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Abstract. A Barker sequence is a finite sequence of integers, each ±1,
whose aperiodic autocorrelations are all as small as possible. It is widely
conjectured that only finitely many Barker sequences exist. We describe
connections between Barker sequences and several problems in analysis
regarding the existence of polynomials with ±1 coefficients that remain
flat over the unit circle according to some criterion. First, we amend
an argument of Saffari to show that a polynomial constructed from a
Barker sequence remains within a constant factor of its L2 norm over the
unit circle, in connection with a problem of Littlewood. Second, we show
that a Barker sequence produces a polynomial with very large Mahler’s
measure, in connection with a question of Mahler. Third, we optimize an
argument of Newman to prove that any polynomial with ±1 coefficients
and positive degree n−1 has L1 norm less than

√
n − .09, and note that a

slightly stronger statement would imply that long Barker sequences do not
exist. We also record polynomials with ±1 coefficients having maximal L1

norm or maximal Mahler’s measure for each fixed degree up to 24. Finally,
we show that if one could establish that the polynomials in a particular
sequence are all irreducible over Q, then an alternative proof that there
are no long Barker sequences with odd length would follow.

1. Introduction

For a sequence of complex numbers a0, a1, . . . , an−1, define its aperiodic

autocorrelation sequence {ck} by

ck :=

n−1−k
∑

j=0

ajaj+k

for 0 ≤ k < n and

c−k := ck .

We are interested here in the case when the aj are all of unit modulus, in
particular when each aj = ±1. Thus the peak autocorrelation c0 has the
value c0 = n, and in many applications it is of interest to minimize the off-

peak autocorrelations c±k with 0 < k < n. In the integer case, clearly the
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optimal situation occurs when |ck| ≤ 1 for each k 6= 0, so ck = 0 if 2 | (n− k)
and ck = ±1 otherwise. A sequence achieving this for each k is called a
Barker sequence. Barker first asked for ±1 sequences with this property in
1953 [1]. (In fact, Barker asked for the stricter condition that ck ∈ {0,−1}
for k 6= 0.) For the complex unimodular case, we say {ak} is a generalized

Barker sequence if each off-peak autocorrelation satisfies |ck| ≤ 1.
Since negating every other term of a sequence {ak} does not disturb the

magnitudes of its autocorrelations, we may assume that a0 = a1 = 1 in a
Barker sequence. With this normalization, just eight Barker sequences are
known, all with length at most 13. These are shown in Table 1. (Only three of
these satisfy the more strict condition requested by Barker—the ones of length
3, 7, and 11.) It is widely conjectured that no additional Barker sequences
exist, and in section 2 we survey some known restrictions on their existence.
First however we describe a broader conjecture that arises in signal processing,
and an equivalent problem in analysis regarding norms of polynomials.

Sequences with small off-peak autocorrelations are of interest in a number
of applications in signal processing and communications (see [1, 18, 13]). In
engineering applications, a common measure of the value of a sequence is the
ratio of the square of the peak autocorrelation to the sum of the squares of the
moduli of the off-peak values. This is called the merit factor of the sequence.
For a sequence An = {aj} of length n, its merit factor is defined by

MF(An) :=
n2

2
∑n−1

k=1 |ck|
2 .

Golay introduced this quantity in 1972 [16], and in [17] he conjectured that the
merit factor of a binary sequence is bounded, presenting a heuristic argument
that MF(An) < 12.32 for large n. Several researchers in engineering, physics,
and mathematics have made similar conjectures; see for instance [6] or [18].
It is clear, however, that a Barker sequence of length n has merit factor near
n, so certainly Golay’s merit factor conjecture contains the question of the
existence of long Barker sequences as a special case.

Table 1. Barker sequences with a0 = a1 = 1.

n Sequence Merit factor
2 ++ 2.00
3 ++- 4.50
4 +++- 4.00
4 ++-+ 4.00
5 +++-+ 6.25
7 +++--+- 8.17

11 +++---+--+- 12.10
13 +++++--++-+-+ 14.08
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The merit factor problem may be restated as a question on polynomials.
We first require some notation. Given a sequence {aj}n−1

j=0 , define a polynomial
f(z) of degree n− 1 by

f(z) =
n−1
∑

j=0

ajz
j.

For a positive real number p, let ‖f‖p denote the value

‖f‖p :=

(
∫ 1

0

∣

∣f
(

e(t)
)
∣

∣

p
dt

)1/p

,

where e(t) := e2πit. If p ≥ 1, this is the usual Lp norm of f on the unit circle.
We also let ‖f‖∞ denote the supremum norm of f ,

‖f‖∞ := lim
p→∞

‖f‖p = sup
|z|=1

|f(z)| ,

and we let ‖f‖0 denote its geometric mean on the unit circle,

‖f‖0 := lim
p→0+

‖f‖p = exp

(
∫ 1

0

log
∣

∣f
(

e(t)
)
∣

∣ dt

)

.

