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the Exponential Function 
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Abstract. Approximation to exp of  the form 

f~m(z) := pro(z) e -2z + qm(7.) e -Z + rm(z) = O(z3C"+t)-l), 

where p,.,  qm, and r,, are polynomials of degree at most m and p,, has lead 
coefficient 1 is considered. Exact asymptotics and explicit formulas are obtained 
for the sequences {~gm}, {P,,}, {qm}, and {rm}. It is observed that the above 
sequences all satisfy the simple four-term recursion: 

1 
Tin+ 3 = ~ m - - ~ [ ( - 6 m  - 14)zaTm 

+ (9m + 15)(z 2 + (3 m + 4)(3 m + 7)) Tin+ L + 3zTm+2]. 

It is also observed that these generalized Pad6-type approximations can be used 
to asymptotically minimize expressions of  the above form on the unit disk. 

1. Introduction 

We wish to consider approximations to e -~ generated by finding polynomials 
P,,, qm, and rm so that 

(1.1) ~m(X) :=pro(X) e-2X + qm(X) e-X+ rm(x) = O ( X 3 ( r a + l ) - l ) ,  

with Pro, qm, rm ~ "/Tm (the algebraic polynomials of degree at most m). The 
approximation to e -x given by 

-q~(x)+'~q2 (x) -4rm(x)pm(x) 
r = 

2p.,(x) 

is the natural quadratic generalization of the main diagonal Pad6 approximant 
-Qm/Pm which satisfies 

(1.2) ym(X) := Pro(x) e-Z+ Qm(x) = O ( X 2 ( m + l ) - l ) .  
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Our primary aim is to derive exact asymptotic formulas and recursions for {p,,}, 
{qm}, {rm}, {~m}, and {Sin} and to treat some minimization problems concerning 
related approximations on the unit disk in C. 

Hermite, who was Padr's thesis supervisor, considered expressions of the form 

(1.3) tk(x) eSkX+ tk_l(x) eSk-l~+ " " " + h ( x )  e ~ =  O(xh) ,  

where t~ , . . . ,  tk are polynomials, of specified degrees, chosen so that h is as large 
as possible [3]. Included, of course, in expression of type (1.3) are both the Pad6 
approximations (1.2) and the quadratic Hermite-Pad6 approximations (1.1). 
Hermite viewed his approximants as an algebraic generalization of the continued 
fraction for exp. Some forty years later Mahler [4] showed how Hermite's 
approximations could be used to prove the transcendence of e and r and, still 
later [5], showed how to derive an irrationality measure for ~- from the approxima- 
tions. This is computationally difficult, but very natural, and is different from 
Hermite's original approach to the transcendence of e. Since we do not treat 
approximations of the generality of (1.3) we are able to provide exact asymptotics 
rather than the estimates included in [3], [4], and [5]. 

The general problem of Hermite-Pad6 approximation is the following: given 
functions f l , . . . , f ,  and integers d o , . . . , d , ,  find polynomials P o , . . . , P ,  
(deg(pi) --- d~) so that 

(1.4) po(x) + p l ( x ) f l ( x )  + " "  + pn (x ) f , ( x )  = O(xh) ,  

where h is as large as possible. Particularly interesting cases arise where the f~ 
are related, for example f~ is the ith power (or ith derivative) of a fixed f. The 
i = 1 case is the familiar Pad6 case. As one might expect, the already complex 
Pad6 questions concerning the nature and region of convergence become more 
complicated. The substantial body of research in this area, due to, among others, 
Baker, Chudnovsky, Della-Dora, Mahler, Nuttall, and Wallin can be accessed 
through the extensive bibliography in [ 1 ]. 

Exact results concerning best rational approximation to exp, particularly the 
Meinardus conjecture, have attracted much attention ([2], [6]). Proposition 5 can 
be viewed as a quadratie version of this conjecture on the disk. A linear version, 
due to Trefethen appears in [9]. Virtually no completely worked out examples 
for higher-dimensional approximations exist and exp is a natural candidate for 
such a complete analysis. This analysis constitutes the thrust of this paper. 

