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THE DENSITY OF ALTERNATION POINTS 
IN RATIONAL APPROXIMATION 

P. B. BORWEIN, * A. KROO, * R. GROTHMANN * AND E. B. SAFF ** 

(Communicated by Irwin Kra) 

ABSTRACT. We investigate the behavior of the equioscillation (alternation) 
points for the error in best uniform rational approximation on [-1, 1]. In 
the context of the Walsh table (in which the best rational approximant with 
numerator degree < m , denominator degree < n, is displayed in the nth row 
and the mth column), we show that these points are dense in [-1, 1], if one 
goes down the table along a ray above the main diagonal (n = [cm], c < 1). 
A counterexample is provided showing that this may not be true for a sub- 
diagonal of the table. In addition, a Kadec-type result on the distribution of 
the equioscillation points is obtained for asymptotically horizontal paths in the 
Walsh table. 

1. STATEMENT OF RESULTS 

Denote by 3fm n the rational functions with numerator in rlm' the set of 
algebraic real polynomials of degree at most m, and denominator in rln. Then 
the best approximation rm ,n = Pm nqmn in SSmn to fE C[-1,1] with 
respect to the uniform norm 

(1.1) ulghl[-l ,1]_:= sup{lg(x)I:x E [-1 , 1]} 

is unique and is characterized by an equioscillation property [M], i.e., there are 
m + n +2- d points 

(1.2) -1 < (mn) <... < X(mn) < 1 m+n+2-d - 

where 

(1.3) d:= d(m, n):= min{m - degpm,n, n - degqm n}m 

suchthatfora a =+1 andall k= 1,... ,m+ n+ 2- d 

(1.4) f (m fn) _ (m n) 
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(Here and below, we assume that Pmn and qm do not have a common factor.) 
Much is known about the behavior of alternation points for best polynomial 

approximation (n = 0) . For this case, Lorentz [L] and Kro6 and Saff [KS] give 
examples showing that for a subsequence {mk} the alternation points (1.2), 
with m = mk, n = O, may avoid a subinterval of [-1 ,1]. However, Kadec 
[K] proved that there is always a subsequence such that the alternation points 
behave like the extremal points of the Chebyshev polynomial of degree m + 1, 
that is, like {cos[k7r/(m + 1 )]}Im+0 . For polynomial approximation, this implies 
the denseness of the alternation points in [-1 , 1]. 

For rational approximation, given m and n, we pick any alternation set 
(1.2) and write 

(1.5) Pm,n(f>: sup minlxx-k I 
xE[-1,1] k 

as a measure for the density of the alternation set in [-1 , 1]. We shall prove 

Theorem 1.1. Let n = n(m) satisfy 

(1.6) n(m) < n(m + 1) < n(m) + 1, n(m) < m, 

for m =0,1. I If f EC[-1,1] , f 0 Rm,n(m),m =O,1, *, then 

(1.7) liminf (m n(m) Pm ,n(m)(f)< M logi / 
The proof of Theorem 1.1 will be given in ?2. 

Remark. Theorem 1.1 applies in the case n(m) = [cm] for any constant c < 1, 
where [-] denotes the greatest integer function. If c < 1, we deduce from (1.7) 
that 

(1.8) lim inf Pm ,[cm] (f) = 0, 
m-*oo0 

which implies that the alternation points are dense in [-1 , 1] for such a "ray 
sequence" of best approximants. On the other hand, we show in Theorem 1.3 
below that this density may not hold when m/n(m) -1 1. 

Our second result is similar to Kadec's result [K] on polynomial approxima- 
tion. We write for -I < c <, 1 (with (m,n) as in (1.2)) 

Xk 
(1.9) Nm (m,n,B): #X ): at < xk <m ,B,k = i,... m + n + 2- d} 

Theorem 1.2. Assume, in addition to the hypotheses of Theorem 1.1, that 
n(m) (1.10) lim = 0. 

m-oo m 
Then there exists a subsequence Q of N such that for all [a, /1] c [-1 , 1], 

(1.1) lim Nm,n(m)(,/fl) = arc cos ce-arc cosf, 

Finally, we give a counterexample, which shows that Theorems 1.1 and 1.2 
cannot be proved for a subdiagonal of the Walsh table. Indeed, for approxima- 
tion in n -I ,n it is possible that, for all n, the extremal points all reside in an 
arbitrarily small interval. 
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Theorem 1.3. For every 2 > e > 0, there is a function f E C[- 1 , 1] such that 
for each n = 1 ,2, ... the error f - r*_I , (f) has no alternation points in 
(-1 +E , 1]. 