This is Mahler’s measure of the polynomial. We recall that if p < q are
positive real numbers and f is not a monomial, then

‖f‖0 < ‖f‖p < ‖f‖q < ‖f‖∞ .

Assuming that |aj| = 1 for each j, we have ‖f‖2
2 = n by Parseval’s formula,

and, since z = 1/z on the unit circle, it is easy to see that

‖f‖4
4 =

∥

∥f(z)f(z)
∥

∥

2

2
=
∥

∥

∥

n−1
∑

k=1−n

ckz
k
∥

∥

∥

2

2
= n2 + 2

n−1
∑

k=1

|ck|2 . (1.1)

Thus, the merit factor of a sequence {aj} can be expressed in terms of certain
Lp norms of its associated polynomial,

MF(f) :=
‖f‖4

2

‖f‖4
4 − ‖f‖4

2

.

Golay’s problem on maximizing the merit factor of a family of sequences of
fixed length is thus equivalent to minimizing the L4 norm of a collection of
polynomials of fixed degree. This latter problem is one instance of a family
of questions regarding the existence of so-called flat polynomials.

For a positive integer n, let Un denote the set of polynomials in C[x] defined
by

Un :=

{

f(z) =

n−1
∑

j=0

ajz
j : |aj| = 1 for 0 ≤ j < n

}

,
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and let Ln denote the subset

Ln :=

{

f(z) =

n−1
∑

j=0

ajz
j : aj = ±1 for 0 ≤ j < n

}

.

We call the first set the unimodular polynomials of degree n − 1, and the
second set the Littlewood polynomials of fixed degree. In 1966, Littlewood
[23] asked about the existence of polynomials in these sets with particular
flatness properties. More precisely, he asked if there exist absolute positive
constants α1 and α2 and arbitrarily large integers n such that there exists a
polynomial fn ∈ Un (or, more strictly, fn ∈ Ln), where

α1

√
n ≤ |fn(z)| ≤ α2

√
n

for all z with |z| = 1. Since each polynomial in such a sequence never strays
far from its L2 norm, we say such a sequence is flat. In 1980, Körner [21]
established that flat sequences of unimodular polynomials exist, and in the
same year Kahane [20] proved moreover that for any ε > 0 there exists a flat
sequence of unimodular polynomials with α1 = 1 − ε and α2 = 1 + ε. Such
sequences are often called ultraflat.

Much less is known regarding flat sequences of Littlewood polynomials. The
Rudin-Shapiro polynomials [28, 31] satisfy the upper bound in the flatness
condition with α2 =

√
2, but no sequence is known that satisfies the lower

bound. In fact, the best known result here is due to Carrol, Eustice, and Figiel
[8], who used the Barker sequence of length 13 to show that for sufficiently
large n there exist polynomials fn ∈ Ln with |fn(z)| > n.431 on |z| = 1. Also,
in 1962 Erdős [12] conjectured that ultraflat Littlewood polynomials do not
exist, opining that there exists an absolute positive constant ε such that

‖f‖∞
‖f‖2

> 1 + ε

for every Littlewood polynomial of positive degree. (Littlewood however
[23, sec. 6; 24, prob. 19] in effect conjectured that no such ε exists.) Since
‖f‖4 ≤ ‖f‖∞, we see then that Golay’s merit factor problem is in fact a
stronger version of Erdős’ conjecture. Further, from (1.1) it follows that if
the coefficients of f form a Barker sequence of length n, then

‖f‖4√
n

≤
(

1 +
1

n

)1/4

< 1 +
1

4n
.

Therefore, to show that long Barker sequences do not exist, it would suffice
to prove that ‖f‖4 ≥

√
n+ 1

4
√

n
for f ∈ Ln and n large. Similar observations

occur for example in [4, chap.1̃4] and [5].
In this paper, we describe some further connections between Barker se-

quences and flatness problems for polynomials. Section 2 summarizes some
known results on Barker sequences. Section 3 shows that long Barker se-
quences provide an answer to Littlewood’s question on flat polynomials,
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amending an argument of Saffari that connects these two problems. Section 4
then ties the existence of long Barker sequences to a problem of Mahler’s con-
cerning Littlewood polynomials with large measure. Section 5 connects the
Barker sequence question to problems on the L1 norm of Littlewood polynomi-
als, and optimizes an argument of Newman to provide an improved restriction
on the flatness of Littlewood polynomials with respect to this norm. Finally,
Section 6 outlines a possible alternative method for establishing that there
are no Barker sequences of certain lengths.

2. Barker sequences

We first record some facts about Barker sequences. The following results
are due to Turyn and Storer [35, 32]; we include the proof here for the reader’s
convenience.

Theorem 2.1. Suppose a0, a1, . . . , an−1 is a sequence of integers with each

ai = ±1, and let {ck} denote its aperiodic autocorrelations. Then

ck + cn−k ≡ n (mod 4) .