2. Explicit Formulas 

We derive the quadratic approximations from the Pad6 approximation as follows. 
With the notation of (1.1) observe that 

[pm(X)  e -2x + q m ( x )  e - x  + rm(X)] (re+l) = Sin(x) e-2x + tin(X) e-X = O(X2m+l),  

where Sm and tm ~ r In particular, --tm/Sm must be the (m, m) Pad6 approximant 
to e -x. This, coupled with the observation that if 

1 I f  g(x )  = ~ (X - t)~"f(t) dt 
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then 

g("+l)(x) =f(x) ,  

leads to the formulas for p,~ and qm ((2.4) and (2.7)) on which our analysis rests. 
We commence the detailed development of formulas for {Pro}, {qm}, and {r,,}. 

Let 

llo~ pm(x):=~.~ tm(t+x)me_,dt= ~ (2m-k)! k x (2.1) 

and 

(2.2) 
( 2 m - k ) !  , ,k Qm(x):= t m ( t - x ) m  e - t  d t  = -  

= -Pm(-X). 

Then -Qm/Pm is the (m, m) Pad~ approximant to e -x. Also, P,, and Qm satisfy 
(1.2) (see, for example, [6] or [7]) and 

Pro(X) e -x + Qm(x) = (-1) m+l x2m+l f l  
m I d o  (1 - u ) " u "  e -ux  du .  (2.3) 

Now let 

(2.4) 

If we set 

(2.5) 

then 

(2.6) 

e2X2m+l Ix ~ 
pro(X):= mt (t-x)mPm(t) e-2'dt 

e2~2"+! f~ ~ ~ m! ( t -x)m e-2t ~ ( 2 m -  
~---  k=0 ( m - -k T I k dt 

2m*'IO~ = U m e -2u 
m! k=o(m_-~.~!tu-rx) du 

=2m*1 ~ ~. (2m-k ) ! (m+k-J )  !xj 
m! k=OjffiO (m-k)! j[  (k- j ) !  2 ''+e+l-; 

m xJ m (2m-kl(m+k-J)2J-k" 
=m!j~o~--~. ~j  X m / X m 

(u=t-x)  

cj:= ~ m - J ( 2 m - ( k + J ) ) ( m + k )  1 
k=o m / \  m 2 k' 

pm(x)=m! ~ cjxj 
sffio j!  
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Note that p"  is a polynomial of  degree m with positive integer coefficients and 
with highest coefficient 1. Let 

eX2"+l fx D (2.7) qm(X):= m! (t-x)O'Qm(t) e-'dt 

" x J "  ( 2 m - k l ( m + k - J ) ( _ l ) k "  =--2m+'ml X ~ X 
j=oJ. k= j \  m / ' ,  m 

Thus, if we set 

then 

(2.8) 

and 

dj:= ~J  ( 2 m - ( k  +J)~)( rn + k) (_l)k-J 
k=O\ m / ' ,  m 

d i = ( _ l ) J ( 3 m / ~ j / 2 ) ( l  +(21)"-J ) 

ajxJ 
(2.9) q,,(x)=-2"+lm! 

j=o j t  ' 

where q,, is also a polynomial of  degree at most m with integer coefficients. 
We define rm in terms of Pm by 

(2.10) r,,(x) := (-1)mp,.(-x), 

with Pz given by (2.6) or (2.3). 
Finally, let 

2m+l f Io _x ( x -  t)" e-tt 2m+] (1 - u)mu m e -u' du dt (2.11) ~m(X):--mlmljo 

2m+lx3m+2IOIO L -- -~..-~.I. - (1-v)"(1-u)mv2m+lu"e-UVX e-VXdudv" 

We may now establish the basic proposition. 

