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Abstract. The merit factor problem is of considerable practical interest
to communications engineers and theoretical interest to number theorists.
For binary sequences, although it is generally believed that the merit factor
is bounded, it still has not been completely established that the number
of even length Barker sequences, each with merit factor N , is bounded.
In this paper, we present an overview of the problem and results of quite
extensive searches we have conducted in lengths up to slightly beyond 200.

1. Introduction

For the sequence A = [a1, a2, . . . , aN ] the kth acyclic autocorrelation coeffi-

cient, or kth shift sidelobe (0 ≤ k ≤ N − 1), is given by

ck =

N−k
∑

j=1

ajaj+k ,

where the superimposed bar indicates the complex conjugate, in the case
where the sequence takes complex values. Of particular interest are the
polyphase sequences, where the modulus of each coefficient is 1. In these
cases the 0th coefficient, or main lobe to engineers, is simply the length of
the sequence. The other coefficients, or positive shift sidelobes, measure self-
interference of a signal based on this sequence. This points, for example,
to the use of signals based on sequences with low autocorrelation in radar
detection. The energy in the kth shift sidelobe is defined as |ck|2 and higher
sidelobe values correspond to energy inefficiencies in the signal. The base
energy of the sequence is the total of the energies in these sidelobes, i.e.,

E =

N−1
∑

i=1

|ck|2 .

The merit factor, F , of the sequence relates energy in the sidelobes to energy
in the main lobe,

F =
N2

2E
.
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The merit factor is a measure of the quality of the sequence in terms of
engineering applications.

For number theorists, these coefficients arise in the expression for the mod-
ulus of a polynomial on the unit circle. For p(z) =

∑N−k
j=1

ajz
j−1 the Lα norm

of p(z) on the unit circle C is given by

Lα(p) =

(

1

2π

∫

2π

0

∣

∣p(eiθ)
∣

∣

α
dθ

)1/α

.

In particular, for polyphase sequences and α = 2 and z ∈ C, we have

∣

∣p(z)
∣

∣

2
= f(z)f(z) = N +

N−1
∑

k=1

(

ckz
−k + ckz

k
)

,

so that

L2(p) =
√

N . (1)

For the L4-norm we then obtain

L4(p)4 = N2 + 2

N−1
∑

k=1

c2

k

= N2

(

1 +
1

F

)

,

and

L2(|p|2 − N)2 = L4(p)4 − N2 =
N2

F
. (2)

This equation relates a higher merit factor with less deviation of |p| from its

L2 average value of
√

N .

1.1. Barker sequences. Barker sequences are sequences for which |ck| ≤
1 for 1 ≤ k < N , i.e., each autocorrelation coefficient has absolute value
less than or equal one. For binary sequences, this implies that |ck| = 1 for
autocorrelation sums of odd length while |ck| = 0 for sums of even length.
Barker [1] was interested in their use for pulse compression of radar signals.
They exist for lengths 2,3,4,5,7,11,13 and conjecturally for no longer length.
Storer and Turin [45] proved that there are none for odd lengths greater than
13. For even lengths the conjecture has been proved for lengths up to 1022

by Leung and Schmidt [35].
For sequences consisting of 3rd, 4th, or 6th roots of unity, the condition

|ck| = 0 or 1 still applies. For sequences consisting of higher roots of unity
or for more general polyphase sequences, we can have 0 < |ck| < 1. Borwein
and Ferguson [8] have shown the existence of such sequences up to length 63.
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1.2. Skew-symmetric sequences. A binary sequence A = [a1, a2, . . . , aN ]
is symmetric (or reciprocal) if aj = aN+1−j for each j and antisymmetric

if aj = −aN+1−j for each j. A skew-symmetric sequence is formed by in-
terleaving an odd length symmetric sequence with an even antisymmetric
sequence of length greater or less by 1. This means that for skew-symmetric
A = [a1, a2, . . . , aN ], we have

ajaj+k + aN+1−j−kaN+1−j = 0

for odd k, implying that all even length autocorrelation sums are 0. Since
half of the sidelobe energies are zero, it is natural to search for sequences of
high merit factor among skew-symmetric sequences.

