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Binary Sequences With Merit Factor
Greater Than 6:34

Peter Borwein, Kwok-Kwong Stephen Choi, and Jonathan Jedwab

Abstract—The maximum known asymptotic merit factor for bi-
nary sequences has been stuck at a value of 6 since the 1980s. Sev-
eral authors have suggested that this value cannot be improved.
In this paper, we construct an infinite family of binary sequences
whose asymptotic merit factor we conjecture to be greater than
6 34. We present what we believe to be compelling evidence in sup-
port of this conjecture. The numerical experimentation that led to
this construction is a significant part of the story.

Index Terms—Aperiodic autocorrelation, asymptotic, binary se-
quence, merit factor.

I. PREAMBLE

WE begin with a general discussion of the merit factor
problem for binary sequences and outline our approach,

prior to a more formal introduction in Section II. The problem
of determining the maximal merit factor for binary sequences
is an old and apparently very difficult problem in combinatorial
optimization—or perhaps in analytic number theory, depending
on where the eventual solution lies.

The computational problem involves searching among se-
quences of length having elements or to determine the
maximal merit factor. The search space is therefore of size ,
and the merit factor of any given sequence can be computed
algebraically from its elements in operations. The com-
binatorial “landscape” of the search space appears to be very
rugged, which is particularly challenging for stochastic search
methods. On the other hand, exhaustive search methods have so
far been carried out only as far as length [1], while a length of

is well beyond the range of current methods and machines.
Indeed, this “… seems to be amongst the most difficult opti-
mization problems” [2].

More than 20 years ago Turyn, as reported by Golay [3], ob-
served that by cyclically rotating Legendre sequences we can
obtain sequences of increasing length whose merit factor ap-
pears to converge to . A proof of this was given in 1988 by
Høholdt and Jensen [4]. Other explicitly constructed families of
sequences have been shown to have nonzero asymptotic merit
factor but never with a value greater than . This is essentially
where the problem has been stuck, and several authors have cast
doubt on any improvement being found. For example, in 1983
Golay [3] stated that:

“(Six) is the highest merit factor obtained so far for system-
atically synthesized binary sequences, and the eventuality
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must be considered that no systematic synthesis will ever
be found which will yield higher merit factors.”

while in 1988, Høholdt and Jensen [4] declared:

“We therefore make a new conjecture concerning the merit
factor problem, namely, that asymptotically the maximum
value of the merit factor is and hence that offset Legendre
sequences are optimal.”

In 1999, Kirilusha and Narayanaswamy [5] were supervised
as summer students at the University of Richmond by Prof. Jim
Davis. They observed that, beginning with Turyn’s sequences
having asymptotic merit factor , they could append the initial
part of the sequence to the end of the sequence in order to obtain
sequences with merit factor clearly greater than . They spec-
ulated that, in general, this behavior would be exhibited for a
Turyn sequence of length , by appending sequence el-
ements in this way for some fixed value of . In fact,
this speculation is not correct, as we shall prove in Proposi-
tion 6.1, but even after establishing this we had the instinct that
there was a real phenomenon here. It turns out that Kirilusha and
Narayanaswamy’s insight was a very good one but their com-
putations did not involve sufficiently long sequences. We found
it necessary to examine sequences of length in the tens of thou-
sands in order to get a clear picture of the behavior they discov-
ered, and to go to lengths well in excess of one million (where
the merit factor computation for a given sequence is of the order
of operations) in order to find sufficient numerical evidence
to formulate an explanatory conjecture. The calculations, while
not extraordinarily hard, require careful orchestration and atten-
tion to efficiency of implementation. Certainly, Maple or Math-
ematica will not suffice.

The key turns out to be that the number of sequence elements
to be appended should be a fixed multiple of the sequence
length rather than a fractional power . Our analysis firstly
expresses the merit factor of an appending of a rotated Legendre
sequence in terms of the merit factor of certain truncated ro-
tated Legendre sequences (see Theorem 6.4). It is then suffi-
cient to determine the merit factor of any truncation of any ro-
tation of a Legendre sequence. After much computation, wrong
guessing, and curve fitting, we uncovered, at least numerically,
a formula involving this merit factor (see Conjecture 7.5). Sub-
ject to the correctness of this conjecture, we can explain pre-
cisely the phenomenon observed in [5] and obtain a family of
binary sequences with merit factor greater than (see Corol-
lary 8.2). The most convincing evidence we have in support of
Conjecture 7.5 is that represented in Figs. 6 and 8.

