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Abstract

A Barker sequence is a finite sequence a0, . . . , an−1, each term ±1, for which every sum
P

i
aiai+k with

0 < k < n is either 0, 1, or −1. It is widely conjectured that no Barker sequences of length n > 13 exist, and

this conjecture has been verified for the case when n is odd. We show that in this case the problem can in fact

be reduced to a question of irreducibility for a certain family of univariate polynomials: No Barker sequence of

length 2m+1 exists if a particular integer polynomial of degree 4m is irreducible over Q. A proof of irreducibility

for this family would thus provide a short, alternative proof that long Barker sequences of odd length do not exist.

However, we also prove that the polynomials in question are always reducible modulo p, for every prime p.

1 Introduction

For a positive integer m, let gm(x) denote the polynomial

gm(x) = x4m + x4m−2 + · · · + x2m+2 + (−1)m(2m + 1)x2m + x2m−2 + · · · + x2 + 1.

Five of the first six of these polynomials factor over the rationals in a nice way—as a product of two irreducible
polynomials, each with ±1 coefficients:

g1(x) = x4 − 3x2 + 1 = (x2 − x − 1)(x2 + x − 1),

g2(x) = x8 + x6 + 5x4 + x2 + 1 = (x4 − x3 + x2 + x + 1)(x4 + x3 + x2 − x + 1),

g3(x) = x12 + x10 + x8 − 7x6 + x4 + x2 + 1

= (x6 − x5 + x4 + x3 − x2 − x − 1)(x6 + x5 + x4 − x3 − x2 + x − 1),

g5(x) = x20 + x18 + x16 + x14 + x12 − 11x10 + x8 + x6 + x4 + x2 + 1

= (x10 − x9 + x8 + x7 − x6 + x5 + x4 + x3 − x2 − x − 1)

· (x10 + x9 + x8 − x7 − x6 − x5 + x4 − x3 − x2 + x − 1),

g6(x) = x24 + x22 + x20 + x18 + x16 + x14 + 13x12 + x10 + x8 + x6 + x4 + x2 + 1

= (x12 − x11 + x10 − x9 + x8 + x7 − x6 − x5 + x4 + x3 + x2 + x + 1)

· (x12 + x11 + x10 + x9 + x8 − x7 − x6 + x5 + x4 − x3 + x2 − x + 1).

One might expect some similar factorizations to appear for larger m, but, curiously, no other polynomials gm(x) are
even known to be reducible! In fact, the polynomials shown here are the only reducible ones in the sequence up to
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m = 1000. In this note, we show how the question of irreducibility for these polynomials is connected to an old
and difficult problem in combinatorial optimization involving certain binary sequences with remarkable properties,
known as Barker sequences. We show that establishing that gm(x) is irreducible for all m ≥ 7 would provide a simple
proof that Barker sequences of odd length do not exist. However, we also demonstrate that the polynomials gm(x)
are reducible mod p, for every prime p. Consequently, many standard tests for irreducibility do not directly apply
for these polynomials.

2 Barker Sequences

We begin by recalling the definition of a Barker sequence, and describing some of its properties. For a sequence of
integers a0, a1, . . . , an−1, each one ±1, and for an integer k with |k| < n, define the kth aperiodic autocorrelation of
the sequence by

ck =

n−1−k
∑

i=0

aiai+k (1)

if k ≥ 0, and similarly set c−k =
∑n−1

i=k aiai−k = ck. The value of c0 is therefore n, independent of the choice of
signs in the ak. This number is called the peak autocorrelation. The other ck are the off-peak autocorrelations, and
sequences with especially small off-peak autocorrelations are of great interest in applications in communications. By
considering the parity of the number of terms in the sum (1), we see that the best we can possibly achieve is |ck| ≤ 1
for each nonzero k, so in fact ck = ±1 if n − k is odd and ck = 0 otherwise. In his 1953 paper [1], Barker asked if
there exist sequences {ak} in which each off-peak autocorrelation ck is 0 or −1, and sequences achieving the more
symmetric condition |ck| ≤ 1 for k 6= 0 are known today as Barker sequences.

Since negating the terms of a sequence {ak} does not disturb its autocorrelations, and negating every other term
does not affect the magnitudes of its autocorrelations, we may assume that a0 = a1 = 1. With this normalization,
there are just eight known Barker sequences. These are displayed in Table 1, where we use + and - to represent +1
and −1, respectively. Only three of these satisfy the more strict condition requested by Barker—the ones of length
3, 7, and 11.

n Barker sequence
2 ++

3 ++-

4 +++-

4 ++-+

5 +++-+

7 +++--+-

11 +++---+--+-

13 +++++--++-+-+

Table 1: Barker sequences with a0 = a1 = 1.

It is widely conjectured that this list forms the complete set of Barker sequences, but this problem remains open
and seems surprisingly hard. Before describing how this problem is related to the polynomials gm(x), we first record
some properties of Barker sequences. The following results were established by Turyn and Storer [7, 8]; we include
the proof here for the reader’s convenience.

Theorem 1. Suppose a0, a1, . . . , an−1 is a sequence of integers with each ai = ±1, and let {ck} denote the sequence

of its aperiodic autocorrelations. Then

ck + cn−k ≡ n mod 4.

