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Abstract. Let

λ3(n) = (−1)ω3(n)

where ω3(n) is the number of distinct prime factors congruent to −1 mod 3

in n (with multiple factors counted multiply). We give explicit closed form

evaluations of the following variety.

Theorem 0.1.

λ3(1) + λ3(2) + · · · + λ3(n) = Dn

where Dn be the number of 1’s in the base three expansion of n.

Note that above sum grows logarithmically, equals k for the first time when
n = 30 + 31 + 32 + · · · + 3k and is never negative.

More generally let χp denote the Legendre character and let

λp(n) := (−1)ωp(n)

where ωp(n) is the number of distinct prime factors q with χp(q) = −1 (with
multiple factors counted multiply). We give analogous formulae for λp(1) +
λp(2) + . . . + λp(n).

Theorem 0.2. For p = 5

λ5(1) + λ5(2) + . . . + λ5(n) = Dn

where Dn be the number of 1’s in the base five expansion of n minus the

number of 3’s in the base five expansion of n.

While the analysis, as usual, conceals the approach all these results where

found experimentally.

1. Introduction

The Riemann zeta function is defined, for <s > 1, by

ζ(s) =
∞
∑

n=1

1

ns
.

Definition 1.1 (Liouville Function). Let

λ(n) = (−1)ω(n)

where ω(n) is the number of distinct prime factors in n (with multiple factors
counted multiply). The function λ(n) is called the Liouville function.
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So λ(1) = λ(4) = λ(6) = λ(9) = λ(10) = 1 and λ(2) = λ(5) = λ(7) = λ(8) = −1.

Note that ω is completely additive and λ is completely multiplicative.

For any completely multiplicative function α(n), it follows from the Euler prod-
uct formula that, for <(s) ≥ s0,

(1.1)
∏

p

(

1 − α(p)p−s
)−1

=

∞
∑

n=1

α(n)

ns

where the product is over all the primes p.

It is well known (Hardy and Wright p 255) for any <(s) > 1,

(1.2)
ζ(2s)

ζ(s)
=

∞
∑

n=1

λ(n)

ns
,

In fact, this follows easily from (1.1) with α(n) = λ(n),

(1.3)
ζ(2s)

ζ(s)
=
∏

p

(1 + p−s)−1 = 1 − 1

2s
− 1

3s
+

1

4s
− 1

5s
− · · · =

∞
∑

n=1

λ(n)

ns

because λ(p) = −1 for any prime p.

Also there is a Lambert series due to Ramanujan (e.g. p.100 of [1])

(1.4)
∞
∑

n=1

λ(n)xn

1 − xn
=

∞
∑

n=1

xn2

.

So

(1.5)
∞
∑

n=1

λ(n)xn

1 + x + · · · + xn−1
= (1 − x)

∞
∑

n=1

xn2

.

It is a result of Landau that the rate of growth of sums of λ(i) is equivalent to
the Riemann Hypothesis.

Theorem 1.2. The Riemann Hypothesis is equivalent to

λ(1) + λ(2) + . . . + λ(n) ¿ n1/2+ε

for every positive ε.

2. A Character Sum

Let χ be a non-principal Dirichlet character modulo q. Let

Sχ(x) :=
∑

1≤i≤x

χ(i).

The best bound known for the character sums, Sχ(x), was given independently by
G. Pólya and I.M. Vinogradov in 1918 that (e.g. see §23 of [2])

(2.1) Sχ(x) ¿ √
q log q.

The Pólya-Vinogradov inequality (2.1) is close to best possible, for Schur proved
that

max
x

|Sχ(x)| >
1

2π

√
q
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for all primitive χ modulo q and Paley showed that

max
x

|Sχ(x)| >
1

7

√
q log log q

for χ(n) =
(

n
q

)

, Kronecker symbol, and for infinitely many quadratic discriminiants

q > 0. Also, Montgomery and Vaughan proved in [4] that assuming the generalized
Riemann hypothesis,

Sχ(x) ¿ √
q log log q

for all non-principal character χ. There has been no subsequent improvements in
the Pólya-Vinogradov inequality other than in the implicit constant in (2.1) until
recently Granville and Soundararajan proved in [3] that if χ (mod q) is a primitive
character of odd order g, then

(2.2) Sχ(x) ¿g
√

q(log q)1−δg/2+o(1)

where δg := 1 − (g/π) sin(π/g).

We now restrict our character χ to be a non-principal character modulo p for
prime p. We define f(p) := 1 and f(q) := χ(q) if q is a prime other than p and
extend f to be completely multiplicative and

(2.3) f(plm) = χ(m)

for l ≥ 0 and p - m. Define the L-series associated to f by

Lf (s) =
∞
∑

n=1

f(n)

ns
.

