

Hypertranscendence of the Functional Equation g(x2) = [g(x)]2 + cxAuthor(s): Peter Borwein Source: Proceedings of the American Mathematical Society, Vol. 107, No. 1, (Sep., 1989), pp. 215-221 Published by: American Mathematical Society Stable URL: <u>http://www.jstor.org/stable/2048056</u> Accessed: 23/05/2008 18:07

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We enable the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

HYPERTRANSCENDENCE OF THE FUNCTIONAL EQUATION $g(x^2) = [g(x)]^2 + cx$

PETER BORWEIN

(Communicated by J. Marshall Ash)

ABSTRACT. The functional equation $g(x^2) = [g(x)]^2 + cx$ has a unique nontrivial solution that is analytic at zero. We show, for c > 0, that the solution of this equation satisfies no algebraic differential equation.

1. INTRODUCTION

The functional equation

(1.1)
$$g_1(x^2) = [g_1(x)]^2 + cx$$

has a unique non-trivial analytic solution in a neighbourhood of zero. Hence, on setting $g(x) := g_1(x^2)/x$, the functional equation

(1.2)
$$g(x^2) = [g(x)]^2 + c$$

has a unique meromorphic solution with a simple pole at zero. This functional equation was studied by Wedderburn [11], who observed that the solution to (1.1) when c = 2 arises as a generating function in a bracketing problem. Specifically the *n*th coefficient of g_1 counts the number of commutative non-associative bracketings of *n* objects. The more familiar problem of bracketing *n* objects in a nonassociative, noncommutative fashion, or equivalently, of making sense of an *n*-fold exponential

$$x^{x^x}$$

gives rise to a simpler functional equation, namely

$$f(x) = \left[f(x)\right]^2 + x$$

which has the algebraic solution

$$f(x) = \frac{1 - \sqrt{1 - 4x}}{2} = \sum_{n=1}^{\infty} \frac{(2n - 2)!}{(n - 1)!n!} x^n$$

and gives rise to the Catalan numbers.

©1989 American Mathematical Society 0002-9939/89 \$1.00 + \$.25 per page

Received by the editors January 24, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 39B10, 12A10.

PETER BORWEIN

Wedderburn [11] analyses the analytic nature of the solutions of (1.1). Much more recently and entirely independently Mahler [8] also treated in detail the analytic nature of the solutions of (1.1).

The main content of this paper is contained in Theorem 1. Theorem 1 shows that the solutions of (1.1) or (1.2), for any positive c, satisfy no algebraic differential equation of any order (see §2). An algebraic differential equation is an equation

$$\mathbf{\Omega} := \mathbf{\Omega}(x, f(x), f'(x), \dots, f^n(x)) = 0$$

where Ω is a polynomial in n + 2 variables. A function that satisfies no such equation is called *hypertranscendental* or *transcendentally transcendental*. Most special functions, precisely because they arise as solutions of such equations, are not hypertranscendental. An exception is the gamma function which was proved hypertranscendental by Hölder. For more on hypertranscendence see [5], [6] and particularly [10].

The functional equation (1.2) also arises in an entirely different way. Consider the two-term iteration

(1.3)
$$a_{n+1} = \frac{a_n + b_n}{2}, \quad a_0 := 1$$

and

(1.4)
$$b_{n+1} = \frac{a_n^2 + b_n^2}{a_n + b_n}, \qquad b_0 := x.$$

this iteration converges quadratically in a neighbourhood of 1 to an analytic function. The iteration and its various relatives were studied by Lehmer in [4] (see also [2]).

It had arisen previously in a letter of Stieltjes to Hermite in 1891. Stieltjes had constructed a formal power series L that uniformized the iteration in the sense that

(1.5)
$$L(q^2) = \frac{L(q) + L(-q)}{2}$$

and

(1.6)
$$L(-q^2) = \frac{L^2(q) + L^2(-q)}{L(q) + L(-q)}.$$

The normalization L(0) = 1 ensures that L is unique. Stieltjes apparently thought that L had zero radius of convergence, though in fact the radius of convergence is .634... If we set

$$G(q^2) := rac{4}{rac{L(-q)}{L(q)} - 1} + 2,$$

then G has a simple pole at zero and, from (1.5) and (1.6),

$$G(q^2) = G(q)^2 + 2.$$

Thus G satisfies (1.2) with c = 2. In particular G is hypertranscendental and so is L. (See [1].)