Suppose further that the sequence {ak} is a Barker sequence. If n is odd, then

akan−1−k = (−1)
n−1

2
+k (2)

for 0 ≤ k < n, and ck + cn−k = (−1)(n−1)/2 for 0 < k < n. If n is even and n > 2, then n = 4m2 for some integer

m, and cn−k = −ck for 0 < k < n.
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Proof. Since ck records the difference between the number of positive and negative terms in
∑n−1−k

i=0 aiai+k, it follows
that

n−k−1
∏

i=0

aiai+k = (−1)(n−k−ck)/2 (3)

for 0 ≤ k < n. Multiplying this product by the same expression with k replaced by n − k, we obtain

(−1)(n−ck−cn−k)/2 =
k−1
∏

i=0

aiai+n−k

n−k−1
∏

i=0

aiai+k = 1,

so ck + cn−k ≡ n mod 4. On the other hand, multiplying (3) by the same equation where k is replaced by k + 1 (and
taking cn = 0), we compute that

akan−1−k = (−1)n−k− 1
2
(1+ck+ck+1) (4)

for 0 ≤ k < n. Assume now that {ak} forms a Barker sequence of length n, so the off-peak autocorrelation ck is 0 if
n and k have the same parity, and ±1 otherwise. If n is odd and 0 < k < n, then exactly one of ck and cn−k is 0,
and since ck + cn−k ≡ n mod 4, it follows that ck = (−1)(n−1)/2 when k is even. Therefore, ck + cn−k = (−1)(n−1)/2

for 0 < k < n. Further, we see that ck + ck+1 = (−1)(n−1)/2 for 0 < k < n, and combining this with (4) establishes
(2).

If n is even, then ck = 0 for even k 6= 0, so in particular c2 + cn−2 = 0 when n > 2, and therefore n ≡ 0 mod 4 in
this case. It follows then that ck + cn−k = 0 when n ≥ 4 and 0 < k < n. Last, since

( n−1
∑

i=0

ai

)2

= c0 +
n−1
∑

k=1

(ck + cn−k) = n,

we see that n is a perfect square in this case.

Many additional restrictions on Barker sequences are known. Turyn and Storer [7] proved that if the length n
of a Barker sequence is odd, then n ≤ 13, so the complete list for this case appears in Table 1. It follows from this
that no additional sequences satisfy Barker’s original requirement for sequences whose off-peak autocorrelations are
all 0 or −1, since Theorem 1 implies that any such sequence must have length n ≡ 3 mod 4. For the case when the
length is even, several additional restrictions are known on m if n = 4m2: m must be odd and cannot be a prime
power [2, sec. 2D and 4C; 5, 9], every prime divisor p of m must satisfy p ≡ 1 mod 4 [4], and if m > 1 then in fact
m > 5 · 1010 [6]. Thus, any additional Barker sequences must have length exceeding 1022! More information on
Barker sequences, and their connection to other open problems in analysis and number theory, appears in [3].

3 A Question of Irreducibility

The proof of Turyn and Storer that no Barker sequences of odd length n exist for n > 13 is elementary, though
somewhat complicated, and relies on showing that long Barker sequences of odd length must exhibit certain patterns.
We describe here a possible alternative route to proving this result, in the hope of spurring further research.

Theorem 2. If the polynomial

gm(x) = (−1)m(2m + 1)x2m +

m
∑

k=1

(

x2m+2k + x2m−2k
)

is irreducible over Q, then no Barker sequence of length 2m + 1 exists.

We require a brief definition before supplying the proof. For a polynomial f(x) with f(0) 6= 0, we define its
reciprocal polynomial f∗(x) by f∗(x) := xdeg ff(1/x). Also, for f(x) ∈ Z[x] with f(0) 6= 0, we say that f is
self-reciprocal if f = ±f∗.
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Proof of Theorem 2. Suppose {ak} is a Barker sequence of length 2m+1, and let fm(x) =
∑2m

k=0 akxk. By Theorem 1,
the aperiodic autocorrelation ck is 0 if k is odd and (−1)m if k 6= 0 and k is even. Thus

fm(x)f∗

m(x) =

m
∑

k=−m

c2kx2k+2m

= (2m + 1)x2m +

m
∑

k=1

(−1)m
(

x2m+2k + x2m−2k
)

,

and so gm(x) = (−1)mfm(x)f∗

m(x).

We conjecture that the polynomial gm(x) is in fact irreducible for every m > 6. However, we find that these
polynomials are reducible mod p, for every prime number p. This follows immediately from the following more
general statement.

Theorem 3. Suppose f(x) is an even, self-reciprocal polynomial with integer coefficients and deg(f) ≥ 4. Then f(x)
is reducible mod p for every prime p.

Proof. If f = −f∗ then f(±1) = 0 so f is reducible over Q. If f = f ∗ and deg(f) = 4n + 2 then f(±i) = 0, so again
f is reducible over Q for n ≥ 1. Suppose then that f = f ∗ and deg(f) = 4n with n ≥ 1, and write f(x) = g(x2).
Clearly f(x) ≡ g(x)2 mod 2, so suppose p is an odd prime, and g(x) is irreducible mod p. Let α be a root of g in its
splitting field Fp2n over Fp, so that

g(x) =

2n−1
∏

k=0

(

x − αpk
)

.

Let γ be a primitive element of Fp2n , and let α = γt for some integer t. Since g is self-reciprocal, α−1 is also a root

of g, so α−1 = γ−t = αpj

= γtpj

for some positive integer j < 2n. Then γtp2j

= γ−tpj

= γt, so αp2j
−1 = 1, and

consequently j = n. Therefore γt(pn+1) = 1, so (pn − 1) | t and thus t is even. Let β = γt/2. Then

f(x) =

2n−1
∏

k=0

(

x + βpk
)

·

2n−1
∏

k=0

(

x − βpk
)

,

and each of these products lies in Fp[x].

This result would appear to make the determination of the irreducibility of the polynomials gm(x) a more
challenging proposition!
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