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“. . . the problem of knowing whether or not the digits of a
number like

√
2 satisfy all the laws one could state for

randomly chosen digits, still seems . . . to be one of the most
outstanding questions facing mathematicians.”

Émile Borel [Borel 1950]

Abstract

Champernowne’s number is the best-known example of a normal
number, but its digits are highly patterned. We present graphic evi-
dence of the patterning and review some relevant results in normality.
We propose a strong normality criterion based on the variance of the
normal approximation to a binomial distribution. Allmost all numbers
pass the new test but Champernowne’s number fails to be strongly
normal.

1 Introduction

How can one decide whether the digits of a number behave in a random
manner?

In 1909 Émile Borel introduced an analytic test for randomness. His
notion of normality of numbers has posed impossibly difficult questions for
mathematicians ever since. (It has not yet been shown that the decimal
expansion of π,

√
2 or any other “natural” irrational number has infinitely

many zeros, though it is almost certainly true.)
In this article we review the definition of normality and give some of the

outstanding historical results. We then note that some numbers pass Borel’s
normality test even though they show clearly non-random behaviour in the
digits. Champernowne’s number is of this variety, and while it is provably
normal it neither “looks” nor “behaves” like a random number. Similarly,
human chromosomes, thought of as large base four numbers, behave more
like Champernowne’s number than like random numbers.
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10^5 digits of Pi
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Figure 1: The first 105 binary digits of π as a ”random walk.”

In consequence we propose a stronger test for normality. Almost all
numbers pass the new test, and every number that passes the test is normal
in Borel’s sense. However, not all normal numbers pass the new test; in
particular, we show that Champernowne’s number fails to meet the stronger
criterion.

First, though, we present the graphic images which motivated this study.

2 Walks on the Digits of Numbers and on Chro-

mosomes

If the binary digits of a number are “like random,” then we expect the walk
generated on the digits to look like a random walk generated by the toss of
a coin.

We show walks generated by the digits of π, e,
√

2, and the base 2
Champernowne number. For comparison, we give a random walk generated
by Maple.

The walks are generated on a binary sequence by converting each 0 in
the sequence to -1, and then using digit pairs (±1,±1) to walk (±1,±1) in
the plane. The shading indicates the distance travelled along the walk.

The walks on the digits of π, e and
√

2 look like random walks, although
none of these numbers has been proven normal. On the other hand, the
base 2 Champernowne number is known to be normal in the base 2, but
its digits look far from random. Will this phenomenon disappear if we look
at more digits? The answer is no – there are always more ones than zeros
in the expansion, and this preponderance is unbounded even though the
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10^5 digits of e
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Figure 2: The first 105 binary digits of e as a ”random walk.”

10^5 digits of root 2

–100

0

100

200

–1000 –800 –600 –400 –200 0

Figure 3: The first 105 binary digits of
√

2 as a ”random walk.”

Champernowne

0
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3000

4000

5000

0 2000 4000 6000 8000

Figure 4: The first 105 binary digits of Champernowne’s number in binary
as a ”random walk.”
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Random

0

100

200

300

–300 –200 –100 0 100

Figure 5: The first 105 binary digits of a random ”random walk.”

Y-chromosome

–20000

–15000

–10000

–5000

0

–3000 –2000 –1000 0 1000

Figure 6: The first 105 base 4 digits of the Y-chromosome as a ”random
walk.”

frequencies of the two digits approach equality.
The chromosomes of the human genome are sequences of nucleotides

roughly 1 billion long. There are four nucleotides, so it seems natural to
convert such a sequence to a sequence of base 4 digits and then make a walk
on the digits.

We show walks generated by the human X and Y chromosomes.
While the chromosome sequences pass Borel-like tests of randomness

on frequencies of short strings, the walks they generate are strikingly non-
random, and in fact strikingly similar to the walk generated by Champer-
nowne’s number.

One might speculate that the walks look alike because both Champer-
nowne’s number and the chromosomes contain coded information – but that
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Figure 7: The whole X-chromosome as a ”random walk.”

goes far beyond the scope of this article.