Proposition 1. 
g,.(x) = p,,(x) e -2~ + q"(x) e -~ + r,,(x) = O ( X 3 ( r a + l ) - l ) ,  

where ~g,,, Pm, q,,, and r,, are given by (2.11), (2.6), (2.9), and (2.10), respectively. 

Proof. By (2.11) and (2.3) 

-2"+1 re: ~,.(x) = m----'~. ( t - x ) " e - ' [ P " ( t ) e - ' + Q " ( t ) ] d t  

2m+l f o 9"+1 ('co 
- m! J~ ( t-x)mpm(t)e-2'dt+~----- |  ( t - x )"Qm( t )e - td t  

m! Jx 

2"+1 fo ~ m! ( t - x )"e - t [P , , ( t )  e- '+  Q,.(t)] at. 
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By (2.4) and (2.7) the first two integrals of the last equation are e-2Xpm(x) and 
e-Xqm(X) while the last integral is a polynomial of degree m in x, say win(x). It 
remains to show that win(x)= (--1)mp,~(--X). We have deduced, with (2.11), that 

(2.12) pro(X) e - ~ + q m ( x ) +  W,,(X) e ~= O(x3~m+l)-l). 

Repeated differentiation shows that an expression of the form 

(2.13) s (x )  e -~ + t (x)  + u (x )  e ~, 

where s, t, and u # 0 are polynomials of degree at most hi, n2, and n 3 can have 
a zero of order at most n~ + n2+ n3+2. Thus, on replacing x by - x  in (2.12) we 
deduce that win(x)= (--1)rapm(--X). (Otherwise we could construct a form from 
(2.12) with a zero of too high a degree at zero. Note that qm(x) = (--l)mqm(--X).) 

3. Asymptoties 

We now turn to asymptotic estimates for {Pro}, {qm}, {rm}, and {~,}. (As usual, 
a m - b m  means a , , / bm-* l .  Throughout this paper the asymptotics are in the 
variable m.) 

Proposition 2. 

~,.(x) 
2 m + l m !  X 3m+2 e-X 

(3m+2)!  

(The asymptotic is uniform on bounded subsets of C.) 

Proof. From (2.11) 

2m+'x3m+2 f f _u) , , v2m+tu , , e  . . . .  e-OXdudv ~m(x)- (1-v)'(1 
r e ! m !  J o J o  

2m+lx3rn+2 I~ 
(2 re+l ) !  ( 1 -  v)mv2m+l e-3/2VXdv 

2 m + l m l  X 3m+2 e-X 
(3m+2)!  

Both of the above asymptotics follow from the elementary relation 

i L (1 - t)'~mt ora e -v' dt ~ e -~'/(=+~) (1 - t)~mt m~ dt 

= e_aV/<~+a) (am) !  ( t im)!  
((o~ +/3)m + 1)t' 

which in turn follows since ( ( 1 - t ) ~ t ' )  m behaves like a "spike" at ~ / ( a + ~ )  
(see [9]). It is easy to check directly from (2.11) that 
~m ( X ) / [ ( 2m+ l m ! X 3m+2 e-X)~(3 m + 2)!] is uniformly bounded on compact subsets 
of C. The uniformity of the asymptotic now follows from Vitali's theorem. �9 
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P r o p o s i t i o n  3 .  Let Dm :=  3 m (3  rn - 2 )  �9 �9 ' ( m  + 2 ) .  

( a )  p,.(x) ~ Dm e ~1-~/'6)x. 
(b) qm(X) ~ (-1)"*lDm[eX/'/~ +x(-1)m e-X/~]. 
(C) rm(x) ~ (-1)mDm e -(1-1/'/~ �9 

(The asymptotic is uniform on compact subsets of C - 

{+ki43r = • +2, . . .} . )  

P r o o f .  In all cases the proof  comes from inspection of the coefficients of the 
expansions. For example, from (2.9), 

2m.lm, djxJ q . , ( x )  = - . j !  , 
j=O 

where for fixed j, as m -~ oo, 

dj+2 - - ( m / 2  - j / 2 )  dj - -  (-- 1)dj. 
( 3 m / 2 - j / 2 )  