If in addition the sequence {ak} is a Barker sequence, then

akan−1−k = (−1)n−1−k.

If furthermore n is even and n > 2, then n = 4m2 for some integer m, and

cn−k = −ck for 0 < k < n. If n is odd, then ck + cn−k = (−1)(n−1)/2 for each

k.

Proof. Since ck records the difference between the number of positive and
negative terms in

∑n−1−k
i=0 aiai+k, it follows that

n−k−1
∏

i=0

aiai+k = (−1)(n−k−ck)/2 (2.1)

for 0 ≤ k < n. Multiplying this product by the same expression with k
replaced by n− k, we obtain

(−1)(n−ck−cn−k)/2 =

k−1
∏

i=0

aiai+n−k

n−k−1
∏

i=0

aiai+k = 1 ,

so ck + cn−k ≡ n (mod 4). Assume now that {ak} forms a Barker sequence of
length n. Multiplying (2.1) by the same equation with k replaced by k + 1,
we compute that

akan−1−k = (−1)n−1−k.

Also, certainly ck = 0 if 0 < k < n and n ≡ k (mod 2), and ck = ±1 for the
other k in this range. In particular, if n is even and n > 2, then c2 +cn−2 = 0,
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so n ≡ 0 (mod 4). It follows then that ck + cn−k = 0 for 0 < k < n in this
case. Last, since

( n−1
∑

i=0

ai

)2

= c0 +

n−1
∑

k=1

(ck + cn−k) = n ,

we see that n is a perfect square if n ≥ 4 is even. �

Recall that a polynomial f(z) with integer coefficients is skew-symmetric if
f(z) = ±zdeg ff(−1/z). We remark that Theorem 2.1 then shows that every
Barker sequence of odd length corresponds to a skew-symmetric Littlewood
polynomial.

Much more is known about possible lengths of Barker sequences. Turyn and
Storer [35] proved that if the length n of a Barker sequence is odd then n ≤ 13,
so the complete list for this case appears in Table 1. It also follows from
this that no additional sequences satisfy Barker’s original requirement for
sequences whose off-peak autocorrelations are all 0 or −1, since Theorem 2.1
implies that any such sequence must have length n ≡ 3 (mod 4). For the
even case, we write n = 4m2. In 1965 Turyn [33] showed in effect that m
must be odd and cannot be a prime power (see also [2, sec. 2D and 4C], [9],
[10]). In 1990, Eliahou, Kervaire, and Saffari [11] proved that if p | m then
p ≡ 1 (mod 4); in 1992 Eliahou and Kervaire [9] and Jedwab and Lloyd [19]
both used this constraint, together with some additional restrictions on m,
to show that there are no Barker sequences with 1 < m < 689. In 1999,
Schmidt [30] obtained much stronger restrictions on m, determining that no
Barker sequences exist with m ≤ 106. This method was refined and extended
by Leung and Schmidt in 2005 [22], who established that no Barker sequences
exist with 1 < m ≤ 5·1010, that is, with even length n satisfying 4 < n ≤ 1022.
Another restriction was obtained in 1989 by Fredman, Saffari, and Smith [15],
who proved that a Barker sequence may not be palindromic.

3. Littlewood’s problem

In 1990, Saffari [29] noted that if there are in fact infinitely many Barker
sequences, then Littlewood’s conjecture on the existence of flat polynomials
with ±1 coefficients follows. We present Saffari’s proof here, in part because
we require the result in Section 4, but also to correct an oversight in the
original article. The correction here affects the values of the constants in the
following theorem.

Theorem 3.1. Suppose f is a Littlewood polynomial of degree n − 1 whose

sequence of coefficients {ak} forms a Barker sequence of length n. Then

α1 +O

(

1

n

)

≤ |fn(z)|√
n

≤ α2 +O

(

1

n

)
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for each z of modulus 1, where α1 =
√

1 − θ = 0.52477485 . . ., α2 =
√

1 + θ =
1.31324459 . . ., and

θ = sup
t>0

sin2 t

t
= 0.7246113537 . . . .

Proof. Suppose f ∈ Ln with n > 13, and write n = 4m. Using the fact that
the off-peak autocorrelations satisfy cn−k = −ck from Theorem 2.1, and that
c2j = 0 for j ≥ 1, we compute

∣

∣f
(

eit
)
∣

∣

2 − n = 2
n−1
∑

k=1

ck cos kt

= 2
2m−1
∑

k=1

ck
(

cos kt− cos((n− k)t)
)

= 4 sin(2mt)

2m−1
∑

k=1

ck sin
(

(2m− k)t
)

= 4 sin(2mt)
m
∑

k=1

c2m−2k+1 sin
(

(2k − 1)t
)

.

