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POLYNOMIALS WITH COEFFICIENTS FROM A FINITE

SET

PETER BORWEIN, TAMÁS ERDÉLYI, FRIEDRICH LITTMANN

Abstract. In 1945 Duffin and Schaeffer proved that a power series that
is bounded in a sector and has coefficients from a finite subset of C is
already a rational function. Their proof is relatively indirect. It is one
purpose of this paper to give a shorter direct proof of this beautiful and
surprising theorem.

This will allow us to give an easy proof of a recent result of two of the
authors stating that a sequence of polynomials with coefficients from a
finite subset of C cannot tend to zero uniformly on an arc of the unit
circle.

Another main result of this paper gives explicit estimates for the
number and location of zeros of polynomials with bounded coefficients.
Let n be so large that

δn := 33π
log n√

n

satisfies δn ≤ 1. We show that any polynomial in

Kn :=
n

n
X

k=0

akz
k : |a0| = |an| = 1 and |ak| ≤ 1

o

has at least
8
√

n log n

zeros in any disk with center on the unit circle and radius δn.

1. Introduction

This paper deals with questions of how polynomials with coefficients from
a finite subset of C behave near and on the unit circle. We investigate two
related problems; first we ask how many zeros such a polynomial has near
the unit circle, and secondly we ask how fast sequences of these polynomials
can converge to zero.

The answer to the first question turns out to be ‘quite a lot’; in contrast,
in answer to the second question, as was shown in [3], sequences of such
polynomials cannot converge to zero uniformly on any arc of the unit circle.

Figure 1 shows the zeros of all polynomials of degree 18 with coefficients
from the set {−1, +1}. The structure is quite striking and suggest a subtlety
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Figure 1. Zeros of all polynomials of degree 18 with coeffi-
cients from the set {−1, +1}.
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Figure 2. Zeros of a polynomial of degree 800 with coeffi-
cients from {−1, +1}.

that one might not initially expect. Some of the subtleties of such sets are
explored by Odlyzko and Poonen in [13]. See also [1], [4] and [14].

Figure 2 shows the zeros of polynomial of degree 800 with random coef-
ficients from the set {−1, +1}.

In this paper we prove new estimates for the number of zeros of polyno-
mials with bounded coefficients near the unit circle, and we give a new proof
of the result from [3] using a theorem of Duffin and Schaeffer [7] which sheds
some light on the reasons why uniform convergence to zero cannot occur on
any arc of the unit circle.
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We define a class of polynomials by

Kn :=
{

f(x) :=
n

∑

j=0

ajx
j : |a0| = |an| = 1 and |aj | ≤ 1

}

.

Throughout this paper we use the notation D(z; r) for the open disk
centered at z ∈ C with radius r. Define

δn := 33π
log n√

n
.

In Section 2 we prove the following estimate.

Theorem 1. Let |z0| = 1. If n is so large that δn ≤ 1, then every P ∈ Kn

has at least 8
√

n log n zeros in the open disk D(z0; δn).

Associated with a sequence (pj)
∞

j=1 of distinct Littlewood polynomials,

that is, polynomials with coefficients in {±1}, let

S := {z ∈ C : pj(z) = 0 for some j} .

Theorem 1 implies in particular that the unit circle is a subset of the
closure of S, a result that can also be deduced from Theorem 3.4.1 in [12]
due to P. Erdős and P. Turán.

We investigate now the behavior of sequences of polynomials on arcs of
the unit circle.

Theorem 2 (cf. [3]). Let A be an arc on the unit circle. If pn is a sequence

of polynomials with coefficients from a finite subset of C, then pn cannot

tend to zero uniformly on A.

We show that this theorem, originally obtained by the two first named
authors, can be deduced from a theorem of Duffin and Schaeffer [7]. This
approach is less technical than the original proof and sheds some light on
the reasons why uniform convergence to zero cannot occur.

