q (x)) where q i (x)a rq (x) 

Now if a > 0 is a root of q(xm + c) then am + C iS a root of xhq*(x) and 

hence am +c also is a root of q(xm +c) . We know that 0 is a root of q(xm +c) 
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because it is a root of xh(q (x)), and we have 

/0 := O, 0*~0 
1 Om + c, 

C + C, 

<n+1 =(<)m+C 

are all roots of q. This however is an increasing sequence which generates 
infinitely many different roots of the polynomial q. This is impossible. o 

Theorem 1. Suppose F is analytic on [3, ox) and F satisfies a functional equa- 
tion 

aF(x) = F(x + c) 
where a :$ 1 and c > 0; then F satisfies no algebraic differential equation. 
Proof. Suppose F satisfies an algebraic differential equation Q := Q(x). A 
monomial in Q is a term 

(2.1) M(x) := r(x)[F(x)]mo[F(l)(x)]mI [F(n)(x)]mn 

where r is a rational function in x. The degree of the monomial is 
n 

(2.2) DEG(M) := Ei mi 
i=l1 

and the order of the monomial is 
n 

(2.3) ORD(M) = mi- 
i=O 

Observe that 

aF'(x) = 2xF (x + c), 

aF" (x) = 4x2F (x2 + c) + 2F'(X2 +C), 

(2.4) aF(n) (x) 2nxn F(n)(x2 + c) 

+ Axn-2F(n-)(2 + C) (A > 0) 

+ lower derivative terms. 
Thus 

M(x) = r(x)[F(x)]mo[F(l)(x)]mI [F (n)(X)]Mn 
DEG(M) DEG(M) 2 n)X2 Mn 

(2.5)a ORD(M) [F(x + c)] ? . [F( (x + c)] 

+ lower degree terms. 
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Now suppose Q is minimal in the sense that the degree of the maximal mono- 
mials irn Q is minimal, and among those of the same degree pick a Q with 
fewest maximal terms. Let M* be such a maximal degree monomial and sup- 
pose that the Q is normalized so that the r associated with M* is 1. Let Q be 
the algebraic differential equation obtained from Q by replacing each F(')(x) 
by the appropriate combinations of F(')(x2 + c) as in (4). Observe by (5) that 
Q has the same maximal degree terms as Q(X2 + c) (i.e. Q with x replaced 

by x + c). It follows that, monomial by monomial, 
2DEG(M-) DEG(M) 2) 

(2.6) aORD(M-) Q(x + c) = Q(x) 

for otherwise the difference would be an algebraic differential equation for F 
with fewer maximal terms (we would subtract out M*). If N is any other 
monomial of maximal degree with rational coefficient rN then, from (6), 

2 VEG(M-)XDEG(M-) 2 2DEG(N) xDEG(N) 

ORD(M-) rN(x +c) = rN(X) ORD(N) a a 

(since N is maximal no other terms come into play). From the Lemma we see 
that rN is constant and that ORD(N) = ORD(M*). Suppose that mi, ..., mn 

are the exponents of F(?), . . ., F(n) in some maximal monomial M. Suppose 
out of all such maximal monomials M has the largest possible value of mn and 
then the largest possible value of mn -1 etc. Let i be the least index for which 
no other maximal monomial has all strictly higher indexes agreeing with M. 
Consider the monomial W with exponents mo0, ... , Min1 +1, iM - 1, ... ., n . 

Such a monomial arises in (5) by picking the highest derivative (as in (4)) 
associated with all the exponents except i and i - 1. One picks the second 
highest derivative in one of the terms associated with i in the substitution (5). 
Then, for some constant D : 0, 

DEG(M) DEG(M) 

(2.7) M(x) = 2 XaRM [F(x + c)]mO ... [F (n)(x2 + C)]mn 
aDEG(M)- 2 

+ DXEG(M)-2[F(X2 + c)]mo ... [F( ')(x2 + C)Im]-+l 

*[F( )(X2 + c)]mi- 
I 

... [F (n)(X2 + C)]Mn 

Assume initially that i > 2 so that this construction works (if mi = 0 one uses 
the first exponent smaller than mi which isn't zero * ). Note also, unless the 

lower order monomial is formed by a process as above (i.e. picking exactly one 
nonmaximal derivative in (4)), that the degree of the resulting piece is at least 
two less than the degree of M. Note that 

ORD(W) = ORD(M) 

* Added in proof. If no such exponent exists some additional argument is required. 
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and that 
DEG(W) = DEG(M) - 1. 

In particular if any other monomial contributes (as in (7)) to the formation of 
W it must be of the form 

[F(n)(X)]mn ... [F (i+ x)] mi+ 

which contradicts the maximality assumptions on M. It follows that W arises 
only as in (7) and in order that W vanish in (6) it must hold that 

xDEG(M) (x2 C) ExDEG(W) (X) + D DEG(M)-2 

where D :$ 0. This is impossible by the Lemma. 
It remains to dispose of the cases where i = 0 and i = 1 . 
For i = 1 , we can use the same argument only now we consider the monomial 

that arises on reducing the F(2) term, provided such a term exists, by 1 and 
increasing the F(1) term. The details are essentially the same. The i = 0 case 
can't occur unless there is a unique monomial of maximal degree. This follows 
because such monomials of maximal degree have the same maximal order. If 
there is a unique monomial of maximal degree then reducing any term works, 
provided the term has index at least two. Since everything we have said applied 
if we took our maximums over monomials containing at least 2nd derivatives, 
we can reduce to the case that F(1) actually satisfies an algebraic equation in 
F. That is 

Q(x) = Erh j (x) (F 1) h(F). 
h ,j 

Given that we normalize the maximal term as before, we see from (4) and (6) 
that 

2DEG(M) DEG(M) 2h 

ORD(M) rh j(X + C) = (2x) rh j(X) a 
which also violates the Lemma. (Unless h = DEG(M) which gives the non- 
meromorphic solution, with rk j constant, of F = logx). o 

Remarks. (1) Essentially the same argument applies to show that solutions of 

aF(x) = F(xn + c), c > O, a$ 1, 

are hypertranscendental for n > 2. 
(2) Wedderburn's function satisfies 

g(x ) =[g(x)] + 2 
and hence G g' satisfies 

2 2 
G(x) =G(x + 2). 

Thus F = log G satisfies 

2F(x) =F(x + 2). 
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Furthermore g is decreasing and analytic on an interval [0,,B] with g(O) = 00. 

Thus G is well defined and analytic on some interval [d, x) and hence so is 
F. Thus, as a corollary to the theorem we see that g is hypertranscendental. 

(3) If c is algebraic then the function g of (1.2) maps algebraic numbers to 
transcendentals. This follows from results of Mahler [6], [7]. 

(4) The method of proof in Theorem 1 is not unlike the method employed 
by Holder to prove hypertranscendence of the gamma function last century. 
Indeed Ritt's treatment of the hypertranscendence of functional equations of 
the form 

f(2x) = R(f (x)) 
where R is rational also uses similar techniques [9]. The equation 

g(x2) = [g(x)] + c 
transforms to the equation 

g *(2y) = [g*(y)]2 + c 

under the transformation g*(y) = g(eX). However to apply Ritt's results we 
would have to make various assumptions on the meromorphic nature of g* 
that we can't reasonably make. 
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