The equivalent condition with generalized or polyphase sequences would
require a conjugate skew-symmetric sequence, i.e., a sequence which is con-
jugate reciprocal interleaved with a sequence which is the negative of its
conjugate reciprocal. A difference here is that the odd length sequence may
be either conjugate reciprocal or the negative of its conjugate reciprocal. In
either case, we have

ajaj+k + aN+1−j−kaN+1−j = 0

for odd k so that again the even length autocorrelation sums are all 0. Thus we
may expect to find high merit factor sequences among this class. In practice,
however, we find that more optimal examples are obtained among reciprocal
sequences of odd length. Then for any k,

ajaj+k + aN+1−j−kaN+1−j = ajaj+k + aj+kaj

is purely real. In these cases, the imaginary part of each autocorrelation
disappears, so, in effect, half of the sidelobe energy expansion terms disappear
for these sequences as well.

The square of the middle entry is either 1 or −1. For binary sequences, this
implies that an odd length symmetric sequence is interleaved with an even
length antisymmetric sequence, since i =

√
−1 cannot be an entry.

In all of these cases, specifying the entries up to and including the middle
term is enough to determine the entire sequence, so searching unrestricted
sequences at length N is comparable in complexity to searching symmetrics,
antisymmetrics and skew-symmetrics at approximately double the length.

Thus, with binary sequences, we have evidence that, with high probabil-
ity, we have found the optimal merit factor sequences for binary sequences
up to length 85, and for skew-symmetrics up to length 165. For polyphase
sequences, we believe the optimal results to be highly accurate to length
45. The best examples found at longer odd lengths are often from searches
restricted to symmetric searches.

1.3. Sequence equivalence. There are a number of operations for which
the sidelobe energies of a sequence remain unchanged and which generate a
group under composition. These include:
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1. Multiplication of all entries by a constant of modulus 1.
2. Taking the complex conjugate of all entries.
3. Sequence reversal.
4. Multiplication of successive entries by linearly increasing powers of a con-
stant of modulus 1.

As operations on the space of binary sequences, the second is redundant
while the remaining three generate a noncommutative group of order 8. Mul-
tiplying all entries by −1 or every second entry by −1 will give a new sequence,
so these operations applied to a sequence of at length at least 2 will produce
at least 4 different sequences. In most cases, sequence reversal will add 4
more. However, for symmetric, antisymmetric or skew-symmetric sequences
the number produced remains at 4.

Using the first and fourth operations, any sequence can be transformed
to a sequence with 1’s as the first two entries. Using sequence reversal, fol-
lowed again by transformation to a sequence with 1’s as the first two entries,
we obtain a second sequence, not necessarily different. Applying complex
conjugation to these gives us a total of 4 from which to choose a canonical
representative of the orbit class of the original sequence. One method is to
compare successive entries and prefer a sequence for which the entry has a
smaller argument. Normalization to this canonical form allows us to identify
equivalence between sequences with the same base energy.

1.4. Flat polynomials. ‘Flatness’ of a polynomial on the unit circle is a
term used to describe closeness of the modulus of its values to the average
value over the whole circle. Equation 2 shows how the merit factor may be
used to provide a measure for flatness of ±1 polynomials. This is further
illustrated in Figures 1, 2, 3 below, showing the modulus of the polynomial
p(z) =

∑n
j=1

ajz
j−1 on the unit circle, where each A = [a1, a2, . . . , a63] is a

sequence of length 63.
Figure 1 arises from the randomly generated binary sequence

42F11C5DFFE24B8E

in hexadecimal notation with merit factor 1.4185. Here the leading 4 converts
to 0100 in binary and 1,−1,−1 in terms of ±1 coefficients (dropping the
leading 0), while the following 2 converts to 0010 in binary and −1,−1, 1,−1
in ±1 coefficients.