3 Borel’s Normality Criterion

Recall that we can write a number α in any positive integer base r as a sum
of powers of the base:

α =
∞
∑

j=−d

ajr
−j .

The standard ”decimal” notation is

α = a−d a
−(d−1) . . . a0 . a1 a2 . . .

In either case, we call the sequence of digits {aj} the representation of
α in the base r, and this representation is unique unless α is rational, in
which case α may have two representations. (For example, in the base 10,
0.1 = 0.0999 . . ..)

We will use the term string to denote a sequence {aj} of digits. The
string may be finite or infinite; we will call a finite string of t digits a t-
string.

A finite string of digits beginning in some specified position we will refer
to as a block. An infinite string beginning in a specified position we will call
a tail.

Since we are interested in the asymptotic frequencies of digit strings, we
will work in R/Z by discarding all digits to the left of the decimal point in
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the representation of α. If the real numbers α and β have the same fractional
part, we write

α ≡ β (mod 1).

A number α is simply normal to the base r if every 1-string in its expan-
sion to the base r occurs with a frequency approaching 1/r. That is, given
the expansion {aj} of α to the base r, and letting mk(n) be the number of
times that aj = k for j ≤ n, we have

lim
n→∞

mk(n)

n
=

1

r

for each k ∈ {0, 1, . . . , r−1}. This is Borel’s original definition [Borel 1909].
The number 1/3 has the binary representation 0.010101 . . .. Since the

digits 0 and 1 occur equally frequently, this number is simply normal in the
base 2. One wants to exclude such repeating patterns.

A number is normal to the base r if every t-string in its base r expansion
occurs with a frequency approaching r−t. In other words, it is simply normal
to the base rt for every positive integer t. This differs from Borel’s original
definition; it was used as though equivalent to Borel’s for some time, but
the equivalence was first proved by Wall in 1949 [Wall 1949].

A number is absolutely normal if it is normal to every base.
It’s easy to show that no rational number is normal in any base. In

his original paper, Borel [Borel 1909] proved that almost every real number
is normal in every base. That is, the set of all numbers which are not
absolutely normal has Lebesgue measure zero. We will use Borel’s method
of proof below, when we show that almost every number meets our stronger
normality criterion.

Borel gave no example of a normal number. It wasn’t until 1917, eight
years after Borel’s paper, that Sierpiński produced the first example [Sierpiński 1917].
(Lebesgue apparently constructed a normal number in 1909, but didn’t
publish his work until 1917 [Lebesgue 1917]; the papers by Sierpiński and
Lebesgue appeared side by side in the same journal.) But neither construc-
tion produced a tangible string of digits.

Finally, in 1933, Champernowne [Champernowne 1933] produced an easy
and concrete construction of a normal number: the Champernowne number
is

γ = .1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . . .

The number is written in the base 10, and its digits are obtained by concate-
nating the natural numbers written in the base 10. This number is probably
the best-known example of a normal number.
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For full proofs of these basic results, we refer the reader to Niven [Niven 1956].
Niven also gives an easy proof of Wall’s beautiful result that a number α
is normal to the base r if and only if the sequence {rjα} is uniformly dis-
tributed modulo 1 [Wall 1949].

A concatenated number is formed in the base r by taking a sequence of
integers a1, a2, a3, . . . and writing the integers in the base r to the right of
the decimal point:

α = .a1 a2 a3 . . .

We have seen that Champernowne’s number is formed by concatenating
the positive integers in their natural sequence in the base 10. More generally,
a base r Champernowne number is formed by concatenating the integers 1,
2, 3, . . . in the base r. For example, the base 2 Champernowne number is
written in the base 2 as

γ2 = .1 10 11 100 101 . . .

For any r, the base r Champernowne number is normal in the base r.
However, the question of its normality in any other base (not a power of r)
is open. For example, it is not known whether the base 10 Champernowne
number is normal in the base 2.

Champernowne made the conjecture that the number obtained by con-
catenating the primes, α = .2 3 5 7 11 13 . . ., was normal in the base 10.
Copeland and Erdös [Copeland and Erdös 1946] proved this in 1946 , as a
corollary of a more general result : if an increasing sequence of positive in-
tegers {aj} has the property that, for large enough N , the number of aj less
than N is greater than N θ for any θ < 1, then concatenating the aj written
in any base gives a normal number in that base.

