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ABSTRACT.
Champernowne’s number is the best-known example of a normal number, but its

digits are far from random. The sequence of nucleotides in the human X-chromosome
appears non-random in a similar way. We give a new test of pseudorandomness, strong
normality, based on the law of the iterated logarithm. Almost all numbers are strongly
normal, and we show that a strongly normal number must necessarily be normal.
However, Champernowne’s number fails to be strongly normal.

This paper is dedicated to Jon Borwein in celebration of his 60th birthday.

1. NORMALITY

We can write a number α in any positive integer base r as a sum of
powers of the base :

α =
∞∑

j=−d

ajr−j.

The standard "decimal" notation is

α = a−d a−(d−1) . . . a0 . a1 a2 . . .

In either case, the sequence of digits {aj} the representation of α in the
base r , and this representation is unique unless α is rational, in which case α
may have two representations. (For example, in the base 10, 0.1 = 0.0999 . . . .)

We call a sequence {aj} of digits a string. The string may be finite or
infinite ; we will call a finite string of t digits a t -string. An infinite string
beginning in a specified position we will call a tail.
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FIGURE 1
A walk on 106 digits of π

A number α is simply normal in the base r if every 1-string in its
expansion in the base r occurs with an asymptotic frequency approaching
1/r . That is, given the expansion {aj} of α in the base r , and letting mk(n)
be the number of times that aj = k for j ≤ n , we have

lim
n→∞

mk(n)
n

=
1
r

for each k ∈ {0, 1, . . . , r − 1} . This is Borel’s original definition [5].
A number is normal in the base r if every t -string in its base r expansion

occurs with a frequency approaching r−t . This is equivalent to Borel’s
definition [15]. Equivalently again, a number is normal in the base r if
it is simply normal in the base rt for every positive integer t .

A number is absolutely normal if it is normal in every base. Borel [5]
showed that almost every real number is absolutely normal.

In 1933, Champernowne [8] produced the first concrete construction of a
normal number : the Champernowne number is
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γ10 = .1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . . .

The number is written in the base 10, and its digits are obtained by
concatenating the natural numbers written in the base 10. This number is
probably the best-known example of a normal number.

Generally, the base r Champernowne number is formed by concatenating
the integers 1, 2, 3, . . . in the base r . For example, the base 2 Champernowne
number is written in the base 2 as

γ2 = .1 10 11 100 101 . . .

FIGURE 2
A walk on 106 binary digits of the base 2 Champernowne number
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For any r , the base r Champernowne number is normal in the base r .
However, the question of its normality in any other base (not a power of r )
is open. For example, it is not known whether the base 10 Champernowne
number is normal in the base 2.

It is even more disturbing that no number has been proven absolutely
normal, that is, normal in every base. Every normality proof so far is only
valid in one base (and its powers), and depends on a more or less artificial
construction.

Most fundamental irrational constants, like
√

2, log 2, π , and e appear to
be without pattern in the digits, and statistical tests done to date are consistent
with the hypothesis that they are normal. (See, for example, Kanada on π [10]
and Beyer, Metropolis and Neergard on irrational square roots [4].) However,
there is no proof of the normality of any of these constants.

There is an extensive literature on normality in the sense of Borel.
Introductions to the literature may be found in [3] and [7].

2. WALKS ON THE DIGITS OF NUMBERS AND ON CHROMOSOMES

If we compare a walk on the digits of Champernowne’s number (Figure 2)
with a walk on the digits of a number believed to be pseudorandom, like π

(Figure 1), it will be seen that Champernowne’s number is highly patterned.
It is interesting that a walk on the nucleotides of a chromosome, such as the
the X chromosome (Figure 3) produces a similarly patterned image.

A random walk on a million digits is expected to stay within roughly a
thousand units of the origin, and this will be seen to hold for the walks on
the digits of π and on the Liouville function values. On the other hand, the
walks on the digits of Champernowne’s number and on the X chromosome
are highly patterned, and travel much farther than would be expected of a
random walk.

The walk on the Liouville λ function has some properties similar to those
of a random walk, and some patterned properties. The walk does moves away
from the origin like

√
n , but it does not seem to move randomly near the

origin. In fact, the positive values of λ first outweigh the negative values
when n = 906180359 [11], which is not at all typical of a random walk.