Since these terms dominate the sum, (b) follows. This is readily made rigorous. 
For part (a) (and (c)) the estimates are more complicated since we must estimate 
the cj given by (2.5), 

(3.1) cj := Y~ . 
k=O m / \  m 

With the aid of  some elementary calculus we can show, for fixed j, that as m -~ oo 

and (a) follows. We use the calculus to show that as j--, 0 the maximum terms 
in (3.1) occur for k near ( 2 - , ~ ) m .  The details are reasonably straightforward. 
Once again the uniformity follows from Vitali's theorem and direct calculation 
of  uniform boundedness (using (2.4) and (2.9)). We must avoid the zeros of  
eX/~+ e -x/'6, namely the set {+kix/3zr/2}. �9 

P r o p o s i t i o n  4 .  Let 

-qm(x)  +4q~(x )  -4p,,(X)rm(X) 
~ m ( X )  - -  2pm(x) 

where the square root is the principal branch. Then, for odd m and for Ixl 
2m+~m ! X 3m+2 e-X 

e - X - - o t t o ( X )  ~ 
(3 m + 2) t D,, [ e x /~  + e-X/'/'s]" 

(The estimate is uniform on any compact subset of {Ixl < x/3r 
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Proof. 

(3.2) 

Now observe that 

(3.3) E " ( Y ) - E m ( e - ~ )  
y - e  x 

and 

Note that y = am(x)  is a root of the quadratic equation 

E, . ( y )  := pm(x )y  2 + q , , ( x ) y  + rm(x). 

= p m ( x ) ( y + e - X ) + q m ( x )  

Em(y)  - Em( e -x)  = -- ~gm(X), 

.We verify directly from Proposition 3 that y - e -x (as m --, ~ )  and so (3.3) yields 

~(x) 
(3.4) e - X - y  pm(x )2e_~+qm(X  ) 

and the result follows from the estimates of  Propositions 2 and 3. The uniformity 
follows from the uniformity estimates in Propositions 2 and 3 applied to (3.4). 
We must avoid the zeros of e~/'/3+ e - x / ~  since a branches at the~e points. (See  
the comments following this proof.) Is 

Note, for odd m 

q ~ ( x )  - 4pro (x)rm(x) ~ D ~ [ e  x/v3 + e-~/v3] 2, 

while, for even m 

2 2 x/,~ -x/,/~ 2 q m ( x ) - 4 p m ( X ) r m ( x ) ~  Dm[e  - e  ] . 

Thus, while the principal branch of the square root works for the definition of 
am(X) for odd m, we must contend with a branch point near x = 0  for even m. 
Hence, an asymptotic like Proposition 3, for even m is more complicated. In 
fact, if 

fl,~ (x) := - q m ( x )  - ~ / q ~ ( x )  - 4p,~(x)r , , (x)  
2pm(x) 

c t m ( t ) ~ e - t ,  t~ [ - 1 , 0 )  

then, for even m, 

and 

f l m ( t ) ~ e - ' ,  t~(O, 1]. 

4. An Exact Minimization 

We wish to uniformly minimize over D := {z ~ C: [z[ -< 1}, 

(4.1) win(z) := s , , (z )  e -2z + tin(z) e -~ + Urn(Z), 

where s,,, tin, u,. e ~rm and Sm has highest coefficient 1. 
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Lemma 1. 

Proof. 

F o r  Izl = 1 

[( 1 )l ~m z + 3 m + 2  (3m+2)!" 

This follows from Proposition 2 and the observation that 
1 \3m+2 

Z+3m+2  ) ~ z3m+2 el/Z 

Let 

(4.2) p*(z),  q*(z) and 

respectively denote 

pm(Z+3m+l 2) '  q m ( z + 3 1 + 2 )  

Let I1" IIo denote the supremum norm on D. 