The proof of Theorem 1.3 will be given in ?3. The results of this paper should 
be compared with those of Kro6 and Peherstorfer [KP] for Li -approximation. 

2. PROOFS OF THEOREMS 1.1 AND 1.2 

We need the following lemma, which follows easily from classical results. We 
include the proof for the sake of completeness. 

Lemma 2.1. Given -1 < a < 1 < I and n E N there exists a Pn E Hn with 

(2.1) IIPn11I-i,a]u[fl,1i < I 

and 

(2.2) IIPnII[a,,8l > cle cn(fl-a) 

where c1, C2 > 0 are constants independent of a , A1 and n. 

In (2.1) and (2.2) the norms are again the sup norms over the indicated set. 

Proof. Let 

(2.3) T. (x) cos(m arc cos x) 

denote the Chebyshev polynomial of degree m. For m := [n/2], T 

( al-a)/2, set 

(2.4) qn(x) := 2Tm (1 + 2 - (2 +2)4) 

Since T < 1 and 

(2.5) Tm (I + > I 
(I + VX)m, C>0, 

we have for some constants cl , C2 > 0: 

(2.6) q I + >-(1+T) >Ce 

For x E [-2, -T] U [T, 2], 

(2.7) -1 1+ - (2 + T2) 4 <1. 

The lemma now follows with Pn(x) := qn(x - (a + fl)/2). O 
Proof of Theorem 1.1. Set Em(f) := iIf-fr,n(m)II[-l,l for m E N. Since 

f 0 An,n(n)I we have Et"(f) > 0 for all m E N. Also, from (1.6), it follows 

that Em(f) 1 0, and so from elementary theorems about series (cf. [K]) 

(2.8) EL Em (f) + Em+I(f) = 
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Thus there is a subsequence Q of N with Em (f) - Em+i (fI) 0 and 

(2.9) Em(f)+Em+I(f) <i2 

Em(f -Em+I(f 

for all m E Q. 
For m E Q2, set 

(2.10) R *_ 1 (~~~~r -r) (2.10) Rmm Em (f) Em+I (f) ( ,n(m) m+ 1,n(m+1))l 

At the alternation points 

(2.X < **< Xm+n(m)+2-d(m) - 

of f-rmn(m) we have with a I1 

(2.12) l(-1)kRm(X m)) > 1, k = 1,... m + n(m) + 2 - d(m). 

Moreover, from (1.6) and (2.12) it follows that Rm = Pm/Qm with 

(2.13) degPn = m + n(m) + 1 - d(m), 

(2.14) deg Qm < 2n(m) + 1 - d(m). 

Thus Rm - q can have at most m + n(m) + 1 - d(m) zeros, if q E Elm n(m). 

Let cl,c2 be as in Lemma 2.1. For m E Q, let x4 E [-1 ,1I satisfy 

(2.15) minl4 |xm-xk = Pm,n(m)(f) = tm' 

If X4 E [- ,x(m)], we let Pm_n(m) be the polynomial that satisfies Lemma 2.1 

with a = -1 and x = X From (2.12) and (2.1) it follows that Rm IPm.n(m) 

has m+n(m)+ 1 -d(m) zeros in (x(M), 1] and hence is zero-free in [-1 x(m) . 
Thus 

(2.16) c eC2tmn(m-n(m)) < IIR < 2 

where the last inequality follows from (2.9). If X E [XE 7)?(m)+2_d(m),1I,we 

use Lemma 2.1 with a = x(m) and I5 = 1 and again we get (2.16). m~+n(m)+2-d(m) a 

Otherwise denote the zeros of Rm by y(m), where 

(2.17) (in) <(mn) (in) < < (in) (in) (2. ~ ~~ 17 X() Y(m < X2) < m+)n(m)+ 1-d (m) < Xm?+n(m)+2-d (m) 

and set ymn) = (in) ~(m =x(in) . hn mi)y 1?(m t~ an 0e ()=x ) m )n(m)+2-d(m) = m+)n(m)+2-d(m) *Then lY( )-k+1 I t 
for some k = k* . As above, counting the zeros of Rm ? (Pm-n(m) - 1)/2, where 