To prove Theorem 2 assume that a sequence pn of polynomials having
only finitely many distinct coefficients tends to zero uniformly on an arc of
the unit circle. This means that we can find a subsequence pnk

so that
∞

∑

k=1

pnk
(z)

converges uniformly for z on the arc. Now choose an increasing sequence of
positive integers λk growing rapidly enough so that

f(z) :=
∞

∑

k=1

pnk
(z)zλk

will satisfy Fabry’s gap condition. Note that by construction this power
series is bounded in a sector of the unit circle, has finitely many distinct co-
efficients, and by Fabry’s gap theorem the unit circle is its natural boundary.
However, the following theorem, due to Duffin and Schaeffer, shows that a
power series of this form cannot exist.
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Theorem 3 (cf. [7]). Let f(z) be a power series whose coefficients are taken

from a finite subset of C. If f(z) is bounded in a sector of the open unit

disk, then it is a rational function.

The theorem of Duffin and Schaeffer is a generalization of a result of Szegö
[17] who proved in 1922 that a power series f whose coefficients assume only
finitely many values and which can be extended analytically beyond the unit
circle is already a rational function.

When passing from power series that have an analytic continuation be-
yond the unit circle to power series that are bounded in a sector, the condi-
tion that the coefficients of the power series are taken from a finite subset
of C becomes crucial. A power series with integer coefficients that has an
analytic continuation beyond the unit circle is already a rational function;
in contrast, Duffin and Schaeffer give the example

∞
∑

n=1

(1 − z)nzn!

of a function with integer coefficients which is bounded in the sector of the
unit circle −π/4 ≤ arg z ≤ π/4 but which has the unit circle as its natural
boundary.

Duffin and Schaeffer obtain their result as a corollary of an investigation
of the behavior of entire functions of finite exponential type τ < π which are
bounded on certain real sequences of points. By interpreting the coefficients
of f as values of such an entire function at the positive integers, they arrive
at Theorem 3.

It is an open problem whether Theorem 2 remains true after replacing
arcs on the unit circle with sets of positive measure on the unit circle. The
proof of Theorem 2 would remain valid if an analogue of Theorem 3 for sets
of positive measure were true. In order to gain a better understanding of
Theorem 3, we give a direct proof in Section 3.

It is an exercise to characterize rational functions with coefficients from
any fixed finite subset of C.

Theorem 4. If f is a rational function with coefficients from {0, 1} in their

Taylor series expansion at the origin, then

f(z) = pm(z) + zm+1 qn(z)

1 − zn+1

where pm is a polynomial with coefficients from {0, 1} of degree at most m
and qn is a polynomial with coefficients from {0, 1} of degree at most n. If f
has no zeros in the unit disk then all roots of (1− zn+1)pm(z)+ (zm+1)qn(z)
are roots of unity.

Proof. Note that if f is a rational function then it is a quotient of two
polynomials with rational coefficients. Since f(1/2) is rational, the binary
expansion of f(1/2) (which is just the sequence of coefficients of f) is ulti-
mately periodic. The result follows immediately. ¤
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There is a similar result if the coefficients of f come from a finite set of
complex numbers. See Pólya and G. Szegő, Volume 2, P158, Ex. 158.

2. Zeros of polynomials with bounded coefficients

In this section we prove Theorem 1. The proof follows from the combina-
tion of the two results below. The first one is a difficult result of Erdős and
P. Turán [9]; the second one is a consequence of Jensen’s Formula observed
in [8].

Recall that Kn is the class of polynomials of degree n having constant
and leading term of absolute value 1 and all coefficients bounded by 1 in
absolute value.

Lemma 1 (Erdős and Turán [9]). If the zeros of

P (z) :=
n

∑

k=0

akz
k

are denoted by

zν = rν exp(iϕν) , rν > 0 , ϕν ∈ [0, 2π) , ν = 1, 2, · · · , n ,

then for every 0 ≤ α < β ≤ 2π we have
∣

∣

∣

∑

ν∈I(α,β)

1 − β − α

2π
n
∣

∣

∣
< 16

√

n log R ,

where R := |a0an|−1/2(|a0|+|a1|+· · ·+|an|) and I(α, β) := {ν : α ≤ ϕν ≤ β}.
Lemma 2. Let α be a number in (0, 1). Every polynomial in Kn has at

most (2/α) log(2/α) zeros in the open disk D(0, 1−α) centered at the origin

with radius 1 − α and outside the open disk D(0, (1 − α)−1) centered at the

origin with radius (1 − α)−1.

Proof. We give a sketch of the proof from [8]. Let p ∈ Kn. The inequality
|z|(1 − |z|)−1 < 1 for |z| < 1/2 implies |p(z)| > 1 − |z|(1 − |z|)−1 > 0, hence
we may assume that α ∈ (0, 1/2].