The number formed by concatenating the primes is commonly called the
Copeland-Erdös number.

Copeland and Erdös conjectured that, if p(x) is a polynomial in x taking
positive integer values whenever x is a positive integer, then the number

α = .p(1 )p(2) p(3) . . .

formed by concatenating the base 10 values of the polynomial at positive
integer values of x is normal in the base 10. This result was proved by
Davenport and Erdös in 1952 [Davenport and Erdös 1952].

Various other classes of “artificial” numbers have been shown to be
normal; for an overview, we refer the reader to Berggren, Borwein and
Borwein [Berggren, Borwein and Borwein 2004] or to Borwein and Bailey
[Borwein and Bailey 2004].
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And other classes of irrational numbers have been shown not to be nor-
mal. It’s easy to prove the non-normality of Liouville numbers , for example,
and to construct similar irrationals like this one in the base 2:

α = .10 100 1000 . . .

Martin gave a construction of a number not normal to any base [Martin 2001].
But the central mystery remains intact. Most familiar irrational con-

stants, like
√

2, log 2, π, and e appear to be without pattern in the digits, and
statistical tests done to date are consistent with the hypothesis that they are
normal. (See, for example, Kanada on π [Kanada 1988] and Beyer, Metropo-
lis and Neergard on irrational square roots [Beyer, Metropolis and Neergaard 1970].)

It is even more disturbing that no number has been proven absolutely
normal, that is, normal in every base. Every normality proof so far is only
valid in one base (and its powers), and depends on the number being con-
structed and written in that base.

4 Binomial Normality

Borel’s original definition of normality [Borel 1909] had the advantage of
great simplicity. None of the current profusion of concatenated monsters
had been studied at the time, so there was no need for a stronger definition.

However, one would like a test or a set of tests to eliminate exactly those
numbers that do not behave in the limit in every way as a binomially random
number defined informally as follows: let each of the numbers a1, a2, a3, . . .
be chosen with equal probability from the set of integers {0, 1, . . . , r − 1} ,
and let α = .a1 a2 a3 . . . be the number represented in the base r by the
concatenation of the digits aj . Then α is a binomially random number in
the base r.

This leads to another informal definition: A number is binomially normal

to the base r if it passes every reasonable asymptotic test on the frequencies
of the digits that would be passed with probability 1 by a binomially random
number.

We leave the definition in this intuitive form, to guide us in the search
for normality criteria. It’s easy to devise an uncountable set of ”unreason-
able” asymptotic tests, each of them passed with probability 1 by a random
number, in such a way that no number can pass all the tests. Our goal
here is simply to begin to take up Borel’s challenge in deciding ”whether or
not the digits of a number like

√
2 satisfy all the laws one could state for

randomly chosen digits.”
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Borel’s test of normality is passed with probability 1 by a binomially
random number [Borel 1909], so it would certainly be passed by a binomially
normal number as well. However, in this article we give an asymptotic test
that is failed by some normal numbers, but passed with probability 1 by a
binomially random number.

5 Strong Normality

In this section, we define strong normality, and in the following sections
we prove that almost all numbers are strongly normal and that Champer-
nowne’s number is not strongly normal.

The definition is motivated as follows: let a number α be represented in
the base r, and let mk(n) represent the number of occurrences of the kth
1-string in the first n digits. Then α is simply normal to the base r if

rmk(n)

n
→ 1

as n → ∞, for each k ∈ {0, 1, . . . , r− 1}. But if a number is binomially ran-
dom, then the discrepancy mk(n) − n/r should fluctuate, with its expected
value equal to the standard deviation

√

(r − 1)n/r.
The following definition makes this idea precise:

Definition 1. For α and mk(n) as above, α is simply strongly normal

to the base r if for each k ∈ {0, . . . , k − 1}

lim sup
n→∞

(mk(n) − n/r)2

n1+ε
= 0

and

lim sup
n→∞

(mk(n) − n/r)2

n1−ε
= ∞

for any ε > 0.