This is in sharp contrast to the more familiar quadratic iteration, the AGM. The arithmetic-geometric mean iteration of Gauss and Legendre is

(1.7)
$$a_{n+1} = \frac{a_n + b_n}{2}, \quad a_0 = 1,$$

(1.8)
$$b_{n+1} = \sqrt{a_n b_n}, \qquad b_0 = x.$$

It is uniformized by the square of the theta function $\theta_3(q)$. If

$$T(q) := [\theta_3(q)]^2 = \left[\sum_{n=-\infty}^{\infty} q^{n^2}\right]^2$$

then

(1.9)
$$T(q^2) = \frac{T(q) + T(-q)}{2}$$

and

(1.10)
$$T(-q^2) = \sqrt{T(q)T(-q)}.$$

The common limit of (1.7) and (1.8) is an elliptic integral and solves a second order linear algebraic d.e. The theta function θ_3 is a modular form and satisfies a nonlinear algebraic d.e. and thus is not hypertranscendental. For more on these matters see [1], [2], [3] and [10].

Much of the point of this paper is to show that Lehmer's and Stieltjes's iteration belongs to a different analytic preserve than the arithmetic-geometric mean iteration.

2. Hypertranscendence of Wedderburn's Function

Lemma 1. The functional equation, with m > 1 and $n_1 \ge n_2 > 0$,

$$x^{n} \cdot R(x^{m} + c) = Ax^{n} \cdot R(x) + B$$

has no nonconstant rational solution if c > 0.

Proof. Suppose the above equation has a solution of the form p(x)/q(x) where p and q are polynomials (with no common roots). A consideration of the degrees shows that q(x) cannot be constant. Thus comparing poles on both sides shows that for some h > 0

$$q(x^{m} + c) = x^{h}(q^{*}(x))$$
 where $q^{*}(x)|q(x)$.

Now if $\alpha \ge 0$ is a root of $q(x^m + c)$ then $\alpha^m + c$ is a root of $x^h q^*(x)$ and hence $\alpha^m + c$ also is a root of $q(x^m + c)$. We know that 0 is a root of $q(x^m + c)$

because it is a root of $x^{h}(q^{*}(x))$, and we have

$$\ell_{0} := 0,
\ell_{1} := 0^{m} + c,
\ell_{2} := c^{m} + c,
\vdots
\ell_{n+1} := (\ell_{n})^{m} + c$$

are all roots of q. This however is an increasing sequence which generates infinitely many different roots of the polynomial q. This is impossible. \Box

Theorem 1. Suppose F is analytic on $[\delta, \infty)$ and F satisfies a functional equation

$$\alpha F(x) = F(x^2 + c)$$

where $\alpha \neq 1$ and c > 0; then F satisfies no algebraic differential equation. *Proof.* Suppose F satisfies an algebraic differential equation $\Omega := \Omega(x)$. A monomial in Ω is a term

(2.1)
$$M(x) := r(x)[F(x)]^{m_0}[F^{(1)}(x)]^{m_1} \cdots [F^{(n)}(x)]^{m_n}$$

where r is a rational function in x. The degree of the monomial is

(2.2)
$$\operatorname{DEG}(M) := \sum_{i=1}^{n} i \cdot m_i$$

and the order of the monomial is

(2.3)
$$ORD(M) = \sum_{i=0}^{n} m_i.$$

Observe that

(2.4)

$$\alpha F'(x) = 2xF'(x^{2} + c),$$

$$\alpha F''(x) = 4x^{2}F''(x^{2} + c) + 2F'(x^{2} + c),$$

$$\vdots$$

$$\alpha F^{(n)}(x) = 2^{n}x^{n}F^{(n)}(x^{2} + c) + Ax^{n-2}F^{(n-1)}(x^{2} + c) \quad (A > 0)$$

$$\vdots$$

+ lower derivative terms.