Any p ∈ Kn satisfies |p(z)| ≤ (1 − |z|)−1 for |z| < 1. Since p(0) 6= 0,
Jensen’s formula (Section 4.2 of [2]) applied to the zeros a1, ..., am of p in
the disk D(0, 1 − α/2) (the zeros are listed according to their multiplicity)
implies

m
∑

k=1

log
1 − α/2

|ak|
=

1

2π

∫ 2π

0
log |p((1 − α/2)eiθ)|dθ ≤ log

2

α
. (2.1)

For |z| < 1−α we have α/2 ≤ log((1−α/2)/|z|), and hence, omitting the
terms in (2.1) for which |ak| ≥ 1 − α, we obtain for the number M of zeros
of p in D(0, 1 − α) that

Mα

2
≤ log

2

α
.
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The assertion about the number of zeros of p outside of D(0, (1 − α)−1)
follows from the observation that this number equals the number of zeros of
znp(1/z) ∈ Kn in D(0, 1 − α). ¤

We are now ready to give the

Proof of Theorem 1. Let z0 := eiϕ. For γ > 0 consider the sector

S(z0, γ) := {reiθ : 0 ≤ r < ∞ , ϕ − γ < θ < ϕ + γ} .

Let n be so large that the inequality

γn :=
32π log n√

n
≤ 1

is satisfied. Let P ∈ Kn, and let m be the number of zeros of P in C \
S(z0, γn). It follows from Lemma 1 that

m − 2π − 2γn

2π
n ≤ 16

√

n log n ,

that is,

m ≤ n − γnn

π
+ 16

√

n log n ,

hence m ≤ n− 16
√

n log n. Therefore P has at least 16
√

n log n zeros in the
sector S(z0, γn). Now we use Lemma 2 with α := n−1/2 to obtain at least
8
√

n log n zeros in the intersection of the sector S(z0, γn) and the annulus
1− 1/

√
n < |z| < (1− 1/

√
n)−1. Since the disk with center at z0 and radius

δn := 33π log n/
√

n contains this intersection, the statement of Theorem 1
follows. ¤

3. Power series bounded in a sector

The proof of Theorem 3 given here combines ideas of Dienes [6], Szegö
[17] and Duffin and Schaeffer [7]. It rests on two facts for power series
with bounded coefficients, namely, a series which satisfies the assumptions
of Theorem 3 can be represented as a sum of two power series, one with nice
analytic behavior, the other with coefficients that go to zero, and secondly,
coefficients of power series with a continuation beyond the unit circle behave
almost like coefficients of rational functions:

Lemma 3 (cf. Lemma 1 on page 504 of [6]). Let f be a power series which is

bounded in a sector and has bounded coefficients. Then f = f1+f2, where f1

is a power series with bounded coefficients having an analytic continuation

beyond the unit circle, and f2 is a power series whose coefficients go to zero.

Lemma 4 (cf. Satz 1 in [17]). Let g(z) = b0 + b1z + · · · be a power series

with bounded coefficients which can be analytically continued beyond the unit

circle at at least one point. Then for all ε > 0 there exist a positive integer

q and complex numbers γ0, . . . , γq−1 such that for all n ≥ 0 the inequality

|γ0bn + · · · + γq−1bn+q−1 + bn+q| < ε (3.1)

holds.
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We require some notation. Let τ be an angle with 0 < τ < π/2, let δ > 0,
and let r be a radius with r ≥ 1 − δ. (For the proof of Lemma 3 we will
consider r with r ≤ 1; for the proof of Lemma 4 we will allow r > 1.) Denote
by Γτ (δ, r) the curve

|z| = 1 − δ for τ < arg z < 2π − τ,
1 − δ ≤ |z| < r for arg z ∈ {τ,−τ}, (3.2)

and denote by Aτ (r) the arc given by |z| = r and −τ ≤ arg z ≤ τ . Finally,
denote by Kτ (δ, r) the contour consisting of the union of Γτ (δ, r) and Aτ (r),
and denote by Cτ (δ, r) the image of Kτ (δ, r) under the transformation z 7→
z−1. Note that Cτ (0, r) is a curve in the closed unit disk with a positive
proportion inside the open unit disk.