-_n(i) satisfies Lemma 2.1 with a = y(i) and / = Y4m7+., yields 

(2.18Q 1 ce c2tmn(m-n(m)) 1 c M 
2 
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By (2.16) or (2.18) we get for a constant C3 > 0 

(2.19) tm (m - n(m)) < c3 log m, 

which yields (1.7). o 

Proof of Theorem 1.2. It suffices to prove (1. I 1) for the case a = -1. In fact, 
it is enough to show that 

(2.20) limn(m)1sup 
7r -arc cosfl 

(2.20) limspM Nm, N )(-11) 7- 
mED m,n(m) 

since replacing x by -x and ,B by -,B, we get the corresponding lower esti- 
mate for lim inf . Let m - n(m) = s(m) +l(m) , where s(m) is to be determined 
later. With the notations of the previous proof, set for m E Q, 

(2.21) qm(x): = I 
T(m) (x + 1-fl) T7(m) (x) 
2~~~~~~~~~~~~~ 

(2.22) N(m) := #{x E (8 , 1 ]: I T1(m) (x) I = 1, X qm (x) I> m }, 

where Tk denotes the kth the Chebyshev polynomial, II Tk ll[_ = 1. Then 
Rm - qm has at least N(m) - 1 zeros in (/1, 1]. Thus it can have at most 
m + n(m) + 2 - d(m) - N(m) zeros in [-1 ,,B]. Hence 

(2.23) limsup Nm,n(m) l l) - im-sup m+n(m)+ 2- d (m) 

= - liminfN(m) 
m-oo m 

since between two alternation points of Rm in [-1 , ,] is one zero of Rm - qm 
and since n(m)/m -+ 0 (d(m) < n(m)) . In (2.23) and the rest of the proof, all 

limits are for m E Q. Now choose s(m) such that 

(2.24) lim s(m) = , lim 1(m)1 
m-*oo logm m-oo m 

Then the first equation in (2.24) together with (2.5) yields 

(2.25) lim (inf{x E (/ , 1]: I Ts(m)(x + 1 - /3) > m2}) = . 

Also, for ,B </, < 1, it follows from the second equation in (2.24) that 

(2.26) lim #{x E (fl 1]: VT7(m)(x)I = 1} arc cos, 

m-oo m 7f 

Finally, (2.25) and (2.26) yield (with (2.21) and (2.22)) 

(2.27) lim inf N(m) > arc cos,B 
m-oo m 7f 

which together with (2.23) gives (2.20). o 
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3. PROOF OF THEOREM 1.3 

n-I For a I < .< an < O we denote by Vn_I(a I , a,n)=x += X the 
monic polynomial that minimizes 

( )||rk = I (X ak ) l[0 J] 

among all monic polynomials Pn- 1 of degree n - 1 . Set 

(3.2)rn-l(al I... lan)(X)V= n(a1,*.. ,a )(X) 

Then from the Haar condition (cf. [M, ?3.2]), rn-1(a1 , ... 'an) is uniquely 
determined and equioscillates n times in [0, 1]. Moreover, these n equioscil- 
lation points are the only extremal points of rnI (a I, ... , an) in [0, 1], since 
rn_l(al , ... ,Ian) - c can have at most n zeros for each c E R and since 
rn -(a I, ... Ian) has all its n - 1 zeros in [0, 1]. Also, zero must be one of 
the equioscillation points, since Irn_ 1 , .(.l . , la)n(x)( decreases between a,n 
and the first zero of rn _(a1 , ... ?In) 

We need the following lemmas. 

Lemma 3.1. Let a < < a < O andfll?< <? , <<Osatisfyak- 

fk for k = 1, ... , n. Then the equioscillation points x, < - < xn of 

rn-,(tl I ,an,c) and y1 < < Yn of rn-1(1 , I. I I n) satisfy Xk > Yk 
for k= 1,... ,n. 

