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SYLVESTER'S PROBLEM AND MOTZKIN'S THEOREM 
FOR COUNTABLE AND COMPACT SETS 

PETER B. BORWEINI 

ABSTRACT. The following three variations of Sylvester's Problem are established. Let 
A and B be compact, countable and disjoint sets of points. 

(1) If A spans E2 (the Eucidean plane) then there must exist a line through two 
points of A that intersects A in only finitely many points. 

(2) If A spans E3 (Euclidean three-space) then there must exist a line through 
exactly two points of A. 

(3) If A U B spans E2 then there must exist a line through at least two points of 
one of the sets that does not intersect the other set. 

Introduction. A question of captivating simplicity that has attracted considerable 
attention since it was originally posed by J. J. Sylvester in 1893 [8] is the following: 

SYLVESTER'S PROBLEM. If A is a finite noncollinear set of points in the plane then 
there exists a line through exactly two points of A. 

A related question posed by R. Graham and answered by T. Motzkin [7] provides 
the next result. 

MOTZKIN's THEOREM. Let A and B be two finite disjoint sets of points in the plane. 
Then either A U B lies on a line or there exists a line through at least two points of one 
of the sets that does not intersect the other set. 

The large corpus of literature on Sylvester's Problem and many of its generaliza- 
tions may be accessed through the references in [4 or 6]. Likewise, a discussion of 
extensions of Motzkin's Theorem is to be found in [3] and the references therein. 
Proofs of both results may be found in [4]. 

This paper will discuss analogues of these results where the sets in question are 
countable and compact. In answer to a question raised in [1 and 9], we show that 
Motzkin's Theorem generalizes directly; that is, we need only assume that the sets A 
and B in Motzkin's Theorem are countable, compact and disjoint. (See Proposition 
3.) 

In contrast, the following example (from the folk literature) shows that the 
conclusion of Sylvester's Problem no longer holds if we assume A is countable 
instead of finite. Consider the following set in the real projective plane: 

A = {(0, k), (1, 2m), (-1,2n)lk, m, n integers}. 
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The addition of a single point "at infinity" makes A compact and thus provides an 
example of a countable and compact set in the real projective plane for which the 
conclusion of Sylvester's Problem is false. This example, which can easily be 
projected to lie in E2, appears to be the only example of its kind and it would be of 
interest to know if any others exist. 

What we will show is that a noncollinear countable and compact set in the (real) 
plane E2 must determine a line through finitely many of its points. We also show 
that the conclusion of Sylvester's Problem holds for countable and compact sets in 
Euclidean three-space EP. (See Propositions 1 and 2.) 

For the remainder of the paper we will be working exclusively in Euclidean spaces. 

2. Sylvester's Problem generalized. Our first generalization is 

PROPOSITION 1. A noncollinear, compact and countable set A in the plane cannot 
have the property that every line through two points of A intersects A in infinitely many 
points. 

PROOF. We proceed by contradiction. Suppose every line through two points of A 
contains infinitely many points of A. Let c E A' - A" (where A' and A" are the first 
and second derived sets of A, respectively). Since A' is nonempty and at most 
countable, such a c exists. Let {cl} be a sequence of points in A with limit c. Let 1 be 
any line that does not contain c. Consider the projection 7 from the point c to the 
line 1. Let p be any point of A - {c} that does not lie on a line through all but 
finitely many of the ci. Consider the lines joining the {cl 4 and p. (See Figure 1.) Each 
such line contains infinitely many points of A and hence contains a limit point 
q, E A'. The sequence {q,} has a convergent subsequence {q'}. These q' tend to a 
point q on the line joining c and p and, since c a A", the q' do not tend to c. One 
now verifies that 7(q') tends to 7(p). Let NC be an open neighbourhood of c such 
that A - NC contains at least three noncollinear points. By the above argument every 
point of 7(A - Nc) is a limit point of 7(A - Nc) (except perhaps one point, d, in 
the case that all but finitely many of the cl are collinear). Since 7 is continuous and 
A - NC is countable and compact, we see that 7(A - Nc) is a nonempty countable 
perfect set, which is a contradiction. (In the case where there exists a single point d 
which is not a limit point of 7(A - Nc), we have the contradiction that 7T(A - Nc) 
- d is countable and perfect.) This finishes the proof. D 

C 

TF(qi ) 7(P) 

FIGURE 1 
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As a consequence of this we can prove that the conclusion of Sylvester's Problem 
is valid for countable and compact sets in three dimensions. 

PROPOSITION 2. A noncoplanar, compact and countable set A in E3 must contain two 
points so that the line through these points passes through no other point of A. 

PROOF. Suppose, for the sake of contradiction, that every line through two points 
of A contains a third point of A. Thus, by the contrapositive of the planar version of 
Sylvester's Problem mentioned in the introduction, every plane through three 
noncollinear points of A must contain infinitely many points of A. Consider the 
projection 7 from an isolated point a E A to any plane not containing a. Let b and c 
be points of A and suppose a, b and c are not collinear. Let P be the plane defined 
by a, b and c. We must first show that P n A does not lie on finitely many lines 
through a. 