It follows from the definition that a number will be simply strongly
normal if the maximum discrepancy grows like

√
n. This definition can

certainly be tightened, but it is easy to apply and it will suffice for our
present purpose.

We make two further definitions analogous to the definitions of normality
and absolute normality.

Definition 2. A number is strongly normal to the base r if it is simply

strongly normal to each of the bases rj, j = 1, 2, 3, . . ..
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Definition 3. A number is absolutely strongly normal if it is strongly

normal to every base.

6 Almost All Numbers are Strongly Normal

The proof that almost all numbers are strongly normal is based on Borel’s
original proof [Borel 1909] that almost all numbers are normal.

Theorem 1. Almost all numbers are simply strongly normal to any integer

base r > 1.

Proof. Let α be a binomially random number in the base r, so that the
nth digit of the representation of α in the base r is, with equal probability,
randomly chosen from the numbers 0, 1, 2, . . ., r − 1. Let mk(n) be the
number of occurrences of the 1-string k in the first n digits of α.

Then mk(n) is a random variable of binomial distribution with mean

n/r and variance
n(r − 1)

r2
. As n → ∞, the random variable approaches a

normal distribution with the same mean and variance.
The probability that

(

mk(n) − n

r

)2
>

r − 1

r2
n1+ε/2

is the probability that
∣

∣

∣
mk(n) − n

r

∣

∣

∣
> B

√
nnε/4,

where B =
√

r − 1/r, and this probability rapidly approaches zero as n →
∞.

With probability 1, only finitely many mk(n) satisfy the inequality, and
so with probability 1

lim sup
n→∞

(mk(n) − n/r)2

r−1
r2 n1+ε/2

< 1.

We have

lim sup
n→∞

(mk(n) − n/r)2

r−1
r2 n1+ε

= lim sup
n→∞

(

(mk(n) − n/r)2

r−1
r2 n1+ε/2

)

(

1

nε/2

)

.

The first factor in the right hand limit is less than 1 (with probability 1),
and the second factor is zero in the limit.
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With probability one, this supremum limit is zero, and the first condition
of strong normality is satisfied.

The same argument, word for word, but replacing 1 + ε/2 with 1 − ε/2
and reversing the inequalities, establishes the second condition.

As with the corresponding result for normality, this is easily extended.

Corollary 2. Almost all numbers are strongly normal to any base r.

Proof. By the theorem, the set of numbers in [0, 1) which fail to be simply
strongly normal to the base rj is of measure zero, for each j. The countable
union of these sets of measure zero is also of measure zero. Therefore the
set of numbers simply strongly normal to every base rj is of measure 1.

The following corollary is proved in the same way as the last.

Corollary 3. Almost all numbers are absolutely strongly normal.

7 Champernowne’s Number is Not Strongly Nor-

mal

We begin by examining the digits of Champernowne’s number in the base
2,

γ2 = .1 10 11 100 101 . . . .

When we concatenate the integers written in base 2, we see that there are
2n−1 integers of n digits. As we count from 2n to 2n+1−1, we note that every
integer begins with the digit 1, but that every possible selection of zeros and
ones occurs exactly once in the other digits, so that apart from the excess of
initial ones there are equally many zeros and ones in the non-initial digits.

As we concatenate the integers from 1 to 2k − 1, we write the first

k
∑

n=1

n2n−1 = (k − 1)2k + 1

digits of γ2. The excess of ones in the digits is

2k − 1.

The locally greatest excess of ones occurs at the first digit of 2k, since
each power of 2 is written as a 1 followed by zeros. At this point the number
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of digits is (k − 1)2k + 2 and the excess of ones is 2k. That is, the actual
number of ones in the first N = (k − 1)2k + 2 digits is

m1(N) = (k − 2)2k−1 + 1 + 2k.

This gives

m1(N) − N

2
= 2k−1

and
(

(m1(N) − N

2

)2

= 22(k−1).

Thus, we have

(

(m1(N) − N
2

)2

1
4N1+ε

≥ 22(k−1)

1
4 ((k − 1)2k)

1+ε .