Figure 2 represents the polynomial formed for the binary sequence

6C9B015052F14339

with merit factor F = 9.5870, which we believe is optimal for binary sequences
of this length.

Figure 3 is a graph of the modulus of the polynomial formed with coeffi-
cients from the polyphase Barker sequence of length 63 with entries aj = e2πiφj
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Figure 1. Modulus of p(e2πit) for binary sequence with F =
1.4185 and 0 ≤ t ≤ 1.
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Figure 2. Modulus of p(e2πit) for binary sequence with F = 9.5870 .

with φ1, φ2, . . . , φ63 having the values

0.000000, 0.000000, 0.044072, 0.100041, 0.124944, 0.044316, 0.915805,
0.834292, 0.896073, 0.072380, 0.153734, 0.145180, 0.264172, 0.409227,
0.678385, 0.779028, 0.703430, 0.582492, 0.464976, 0.434226, 0.137145,
0.048468, 0.004949, 0.928442, 0.365491, 0.394539, 0.867998, 0.074881,
0.666226, 0.614514, 0.194754, 0.471911, 0.761195, 0.956267, 0.323923,
0.119675, 0.556891, 0.854043, 0.099691, 0.332923, 0.935108, 0.561814,
0.731794, 0.132518, 0.422282, 0.875526, 0.519252, 0.026738, 0.368575,
0.879993, 0.399091, 0.939885, 0.425655, 0.919075, 0.551357, 0.209371,
0.855254, 0.577566, 0.272426, 0.992504, 0.662106, 0.376538, 0.022081,

which has F = 37.5022.
A high merit factor does not guarantee uniformity of closeness, since there

may be narrow domains where spikes occur as illustrated in Figure 2. Still,
the tendency toward a more uniform flatness with increasing merit factor is
shown.

In his book [37], Littlewood introduced this notion of flatness and its ex-
pression in terms of the L2 and L4 norms. At that time, a plot of known
optimal merit factor values would have had the appearance of Figure 4.
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Figure 3. Modulus of p(e2πit) for polyphase sequence with
F = 37.5022 .
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Figure 4. Optimal merit factor values for binary sequences
to length 21.

The values for lengths 2,3,4,5,7,11, and 13 are in linear succession and cor-
respond to Barker sequences. These lend considerable bias to the picture,
the other points being more scattered. This may have been what led him to
suggest the existence of an infinite sequence of polynomials pNi

with merit
factor of order

√
Ni which would imply, in particular, that merit factors are

unbounded. He further formulated the following conjecture:
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Littlewood Conjecture: There exist constants C1, C2 such that we can
find a sequence of polynomials pN of increasing degree N with ±1-coefficients
such that

C1

√
N <

∣

∣pN(z)
∣

∣ < C2

√
N

for all z on C.

The Rudin-Shapiro polynomials satisfy the upper bound of this conjecture.
The existence of a sequence satisfying the lower bound, however, has not yet
been confirmed. In the extension to polyphase sequences, Kahane [29] has
both confirmed the conjecture and the existence of sequences with unbounded
merit factors.

In contrast to Littlewood’s suggestion, Golay [21], using a hypothesis that
sidelobe energies move toward statistical independence as the length of binary
sequences increase, developed an argument to show an asymptotic limit of
12.32. . . as maximal. This certainly does not settle the question, but gives
an expression to what probably most researchers now believe, i.e., that an
asymptotic upper bound exists.

It was noted by Turyn and later proved [26] that Legendre sequences ro-
tated by 1/4 of their lengths will provide sequences with merit factors having
an asymptotic limit of 6. A few authors suggested that this might be op-
timal. More recently, a further construction applied to Legendre sequences
appears to produce sequences with asymptotic limit of approximately 6.34
for the merit factor [6], [33].

