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Explicit Ramanujan-type approximations to pi of high order

J M BORWEIN and P B BORWEIN

Department of Mathematics, Statistics and Computing Science, Dathousie University,
Halifax NS B3H 315, Canada

Abstract. We combine previously developed work with a variety of Ramanujan’s higher
order modular equations to make explicit, in very simple form, algebraic approximations to
n which converge with orders including 7, 11, 15 and 23.
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1. Introduction

Ramanujan’s 1914 paper ‘Modular equations and approximations to =’ [6] contains
a number of approaches to approximating pi. The three most significant approaches all
involve elliptic integrals. The first approximates 7 as the logarithm of singular values
of elliptic integrals; the second uses the derivative of Dedekind’s eta function to
produce algebraic approximations to pi; the third constructs rapidly convergent series
for 1/m whose coefficients are invariants from elliptic or modular function theory. All
three of these approaches are described in Borwein and Borwein ([2], Chapters 2, 5, 9)
which we follow closely in the development of the material herein. As is described in
[2] and [3] both of the latter two approaches implicitly involve recursive
approximations to 1/z.

Between 1983 and the present a number of record setting calculations of digits of
pi have been undertaken. All rely on methods that relate directly to this maternal.
Details of the calculations of Gosper, Bailey, Tamura and Kanada and Kanada may
be found in [2] and [3].

In this paper we record the results of our systematic attempts to exploit Ramanujan’s
higher order modular equations as given by Bruce Berndt’s edited versions of Chapters
19 and 20 of Ramanujan’s second notebook [1].

2. Recursive approximations to pi

We take for granted a familiarity with the basic language of elliptic integrals and
theta functions as delimited in [2, 5, 6, 7, 8]. Thus we have the complete elliptic integral
of the first kind

n/2 ‘
K(k):= j dt/(1 — k?sin? )%

0
and the completé elliptic integral of the second kind

n/2
E(k)= j (1 — k?sin®t)* dr.

0
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We set k':= /(1 — k?), K'(k):= K(/(1 — k%), E'(k)= E(/(1 — k?)). We then have the
key relations
2
KO =203, kimk@ =2 and gi=cxp(~ nK'/K), (1
2 03(9)

where the special theta functions are given by

03(q)= Z q"2 and 0,(q)= Z q("+1/2)2'

The singular value function is then defined by
k(N)=k[exp(—n/N)] or K'(k(N))/K(k(N))= /N NF)

for positive N. This uniquely defines k on (0, o0) as a decreasing function with k(Q) = oo
k(1)=1//2, and k{c0)=0. Also k is algebraic when N is rational [2]. In [2] a
corresponding function « (a singular value of the second kind) was studied. It is defined
by

a(N):=(E'/K) — (n/4K?)  k:=k(N) 3)

and likewise is algebraic at rational values with a(1) = 1/2, a(c0) = 1/n. Moreover, a
satisfies recursions which allow for its computation both aigebraically and numerically.
For example,

a(d4N) = (1 + k{4N))>a(N) — 2\/Nk(4N) 4)
and

k(4N) = [1 = K(N)1/[1 + K'(N)]. (5)

This type of relation can then be iterated and leads to high-order iterations for 7 (see
[2], [3] and below). The function alpha is directly connected to Ramanujan’s multiplier
Ry which is defined in terms of the Eisenstein series

ng*"

(q)—1-24f S

(6)

by

NP(q")— P(g)
Rl k)= ————= k=k(g") [=k(g). 7
R_amanujan gives closed forms for Ry for N=2,3,5,7,11,15,17,19,23,31 and 35,
many of which we use below (see [2] and [6]). From now on we will freely write k
and [ for

k=k(N’r)=k[exp(—nN/r)], [=kir)=k[exp(—n/r].

The pair of modulii k¥ and ! then solve the Nth order modular equation for K and so
satisfy an algebraic equation

Wyl k) =0
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The corresponding multiplier defined by

M y(l, k)= K(k)/K(l) = 03(¢")/03(9) ®)

is then also algebraic.
We will often suppress variables and subscripts. Thus we write m:= ny = my(l, k)
where

my(l, k)= [K()/K (k)] — Mg " (LK), ©)

In these terms the recursive approximations to pi given in Chapter 5 of {2] can be
described by

a(N2r) = mbodr) — \/rentr), ' (10a)
where '
2 N : N
enr)ym N L TN Ry (i — 4 — (k= D) (10b)
2 3 my
and

k= k[exp(—nN\/r)], [=k[exp(— nynl.