Then we have

Lf (s) =

∞
∑

n=1

f(n)

ns

=

∞
∑

l=0

∞
∑

n=1
p-n

f(pln)

(pln)s

=

∞
∑

l=0

1

pls
×

∞
∑

n=1
p-n

χ(n)

ns

=

(

1 − 1

ps

)−1

×
∞
∑

n=1

χ(n)

ns

= Lχ(s)

(

1 − 1

ps

)−1

(2.4)

where Lχ(s) is the L-Dirichlet series associated to χ

Lχ(s) :=

∞
∑

n=1

χ(n)

ns
.

Formula (2.4) defines the analytic continuation of Lp(s). Therefore the non-trivial
zeros of Lp(s) are precisely those of Lp(s) and hence is expected to satisfy the
generalized Riemann Hypothesis.
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Proposition 2.1. For ε > 0 and x ≥ 1, we have

Sf (x) ¿ xε

where Sf (x) :=
∑

1≤j≤x f(j).

Proof. Similar to λ(n), we have

(2.5) Lf (s) =
1

1 − p−s
Lχ(s) =

1

1 − p−s

∞
∑

n=1

χ(n)

ns
= s

∫ ∞

0

Sf (x)x−s−1dx.

Since the left hand side of (2.5) is analytic when <(s) > 0, so

Sf (x) ¿ xε

for any ε > 0. ¤

Let N(n, k) be the number of digits k in the base p expansion of n.

Proposition 2.2. We have

(2.6)
n
∑

j=1

f(j) =

p−1
∑

k=0

N(n, k)Sχ(k).

Proof. We proceed by induction on n. For n = 1, it is clear that

f(1) = Sχ(1) = χ(1).

Suppose that
n
∑

j=1

f(j) =

p−1
∑

k=0

N(n, k)Sχ(k).

Write

n = a0 + a1p + a2p
2 + . . . + akpk

where 0 ≤ aj ≤ p − 1.

If 0 ≤ a0 ≤ p − 2, then we have

N(n + 1, a0) = N(n, a0) − 1

N(n + 1, a0 + 1) = N(n, a0 + 1) + 1

and

N(n + 1, k) = N(n, k)

for k 6= a0, a0 + 1. It follows that

n+1
∑

j=1

f(j) =

p−1
∑

k=0

N(n, k)Sχ(k) + f(n + 1)

=

p−1
∑

k=0

N(n + 1, k)Sχ(k) + Sχ(a0) − Sχ(a0 + 1) + f(a0 + 1)

=

p−1
∑

k=0

N(n + 1, k)Sχ(k).

This proves (2.6) if 0 ≤ a0 ≤ p − 2.
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Suppose a0 = p−1. Write n+1 = pl((al +1)+al+1p+ . . .+akpk−l) for k ≥ l ≥ 1
and al 6= p − 1. Then

n = (p − 1) + (p − 1)p + . . . + (p − 1)pl−1 + alp
l + al+1p

l+1 + . . . + akpk

and

n + 1 = 0 + 0p + . . . + 0pl−1 + (al + 1)pl + al+1p
l+1 + . . . + akpk.

Note that f(n + 1) = f(al + 1) = χ(al + 1).

If al = p − 2, then

N(n + 1, k) − N(n, k) =



















l if k = 0;

−l + 1 if k = p − 1;

−1 if k = p − 2;

0 if k 6= 0, p − 2, p − 1

and hence

n+1
∑

j=1

f(j) =

p−1
∑

k=0

N(n, k)Sχ(k) + f(n + 1)

=

p−1
∑

k=0

N(n + 1, k)Sχ(k) − lSχ(0) − (−l + 1)Sχ(p − 1) − (−1)Sχ(p − 2) + f(al + 1)

=

p−1
∑

k=0

N(n + 1, k)Sχ(k) − f(p − 1) + f(p − 1)

because Sχ(0) = Sχ(p − 1) = 0.

If al = 0, then

N(n + 1, k) − N(n, k) =



















l − 1 if k = 0;

1 if k = 1;

−l if k = p − 1;

0 if k 6= 0, 1, p − 1

and hence

n+1
∑

j=1

f(j) =

p−1
∑

k=0

N(n, k)Sχ(k) + f(n + 1)

=

p−1
∑

k=0

N(n + 1, k)Sχ(k) − (l − 1)Sχ(0) − Sχ(1) − (−l)Sχ(p − 1) + f(1)

=

p−1
∑

k=0

N(n + 1, k)Sχ(k).
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If al 6= 0, p − 2, p − 1, then

N(n + 1, k) − N(n, k) =































−l if k = p − 1;

l if k = 0;

−1 if k = al;

1 if k = al + 1;

0 otherwise

and hence
n+1
∑

j=1

f(j) =

p−1
∑

k=0

N(n, k)Sχ(k) + f(n + 1)

=

p−1
∑

k=0

N(n + 1, k)Sχ(k) − lSχ(0) − (−l)Sχ(p − 1) − (−1)Sχ(al) − Sχ(al + 1) + f(al + 1)

=

p−1
∑

k=0

N(n + 1, k)Sχ(k).