Proof of Lemma 3. The proof uses an idea of Duffin and Schaeffer (cf. page
151 of [7]). We may assume that f is bounded in a sector given by |z| < 1
and −τ ≤ arg z ≤ τ , and that f(0) = 0 holds. For r with 1 − δ < r ≤ 1 we
let

fr,1(z) :=
1

2πi

∫

Γτ (δ,r)

f(ζ)

ζ − z
dζ,

and note that fr,1 is analytic on C\Γτ (δ, r). In particular, f1,1 is regular on
the arc Aτ (1). We define for r < 1

fr,2(z) :=
1

2πi

∫

Aτ (r)

f(ζ)

ζ − z
dζ (3.3)

and denote by ar,n the coefficients of the power series expansion of fr,2 at
the origin. Consider for |z| < 1 the integral

F (z) :=

∫ z

0

f(ζ)

ζ
dζ.

Assume that r < 1. Computing f
(n)
r,2 (0) from (3.3), letting ζ = reiθ and

noting that z−1f(z)dz = dF (z) shows

ar,n =
r−n

2πi

∫ τ

−τ
e−inθdF (reiθ), (3.4)

where the integral is a Lebesgue-Stieltjes integral with integration variable
θ. We want to show that, as r → 1−, ar,n converges to a sequence a1,n with
limit zero as n → ∞. This could be deduced from the theorem of Riemann-
Lebesgue if z−1f(z) were shown to converge to an absolutely integrable
function as |z| → 1−. We show a sufficient statement that is weaker but
easier to prove.

Since f(z) is bounded in the sector given by |z| < 1 and −τ ≤ arg z ≤ τ ,
the function F (z) is Lipschitz continuous there. It follows that F (reiθ)
converges to a limit F (eiθ), say, as r → 1−, and this extension F is Lipschitz
continuous on the closed sector given by |z| ≤ 1 and | arg z| ≤ τ . Regard
for fixed r ≤ 1 the measure dF (reiθ) as a Lebesgue-Stieltjes measure on the
interval −τ ≤ θ ≤ τ and let G(θ) := F (eiθ). For fixed n, the generalized
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Dominated Converge Theorem (Section 4 in Chapter 11 of [16]) implies that
the coefficient ar,n converges to

a1,n :=
1

2πi

∫ τ

−τ
e−inθdG(θ)

as r → 1−.
Since F (z) is Lipschitz continuous as a function of z, the limit function G

is Lipschitz continuous in θ. Thus, G is absolutely continuous, i.e., dG(θ) =
G′(θ)dθ on [−τ, τ ], and the L1([−τ, τ ])–norm of G′ is finite, since it equals
the (finite) total variation of G on [−τ, τ ]. The Riemann-Lebesgue theorem
implies

lim
n→∞

a1,n = 0. (3.5)

We define for |z| < 1

f2(z) :=
∞

∑

n=0

a1,nzn. (3.6)

Let 0 < R < 1 − δ. Since F is Lipschitz continuous, (3.4) implies the
existence of a constant K > 0 independent of n and r with |ar,n| ≤ Kr−n.
This fact together with ar,n → a1,n can be used to show that fr,2 (defined
in (3.3)) converges to f2 uniformly in |z| ≤ R as r → 1−. It follows that
fr,2 converges uniformly to f2 as r → 1− in any compact subset of |z| < 1.
Clearly, fr,1 converges uniformly to f1,1 in any compact subset of C\Γτ (δ, 1).

For any z inside the contour consisting of the union of Γτ (δ, r) and Aτ (r),
we have f(z) = fr,1(z) + fr,2(z) by Cauchy’s theorem. Letting r → 1−, we
obtain

f = f1,1 + f2.

Let f1 be the power series representation of f1,1 at the origin. Since the
coefficients of f and of f2 are bounded, the coefficients of f1 are bounded
as well. Moreover, for every z in Aτ (1) except the two endpoints, f1,1 is the
analytic continuation of f1 to a neighborhood of z. ¤

Proof of Lemma 4. The proof of Szegö’s theorem found in [6] on page 325
ff. can be adjusted to show Lemma 4, so we will only sketch the details. We
continue to use the notation introduced before the proof of Lemma 3.