Once again we proceed by contradiction. Suppose P n A lies on finitely many 
lines, 11, 12,..., in, all through the isolated point a. Let p be a limit point of the 
infinite compact set P n A and suppose p lies on 1,. Let q be any point in 
(P n A) - 1,. Since p is a limit point, there exists a sequence {p,} in P n A that 
tends to p and, by the assumptions, these points can all be assumed to lie on 1,. 
Consider the projection F from p to in - If we consider the lines joining the p1 to q, we 
can see that each of these lines must contain a third point of (P n A) - 1, and, 
hence, that F(q) is a limit point of r(P n A). This leads to the contradiction that 
r(P n A) - a is a countable perfect set. 

We can now assert that the image of P under the projection 7 contains infinitely 
many points. Thus, any line through two points of 7(A) contains infinitely many 
points of 7(A). This contradicts Proposition 1 and finishes the proof. D 

Some of these results were announced in [2]. 

3. Motzkin's Theorem generalized. 

PROPOSITION 3. Let A and B be two disjoint, compact, countable subsets of E2. Then 
either A U B lies on a line or there exists a line through two points of one of the sets 
that does not intersect the other set. 

PROOF. We assume the proposition is false. Thus, we are assuming A U B spans 
E2 and every line through two points of either of the sets intersects the other set. We 
may also, by Motzkin's Theorem, assume A U B is infinite. If T is closed and 
countable then the Cantor-Bendixon Theorem (see [5, p. 133]) says there is a 
countable ordinal y such that P-1) = 0. Note that the derived sets corresponding to 
the limit ordinals are defined by intersection. 

The statement we prove by induction is the following: If p is an element of A("), q 
and r are points of A, and p, q and r are not collinear, then either 1(p, q) or 1(p, r) 
contains a point of B(-). Here, 1(s, t) denotes the line joining s and t. 

Suppose X is not a limit ordinal and p E A(x). Then there exist p1 C A(x- 1) such 
that p1 -4 p. (See Figure 2.) If p1 is sufficiently close to p so that pl, q and r are not 

collinear, then, by the inductive hypothesis, one of l( pl, q) or l( pl, r) contains a 
point of B(x-1). From this and the compactness of B, it follows that one of the lines 
l(p, q) or l(p, r) contains a limit point of points of B(XI-') as is required. 
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FIGURE 2 

When X is a limit ordinal the argument follows in an analogous fashion. In this 
case one of the lines l( p, q) or l( p, r) will contain a B limit point of each lower 
order and, thus, one of the lines contains a B limit point of order X. This finishes the 
induction. Note that we may interchange the roles of A and B in this argument. 

Before we invoke the Cantor-Bendixon Theorem and finish the proof we must 
attend to three details that rule out certain degenerate cases. 

(1) First, we observe that both sets must span the plane. If A, for example, lies on 
a line 1, then connecting the B point, which must lie on 1, to any B point not on this 
line generates a point of A not on 1. This, in conjunction with the inductive step, 
guarantees that both sets must be infinite. 

(2) Next, we show that it is not possible that all but finitely many A points lie on a 
line and that all but finitely many B points also lie on a line. Suppose all but finitely 
many A points (Os) lie on 1 and all but finitely many B points (Xs) lie on 12. (See 
Figure 3.) Since 1, contains a B point and 12 contains an A point, one of these points 
cannot lie at their intersection. So we may suppose there is an A point, a, on 12 and 
not on 1. However, connecting a to the infinitely many points of A on 1 generates 
infinitely many B points not on 12. 

(3) Thirdly, we observe, by contradiction again, that it is not possible that A lies 
on the union of two lines and that B also lies on the union of two lines. To see this, 
observe that, of the four points of intersection of these pairs of lines, two must be 
from A and two must be from B. Now the line joining the two A points contains a B 
point that cannot lie on any of the four lines. 

We are now in a position to finish the proof. 
The Cantor-Bendixon Theorem tells us there exists a first ordinal 8 so that 

A(") U B(") = 0. Furthermore, this is not a limit ordinal since the derived sets 
corresponding to these ordinals are nested intersections of compact sets and hence, 
nonempty. Let a E A("-') U B("-') and assume a E A("-'). By the first observation 
above and the inductive hypothesis there must exist at least one point b E B(&-'). 
From the third observation we deduce that one of Bh( I) or A(6- 1) must contain at 
least two points. In fact, if we consider the pencils of lines originating from a and b 
we can deduce that both B(- 1) and A('- ') contain at least two points (in order to do 
this it suffices to show that each pencil consists of at least three lines). Now by the 
second observation there must exist a point of (say) A(8'- ) and infinitely many A 
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FIGURE 3 

points {a,} so that all the lines l(a, a1) are distinct. Again by the induction we must 
have, on these lines, infinitely many points {bi}, each in B(' . These {b,} have a 
limit point in B(') = 0. This contradiction finishes the proof. D 
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