The accuracy of these approximations is phenomenal. For r > 1 the error satisfies

0 < ofr)— 1/ < 16 /rexp(—n/r) (11)

and this is for all intents the asymptotic if ‘8’ replaces ‘16",

An Nth order iteration for 7 consists of the following. Commence with ko= k(r)
and o,= a(r) for some given r and then repeatedly solve Wy(k,,k,,)=0 for k,.4
given k,, while using (10) with I =k,, k =k, to compute o, = a(N2"*2r), - Then
(11) shows that the error between o, and 1/r is of the order of N"exp [(—n\/r)N"]
and that the number of decimal digits correct increases by more than a factor of N
at each step.

3. Specific examples

To compute &y explicitly one needs tractable forms of Ry, and of my— N/my.
The transformation of g — —gq in the latter then provides a formula for my(1 —12) —
(1 — k*)N/my and the component pieces may with some effort be folded together—use
of modular symmetries somewhat simplifies the task. The resulting results are
surprisingly simple, especially for N = 3(mod 4). We list these cumulative results next.
In each case the first entry gives a form of the modular equation Wy, the second
my — N/my, while ey is given third.

For N = 3,5,7 alternative solvable modular equations for my are given in [2] and
[3]. In each case the tabular entry can be converted into a iteration for 7 or used to
approximate log or other quantities. We also observe that the formula for ey can be
used to determine a closed form for dMy(l, k)/dk.



56 J M Borwein and P B Borwein

Explicit examples with N =3 (mod 4)

N=3 (i) k)24 KD =1,
(i) m — 3/m=2[(kDY? — (K'INY?] = 2kl — k'1),
(i) &3 =(m?+2m—3)/2.
N=7 (i) (kD 4 kD)= 1,
(i) m—7/m=2[{kD'* — (K'IVM*][2 + (kDY? + (K'1)Y2],
(iil) &5 = (m* 4+ 2m — 7)/2 + m[2kD)'7* + 2k'T')*/2].

)
N=11 (i) (kD2 4 (KT 4+ 2(4kIKT) S = 1, _
(i) m -11/m 2L (k)M — (K1) [4 + (kD2 + (K1),
)
)

(i) &, = (m? + 2m — 11)/2 + m[ 1 + (kDV% + (K'I)12]2.

P>=4PQ — R where P=1+ (k) +(KI)/*
0 = (k) + (KT)M* + (kIKT)Y* R = 4(kIk )14,
(i) m— 15/m = [(kD** — (K'1)"4}(P? + 2P% — 2P + 2),
(i) &5 = (m? — 2m — 15)/2 + m[ (kD)'/* + (K'1)14]{4Q + 4).
N=23 () (k)" + (KD 4 J2GKIKTY 2 = 1 [T = (kD 4 (K14,
(i) m—23/m = [(kD** — (KT)*](T* + 3T + 3T + 1T + 8),
(iii) £33 = (m? +2m —23)/2+ m(T5 + 3T+ T2 + 4T + 1).

N=15 (i

In all these cases Ramanujan has provided a formula for Ry [6] while for
N =17,11,23 he gives a form of my — N/my [1]. The calculation of my — N/my for
N = 3 is straightforward, while for N = 15 we discovered the formula computationally.
The modular equations used may be found in a variety of places. Many are derivable
from or are included in the notebooks [1]. Ramanujan’s formulae are usually but
not always the simplest available. For example, Ramanujan gives

Ryl k) = 11(1 + kl 4+ k'T) — 16(4kk IV)VS[1 + (kD)2 + (K1) — 20(4kk 1) 13,
which we recast as
Rys(Lk)=3(1 + kl+ k1) + 4[1 + (kDY + (K'T)H2]? — 4(4kKk'Il')H3

by using W,,.
For comparison we also list the following:

N=2 () k=(1=D1+D),
Qi) m=1+k=2/14+10),
(i) &, = 2k.
N=4 () Jk=(1—=(1-=DB)"H1 +(1 =124,
(i) m=(1+ k)3,
(ii) €4 =4 /k[1+ Jk+k].
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N=5 (1) K322y 4(k1)1/4(1 — kb + 5(kl)1/2(k1/2 - 11/2) =0,
(i) m+ S/m=202+kl+ K],
(iii) &5 = (m* — 5)/2 + [m(m* — 2m + 5)]*2.