Proof. It suffices to prove the lemma in the case ak = fk for k : k*, ak. < 

lk*I since we can transfer an to fn I ... , a1 to /1 successively. Define 

(3.3) Ca l111rn(1(a)11[0,1] 

(3.4) C : 1/IIrn-1(f)II[O ,1] 

where a = , (a . ,an), / = (/1 I * In), and set 

q(x) C, (x -,8k )Vn_(q)(x) -;Cfi(x - ak,)JKl1(fl)(X) 

(3.5) = (Carrn I(a)(X) - Cfrn I(l9)(X))(X - ak.)(X - flk*) 11 (X ak). 

By the equioscillation, we have (y1 = 0) 

(3.6) q(yn) < ? Oq(yn-1)) > ? *q(O)=O. 

It is easy to see that C > Cf. Thus there is a point x > Yn with q(x) > 0. 
For the (necessarily real) zeros 41 < < <n of q (some zeros may be counted 
twice), this implies Ek > Yk for k = 1, . . , n . We also have (xl = 0) 

(3.7) q(xn > 0, n (n 1)Y < 0, n - -I qO) 
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For every E > 0, there is a polynomial q E nF with highest coefficient Ca - C 
~~~~~~~~~~ a 

and real zeros X < . < such that 

(3.8) 4(xn) > 0 j(Xn-1) < 0, *..., c() < 0 for n even, 

q(0) > 0 for n odd, 

(3.) &X 
- kl <E, k= 1 ......... n. 

It follows that < 0 and thus Xk > Xk for k= 1 ,..., n. Since E > 0 is 
arbitrary, this implies Xk > ?k > Yk for k = 1 ,... n. o 

Lemma 3.2. Given 0 < E < 1 there is an increasing sequence a, < a2 <** < 0, 
such that rn-1(al ... an) has no extremal points in (e, 1] for n > 1. 
Proof. Set al := -E/4. We will construct an by induction such that the func- 
tion 

(3.10) f (x) H= rk=2(X + 2ak) 
H1k I(x-ak) 

alternates in sign in the points 

(3.11) = l < <b <E 

and satisfies 

(3.12) Ifn(5k,n)l > Ifn(X)I fork= 1,... ,n, x E [E,1]. 

If we have this sequence, r -I(a1, ... , an) cannot have an alternation point 
in (E, 1] for n > 2, since otherwise for a suitably chosen y E R the function 
f - yr _1(a1 , ... ,a.) has a zero in each interval (5k,n Ak+1n) and an addi- 
tional zero in (6n,n , 1) . 

We observe now that fJ (x) = 1/(x - aI) is decreasing in [0, 1] and satisfies 
(3.12) with 3, 1 = 0. Having constructed a, ... a1, we observe that 

(3.13) lim x = 1 uniformly on [), 1] 
a 0- x-an 

for all A > 0. Thus, for Ianj sufficiently small, (3.12) will be satisfied for 

k,n+l : k-1,nk =3,*,n+1 andnfor 1 -., = 0. Thus it 
remains to show the existence of 2 ,+l . Since fn+I (0) = 2fn(0), this follows 
from (3.13) by choosing Ian I small enough. o 
Proofof Theorem 1.3. We will prove the theorem on the interval [0, 1]. Choose 

a, a2, ... as in Lemma 3.2 with e/2 replacing e. Let, for bk > , 
n b 

(3.14) Sn(x) = bk 
k=x - a2k 

We now use a result in [B] stating that the best approximation to Sn out of 

Mn-2,n- I has the form 

(3.15) rPn(Sn)(x)- = -2(X) 
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where p,*_2 is of degree n - 2 and 

(3.16) a2<a <a4< ...<a <a2 <0. 

Thus, by the equioscillation property (1.4), there is a constant cn such that 

(3.17) Sn rn-2 * n- = cnr2n-2(a2 a3 a4 ,. a. 

Since r2n-2(al , ... ,a2n1) has no alternation point in (e/2, 1], Lemma 3.1 
shows that Sn - rn_2,n- I(Sn) has no alternation point in (e/2, 1]. We choose 
the bk 's such that 

00 

(3.18) the series f(X) X E k_ converges uniformly on [0, 1], 

and 

f (f) is close enough to r*2 "-(Sn) to guarantee that 
(319) f- * f) has no alternation point in (e, 1]. 

For (3.19) we used the fact (cf. [W]) that the best approximation operator is 
continuous in S, since Sn) is nondegenerate (i.e. d = 0 in (1.3)). 
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