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Abstract. 

Using the theory of the cubic modular equation we have discovered a remarkably simple class 
of cubically convergent algebraic iterations for n. 

In the course of a study of cubic modular equations the following two remarkably 
simple cubically convergent iterations for n were uncovered. Details of the 
derivation will appear in [1]. A related but less elegant iteration was discussed 
in [2]. While derivation of our new algorithm is rather elaborate we begin by 
describing its genesis. The complete elliptic integrals E and K are defined by 

t /2 dO . f(/2 K ( k ) ' =  jo , v / ( l_k2s in20) ,  E ( k ) ' =  (1-k2sin20)dO 

for 0 < k < 1. We write k' :=  ~ / / (1-k  2) and K'(k) := K(k'). In these terms the 
singular value function is defined by solution of 

gt  
(k(N)) = x / N  

for positive N. This uniquely defines k on [0, ~ )  as a decreasing function with 
k(0) = m, k (1 )=  1/,,/2, k ( m ) =  0. It is known that k is algebraic when N is 
rational [5]. Various related invariants aretabulated below. Moreover, for some N 
one or more of these invariants become very simple. In [1] a corresponding 

function a (a singular value of the second kind) was studied. It is defined by 

E' n 
(1) a(N) - K 4K 2 k "= k(N) 

and also is algebraic at rational values. It is antitone on [1, ~ )  with ~(1) = I/2 

and ~ (~)  = i/n. Moreover, it satisfies many recursions which allow one to com- 
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pute ~ at many values both numerically and explicitly. For example, 

(2) a(4N) = 4a(N)-2x/Nk2(U),  and 
[1 + k'(N)] z 

1 -k'(N) 
(3) k(4N) - 1 +k'(N~)" 

This leads to quadratic iterations for l/re, [1], [2]. Indeed iteration of (2) and 
(3) is precisely the Gauss-Brent-Salamin quadratic algorithm for lr [4]. 

Similarly one can deduce that 

(4) ~(9N) = m2(N)a(N)-½x/N(m2(N)+ 2m(N)-  3), 

where 

K(k(N)) {1 
(5) m(N) . -  K(k(9g)) = \ k(X)k'(N) / J 

is the cubic multiplier (usually written somewhat differently). Two additional 
pieces of notation are helpful. We write 

GN := [2k(N)k'(N)]-t/t~; gu := [2k(N)A'-2(N)] -~/~2 

which are Ramanujan's invariants [3]. 
In Weber's terms gN = 2-1/4f i (x/ ( -U))  and Gu = 2-1/4f ( x / ( -  N)), many 

values of which are listed in Table VI of [5]. Then 

(6) re(N) = [1 +2, , /2  r3 /~9  q!/2 ( I N / U 9 N  j • 

We also introduce 

(7) 2 V 2G9N/GN] , s(N) : = [ t +  / 3 ,9 1/2 

(8) r(N) := [1 + 2x/2g~N/g~] 1/2 

These satisfy 

(9) m(N)s(N) = 3 and 

(10) I s (N) -  1] [ r (N)-  1] = 4. 

It is a consequence of an extraordinary cubic theta function identity due to 
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Ramanujan (in chapter 18 of his second notebook) that 
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(11) s(N)s(9N) = {[s2(N) - 1] a/3 + 1} 2. 

This leads to a surprisingly simple update for m(N) and so to cubic iterations for n. 
Our algorithm, given N, computes m, := re(N32~) and ~, :=  a(N32") for n 

in ~. The method is initialized by ~(N)and s(N) which may be computed from 
(6) and (9), from (7) or from (8) and (10). 

Algorithms for n. 

Fix N > 0. Let So := s(N) and So :=  ~(N) (various initial values are given in 
Table 1). For n in ~ compute 

(12) rn. :=  3/s., 

(13) S 2 s.+, :=  [( . - 1 ) 1 / 3 + 1 1 2 / s . ,  

(14) 2 _ ~ / N  3"(rn 2 + 2 m . -  3)/2. O~n + 1 : = m n  O~n 

Then, for 7N3 2n > 1, 

(15) 0 < ~.-Tr -1 < i6x//N3"exp(-x/N3"zc).  [] 

With N :=  1, the algorithm gives 0, 2, 10, 34, 107 and 327 correct digits of rc 
(for n = 0, 1, 2, 3, 4, 5). Similarly, with N := 7, the method gives 1, 8, 30, 93, 
288 and 873 digits. This agrees closely with the upper bound in (15) which is very near 
to the actual error. It requires only twenty steps of the algorithm to compute 
over a billion digits of ~r and this, in turn, requires approximately 100 full pre- 
cision multiplications and only 20 divisions and 20 cube root extractions. 

The quantity gN (and hence r(n)) is usually simpler than G. for N even, and G~¢ 
(and hence s(n)) is simpler for N odd. Thus we give the following information. 

Table 1 

N s(N) ct(N) 

1/3 x/3 (~/3+ 1)/6 
1 x/(3 + 2x/3) 1/2 
3 (1 + 2a/3)2/~/3 (~/3-1)/2 
5 x/(1 + 2x/3 + 2~/5) (x/5 - x/(2~/5 - 2))/2 
7 [6 + ~/21 + x/(27 + 6x/21)/2] 1/2 ((7 - 2)/2 
9 (x/3 - 1)[(2 + 2x/3)'/3 + 132/(~/2 31/4 ) [3 _ 33/4(v/6_ /2)3/2 
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N r(N) or(N) 

2/3 `/6 + `/3 [5`/6 - 6`/3 - 8`/2 + 11]/3 
2 ,/2+,/3 ,/2-1 
6 (~ /2-  I)[`/2(`/2 + I)2/3 + 112/`/3 5 ` / 6 + 6 ` / 3 - 8 ` / 2 - 1 1  

18 ( , /3-` /2)[ (4+2`/6)1/3+1]  2 3(`/3 + ~/2)4(`/6 - 1 )2(7`/2 - 5 - 2`/6) 

Many more initial values of r(N), re(N) or s(N) are easily computed.  Moreover, 
since (10)holds  we compute r (~)= 3+2, , /3 ,  s (2 )=  x / 6 + w / 2 - 1 ,  and so on. 
From (4) with N :=  3 we discover that e(27) = 3((~/3 + t)/2-2~/3). 

Further, one easily verifies from (7), (8) and (t0) that 

(16) r(4N) = ~/(r(N) + s(N) + 3). 

Hence r(~) = x / (6+  3,,/3). Also ~(~) = 2154~/6+ 7 7 x / 3 - 9 4 x / 2 -  132]/3. 
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