Thus
∣

∣

∣

∣

∣

|f (eit)|2

n
− 1

∣

∣

∣

∣

∣

≤ θm , (3.1)

where θm is defined by

θm := max
0≤t<2π

|sin(2mt)|
m

m
∑

k=1

∣

∣sin
(

(2k − 1)t
)
∣

∣ .

Define φm and ψm by

φm := max
0≤t≤π/4

|sin(2mt)|
m

m
∑

k=1

∣

∣sin
(

(2k − 1)t
)
∣

∣

and

ψm := max
0≤t≤π/4

|sin(2mt)|
m

m
∑

k=1

∣

∣cos
(

(2k − 1)t
)
∣

∣ ,

so that θm = max{φm, ψm}. For φm, note first that the quantity

1

m

m
∑

k=1

∣

∣sin
(

(2k − 1)t
)
∣

∣

is the midpoint approximation over m subintervals of equal size for the inte-
gral

∫ 1

0

|sin(2mtx)| dx .
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We consider the error incurred when approximating this integral with the sum
over each interval [(k−1)/m, k/m]. If no cusp occurs in the interval, certainly
the error is at most 1/24m3, so the total error incurred from these intervals
is O(1/m2). If a cusp occurs in an interval, in the worst case it lies at the
midpoint, and the ratio of the error incurred in this case to the error when
the cusp occurs at an endpoint is tan(t/2)/(t − sin t). If π/

√
m ≤ t ≤ π/4,

this ratio is 3m/π2 + O(1), so the total error incurred on the intervals with
cusps is

O

(

3m

π2
· 1

24m3
· m

2

)

= O

(

1

m

)

.

If 0 ≤ t < π/
√
m, then there are at most 2

√
m cusps, and the error in the

worst case at each cusp is (2− cos(π/
√
m))/2π

√
m, so the total error in this

case is also O(1/m). Therefore,

φm = max
0≤t≤π/4

|sin(2mt)|
∫ 1

0

|sin(2mtx)| dx+O

(

1

m

)

≤ sup
α≥0

|sinα|
∫ 1

0

|sin(αt)| dt+O

(

1

m

)

= sup
n≥0

max
0≤x≤π

(2n+ 1 − cos x) sin x

nπ + x
+O

(

1

m

)

= max
0≤x≤π

(1 − cos x) sin x

x
+O

(

1

m

)

= 0.6639534894 . . .+O

(

1

m

)

.

(3.2)

In the same way,

ψm = max
0≤t≤π/4

|sin(2mt)|
∫ 1

0

|cos(2mtx)| dx +O

(

1

m

)

≤ sup
α≥0

|sinα|
∫ 1

0

|cos(αt)| dt+O

(

1

m

)

= sup
n≥0

max
−π

2
≤x≤π

2

(2n+ sin x) |sin x|
nπ + x

+O

(

1

m

)

= max
0≤x≤π

2

sin2 x

x
+O

(

1

m

)

= 0.7246113537 . . .+O

(

1

m

)

.

(3.3)

The statement then follows from (3.1), (3.2), and (3.3). �

We remark that Saffari computed the limiting value of θm to be 0.66395 . . .
by considering only the computation of φm above for 0 ≤ t ≤ 2π. However,
this argument breaks down when t is very close to π/2 or 3π/2.
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4. Mahler’s problem

In 1963, Mahler [25] posed the question of maximizing the normalized mea-
sure ‖f‖0 / ‖f‖2 of polynomials with complex coefficients and fixed degree.
He proved that for each degree the maximum is attained by a unimodular
polynomial, and Fielding [14] proved that there exist unimodular polynomi-
als with normalized measure arbitrarily close to 1. Beller and Newman [3]
proved further that there exists a positive constant c such that for each n > 0
there exists a polynomial fn ∈ Un such that ‖fn‖0 >

√
n− c logn. The prob-

lem remains open for Littlewood polynomials; the largest known normalized
measure in this case is 0.98636598 . . ., achieved by the polynomial whose co-
efficients form the Barker sequence of length 13. We prove here that long
Barker sequences would also provide an answer to Mahler’s problem for the
case of Littlewood polynomials.

Theorem 4.1. Let fn be a Littlewood polynomial whose coefficients form a

Barker sequence of length n. Then

‖fn‖0√
n

> 1 − 1√
n

for sufficiently large n.

Proof. Let fn(z) =
∑n−1

j=0 ajz
j , with {aj} a Barker sequence. Since the off-

peak autocorrelation ck is 0 if n ≡ k (mod 2) and ±1 otherwise, it follows
from (1.1) that

‖fn‖4
4 = n2 + n− ε(n) ,

where ε(n) = 0 if n is even and 1 if n is odd. Thus

∫ 1

0

(

∣

∣fn

(

e(t)
)
∣

∣

2

n
− 1

)2

dt =
‖fn‖4

4

n2
− 1 =

n− ε(n)

n2
.