We also indicate the components for N = 19 where Ramanujan does not provide
an expression for my — N/my and we have not been able to determine a suitable
formula, although R, is simple.

N=19 (i) P*=7P?*R—16QR where P =(k])'/? +(KT)"? |
Q = (kIK1)'? — (kD2 — (KT)"? R = —16(klk'T)"2,
(ii) Ryo=6[(1+kl+KT)+ (kD" + (k') — (kIK'I')V/*] = 6P? — 180
mig={1+[(A—B— 1" (AR} [(1 + kI + k'I/2]" 12
A=k¥ep=1s B a1

4. Additional comments

It is worth emphasising the staggering rate of convergence of the algorithms based
on these recursions. The two most natural starting values for the Nth order algorithm
are r=1and r=1/N. As observed, for r=1 we have k,=1/,/2 and «, =1/2. For
r=1/N one knows that ky is the Nth singular value and solves W,(ky, ky) = 0 while
M y(ky, ky) = 1//N. Thus we can use (10b) or the corresponding tabular entry to obtain

*N) = Na(1/N) = e5(1/N)/\/N.
In addition one always has

a(N) + Na(1/N)= /N.
Thus one may determine that

AN) =3 /N —ey//N) and a(1/N)=(/N +ey// N)2N,
where ¢y = g5(1/N).

Example. We show how this works for various N. Throughout we let 8(N):= gy/\/N.
Note that 1/z =0-3183099....

(N = 3) Setting [ = k' in (i) yields 2k,k; = 1/2.
Moreover, my = /3 so that, using (iii), e5(1/3) = /3. Thus

a(3)=(/3-1)/2=03660... .

(N =7) Setting I = k' in (i) yields 2k,k’, = 1/8.
Now m, = /7 so that, using (iii), 5,(1/7) = (1 + 4(k,k4)"/%) =2 and

7)=(/7—2)/2=03228....
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(N = 11) Setting | = k' in (i) and letting x:= 2,/(k, 1k ,) produces the cubic equation
(1 — x)® = (2x)*. This can be solved to produce

2kk’ = (2y — 5)/6
with
y= (333 + 1717 —(3,/33 - 17)3,
Also, (iii) becomes d(11) =1+ (1 +x)*=(5+2y + 2v?)/9 and
a(11) = (/11 = 4(11))/2=0-3190... .
(N =15) Setting I =k in (i) leads to
kk' =((/5 — 1)/#)* = (sinn/ 10)‘f.
If G denotes the golden mean, (/5 — 1)/2, (iii) becomes
5(15)=G(@4+4G+G*)— 1= /5+ 1 and
a(15) = (/15 — /S — 1)/2 = 031845 ...

(N =23) Setting [=k" in (i) and letting x:= 2(k,;k53)'* produces the cubic
equation (1 — x)* = x2. This can be solved to produce

2kk' = Lyt2
with .
1/ (25+3,/69\"*  (25—3,/69\'> )
y=x{ =)+ —=—) -1}
3 2 2 )

Also, (iii) becomes 6(23) =4 + 2x3 =4 +2y°. Finally, as y* + y* =1
®(23)= (/23 - 29% — 4y)2 =0-31832....

We conclude by presenting the asymptotics of some of these iterations commencing
with the previously discussed starting values, using (11). The effect of commencing with
r=N instead of r=1/N is to move one index along in the iteration count. The
estimate is of = — 1/a,,.

‘ Decimal digits correct after iteration n
n 1 2 3 4 5 6 7 8 9 10

re=1 13 8 19 40 84 171 . 345 694 1392 N=2
r=1/2 0 2 5 13 28 58 120 243 490 983

r=1 210 34 107 327 990 2979 8946 26849 8 759 N =3
r=1/3 0 5 18 60 188 570 1718 5163 15499 46508

r= 7 63 464 3271 22925 N=1
r=1/7 122 173 1233 8662 % :

= 12 161 1811 19970 219727 o N=11
r=1/11 2 47 543 6018 66246

r= 28 717 16595 381801 8781586 ‘ N=23

r=1/23 4 147 3456 79606 1831081

o 0O =

[ T = T e D ]
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The first iteration with r = 1/N produces a(N) as given explicitly abovefor 3,7, 11, 23.
The tenth iteration with N=11 and r=1 produces in excess of 1-45-10®% digits
coincidence with 1/7. The eighth iteration with N =23 and r =1 produces in excess
of 102 digits coincidence with 1/7.
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