The walks are generated on a binary sequence by converting each 0 in the
sequence to -1, and then using digit pairs (±1,±1) to walk (±1,±1) in the
plane. The shading indicates the distance travelled along the walk. The values
of the Liouville λ function are already ±1.
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FIGURE 3
A walk on the nucleotides of the human X chromosome

There are four nucleotides in the X chromosome sequence , and each
of the four is assigned one of the values (±1,±1) to create a walk on
the nucleotides. The nucleotide sequence is available on the UCSC Genome
Browser [13]

3. STRONG NORMALITY

Mauduit and Sárközy [14] have shown that the digits of the base 2
Champernowne’s number γ2 fail two tests of randomness. Dodge and Melfi [9]
compared values of an autocorrelation function for Champernowne’s number
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FIGURE 4
A walk on 106 values of the Liouville λ function

and π , and found that π had the expected pseudorandom properties but that
Champernowne’s number did not.

Here we provide another test of pseudorandomness, and show that it must
be passed by almost all numbers. Our test is is a simple one, in the spirit of
Borel’s test of normality, and Champernowne’s number will be seen to fail
the test for almost trivial reasons.

If the digits of a real number α are chosen at random in the base r , the
asymptotic frequency mk(n)/n of each digit approaches 1/r with probability
1. However, the discrepancy mk(n) − n/r does not approach any limit, but
fluctuates with an expected value equal to the standard deviation

√
(r − 1)n/r .

Kolmogorov’s law of the iterated logarithm allows us to make a precise
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statement about the discrepancy of a random number. We use this to define
our criterion.

DEFINITION 3.1. For real α , and mk(n) as above, α is simply strongly
normal in the base r if for each k ∈ {0, . . . , r − 1}

lim sup
n→∞

mk(n)− n
r√

r − 1
r

√
2n log log n

= 1

and

lim inf
n→∞

mk(n)− n
r√

r − 1
r

√
2n log log n

= −1 .

We make two further definitions analogous to the definitions of normality
and absolute normality.

DEFINITION 3.2.
A number is strongly normal in the base r if it is simply strongly normal

in each of the bases rj , j = 1, 2, 3, . . . .

DEFINITION 3.3. A number is absolutely strongly normal if it is strongly
normal in every base.

These definitions of strong normality are sharper than those given by one
of the authors in [2].

4. ALMOST ALL NUMBERS ARE STRONGLY NORMAL

In the following, we take the bases r to be integers no less than 2.

THEOREM 4.1.
Almost all numbers are simply strongly normal in any base r .

Proof.
Without loss of generality, we consider numbers in the interval [0, 1) and

fix the base r ≥ 2. We take Lebesgue measure to be our probability measure.
For any k , 0 ≤ k ≤ r − 1, the i th digit of a randomly chosen number is
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k with probability r−1 . For i 6= j , the i th and j th digits are both k with
probability r−2 , so the digits are pairwise independent.

We define the sequence of random variables Xj by

Xj =
√

r − 1

if the j th digit is k , with probability
1
r

, and

Xj = − 1√
r − 1

otherwise, with probability
r − 1

r
.

Then the Xj form a sequence of independent identically distributed random
variables with mean 0 and variance 1. Put

Sn =
n∑

j=1

Xj .

By the law of the iterated logarithm (see, for example, [12]), with probability
1,

lim sup
n→∞

Sn√
2n log log n

= 1 ,

and
lim inf

n→∞

Sn√
2n log log n

= −1 .

Now we note that, if mk(n) is the number of occurrences of the digit k
in the first n digits of our random number, then

Sn = mk(n)
√

r − 1− n− mk(n)√
r − 1

.

Substituting this expression for Sn in the limits immediately above shows that
the random number satisfies the definition of strong normality with probability
1.

This is easily extended.

COROLLARY 4.2. Almost all numbers are strongly normal in any base r .

Proof. By the theorem, the set of numbers in [0, 1) which fail to be simply
strongly normal in the base rj is of measure zero, for each j . The countable
union of these sets of measure zero is also of measure zero. Therefore the set
of numbers simply strongly normal in every base rj is of measure 1.
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The following corollary is proved in the same way as the last.

COROLLARY 4.3. Almost all numbers are absolutely strongly normal.

The results for [0, 1) are extended to R in the same way.

5. CHAMPERNOWNE’S NUMBER IS NOT STRONGLY NORMAL

We begin by examining the digits of Champernowne’s number in the base
2,

γ2 = .1 10 11 100 101 . . . .