Assume that g(z) = b0 + b1z + · · · is a power series with bounded coeffi-
cients which can be continued beyond the unit disk. There exist τ > 0 and
r > 1 so that g has an analytic continuation to an open set containing the
sector given by |z| ≤ r and −τ ≤ arg z ≤ τ . Let ε > 0. Equation (3.1) is
obtained from the inequality

∣

∣

∣

1

2πi

∫

Kτ (δ,r)
Tn(z)Qk(z−1)

dz

z

∣

∣

∣
< ε, (3.7)
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where Tn(z) := bn +bn+1z + · · · is uniformly bounded in z and n on Kτ (δ, r)
by (2) on page 325 of [6], and Q is a monic polynomial that satisfies

b := max
z∈Kτ (δ,r)

|Q(z−1)| = max
z∈Cτ (δ,r)

|Q(z)| < 1 (3.8)

for sufficiently small δ > 0 (depending on r and τ). Make k so large that
(3.7) is satisfied. Define q to be the degree of Qk and γν to be the coefficients
of the monic polynomial Qk. Now choose n so large that (3.7) becomes (3.1)
(cf. page 327 of [6] for the details).

Inequality (3.8) is obtained in [6] by using Runge’s method (page 326
of [6]). Another way is to use an univalent mapping γ from the region
|z| > 1 onto the unbounded component of C\Cτ (0, r) which maps ∞ to
∞. By Lemma 11.2 and Corollary 11.1 of Pommerenke [15], a polynomial
Q exists so that the value b from (3.8) for δ = 0 is the coefficient of the
linear term in the expansion γ(z) = bz + κ0 + κ1z

−1 + · · · . The inverse map
f of the function z 7→ 1/γ(1/z) is not a rotation, and f can be shown to
satisfy the assumptions of Schwarz’ Lemma (VI.2 in [5]). Hence it satisfies
|f ′(0)| = |b| < 1. Equation (3.8) for some sufficiently small δ > 0 follows
now from the continuity of b as a function of δ. ¤

Proof of Theorem 3. Let f(z) = a0 + a1z + · · · be a power series with
bounded coefficients which is bounded in a sector. Let f = f1 + f2 be
the representation of f from Lemma 3.

Let d > 0 be the smallest distance between any two of the (finitely many)
values of an. Apply Lemma 4 with g := f1 and ε := d/2. Since the coef-
ficients of f2 converge to zero, the coefficients of f satisfy (3.1) from some
index n0 on. We obtain numbers γj and q such that

|γ0an + · · · + γq−1an+q−1 + an+q| <
d

2

holds for all n ≥ n0(q, γ0, . . . , γq−1). The fact that the coefficients an are
taken from a finite subset of C can now be used to show that the sequence
(an) is eventually periodic (for the details see, e.g., [6], page 327). ¤

4. Open problems

We list some of the many interesting open problems related to our results
in this paper.

Question 1. What is the minimum number of zeros of modulus 1 of a
reciprocal polynomial of degree n with coefficients in the set {−1, 1} ?

Littlewood, [11], problem 22, poses the following research problem, which
appears to still be open: “If the nm are integral and all different, what is
the lower bound on the number of real zeros of

∑N
m=1 cos(nmθ)? Possibly

N − 1, or not much less.”

Question 2. What is the minimum number of zeros of modulus 1 of a
reciprocal polynomial with coefficients in the set {0, 1}?
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Question 3. Establish whether every polynomial p of degree n with coeffi-
cients in the set {−1, 1} has at least one zero in the annulus

{

1 − c

n
< |z| < 1 +

c

n

}

,

where c > 0 is an absolute constant.

Question 4. S. Konyagin [10] conjectures the following for polynomials
with coefficients from {0, 1}: for any fixed set E ⊂ ∂D (the boundary of the
unit disk) of positive measure there exists a constant c(E) > 0 (depending
only on E) such that for any distinct positive integers kj and any integer n,

∫

E

∣

∣

∣

∣

n
∑

j=0

zkj

∣

∣

∣

∣

|dz| ≥ c(E).

In the same paper Konyagin shows that for each positive ε, there exists a
set Eε ⊂ ∂D of measure π and a choice of distinct positive integers kj such
that

∫

Eε

∣

∣

∣

∣

n
∑

j=0

zkj

∣

∣

∣

∣

|dz| < ε.

However, if his conjecture is correct, Eε must vary with ε.
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