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Abstract. Littlewood in his 1968 monograph “Some Problems in Real and Complex Anal-

ysis” [9, problem 22] poses the following research problem, which appears to still be open: “If
the nm are integral and all different, what is the lower bound on the number of real zeros of
PN

m=1
cos(nmθ)? Possibly N − 1, or not much less.” Here real zeros are counted in a period.

In fact no progress appears to have been made on this in the last half century. In a recent

paper [2] we showed that this is false. There exists a cosine polynomial
PN

m=1
cos(nmθ)

with the nj integral and all different so that the number of its real zeros in the period is

O(N9/10(log N)1/5) (here the frequencies nm = nm(N) may vary with N). However, there

are reasons to believe that a cosine polynomial
PN

m=1
cos(nmθ) always has many zeros on

the period. Denote the number of zeros of a trigonometric polynomial T in the period [−π, π)
by N (T ). In this paper we prove the following.

Theorem. Suppose the set {aj : j ∈ N} ⊂ R is finite and the set {j ∈ N : aj 6= 0} is infinite.
Let

Tn(t) =
n

X

j=0

aj cos(jt) .

Then limn→∞ N (Tn) = ∞ .

One of our main tools, not surprisingly, is the resolution of the Littlewood Conjecture [4].

1. Introduction

Let 0 ≤ n1 < n2 < · · · < nN be integers. A cosine polynomial of the form Tn(θ) =
∑N

j=1 cos(njθ) must have at least one real zero in a period. This is obvious if n1 6= 0, since
then the integral of the sum on a period is 0. The above statement is less obvious if n1 = 0,
but for sufficiently large N it follows from Littlewood’s Conjecture simply. Here we mean
the Littlewood’s Conjecture proved by S. Konyagin [5] and independently by McGehee,
Pigno, and Smith [11] in 1981. See also [4] for a book proof. It is not difficult to prove the
statement in general even in the case n1 = 0. One possible way is to use the identity

nN
∑

j=1

Tn((2j − 1)π/nN ) = 0 .
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See [6], for example. Another way is to use Theorem 2 of [12]. So there is certainly no
shortage of possible approaches to prove the starting observation of this paper even in the
case n1 = 0.

It seems likely that the number of zeros of the above sums in a period must tend to ∞
with N . In a private communication B. Conrey asked how fast the number of zeros of the
above sums in a period tend to ∞ as a function N . In [3] the authors observed that for

an odd prime p the Fekete polynomial fp(z) =
∑p−1

k=0

(

k
p

)

zk (the coefficients are Legendre

symbols) has ∼ κ0p zeros on the unit circle, where 0.500813 > κ0 > 0.500668. Conrey’s
question in general does not appear to be easy.

Littlewood in his 1968 monograph “Some Problems in Real and Complex Analysis” [9,
problem 22] poses the following research problem, which appears to still be open: “If the
nm are integral and all different, what is the lower bound on the number of real zeros of
∑N

m=1 cos(nmθ)? Possibly N−1, or not much less.” Here real zeros are counted in a period.
In fact no progress appears to have been made on this in the last half century. In a recent

paper [2] we showed that this is false. There exists a cosine polynomials
∑N

m=1 cos(nmθ)
with the nm integral and all different so that the number of its real zeros in the period is
O(N9/10(log N)1/5) (here the frequencies nm = nm(N) may vary with N). However, there

are reasons to believe that a cosine polynomial
∑N

m=1 cos(nmθ) always has many zeros in
the period. In this paper we prove the following.

2. New Result

Theorem 1. Suppose the set {aj : j ∈ N} ⊂ R is finite and the set {j ∈ N : aj 6= 0} is

infinite. Let

Tn(t) =
n
∑

j=0

aj cos(jt) .

Then limn→∞ N (Tn) = ∞ .

3. Lemmas and Proofs

To prove the new result we need a few lemmas. The first two lemmas are straightforward
from [4, pages 285-288] which offers an elegant book proof of the the Littlewood Conjecture
first shown in [5] and [10]. The book [1] deals with a number of related topics. Littlewood
[7,8,9,10] was interested in many closely related problems.

Lemma 3.1. Let λ0 < λ1 < · · · < λm be nonnegative integers and let

Sm(t) =

m
∑

j=0

Aj cos(λjt) , Aj ∈ R , j = 0, 1, . . . ,m .

Then
∫ π

−π

|Sm(t)| dt ≥
1

60

m
∑

j=0

|Am−j |

j + 1
.
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Lemma 3.2. Let λ0 < λ1 < · · · < λm be nonnegative integers and let

Sm(T ) =

m
∑

j=0

Aj sin(λjt) , Aj ∈ R , j = 0, 1, . . . ,m .