Next, if a > b > 0 it is straightforward to verify that

a− b

b
≥ log a− log b ,

so setting

a(t) = max

{

1,

∣

∣fn

(

e(t)
)
∣

∣

2

n

}

and b(t) = min

{

1,

∣

∣fn

(

e(t)
)
∣

∣

2

n

}

for t in [0, 1], we obtain

∫ 1

0

(

∣

∣fn

(

e(t)
)
∣

∣

2

n
− 1

)2

dt

≥
∫ 1

0

min

{

∣

∣fn

(

e(t)
)
∣

∣

2

n
, 1

}2
(

2 log
∣

∣fn

(

e(t)
)
∣

∣− log n
)2
dt ,
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so
∫ 1

0

(

2 log
∣

∣fn

(

e(t)
)
∣

∣− logn
)2
dt ≤ 1

α2
1n

+O

(

1

n2

)

,

where α1 = 0.52477 . . . is the constant appearing in statement of Theorem 3.1.
By the Schwarz inequality,

∫ 1

0

∣

∣2 log
∣

∣fn

(

e(t)
)
∣

∣− log n
∣

∣ dt ≤ 1

α1

√
n

+O

(

1

n3/2

)

,

and so
∫ 1

0

log
∣

∣fn

(

e(t)
)
∣

∣dt ≥ log
√
n− 1

2α1

√
n

+O

(

1

n3/2

)

.

Since 1/2α1 = 0.9527 . . ., it follows then that

‖fn‖0√
n

≥ 1 − 1

2α1

√
n

+O

(

1

n3/2

)

> 1 − 1√
n

for sufficiently large n. �

For each n ≤ 25, Table 2 lists a Littlewood polynomial with degree n − 1
having maximal Mahler’s measure over Ln. We remark that the coefficient
sequences for n = 2, 3, 4, 5, 7, 11, and 13 are precisely the Barker sequences.
(The two Barker sequences of length 4 correspond to polynomials with iden-
tical Mahler’s measure.)

5. Newman’s problem

One may also study flatness properties of polynomials by using the L1 norm.
In this case, again the problem is largely resolved for unimodular polynomials,
and largely open for Littlewood polynomials. For the unimodular case, in
1965 Newman [27] proved that there exists a positive constant c so that for
each n ≥ 2 there exists a polynomial fn ∈ Un such that ‖f‖1 >

√
n − c. In

his proof, Newman first constructed a polynomial fn whose L4 norm satisfies
‖fn‖4 /

√
n = 1 + O(1/

√
n), then used Hölder’s inequality to obtain a lower

bound on ‖fn‖1 of the desired form.
Much less is known for the Littlewood case. In [26], Newman mentioned

a conjecture (without attribution) for the L1 norm for these polynomials,
similar to Erdős’ conjecture for the supremum norm: There exists a positive
constant c < 1 such that ‖f‖1 < c

√
n whenever f ∈ Ln and n ≥ 2. This

problem remains open, as does the weaker question of whether there exists a
positive constant c such that ‖f‖1 <

√
n − c for f ∈ Ln of positive degree.

Resolving a still weaker problem however suffices for answering the question
of the existence of Barker sequences of large degree.

Theorem 5.1. If f(z) =
∑n−1

k=0 ajzj is a Littlewood polynomial whose coeffi-

cients form a Barker sequence of length n, then ‖f‖1 >
√
n− 1.
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Table 2. Maximal Mahler’s measure of Littlewood polynomi-
als by degree.

n Coefficients of f ‖f‖0 ‖f‖0 /
√
n

√
n− ‖f‖0

2 ++ 1.00000 0.70711 0.41421
3 ++- 1.61803 0.93417 0.11402
4 +++- 1.83929 0.91964 0.16071
5 +++-+ 2.15372 0.96317 0.08235
6 ++++-+ 2.22769 0.90945 0.22180
7 +++--+- 2.49670 0.94366 0.14905
8 ++++--+- 2.64209 0.93412 0.18634
9 +++-+--++ 2.72501 0.90834 0.27499

10 ++++-+--++ 2.92076 0.92363 0.24152
11 +++---+--+- 3.16625 0.95466 0.15038
12 +++++--++-+- 3.33463 0.96262 0.12948
13 +++++--++-+-+ 3.55639 0.98637 0.04916
14 ++++++--++-+-+ 3.57536 0.95556 0.16630
15 +++++--++--+-+- 3.74089 0.96589 0.13209
16 +++-+++---+-++-+ 3.77645 0.94411 0.22355
17 ++-++--++++-+-+-- 3.87848 0.94067 0.24463
18 +++-+++---+-++-+-- 4.01406 0.94612 0.22858
19 ++-+---+-++++-++++- 4.16269 0.95499 0.19621
20 +++++-+---+-++---++- 4.30167 0.96188 0.17047
21 ++-------++--+-+-+--+ 4.39853 0.95984 0.18405
22 +++++-++--+-+-++---+++ 4.47518 0.95411 0.21523
23 +++++++---++--+--+-+-+- 4.57183 0.95329 0.22400
24 ++--+++------+-+-+--+--+ 4.71462 0.96237 0.18436
25 +++---+++++++-+-+--+--++- 4.83413 0.96683 0.16587