This completes the proof. ¤

3. The Modified Liouville Function, λp

In this section, we further concentrate the character on the Legendre symbol.
Let χp(n) be the Legendre symbol modulo p and Lp(s) be the Dirichlet L-function
associated with χp,

Lp(s) :=
∞
∑

n=1

χp(n)

ns

We define the modified Liouville function λp(n) by

λp(n) := (−1)ωp(n)

where ωp(n) is the number of distinct prime factors q with χp(q) = −1. This is the
Liouville function for the quadratic residue modulo p.

Corollary 3.1. Let

n = a0 + a1p + a2p
2 + · · · + akpk

be the base p expansion of n, where aj ∈ {0, 1, 2, · · · , p − 1}. Then we have

(3.1)

n
∑

l=1

λp(l) =

a0
∑

l=1

λp(l) +

a1
∑

l=1

λp(l) + · · · +
ak
∑

l=1

λp(l).

Proof. This follows readily from Proposition 2.2 with χ = χp. ¤

Theorem 3.2. For p prime.

Sp(n) := λp(1) + λp(2) + . . . + λp(n) ≥ 0

for all n exactly for those odd primes p for which

χp(1) + χp(2) + . . . + χp(k) ≥ 0
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for all 1 ≤ k ≤ p. Such n are

{3, 7, 11, 23, 31, 47, 59, 71, 79, 83, 103, 131, 151, 167, 191, 199, 239, 251 . . .}

Proof. We first observe from (2.3) that if 0 ≤ r < p, then
r
∑

l=1

λp(l) =

r
∑

l=1

χp(l).

From Corollary 3.1,
n
∑

l=1

λp(l) =

a0
∑

l=1

λp(l) +

a1
∑

l=1

λp(l) + · · · +
ak
∑

l=1

λp(l)

=

a0
∑

l=1

χp(l) +

a1
∑

l=1

χp(l) + · · · +
ak
∑

l=1

χp(l)

because all aj are between 0 and p − 1. On the other hand,

n
∑

l=1

χp(l) =

a0
∑

l=1

χp(l) =

a0
∑

l=1

λp(l)

The result then follows. ¤

In particular, for p = 3, we have

Corollary 3.3.

S3(n) := λ3(1) + λ3(2) + . . . + λ3(n) = D3(n)

where D3(n) be the number of 1’s in the base 3 expansion of n.

Note that Sn = k for the first time when n = 30 +31 +32 + . . .+3k and is never
negative.

From Proposition 2.1, we have

S3(n) ¿ nε

for any ε > 0. However, from Corollary 3.3, we obtain better estimate.

Corollary 3.4. For n ≥ 1, we have

0 ≤ S3(n) ≤ [log3 n] + 1.

Proof. This follows from Corollary 3.3 and the fact that the number of 1’s in the
base three expansion of n is ≤ [log3 n] + 1. ¤

For the case of p = 5, we have

Corollary 3.5. We have

S5(n) := λ5(1) + λ5(2) + . . . + λ5(n) = D5(n)

where D5(n) be the number of 1’s in the base 5 expansion of n minus the number

of 3’s in the base 5 expansion of n. Also for n ≥ 1, we have

|S5(n)| ≤ [log5 n] + 1



8 PETER B. BORWEIN AND STEPHEN K.K. CHOI

Note that λ3 is always nonnegative but λ5 isn’t. Also S5(n) = k for the first
time when n = 50 + 51 + 52 + . . . + 5k and S5(n) = −k for the first time when
n = 3 · 50 + 3 · 51 + 3 · 52 + . . . + 3 · 5k.

4. The Modified Mobiüs Function, µp

Let

µp(n) := (−1)ω∗

p(n)

where ω∗
p(n) is the number of distinct prime factors q with χp(q) = −1 and where

q2 does not divide n. The function µp is similar to λp but defined on the comple-
mentary ”residues”. Note that if (n, p) = 1 then

µp(n)λp(n) = µ(n)λ(n)

otherwise

µp(n)λp(n) = −µ(n)λ(n)

In particular, if p 6= q, then µp(q
l) = µ(ql)2χp(q

l) and µp(p
l) = −µ(pl)2. Define

L∗
p(s) :=

∞
∑

n=1

µp(n)

ns
.

Since
∞
∑

n=1

µp(n)

ns
=

∏

q

{

1 +
µp(q)

qs

}

=

(

1 − 1

ps

)

∏

q 6=p

{

1 +
χp(q)

qs

}

=

(

1 − 1

ps

)

∏

q

{

1 +
χp(q)

qs

}

=

(

1 − 1

ps

)

∏

q

{

1 − χp(q)
2

q2s

}{

1 − χp(q)

qs

}−1

=
1 − 1

ps

1 − 1
p2s

∏

q

(

1 − 1

q2s

)(

1 − χp(q)

qs

)−1

=
Lp(s)

ζ(2s)(1 + 1/ps)

this is analytic in the region 0 < <(s) < 1 and hence for any ε > 0 we have
∑

n≤x

µp(n) ¿ xε.

However, similar to λp, computational data suggests that
∑

n≤x

µp(n) = O(log(x)).

The authors would like thank Andrew Granville for his discussion in the prepa-
ration of this manuscript.
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