Then
∫ π

−π

|Sm(t)| dt ≥
1

60

m
∑

j=0

|Am−j |

j + 1
.

Lemma 3.3. Let λ0 < λ1 < · · · < λm be nonnegative integers and let

Sm(t) =
m
∑

j=0

Aj cos(λjt) , Aj ∈ R , j = 0, 1, . . . ,m .

Let A := max{|Aj | : j = 0, 1, . . . ,m} . Suppose Sm has at most K zeros in the period

[−π, π). Then

∫ π

−π

|Sm(t)| dt ≤ 2KA



π +
m
∑

j=1

1

λj



 ≤ 2KA(5 + log m) .

Proof. We may assume that λ0 = 0, the case λ0 > 0 can be handled similarly. Associated
with Sm in the lemma let

Rm(t) := A0t +
m
∑

j=0

Aj

λj
sin(λjt) .

Clearly

max
t∈[−π,π]

|Rm(t)| ≤ A



π +
m
∑

j=1

1

λj



 .

Also, for every c ∈ R the function Rm − c has at most K zeros in the period [−π, π),
otherwise Rolle’s Theorem implies that Sm = (Rm − c)′ has at least K + 1 zeros in the
period [−π, π). Hence

∫ π

−π

|Sm(t)| dt = V π
−π(Rm) ≤ 2K max

t∈[−π,π]
|Rm(t)|

≤ 2KA



π +
m
∑

j=1

1

λj



 ≤ 2KA(5 + log m) ,

and the lemma is proved. ¤
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Proof of the theorem when (an)∞n=0 is NOT eventually periodic. Suppose the theorem is
false. Then there are k ∈ N, a sequence (nν)∞ν=1 of positive integers n1 < n2 < · · · , and
even trigonometric polynomials Qnν

∈ Tk with maximum norm 1 on the period such that

(3.1) Tnν
(t)Qnν

(t) ≥ 0 , t ∈ R .

We can pick a subsequence of (nν)∞ν=1 (without loss of generality we may assume that it is
the sequence (nν)∞ν=1 itself) that converges to a Q ∈ Tk uniformly on the period [−π, π).
That is,

(3.2) lim
ν→∞

εν = 0 with εν := max
t∈[−π,π]

|Q(t) − Qnν
(t)| .

We introduce the formal trigonometric series

∞
∑

j=0

bj cos(βjt) :=





∞
∑

j=0

aj cos(jt)



Q(t)3 , bj 6= 0 , j = 0, 1, . . . ,

and
∞
∑

j=0

dj cos(δjt) :=





∞
∑

j=0

aj cos(jt)



Q(t)4 , dj 6= 0 , j = 0, 1, . . . ,

where β0 < β1 < · · · , and δ0 < δ1 < · · · are integers. Since the set {aj : j ∈ N} ⊂ R is
finite, the sets

{bj : j ∈ N} ⊂ R and {dj : j ∈ N} ⊂ R

are finite as well. Hence there are ρ,M ∈ (0,∞) such that

(3.3) |aj | ≤ M , ρ ≤ |bj | , |dj | ≤ M , j = 0, 1, . . . .

Let

Kν := |{j ∈ N : 0 ≤ βj ≤ nν}|

and

Lν := |{j ∈ N : 0 ≤ δj ≤ nν}| .

Since the sequence (an)∞n=0 is not eventually periodic, we have

(3.4) lim
ν→∞

Kν = ∞ and lim
ν→∞

Lν = ∞ .

We claim that

(3.5) Kν ≤ c1Lν
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with some c1 > 0 independent of ν ∈ N. Indeed, using Parseval’s formula and (3.2) – (3.4),
we deduce

1

π

∫ π

−π

Tnν
(t)2Q(t)4Qnν

(t)2 dt =
1

π

∫ π

−π

(Tnν
(t)Q(t)2Qnν

(t))2 dt

≥ (Kν − 3k)
1

2
ρ2 ≥

1

4
ρ2Kν

(3.6)

for every sufficiently large ν ∈ N . Also, (3.1) – (3.4) imply

1

π

∫ π

−π

Tnν
(t)2Q(t)4Qnν

(t)2 dt =
1

π

∫ π

−π

(Tnν
(t)Qnν

(t))(Tnν
(t)Q(t)4)Qnν

(t) dt

≤
1

π

(∫ π

−π

Tnν
(t)Qnν

(t) dt

)(

max
t∈[−π,π]

|Tnν
(t)Q(t)4|

)(

max
t∈[−π,π]

|Qnν
(t)|

)