Thus

(2.5)
$$M(x) = r(x)[F(x)]^{m_0}[F^{(1)}(x)]^{m_1} \cdots [F^{(n)}(x)]^{m_n}$$
$$= r(x) \frac{2^{\text{DEG}(M)} x^{\text{DEG}(M)}}{\alpha^{\text{ORD}(M)}} [F(x^2 + c)]^{m_0} \cdots [F^{(n)}(x^2 + c)]^{m_n}$$
$$+ \text{lower degree terms.}$$

218

Now suppose Ω is minimal in the sense that the degree of the maximal monomials in Ω is minimal, and among those of the same degree pick a Ω with fewest maximal terms. Let M^* be such a maximal degree monomial and suppose that the Ω is normalized so that the *r* associated with M^* is 1. Let $\overline{\Omega}$ be the algebraic differential equation obtained from Ω by replacing each $F^{(i)}(x)$ by the appropriate combinations of $F^{(i)}(x^2 + c)$ as in (4). Observe by (5) that $\overline{\Omega}$ has the same maximal degree terms as $\Omega(x^2 + c)$ (i.e. Ω with *x* replaced by $x^2 + c$). It follows that, monomial by monomial,

(2.6)
$$\frac{2^{\text{DEG}(M^*)}x^{\text{DEG}(M^*)}}{\alpha^{\text{ORD}(M^*)}}\Omega(x^2+c) = \overline{\Omega}(x)$$

for otherwise the difference would be an algebraic differential equation for F with fewer maximal terms (we would subtract out M^*). If N is any other monomial of maximal degree with rational coefficient r_N then, from (6),

$$\frac{2^{\text{DEG}(M^{\star})}x^{\text{DEG}(M^{\star})}}{\alpha^{\text{ORD}(M^{\star})}}r_{N}(x^{2}+c) = r_{N}(x)\frac{2^{\text{DEG}(N)}x^{\text{DEG}(N)}}{\alpha^{\text{ORD}(N)}}$$

(since N is maximal no other terms come into play). From the Lemma we see that r_N is constant and that $ORD(N) = ORD(M^*)$. Suppose that m_0, \ldots, m_n are the exponents of $F^{(0)}, \ldots, F^{(n)}$ in some maximal monomial M. Suppose out of all such maximal monomials M has the largest possible value of m_n and then the largest possible value of m_{n-1} etc. Let i be the least index for which no other maximal monomial has all strictly higher indexes agreeing with M. Consider the monomial W with exponents $m_0, \ldots, m_{i-1}+1, m_i-1, \ldots, m_n$. Such a monomial arises in (5) by picking the highest derivative (as in (4)) associated with all the exponents except i and i-1. One picks the second highest derivative in one of the terms associated with i in the substitution (5). Then, for some constant $D \neq 0$,

$$(2.7) M(x) = \frac{2^{\text{DEG}(M)} x^{\text{DEG}(M)}}{\alpha^{\text{ORD}(M)}} [F(x^2 + c)]^{m_0} \cdots [F^{(n)}(x^2 + c)]^{m_n} + Dx^{\text{DEG}(M)-2} [F(x^2 + c)]^{m_0} \cdots [F^{(i-1)}(x^2 + c)]^{m_{i-1}+1} \cdot [F^{(i)}(x^2 + c)]^{m_i-1} \cdots [F^{(n)}(x^2 + c)]^{m_n} + \cdots .$$

Assume initially that $i \ge 2$ so that this construction works (if $m_i = 0$ one uses the first exponent smaller than m_i which isn't zero^{*}). Note also, unless the lower order monomial is formed by a process as above (i.e. picking exactly one nonmaximal derivative in (4)), that the degree of the resulting piece is at least two less than the degree of M. Note that

$$ORD(W) = ORD(M)$$

^{*} Added in proof. If no such exponent exists some additional argument is required.

and that

$$DEG(W) = DEG(M) - 1$$
.

In particular if any other monomial contributes (as in (7)) to the formation of W it must be of the form

$$[F^{(n)}(x)]^{m_n}\cdots [F^{(i+1)}(x)]^{m_{i+1}}\cdots,$$

which contradicts the maximality assumptions on M. It follows that W arises only as in (7) and in order that W vanish in (6) it must hold that

$$x^{\text{DEG}(M)}r_W(x^2+c) = Ex^{\text{DEG}(W)}r_W(x) + Dx^{\text{DEG}(M)-2}$$

where $D \neq 0$. This is impossible by the Lemma.

It remains to dispose of the cases where i = 0 and i = 1.