Proof. Suppose f ∈ Ln has coefficients forming a Barker sequence. From
(1.1) we see that

‖f‖4
4 = n2 + n− ε(n) ,

where ε(n) = 1 if n is odd and 0 if n is even. Using Hölder’s inequality, we
have

‖f‖2
2 < ‖f‖2/3

1 ‖f‖4/3
4 ,

and so

‖f‖2
1 >

n3

n2 + n− ε(n)
= n− 1 +

1

n+ 1

(

1 +
ε(n)n2

n2 + n− 1

)

. �

This statement in fact appears in the 1968 paper of Turyn [34], who at-
tributes the observation to Newman.
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Newman in fact proved a statement similar to Theorem 5.1 in 1960 [26],
showing that ‖f‖1 <

√
n− .03 for f ∈ Ln of positive degree. We revisit New-

man’s argument here, choosing parameters in an optimal way and employing
the results of some computations on Littlewood polynomials to obtain an im-
proved lower bound. It is clear from the proof however that a new approach
is needed to obtain the constant 1, as Newman observed.

Theorem 5.2. If f is a Littlewood polynomial of positive degree n− 1, then

‖f‖1 <
√
n− .09 .

Proof. Let f(z) =
∑n−1

k=0 akz
k with ak = ±1 for 0 ≤ k < n, and let α > 1 be a

real number whose value will be selected later. The argument splits into two
cases, depending on the size of ‖f‖∞.

Case 1: ‖f‖∞ ≤ α
√
n. Let ck denote the kth aperiodic autocorrelation of

the sequence of coefficients of f . Since
∑n−1

k=1 c
2
k ≥ bn/2c, using (1.1) we have

‖f‖4
4 ≥ n2 + n− ε(n) ,

where ε(n) = 1 if n is odd and 0 otherwise. Next, since

∫ 1

0

(

∣

∣f
(

e(t)
)
∣

∣

2 − n
)2

dt = ‖f‖4
4 − 2n ‖f‖2

2 + n2 ≥ n− ε(n) ,

we compute

∫ 1

0

(
∣

∣f
(

e(t)
)
∣

∣−
√
n
)2
dt =

∫ 1

0

(

∣

∣f
(

e(t)
)
∣

∣

2 − n
∣

∣f
(

e(t)
)
∣

∣+
√
n

)2

dt ≥ n− ε(n)

(α + 1)2n
.

However,
∫ 1

0

(
∣

∣f
(

e(t)
)
∣

∣−
√
n
)2
dt = 2n− 2

√
n ‖f‖1 ,

so

‖f‖2
1 ≤ n− n− ε(n)

(α+ 1)2n
+

(n− ε(n))2

4(α+ 1)4n3

= n− 1

(α + 1)2
+O(1/n) .

(5.1)

Case 2: ‖f‖∞ > α
√
n. Suppose max|z|=1 |f(z)| = A

√
n, occurring at z =

e(t0). By Bernstein’s inequality, |f ′(z)| ≤ A(n − 1)
√
n, so for 0 ≤ t ≤ 1, it

follows that
∣

∣f
(

e(t)
)
∣

∣ ≥ A
√
n
(

1 − 2π(n− 1) |t− t0|
)

.
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Let β be a small positive number whose value will be selected later, let I
denote the interval [t0 − β/n, t0 + β/n], and let B =

∫

I
|f(e(t))|2 dt. Then

B ≥ 2α2n

∫ t0+β/n

t0

(

1 − 2π(n− 1)(t− t0)
)2
dt

= 2α2β

(

1 − 2πβ

(

1 − 1

n

)

+
4π2β2

3

(

1 − 1

n

)2
)

.

(5.2)

It follows that
B ≥ 2α2β

(

1 − 2πβ + 4π2β2/3
)

(5.3)

if β < 3/4π.
Next, let J denote the complement of I (modulo 1) in [0, 1] so that

∫

J

∣

∣f
(

e(t)
)
∣

∣

2
dt = n−B .