≤
1

π

(∫ π

−π

Tnν
(t)Qnν

(t) dt

)

(LνM + 4kM)

(

max
t∈[−π,π]

|Qnν
(t)|

)

≤ c2Lν

(3.7)

with a constant c2 > 0 independent of ν for every sufficiently large ν ∈ N. Now (3.5)
follows from (3.6) and (3.7). From Lemma 3.1 we deduce

(3.8)

∫ π

−π

|Tnν
(t)Q(t)4| dt ≥ c3ρ log Lν − c4

with some constants c3 > 0 and c4 > 0 independent of ν ∈ N . On the other hand, using
(3.1), Lemma 3.3, (3.2), (3.3), (3.5), and (3.4), we obtain

∫ π

−π

|Tnν
(t)Q(t)4| dt

≤

∫ π

−π

Tnν
(t)Qnν

(t)|Q(t)|3 dt +

∫ π

−π

|Tnν
(t)Q(t)3| |Q(t) − Qnν

(t)| dt

≤

(∫ π

−π

Tnν
(t)Qnν

(t) dt

)(

max
t∈[−π,π]

|Q(t)|3
)

+

(∫ π

−π

|Tnν
(t)Q(t)3| dt

)(

max
t∈[−π,π]

|Q(t) − Qnν
(t)|

)

≤c5 + c6(log Kν)εν ≤ c5 + c6(log(c1Lν))εν

≤c7 + c6(log Lν)εν = o(log Lν) ,

(3.9)

where c1, c5, c6, and c7 are constants independent of ν ∈ N. Since (3.9) contradicts (3.8),
the proof of the theorem is finished in the case when the sequence (an)∞n=0 is not eventually
periodic. ¤

Proof of the theorem when (an)∞n=0 is eventually periodic. The theorem now follows from
Lemmas 3.4 below. ¤

To prove the theorem in the case when (an)∞n=0 is eventually periodic we need one more
lemma.
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Lemma 3.4. Let (aj)
∞

j=0 be a an eventually periodic sequence of real numbers. Suppose

the set {j ∈ N : aj 6= 0} is infinite. Then the trigonometric polynomials

Tn(t) :=
n
∑

j=0

aj cos(jt)

have at least c8 log n zeros in the period [−π, π) with a constant c8 > 0 depending only on

(aj)
∞

j=0.

Proof. It is a well known classical result that for the trigonometric polynomials

Qn(t) :=

n
∑

j=1

sin(jt)

j

we have
|Qn(t)| ≤ 1 + π , t ∈ R, n = 1, 2, . . . .

Using the standard way to show this, it can be easily shown that if (aj)
∞

j=0 is an eventually
periodic sequence of real numbers, then for the functions

Sn(t) := a0t +
n
∑

j=1

aj sin(jt)

j

we have

(3.10) |Sn(t)| ≤ M , t ∈ [−π, π), n = 1, 2, . . . ,

with a constant M > 0 depending only on (aj)
∞

j=0. Observe that S′

n(t) = Tn(t), so Lemma
3.1 (a consequence of the resolution of the Littlewood Conjecture) implies that

(3.11) V π
−π(Sn) =

∫ π

−π

|S′

n(t)| dt =

∫ π

−π

|Tn(t)| dt ≥ η log n

with a constant η > 0 depending only on (aj)
∞

j=0. Combining (3.10) and (3.11) we can

easily deduce that there is a c ∈ [−M,M ] such that Sn − c has at least (2M)−1(η log n)
distinct zeros in the period [−π, π). Hence by Rolle’s Theorem Tn = (Sn − c)′ has at least
(2M)−1(η log n) − 1 distinct zeros in the period [−π, π). ¤

In fact, in the case when (an)∞n=0 is eventually periodic and it does not contain 0
infinitely many times, then we can prove a better lower bound in the theorem. This is the
content of Theorem 3.6. To prove Theorem 3.6 we need the observation below.

Lemma 3.5. Suppose k > 2m ≥ 0, k is even. Let

zj := exp

(

2πji

k

)

, j = 0, 1, . . . , k − 1 ,
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be the kth roots of unity. Suppose

0 /∈ {b0, b1, . . . , bk−1}

and

Q(z) := zm
k−1
∑

j=0

bjz
j .

Then there is a value of j ∈ {0, 1, . . . k − 1} for which Im(Q(zj)) 6= 0 .

Proof. If the statement of the lemma were false, then

zm+k−1(Q(z) − Q(1/z)) = (zk − 1)
2m+k−2
∑

ν=0

ανzν .