Computationally, this is still a very difficult problem. From results in
the ranges for which adequate data can be collected, we can project that
an asymptotic limit of F > 7 for sequences of increasing length is certainly
expected. There is good evidence for F > 8 as well and even F > 9 appears
likely. Finding another sequence with F > 10 beyond length 13, if indeed
such exists, may be computationally out of range.

More comprehensive introductions to the history and applications of the
binary merit factor problem are given in [25] and [28].

2. Search algorithms

Where a sequence has entries drawn from a finite alphabet, e.g., the Kth
roots of unity, the number of sequences at a given length is finite. Thus,
finding the optimal sequences of a given type up to a fixed length by checking
the whole space is theoretically possible, but quickly becomes impractical as
the length increases. More clever methods may be applied, which eliminate
vast sections of the space from consideration as the search progresses in order
to confirm optimal examples.

In contrast, at least beyond very short lengths, the search space for op-
timal polyphase sequences is not finite. Since the range of each coordinate
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is continuous, methods of calculus may be used to transform this into a fi-
nite problem. However, the number of local maxima and minima proliferates
as the length increases, so this type of exhaustive search bogs down quite
quickly.

Greater reach is achieved by using directed stochastic methods. Such al-
gorithms include direct descent, simulated annealing, great deluge, genetic,
and tabu search. Here optimality is not confirmed, but on the assumption
that the number of locally optimal solutions within a given range is finite and
the search method is not biased in locating these, statistical analysis using
capture-recapture [40],[36] or the inverse collectors problem [34] can establish
levels of confidence.

2.1. Exhaustive searches. For binary sequences, this is essentially a 2N−2

problem. Using a Gray code helps minimize recalculation through the it-
eration. To obtain precise information on base energy distributions we have
conducted exhaustive searches up to length 44 for the general case and length
89 for skew-symmetrics.

2.2. Branch and bound. This is the method which has been used to con-
firm optimality of merit factor for general sequences up to length 60 [38],
and for skew-symmetric sequences up to length 109 [9]. It uses the fact that
the shorter and increasing length autocorrelation sums only involve terms
progressing from the ends of a sequence to the middle. As a sequence is
developed in this way, more sidelobe energy values become determined and
better lower bounds for others are established. If this sum already exceeds
some predetermined bound, then continued development can be aborted and
the iteration passed to an earlier stage. The amount of truncation and thus
the speed of the search space depends on this bound. A known sequence of
low base energy supplies a good initial bound. This can be replaced when a
better example is found.

2.3. Directed stochastic searches. A search starts either with a sequence
in which all the coordinate values are randomly generated or a random se-
lection of the coordinate values of an existing sequence are regenerated. A
coordinate position is chosen either at random or by some directed method, a
change in value is proposed and either accepted or rejected according to some
selection criterion, which then returns either an altered or the same sequence
accordingly. This second process repeats until either no further improvement
is possible using this method or some other limit is reached. The process then
either reverts to an earlier position or restarts. The decision to discontinue
may be based on either time, computational resources, or an estimation that
any improvement is unlikely.

For the descent method, changes are allowed only if there is an improve-
ment in quality. Initially the coordinates for proposed changes are chosen
at random, though a final stage may be added where coordinates are chosen
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iteratively until no further improvement is possible. Experience has shown,
however, that better results are achievable if the demand for improvement at
each stage is relaxed.

At the starting stage we have used the great deluge approach to locate
a sequence of merit value above an initial bound. The method of descent
was then used first by random and finally by consecutive (with wrap-around)
choice of coordinates until either termination or a sequence with merit value
exceeding a second bound was located.

Two levels of intensified search then followed for appropriate sequences in
an approach derived from the genetic method.
1) For the same length sequence coordinates were chosen in order from the be-
ginning of the sequence. Any sequence found exceeding another preset bound
was chosen for further development. Otherwise the process backtracked to
an earlier stage from which a further choice was possible.
2) An appropriate sequence from the first stage was then stripped back, drop-
ping coordinate entries at both ends successively until either the merit fac-
tor dropped below an established bound or the last coordinate change was
reached but not exceeded. This core sequence was then extended at either
end iteratively while still retaining the merit factor bound.