By the Schwarz inequality,
(
∫

I

∣

∣f
(

e(t)
)
∣

∣ dt

)2

≤ 2βB/n

and
(
∫

J

∣

∣f
(

e(t)
)
∣

∣ dt

)2

≤ (n− B)(1 − 2β/n) ,

so
‖f‖1 ≤

√

2βB/n+
√

(n−B)(1 − 2β/n) . (5.4)

The expression on the right is decreasing in B for B ≥ 2β, so assuming that
α2(1− 2πβ+ 4π2β2/3) ≥ 1, we may replace B in (5.4) with the expression in
(5.3) to obtain

‖f‖2
1 ≤

(

2αβ
√

(1 − 2πβ + 4π2β2/3)/n

+
√

(n− 2α2β(1 − 2πβ + 4π2β2/3))(1 − 2β/n)

)2

= n− 2β
(

1 + α2 − 2α2βπ + 4α2β2π2/3 − 2α
√

1 − 2βπ + 4β2π2/3
)

+O(1/n) .
(5.5)

Selecting parameters. Now we wish to choose α and β, subject to the
identified constraints, so that the constant terms in the expressions (5.1) and
(5.5) match and are as large as possible. (Newman uses α = 2

√
π ≈ 3.54,

β = 1/4π ≈ .0796, and B ≥ 1, which yields .0484 in case 1 and .361 in
case 2.) Selecting candidate values for β between 0 and 3/4π produces the
values of 1/(α + 1)2 shown in Figure 1. The optimal value is approximately
.092347, occurring near α = 2.2907 and β = .064804.
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Figure 1. Optimal constant term.
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When n is even, we obtain from (5.1) that ‖f‖2
1 ≤ n − .091281, and it is

straightforward to verify that the bound in (5.5) is slightly smaller for all n.

However, for odd n ≥ 3 we obtain from (5.1) that ‖f‖2
1 ≤ n − .09 only for

n ≥ 41. To obtain the inequality for all odd n, we first perform the analysis
a bit more carefully to decrease this threshold, then we complete the proof
by determining for small n the maximal value of the L1 norm of a Littlewood
polynomial of degree n−1. To this end, we replace the parameter α with the
expression α− γ/n and use the more precise lower bound from (5.2) for B in
(5.4) in place of the bound (5.3). Choosing γ = .899634 to balance the 1/n
terms in the respective asymptotic expansions, we verify that both (5.1) and
(5.4) yield ‖f‖2

1 < n− .09 when n is odd for n ≥ 21.
To complete the proof, we therefore need only check that every Littlewood

polynomial with even degree n − 1 ≤ 18 satisfies ‖f‖1 <
√
n− .09. This is

established in Table 3, which displays for each n ≤ 25 a Littlewood polynomial
of degree n− 1 having maximal L1 norm. �

We remark that the last column of the table shows that the value of .09
in Theorem 5.2 cannot in general be replaced with any number larger than
.1856 . . . . We also note that the extremal polynomials with respect to the L1

norm in Table 3 are precisely the same as the extremal Littlewood polynomials
with respect to Mahler’s measure in Table 2. In particular, the coefficient
sequences appearing in Table 3 for n = 2, 3, 4, 5, 7, 11, and 13 are Barker
sequences. Again, the other Barker sequence of length 4 has the same L1

norm as that of the n = 4 entry in the table.

6. An irreducibility question

As we noted in section 2, Turyn and Storer [35] proved that no Barker
sequences of odd length n exist for n > 13. Their proof is elementary, though
somewhat complicated, and relies on showing that long Barker sequences of
odd length must exhibit certain patterns. We describe here a possible alter-
native route to proving this result, in the hope of spurring further research.
The material in this section also appears in [7].
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Table 3. Maximal L1 norms of Littlewood polynomials by degree.

n Coefficients of f ‖f‖1 ‖f‖1 /
√
n n− ‖f‖2

1

2 ++ 1.27324 0.90032 0.37886
3 ++- 1.67761 0.96857 0.18562
4 +++- 1.92555 0.96277 0.29227
5 +++-+ 2.19412 0.98124 0.18583
6 ++++-+ 2.33899 0.95489 0.52912
7 +++--+- 2.58397 0.97665 0.32311
8 ++++--+- 2.73681 0.96761 0.50989
9 +++-+--++ 2.87385 0.95795 0.74097

10 ++++-+--++ 3.04989 0.96446 0.69817
11 +++---+--+- 3.25835 0.98243 0.38317
12 +++++--++-+- 3.40074 0.98171 0.43498
13 +++++--++-+-+ 3.57946 0.99276 0.18749
14 ++++++--++-+-+ 3.65775 0.97757 0.62088
15 +++++--++--+-+- 3.80732 0.98305 0.50430
16 +++-+++---+-++-+ 3.89389 0.97347 0.83764
17 ++-++--++++-+-+-- 4.00380 0.97106 0.96956
18 +++-+++---+-++-+-- 4.13097 0.97368 0.93505
19 ++-+---+-++++-++++- 4.26105 0.97755 0.84344
20 +++++-+---+-++---++- 4.39129 0.98192 0.71659
21 ++-------++--+-+-+--+ 4.50012 0.98201 0.74893
22 +++++-++--+-+-++---+++ 4.58809 0.97818 0.94943
23 +++++++---++--+--+-+-+- 4.68409 0.97670 1.05934
24 ++--+++------+-+-+--+--+ 4.81295 0.98244 0.83550
25 +++---+++++++-+-+--+--++- 4.92189 0.98438 0.77497

For a polynomial f(x), we define its reciprocal polynomial f ∗(x) by f ∗(x) :=
xdeg ff(1/x). For f(x) ∈ Z[x], we say f is reciprocal if f = ±f ∗.