When we concatenate the integers written in base 2, we see that there are
2n−1 integers of n digits. As we count from 2n to 2n+1 − 1, we note that
every integer begins with the digit 1, but that every possible selection of zeros
and ones occurs exactly once in the other digits, so that apart from the excess
of initial ones there are equally many zeros and ones in the non-initial digits.

Thus, m1(N) > N/2, and γ2 fails the lim inf criterion for strong normality.
It can be shown that γ2 fails the lim sup criterion as well.

We thus have :

THEOREM 5.1. The base 2 Champernowne number is not strongly normal
in the base 2.

The theorem can be generalized to every Champernowne number, since
there is a shortage of zeros in the base r representation of the base r
Champernowne number. Each base r Champernowne number fails to be
strongly normal in the base r .

6. STRONGLY NORMAL NUMBERS ARE NORMAL

Our definition of strong normality is strictly more stringent than Borel’s
definition of normality :

THEOREM 6.1.
If a number α is simply strongly normal in the base r , then α is simply

normal in the base r .
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Proof. It will suffice to show that if a number is not simply normal, then
it cannot be simply strongly normal.

Let mk(n) be the number of occurrences of the 1-string k in the first n
digits of the expansion of α in the base r , and suppose that α is not simply
normal in the base r . This implies that for some k

lim
n→∞

rmk(n)
n
6= 1.

Then there is some Q > 1 and infinitely many ni such that either

rmk(ni) > Qni

or
rmk(ni) <

ni

Q
.

If infinitely many ni satisfy the former condition, then for these ni ,

mk(ni)−
ni

r
> Q

ni

r
− ni

r
= niP

where P is a positive constant.
Then for any R > 0,

lim sup
n→∞

R
mk(n)− n

r√
2n log log n

≥ lim sup
n→∞

R
nP√

2n log log n
=∞,

so α is not simply strongly normal.
On the other hand, if infinitely many ni satisfy the latter condition, then

for these ni ,
ni

r
− mk(ni) >

ni

r
− ni

Qr
= niP,

and once again the constant P is positive. Now

lim inf
n→∞

mk(n)− n
r√

2n log log n
= − lim sup

n→∞

n
r − mk(n)
√

2n log log n

and so, in this case also, α fails to be simply strongly normal.

The general result is an immediate corollary.

COROLLARY 6.2.
If α is strongly normal in the base r , then α is normal in the base r .
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7. NO RATIONAL NUMBER IS SIMPLY STRONGLY NORMAL

A rational number cannot be normal, but it is simply normal to the base
r if each 1-string occurs the same number of times in the repeating string in
the tail. However, such a number is not simply strongly normal.

If α is rational and simply normal in the base r , then if we restrict
ourselves to the first n digits in the repeating tail of the expansion, the
frequency of any 1-string k is exactly n/r whenever n is a multiple of the
length of the repeating string. The excess of occurences of k can never exceed
the constant number of times k occurs in the repeating string. Therefore, with
mk(n) defined as before,

lim sup
n→∞

(
mk(n)− n

r

)
= Q,

with Q a constant due in part to the initial non-repeating block, and in part
to the maximum excess in the tail.

But
lim sup

n→∞

Q√
2n log log n

= 0 ,

so α does not satisfy the first part of the definition of strong normality.

8. FURTHER QUESTIONS

We have not produced an example of a strongly normal number. Can such
a number be constructed explicitly ?

We can conjecture that such naturally occurring constants as the real
irrational numbers π , e ,

√
2, and log 2 are strongly normal, since they

appear on the evidence to be as though random.
On the other hand, we speculate that the binary Liouville number, created

in the obvious way from the λ function values, is normal but not strongly
normal.

Bailey and Crandall [1] proved normality for a large class of numbers with
Borwein-Bailey-Plouffe formulas

α =
∞∑

j=0

p(j)
rjq(j)

,

where p and q are polynomials. This class of numbers may be a good place
to look for a first proof of strong normality.
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Finally, one can foresee non-random numbers passing our test. Consider,
for example, a number with discrepancy cycling in a predictable way between
the lim sup and the lim inf of our definition. We want, in the end, a deeper
test passed only by those numbers whose digits generate typical Brownian
motions.

Acknowledgments : Many thanks are due to Stephen Choi for his com-
ments on the earlier ideas in [2] . We also give many thanks to Richard
Lockhart for his help with ideas in probability.
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