For i = 1, we can use the same argument only now we consider the monomial that arises on reducing the $F^{(2)}$ term, provided such a term exists, by 1 and increasing the $F^{(1)}$ term. The details are essentially the same. The i = 0 case can't occur unless there is a unique monomial of maximal degree. This follows because such monomials of maximal degree have the same maximal order. If there is a unique monomial of maximal degree then reducing any term works, provided the term has index at least two. Since everything we have said applied if we took our maximums over monomials containing at least 2nd derivatives, we can reduce to the case that $F^{(1)}$ actually satisfies an algebraic equation in F. That is

$$\Omega(x) = \sum_{h,j} r_{h,j}(x) (F^{(1)})^{h} (F)^{j}$$

Given that we normalize the maximal term as before, we see from (4) and (6) that

$$\frac{2^{\text{DEG}(M)} x^{\text{DEG}(M)}}{\alpha^{\text{ORD}(M)}} r_{h,j}(x^2 + c) = (2x)^h r_{h,j}(x)$$

which also violates the Lemma. (Unless h = DEG(M) which gives the nonmeromorphic solution, with $r_{k,i}$ constant, of $F = \log x$). \Box

Remarks. (1) Essentially the same argument applies to show that solutions of

$$\alpha F(x) = F(x^{n} + c), \qquad c > 0, \ \alpha \neq 1,$$

are hypertranscendental for n > 2.

(2) Wedderburn's function satisfies

$$g(x^2) = [g(x)]^2 + 2$$

and hence $G := g^{-1}$ satisfies

$$G(x)^2 = G(x^2 + 2).$$

Thus $F = \log G$ satisfies

$$2F(x) = F(x^2 + 2).$$

Furthermore g is decreasing and analytic on an interval $[0, \beta]$ with $g(0) = \infty$. Thus G is well defined and analytic on some interval $[\delta, \infty)$ and hence so is F. Thus, as a corollary to the theorem we see that g is hypertranscendental.

(3) If c is algebraic then the function g of (1.2) maps algebraic numbers to transcendentals. This follows from results of Mahler [6], [7].

(4) The method of proof in Theorem 1 is not unlike the method employed by Hölder to prove hypertranscendence of the gamma function last century. Indeed Ritt's treatment of the hypertranscendence of functional equations of the form

$$f(2x) = R(f(x))$$

where R is rational also uses similar techniques [9]. The equation

$$g(x^2) = \left[g(x)\right]^2 + c$$

transforms to the equation

$$g^{*}(2y) = [g^{*}(y)]^{2} + c$$

under the transformation $g^*(y) = g(e^x)$. However to apply Ritt's results we would have to make various assumptions on the meromorphic nature of g^* that we can't reasonably make.

References

- 1. J. Arazy, J. Claesson, S. Janson and J. Peetre, *Means and their iterations*, in Proc. 19th Nordic Congress of Math., ed. J. R. Stefánson, Reykjavik, 1985.
- 2. J. M. Borwein and P. B. Borwein, Pi and the AGM-a study in analytic number theory and computational complexity, Wiley, New York, 1987.
- 3. ____, The way of all means, MAA Monthly 94 (1987), 519-522.
- 4. D. H. Lehmer, On the compounding of certain means, J. Math. Anal. Appl. 36 (1971), 183-200.
- 5. J. H. Loxton and A. J. van der Poorten, A class of hypertranscendental functions, Aequationes Math. 16 (1977), 93-106.
- 6. ____, *Transcendence and algebraic independence by a method of Mahler*, in Transcendence Theory: Advances and Applications, eds. A. Baker and D. W. Masser, Academic Press, London and New York, 1977.
- 7. K. Mahler, Remarks on a paper by W. Schwartz, J. Number Theory 1 (1969), 512-521.
- On a special nonlinear functional equation, Proc. Roy. Soc. London Ser. A 378 (1981), 155-178.
- 9. J. F. Ritt, Transcendental transcendency of certain functions of Poincaré, Math. Ann. 95 (1926), 671–682.
- L. A. Rubel, Some research problems about algebraic differential equations, Trans. Amer. Math. Soc. 280 (1983), 43–52.
- 11. J. H. M. Wedderburn, The functional equation $g(x^2) = 2ax + [g(x)]^2$, Ann. of Math. 24 (1922), 121-140.

Department of Mathematics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H8