Proposition 5. 

r*(z), 

and rm(Z+3ml+2).  

2m+lm[ 
(a) lip*re(Z) e-2~+q*m(Z) e-~+r*.,(z)l[o (3m+2)!" 

(b) Let 

w* := min 
$,  t ,  U E Cr m 
$=Zm+... 

II=(z) e -== + t(=) e - =  + . ( z ) l l o  

Then 
2m+lm! 

w* (3m+2)!" 

Proof. Part (a) is just a restatement of Lemma 1. Observe that p* has lead 
coefficient 1. 

To prove part (b) we use the fact that a nonzero expression of the form 

(4.3) vt(z) e -2~ + v2(z) e -~ + v3(z), 

where Vl, v2, and v3 are polynomials, the sum of whose degrees is h, can have 
at most h +2 zeros in D. This is winding number argument and is proved in 
P61ya and Szeg6 [8, p. 144, Problem 206.2 with/3 := 1, a := -1 ,  AI := 0, A~ := 2 and 
n := h +3]. Thus, 

w* -> min Ip*(z) e -2~ + q*(z)  e-" + r*(z)l. 
[=1=1 

If  this were not the case we could find s, t, u ~ ~rm with s having lead coefficient 
1 so that, for Izl = 1 

Is e-2~ + t e-" + ul < lp*,, e-'~ + q*,, e-~ + r* l. 

By Rouch6's theorem this would imply that 

(4.4) (s - p * )  e -2z + (t - q*) e -~ + (u - r'm) 
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has at least 3m +2 zeros in D. Howeyer, since s - p *  has degree at most m - 1  
the sum of the degrees of the coefficients in (4.4) is at most 3m - 1 and we have 
contradicted the above result from P61ya and Szeg6. �9 

We note that 

2m+lm! 
Ilpm e-2Z + q,, e-Z + r , , l l o ~  e (3m + 2) ! 

and so, up to a small constant, the quadratic Hermite-Pad6 approximant is 
optimal in the sense of Proposition 5. The trick of shifting the center of the 
approximation to make the error curve have asymptotically constant norm on D 
is due to Braess [2] who used it to get the right constant in the Meinardus 
conjecture. 

5. Differential Equations 

The coefficient polynomials are linked by the following third-order differential 
equations. 

Proposition 6. 

(a) 2 m p , . - l = p 2 - 3 p " m + 2 p ' .  
(b) 2mqm-i  = q ' -  q2.  
(c) 2mrm_~ = r2 + 3r~ + 2 r ' .  

Proof. We suppress the variable x in the coefficient polynomials and start with 
the relation 

(5.1) Pm e -2x + qm e -x + rm = O(X3m+2). 

Then, on differentiating 

(5.2) ( p ' - 2 p m )  e-2XT(q~m--qm) e,'(X + rm = ! O(x3m+l). 

Adding twice (5.1) to (5.2) gives 

(5.3) p "  e--Z~+(q'm+qm ) e - X + r "  +2r, ,  = O ( x  3m+~) 

and differentiating again gives 

(5.4) ( p ~ - 2 p ' )  e-2~ + ( q ' ~ - q m )  e-~ + r'~ + 2 r "  = O(X3m). 

NOW adding (5.3) to (5.4) and differentiating yields 

(5.5) ( p " m - 3 p ~ + Z p ' m ) - 2 x - ,  ,,, , ,  ,,, , , _  e - e t q . , - q , . )  e - X + r , , + 3 r m + 2 r m  - O(X3r"--~). 

Since the coefficients in (5.5) are all of degree (m - 1) or less we see that up to 
a constant multiple of 2m (5.5) must equal Pm-~ e -2~ + q~,-~ e -~ + rr,-~. (Here we 
have appealed to uniqueness, as in the proof of Proposition 1.) 
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6. A Four-Term Recursion 

The coefficients sequences {p'}, {q'}, and {r'} satisfy the following relations. 

Proposition 7. 