These intensification methods ensure a comprehensive search of clusters of
sequences of high merit factor at neighbouring lengths.

For binary sequences, there is a single option for changing a coordinate
value or two choices for an extension of one unit.

For polyphase sequences, after a coordinate position was chosen for in-
vestigation, the base energy was expressed as a function of this coordinate
variable, keeping other coordinates at their established values. This function
was found to have up to two minimum values. The coordinate value at the
lower of these was chosen for the proposed change.

2.4. Comparison of methods. For determining optimal values for the merit
factor of binary sequences, the resources required to conduct the branch and
bound search at length 60 can be considered roughly the equivalent of those
required to perform a fully exhaustive search at length 53, or a directed sto-
chastic search at length 90 with a 99% confidence level of success. In terms
of complexity, this translates to O(2N) for exhaustive methods, O(1.84N) for
branch and bound and O(1.5N) for the directed stochastic algorithm used
here.

3. Results

3.1. Growth trends for merit factor values. Figures 5 and 6 show plots
of best known merit factor values recorded for binary sequences and for the
more general ployphase sequences. We believe Figure 6 shows probable op-
timal values for unrestricted binary sequences with lengths into the late 80’s
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and for skew-symmetrics up to length 160. For polyphase sequences this
confidence extends to length 45.

The horizontal line in Figure 5 is drawn for reference at F = 9. Up to
length 90, there appears to be a trend for more of these values to approach
or exceed 9. Beyond N = 112 all records are derived from skew-symmetrics,
which appear to reflect trends for unrectricted sequences at half the lengths.

Figure 6 shows the much more rapid growth for polyphase sequences.

Sequence length

200150100500
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2

0

Figure 5. Largest merit factors recorded for binary sequences.

3.2. Distribution of base energies for binary sequences. Figure 7 shows
histograms of all 239 values of the reciprocal of the merit factor, 1/F =
E/(2N2), at length N = 39, normalized to have unit area. Each base energy
value is congruent to 3 modulo 4. The graph on the left seems to be aligned
with two smooth curves. A more careful analysis finds that it is better sep-
arated into four sections, each corresponding to a separate congruence class
modulo sixteen for the base energy and each seeming to conform to a smooth
curve. An alternative is to combine the congruences classes 3,7,11,15 modulo
16, giving the histogram on the right.

This shows a remarkable resemblance to the extreme value distribution.
In fact, this was discovered through curve-fitting as illustrated in Figure 8.
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Figure 6. Largest merit factors recorded for polyphase sequences.
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Figure 7. Full distribution of 1/F values at N = 39 and
distribution combining counts from successive groups of 4.
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Figure 8. Plot of the logarithm of the values in the graph on
the right in Figure 7 and and a plot of the logarithm of a linear
fit to the right tail minus the values for this adjacent graph.

These graphs point to an exponential tail to the right but a doubly exponen-
tial growth on the left which are characteristic for the extreme value distri-
bution. Figure 9 shows least squares fits of the extreme value distribution
to histograms of 1/F values at lengths 39, 99, and 300. Since obtaining full
distributions at lengths 39 and 300 is computationally out of range, these we
obtained for 237 and 236 sequences generated by a random process.
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Figure 9. Least squares fit of extreme value distribution to
1/F distributions at lengths 39, 99 and 300.

Our primary interest is in the tail of the distributions on the left. The least
squares fit is best at length 99. At 39, the curve overestimates the count of
higher merit factor sequences while at 300 it gives an underestimate.