Theorem 6.1. If the polynomial

gm(x) :=

m
∑

k=1

(

x2m−2k + x2m+2k
)

+ (−1)m(2m+ 1)x2m

is irreducible, then no Barker sequence of length 2m+ 1 exists.

Proof. Suppose {ak} is a Barker sequence of length 2m+ 1, and let fm(x) =
∑2m

k=0 akx
k. By Theorem 2.1, the aperiodic autocorrelation ck is 0 if k is odd
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and (−1)m if k 6= 0 and k is even. Thus

fm(x)f ∗
m(x) =

m
∑

k=−m

c2kx
2k+2m

= (2m+ 1)x2m +

m
∑

k=1

(−1)m
(

x2m+2k + x2m−2k
)

,

and so gm(x) = (−1)mfm(x)f ∗
m(x). �

The polynomials gm(x) are in fact irreducible for 6 < m ≤ 900, and it
would be interesting if there is a short proof of this for large m. We note
however that Erich Kaltofen has observed that the polynomials gm(x) are in
fact always reducible mod p, for any prime p. With his permission, we include
his proof of the following more general statement.

Theorem 6.2. Suppose f(x) is an even, reciprocal polynomial with integer

coefficients and deg(f) ≥ 4. Then f(x) is reducible mod p for every prime p.

Proof. If f = −f ∗ then f(±1) = 0 so f is reducible over Q. If f = f ∗

and deg(f) = 4n + 2 then f(±i) = 0, so again f is reducible over Q for
n ≥ 1. Suppose then that f = f ∗ and deg(f) = 4n with n ≥ 1, and write
f(x) = g(x2). Clearly f(x) ≡ g(x)2 (mod 2), so suppose p is an odd prime,
and g(x) is irreducible mod p. Let α be a root of g in its splitting field Fp2n

over Fp, so that

g(x) =
2n−1
∏

k=0

(

x− αpk
)

.

Let γ be a primitive element of Fp2n, and let α = γt for some integer t.

Since g is reciprocal, α−1 is also a root of g, so α−1 = γ−t = αpj

= γtpj

for
some positive integer j < 2n. Then γtp2j

= γ−tpj

= γt, so αp2j−1 = 1, and
consequently j = n. Therefore γt(pn+1) = 1, so (pn − 1) | t and thus t is even.
Let β = γt/2. Then

f(x) =
2n−1
∏

k=0

(

x + βpk
)

·
2n−1
∏

k=0

(

x− βpk
)

,

and each of these products lies in Fp[x]. �
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[5] , Paul Erdős and polynomials, Paul Erdős and his mathematics, I (Budapest,
1999), Bolyai Soc. Math. Stud. 11, 161–174, János Bolyai Math. Soc., Budapest, 2002.

[6] P. Borwein, K.-K.S. Choi, J. Jedwab, Binary sequences with merit factor greater than
6.34, IEEE Trans. Inform. Theory 50 (2004), no. 12, 3234–3249.

[7] P. Borwein, M.J. Mossinghoff, A question of irreducibility, note=in preparation.
[8] F.W. Carroll, D. Eustice, T. Figiel, The minimum modulus of polynomials with coef-

ficients of modulus one, J. London Math. Soc. (2) 16 (1977), no. 1, 76–82.
[9] S. Eliahou, M. Kervaire, Barker sequences and difference sets, Enseign. Math. (2) 38

(1992), no. 3–4, 345–382.
[10] , , Corrigendum to “Barker sequences and difference sets”, En-

seign. Math. (2) 40 (1994), no. 1–2, 109–111.
[11] S. Eliahou, M. Kervaire, B. Saffari, A new restriction on the lengths of Golay comple-

mentary sequences, J. Combin. Theory Ser. A 55 (1990), no. 1, 49–59.
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en norme L4, taille des autocorrélations et inexistence des codes de Barker,
C. R. Acad. Sci. Paris Sér. I Math. 308 (1989), no. 15, 461–464.

[16] M.J.E. Golay, A class of finite binary sequences with alternate autocorrelation values
equal to zero, IEEE Trans. Inform. Theory 18 (1972), 449–450.

[17] , The merit factor of long low autocorrelation binary sequences, IEEE
Trans. Inform. Theory 28 (1982), no. 3, 543–549.

[18] J. Jedwab, A survey of the merit factor problem for binary sequences, Sequences and
Their Applications—Proceedings of SETA 2004, Lecture Notes in Computer Science
3486, 30–55, Springer Verlag, Berlin, 2005.

[19] J. Jedwab, S. Lloyd, A note on the nonexistence of Barker sequences, Des. Codes
Cryptogr. 2 (1992), no. 1, 93–97.
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