{ p'(x) q'(x) r'(x) 
(a) Det Ip'+I(X ) qm+l(X) rm+l(x)l = ( -1 )"+ '9  �9 2"+2(4+3m)x 3"+2. 

r'+2(x)] 
(b) {p'}, {qm}, {rm}, and {~ '}  all satisfy the four-term recursion. 

Tm+3= ~ {(-2m-~)x3Tm 

+ [(3 m + 5)x2+ (3m + 4)(3 m + 5)(3 m + 7)] T,.+I + xT'+2}. 

Proof. For part (a) observe that 

p"  q" r" \ [  1 0 0 / O(x3m+s) q" rm 
Pm+l q'+l r ' + l } [  e-~ 1 = q,.+l r '+t  �9 

\P'+2 q,,,+, r'+2]\ e-2,' 0 \ O ( x  3"+s) q'+2 r'+2/ 

Thus the determinant in (a), which is a polynomial of degree at most 3m +3, has 
a zero of order 3m+2.  It follows that we need only consider the two highest 
coefficients of the entries. From Section 2, 

Det P'+I q'+l r'+l 

\ P r a + 2  qra+2 rm+2] 

/ x '+~m(m+l )  xm-1 X m 

= ( -2 )  m+l Det [ x "+'+3(m + 1)(m + 2 ) x "  - 2 x  "+' 
\x, .+2+~(m+2)(m+3) "+l 4x m+2 

= (-1) '+19 . 2"+2(4+ 3m)x 3"+2, 

where the final calculation is performed by expanding the determinant around 
the middle column. 

In a similar fashion we calculate 

Det P'+I q'+l r '+l  = (--1)m+127 " 2 m+2X3m+3, 

\P'+3 qm+3 r'+a] 
(6.1) 

and 

(6.2) 
Pro q" r" I 

Det Pro+2 q'+2 r'+2 
\P'+3 q'+3 r'+3/ 

= (--1)m27 �9 2"+2(3m + 5)[x 2 + (3m + 4)(3 rn + 7)]x 3"+2. 

x ' - 3 r n ( m +  l)x m-1 
x "+1-3(m + 1)(m + 2)x* 

x"+2-~(m+2)(m+3)x "~ 
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Part (b) is now straightforward. Observe from part (a) that 

Ip P,. qm r~ - ( 4 i 3 m )  / 
m+l qm+l rm+l 

Det 
IPm+2 qm+2 rm+2 

I\Pm+3 qm+3 rm+3 2 ( 4 + 3 ( m + 1 ) )  x3]  

=0, 

which allows us to solve for the coefficient of  T,. in the recursion of part (b), 
The coefficients of  T,..1 and Tin+2 are derived in a similar fashion using (6.1) 
and (6.2). �9 

7. Some Numbers 

The following tables give the coefficients of  first six pro, q,., and r,.. 

Pm x~ xl x2 X 3 x 4 x 5 x 6 

m = 1 3 1 
2 24 9 1 
3 315 123 18 1 
4 5760 2295 375 30 1 
5 135 135 54 495 9450 885 45 
6 3 870 720 1 573 425 283 185 28 980 1785 

1 
63 1 

Recall  that r,.(x) = ( - 1 ) ~ p . , ( - x ) .  

qm x~ xl X2 x3 X4 X5 X6 

m = l  0 4 
2 -48 0 - 8  
3 0 384 0 16 
4 -11 520 0 -1920 0 -32 
5 0 161 280 0 7680 0 
6 - 7  741 440 0 -1  290 240 0 -26  880 

64 

0 -128 

Note, for m = 5 and x = 1 we have 

p := ps(1) = 200011, 

q := qs(1) = 169024, 

r := rs(1) = -89249, 

and 

1 _  as(l)  = 1 -q+~/~--4-4pr 
e e 2p 

= ( 0 . 2 5 . . . )  • 10 -16 . 

In fact, o~s is giving at least fifteen-digit accuracy over the whole unit disk. 
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