3.3. High merit factor binary sequences. Using our directed stochas-
tic search method we have found approximately 2800 unequivalent sequences
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with merit factor greater than 8, of which probably more than 80% may be
classified as new discoveries. This comprised two separate programs, the first
designed to search through general unrestricted sequences and the second re-
stricted to skew-symmetrics. The first found a sequence with merit factor
greater than eight at length 115, while the second found such a sequence
at length 233. The greatest length previously recorded was 161 by Militzer,
Zamparelli and Beule[39]. The intensification methods described in the pre-
vious section were applied to high merit factor sequences found during the
skew-symmetric search to find other non-skewsymmetric sequences of high
merit in the surrounding cluster, finding sequences with F ≥ 8 for all lengths
between 100 and 200 except 112 and 114. A sequence with F > 8 at 112 was
found using the first program.

We estimate the first program to have been close to exhaustive up to length
85, and the second to length 161 as outlined in the analysis below. Confidence
that over 50% of the sequences with F > 8 have been found remains to lengths
90 and lengths 181 respectively. Comparing the percentage that the skew-
symmetric sequences form of sequences found at odd lengths provides another
rough yardstick. Between lengths 61 and 85 skew-symmetrics form 11% of
sequences found at odd lengths with F ≥ 8. These increase to 26% and 77%
respectively for odd lengths from 91 and 99 and from 101 to 109. In fact
from Figure 10 we expect this percentage to decrease from 11%, so we expect
that we have found less than 40% and 12% of sequences with F ≥ 8 in these
respective ranges.

Figure 10 and Table 1 illustrate growth trends in numbers of high merit
factor sequences. The first, Figure 10, is a log-linear graph of numbers of
inequivalent sequences with F ≥ 7. This suggests exponential growth in
these numbers and gives what we suggest is the first empirical evidence that
lim sup Fmax > 7.

Table 1 lists estimated numbers of sequences with F > 8 for general se-
quences and F > 8, F > 8.5 for skew-symmetrics at increasing lengths. The
growth in numbers found in the general case is noticeable but still modest
in lengths up to 85. For skew-symmetrics in lengths up to 181, where in
depth searches were still possible, the growth in numbers with F ≥ 8 is more
apparent, and still apparent for F > 8.5.

Before our work, there were 15 inequivalent sequences with F ≥ 9 known,
one each at lengths 11, 13, 27, 64, 71, 83, 95, 105, 125, 127, 129, 131 and
three at length 67. We have found 23 more which are listed in Table 2. There
seems to be a trend for more of these to appear at longer lengths, but it is
difficult to say more.

3.4. The inverse collector’s problem. In collecting data on sequences
with F ≥ 7, we continued to run our programs at lengths up to 85 to the
point that we could have good expectation that the best examples were col-
lected. In advance, we do not know the size of the sample space of sequences
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Figure 10. Growth in number of sequences with F ≥ 7.

N F > 8 N † F > 8 F > 8.5
73 8 159 44 5
74 3 161 57 4
75 9 163 52 5
76 5 165 57 3
77 11 167 73 5
78 12 169 73 11
79 12 171 58 7
80 14 173 90 13
81 17 175 97 8
82 13 177 99 10
83 16 179 153 9
84 10 181 114 11
85 18 183 125 9

Table 1. Estimated numbers of inequivalent sequences with
F ≥ 8. Here † denotes skew-symmetric sequences.
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N F Hexadecimal sequence
63 9.5870 64CBED0FAFEAC631
68 9.2480 FFD0B564E4D74798E
79 9.2050 7F36491D815A531AA871
80 9.0909 FFE81E89A8D1C665A9A5
89 9.1678 1FF924F246C19C2D4B8D454
95 9.3427 7FFC0FA333154B534DA71C69
98 9.0775 3FFAA55B45978719636C4F633
102 9.1746 383F0C38A4D5D6673480256A44
126 9.0720 3C7854315FE710B9990BB655FB2FE96D
149 9.0542 1C71C7AB46CDDABF9F82959501DCC6F016DB6D†