The limit of the right hand expression as k → ∞ is infinity for any sufficiently
small positive ε. Since the left hand limit is a constant multiple of the first
supremum limit in our definition of strong normality, we have proved the
following theorem:

Theorem 4. The base 2 Champernowne number is not strongly normal to

the base 2.

The theorem can be generalized to every Champernowne number, since
there is a shortage of zeros in the base r representation of the base r Cham-
pernowne number.

8 Strongly Normal Numbers are Normal

If any strongly normal number failed to be normal, then the definition of
strong normality would be inappropriate. Fortunately, this does not happen.

Theorem 5. If a number α is simply strongly normal to the base r, then α
is simply normal to the base r.

Proof. It will suffice to show that if a number is not simply normal, then it
cannot be simply strongly normal.

Let mk(n) be the number of occurrences of the 1-string k in the first n
digits of the expansion of α to the base r, and suppose that α is not simply
normal to the base r. This implies that for some k

lim
n→∞

rmk(n)

n
6= 1.
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Then there is some Q > 1 and infinitely many ni such that either

rmk(ni) > Qni

or
rmk(ni) <

ni

Q
.

If infinitely many ni satisfy the former condition, then for these ni,

mk(ni) −
ni

r
> Q

ni

r
− ni

r
= niP

where P is a positive constant.
Then for any R > 0 and small ε,

lim sup
n→∞

R
(mk(n) − n

r )2

n1+ε
≥ lim sup

n→∞

R
n2P 2

n1+ε
= ∞,

so α is not simply strongly normal.
On the other hand, if infinitely many ni satisfy the latter condition, then

for these ni,
ni

r
− mk(ni) >

ni

r
− ni

Qr
= niP,

and once again the constant P is positive and the rest of the argument
follows.

The general result is an immediate corollary.

Corollary 6. If α is strongly normal to the base r, then α is normal to the

base r.

9 No Rational Number is Simply Strongly Normal

A rational number cannot be normal, but it will be simply normal to the
base r if each 1-string occurs the same number of times in the repeating
string in the tail. However, such a number is not simply strongly normal.

If α is rational and simply normal to the base r, then if we restrict
ourselves to the first n digits in the repeating tail of the expansion, the
frequency of any 1-string k is exactly n/r whenever n is a multiple of the
length of the repeating string. The excess of occurences of k can never exceed
the constant number of times k occurs in the repeating string. Therefore,
with mk(n) defined as before,

lim sup
n→∞

(

mk(n) − n

r

)2
= Q,
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with Q a constant due in part to the initial non-repeating block, and in part
to the maximum excess in the tail.

But

lim sup
n→∞

Q

n1−ε
= 0

if ε is small, so α does not satisfy the second criterion of strong normality.

Simple strong normality is not enough to imply normality. As an illus-
tration of this, consider the number

α = .01 0011 000111 . . . ,

a concatenation of binary strings of length 2l in each of which l zeros are
followed by l ones. After the first l − 1 such strings, the zeros and ones are
equal in number. and the number of digits is

l−1
∑

k=1

2k = 2l(l − 1).

After the next l digits there is a locally maximal excess of l/2 zeros and the
total number of digits is 2l2− l. Thus, the greatest excess of zeros grows like
the square root of the number of digits, and so does the greatest shortage of
ones. It is not hard to verify that α satisfies the definition of simple strong
normality to the base 2. However, α is not normal to the base 2.

10 Further Questions

We have not produced an example of a strongly normal number. Can such
a number be constructed explicitly?

It is natural to conjecture that such naturally occurring constants as the
real algebraic irrational numbers, π, e, and log 2 are strongly normal, since
they appear on the evidence to be binomially normal.

It is easy to construct normal concatenated numbers which, like Cham-
pernowne’s number, are not strongly normal. Do all the numbers

α = . p(1) p(2) p(3) . . . ,

where p is a polynomial taking positive integer values at each positive in-
teger, fail to be strongly normal? Does the Copeland-Erdös concatenation
of the primes fail to be strongly normal? We conjecture that the answer is
”yes” to both these questions.

14



NOTE Much of the material here appeared in Belshaw’s M. Sc. thesis
[Belshaw 2005]. Many thanks are due to Stephen Choi for his editorial
comments on that manuscript.
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