Obviously

zm+k−1(Q(z) − Q(1/z)) = −bk−1 − bk−2z − bk−3z
2 − · · · − b0z

k−1+

+ b0z
2m+k−1 + b1z

2m+k + b2z
2m+k+1 + · · · + bk−1z

2m+2k−2 .

Hence
αν = −bk−1−ν , ν = 0, 1, . . . , k − 1 ,

and
α2m+k−2−ν = bk−1−ν , ν = 0, 1, . . . , k − 1 .

Then for ν := m + (k/2) − 1 < k − 1 we have

−bk−1−ν = bk−1−ν , that is bk−1−ν = 0 ,

a contradiction. ¤

Theorem 3.6. Let 0 /∈ {b0, b1, . . . , bk−1} and

am+lk+j = bj , l = 0, 1, . . . , j = 0, 1, . . . , k − 1 .

Suppose k > 2m ≥ 0, k is even. Let n = m + lk + u with integers m ≥ 0, l ≥ 0, k ≥ 1,
and 0 ≤ u ≤ k − 1. Then for every sufficiently large n

Tn(t) := Re





n
∑

j=0

aje
ijt





has at least c9n zeros in [−π, π), where c9 > 0 is independent of n.

Proof of Theorem 3.6. Note that

n
∑

j=0

ajz
j =

m−1
∑

j=0

ajz
j + zm





k−1
∑

j=0

bjz
j





z(l+1)k − 1

zk − 1
+ zm+lk

u
∑

j=0

bjz
j = P1(z) + P2(z) ,
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where

P1(z) :=

m−1
∑

j=0

ajz
j + zm+lk

u
∑

j=0

bjz
j

and

P2(z) := zm
k−1
∑

j=0

bjz
j z(l+1)k − 1

zk − 1
= Q(z)

z(l+1)k − 1

zk − 1
,

with

Q(z) := zm
k−1
∑

j=0

bjz
j .

By Lemma 3.5 there is a kth root of unity ξ = eiτ such that Im(Q(ξ)) 6= 0 . Then for
every K > 0 there is a δ ∈ (0, 2π/k) such that Re(P2(e

it)) oscillates between −K and K
at least c10(l + 1)kδ times, where c10 > 0 is a constant independent of n. Now we choose
δ ∈ (0, 2π/k) for

K := 1 +
m−1
∑

j=0

|aj | +
k−1
∑

j=0

|bj | .

Then

Tn(t) := Re





n
∑

j=0

aje
ijt



 = Re(P1(e
it)) + Re(P2(e

it))

has at least one zero on each interval on which Re(P2(e
it)) oscillates between −K and K,

and hence it has at least c10(l + 1)kδ > c9n zeros on [−π, π), where c9 > 0 is a constant
independent of n. ¤
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2. P. Borwein, T. Erdélyi, R. Ferguson, and R. Lockhart, On the zeros of cosine polynomials:
solution to an old problem of Littlewood (to appear).

3. B. Conrey, A. Granville, B. Poonen, and K. Soundararajan, Zeros of Fekete polynomials, Ann.
Inst. Fourier (Grenoble) 50 (2000), 865–889.

4. R.A. DeVore and G.G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin, 1993.

5. S.V. Konyagin, On a problem of Littlewood, Mathematics of the USSR, Izvestia 18 (1981),
205–225.

6. S.V. Konyagin and V.F. Lev, Character sums in complex half planes, J. Theor. Nombres Bor-

deaux 16 (2004), no. 3, 587–606.

7. J.E. Littlewood, On the mean values of certain trigonometrical polynomials, J. London Math.
Soc. 36 (1961), 307–334.

8. J.E. Littlewood, On the real roots of real trigonometrical polynomials (II), J. London Math.
Soc. 39 (1964), 511–552.

8



9. J.E. Littlewood, On polynomials
P

±zm and
P

eαmizm, z = eθi, J. London Math. Soc. 41

(1966), 367–376.

10. J.E. Littlewood, Some Problems in Real and Complex Analysis, Heath Mathematical Mono-
graphs, Lexington, Massachusetts, 1968.

11. O.C. McGehee, L. Pigno, and B. Smith, Hardy’s inequality and the L1 norm of exponential
sums, Ann. Math. 113 (1981), 613–618.

12. I.D. Mercer, Unimodular roots of special Littlewood polynomials, Canad. Math. Bull. (to appear).

Department of Mathematics and Statistics, Simon Fraser University, Burnaby, B.C.,
Canada V5A 1S6 (P. Borwein)

E-mail address: pborwein@cecm.sfu.ca (Peter Borwein)

Department of Mathematics, Texas A&M University, College Station, Texas 77843 (T.
Erdélyi)
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