149 9.1137 1FE0003921C9CC3E4CBD0CE52CD8DA392AAA55†

157 9.0223 1F0600F83071FF993CC57ECD39955B6B294AA6B5†

165 9.2351 1D5B2B41689B1B24BAA6E846010E31B1887AF031FD†

169 9.3215 1C1C7C623B8EB1FD05DAFDD41DEBD5B0491226D6DAD†

172 9.0526 E03F9CF6030FF9EDBF293338351C5954B2A74D952A5
173 9.3179 18006FFE1FCF33F079C3D999D2D96B5334D5A5546AA9†

173 9.3645 1E03F9CF6030FF9EDBF293338351C5954B2A74D952A5†

175 9.0768 6AA32AF1A35998A5E530DAF8D30687D9983792FF37FE†

177 9.5052 1D3842C58FCB33401779175F7B977AAF330D49EC2E93D†

178 9.2915 3D3842C58FCB33401779175F7B977AAF330D49EC2E93D
179 9.0974 7A70858B1F9666802EF22EBEF72EF55E661A93D85D27A†

183 9.0073 6311C73B838E2A72BF958A85FD81ABF27F6DB5BB249136†

189 9.0847 1C39CE1FE1CBC67F3B7BF9002AB951713566D0DA55A4D92D†

Table 2. New sequences found with merit factor > 9. Here †

indicates a skew-symmetric sequence.

with energies in this range. At some point, however, the continual repetition
of previous examples suggests that we come close to exhausting this sample
space. We use the statistical model described below to give substance to this
observation. Part of this may be described as the inverse collector’s prob-
lem as described in [11] and [34]. However, our problem is not specifically
to establish the most probable size of the sample space, but to estimate the
likelihood that we have found the example with the lowest base energy.

Let S be the size of the sample space, i.e., the total number of sequences,
unique up to equivalence as described above, with F ≥ 7. Let n be the
number of trials in terms of sequences collected, and k the number of these
which are different. Where M is the event that we have collected the optimal
example, what we seek to evaluate is

P (M | n, k) ,
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the probability that we have the best example, given the values n and k
arising from our data. We make assumptions:
(1) the occurrence of the different examples are equally likely;
(2) there is no specific bias on the actual size of the sample space in the range
where this is significant.

Then we use

P (M | n, k) =
∑

i≥0

P (M | S = k + i, k)P (S = k + i | n, k) .

From our assumptions, we have P (M | S = k + i, k) = k/(k + i). Using
Baysian probability theory, we then derive

P (S = k + i | n, k) =
P (k | S = k + i, n)

∑

j≥0
P (k | S = k + j, n)

.

Example: At length 80 we collected 9965 sequences of which 1636 were
different. This calculates to a 0.998 probability that we have the optimal
example [8], [9].

It remains, at present, computationally hard to verify optimality of merit
factor values beyond length 60 for unrestricted binary sequences and about
double this for skew-symmetrics. Other authors have published examples with
‘high’ merit factor without any further assessment of quality. This method
of statistical analysis offers a way to estimate quality.

4. Comments

Determining the maximal merit factor for binary sequences of length N is
widely regarded as a difficult task in combinatorial optimization. Indeed it
appears as the fifth problem on CSPLib [24], a library of test problems for
use in benchmarking constraint solvers.

We have found good evidence that the upper limit for maxN F > 8 and
even > 8.5. These maximal values may routinely exceed 9 in lengths over
200, but it would be difficult to establish this computationally. With the
information we have collected, it is difficult to project whether values will
continue to grow slowly or level off.

The match of the distribution of 1/F to the extreme value distribution for
lengths under 100 is intriguing. If this continued, it would suggest a sharp
cutoff for merit value as lengths increased. However, this fit becomes less
good as we go further, giving an underestimate for the tail containing high
merit factor values. Perhaps a match to a gaussian distribution is a better
choice for longer lengths, but this would require further investigation.

The upper limit for maxN F is known to be infinite for polyphase sequences.
Is the growth rate linear as might be suggested by 6? Is it possible to find
finite alphabets for which the upper limit can be established as finite as well?
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