We will present the results of our computational explorations
in some detail in order to illustrate the discovery process that
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links the work of Kirilusha and Narayanaswamy [5] to Theorem
6.4, Conjecture 7.5, and Corollary 8.2.

II. THE REAL INTRODUCTION

A binary sequence of length is an -tuple
where each takes the value or . The

aperiodic autocorrelation of the sequence at shift is given
by

for (1)

The study of sequences whose aperiodic autocorrelations
are, in some suitable sense, small is one of the clas-

sical problems of sequence design. Such sequences have been
sought since the 1960s for digital communications applications
such as synchronization, position determination, and pulse
compression. In fact, Turyn’s interest in this problem [6], and
in particular the Barker sequence problem [7], appears to have
been one of the motivations for his celebrated paper [8] that
established the systematic use of algebraic number theory in
the study of difference sets (see [9] for an overview of this now
standard technique, and some precursors to [8]).

The merit factor of a sequence of length is

(2)

as introduced by Golay [10]. A sequence whose aperiodic au-
tocorrelations are collectively small, as measured by the sum of
their squares, has a large merit factor. Let be the set of all
binary sequences of length . We define to be the optimal
value of the merit factor for sequences of length :

The two principal problems in the study of the merit factor are
as follows.

A. Determine for a given value of .
B. Determine the asymptotic behavior .

We believe Problem B to be the more fundamental, though
clearly a solution to Problem A for all values of would
solve Problem B. A particular case of Problem B is to show
whether is bounded above; if so, this would
imply a conjecture due to Erdös [11] dating to 1962 [12, p.
127], as well as the long-standing conjecture that there are
finitely many Barker sequences (see [13] for recent progress on
the stronger conjecture that there are no Barker sequences of
length greater than 13). By an easy parity argument we know
that for odd and for even ;
by [7], equality cannot be achieved here for odd , and
the Barker sequence conjecture is equivalent to equality being
unattainable for even .

With regard to Problem A, the largest known values of are
and . No is known for

which . The value of was determined by Mertens
for [14], and subsequently by Mertens and Bauke for

[1], using an exhaustive branch-and-bound algorithm

with an apparent running time of approximately . Lower
bounds on for some values of have been found
by exploring a restricted search space; for example, the set of
“skew-symmetric” sequences of odd length [15], [16]. Recent
numerical investigations have shown that for all in
the range [17].

With regard to Problem B, Mertens [14] applied curve
fitting to the value of for to suggest that

. Golay [18] gave a heuristic argument,
based on an assumption he termed “the ergodicity postulate,”
whose conclusion is that . Golay’s
argument was presented in a simpler form by Bernasconi
[19] although we still do not find the underlying assump-
tion convincing. The best proven asymptotic result is that

. This result is due to Høholdt and Jensen
[4], based on numerical work carried out by Turyn (as reported
in [3]) and developed by Golay [3]. The method of [4] is to
show that there is a family of sequences of prime length for
which the merit factor tends to . This family is an essential
ingredient in the construction presented in this paper. Although
the method of [4] has been applied to other families of se-
quences [20], the resulting asymptotic merit factor remains .

While the merit factor problem originated in communica-
tions engineering, both its variants and have also attracted
interest in theoretical physics [19] and theoretical chemistry
[21]. In this context, it is considered a notorious problem of
combinatorial optimization, usually referred to as the low au-
tocorrelated binary string problem. Stochastic search methods
such as simulated annealing [22] and evolutionary algorithms
[2], [23] have been shown to find sequences with merit factor
larger than and occasionally larger than for specific values
of . However, no practical stochastic search method
has been demonstrated to produce sequences with merit factor
reliably greater than for large . The difficulty for stochastic
search methods seems to be that the combinatorial “landscape”
of the search space has an exceptionally large number of local
maxima [24], [25].

The merit factor problem has an equivalent formulation in
terms of the value of a complex polynomial on the unit circle and
as such has also been studied as a problem in analytic number
theory [12], [26]. Let be the polynomial
whose coefficients are the elements of the sequence .
The norm of the polynomial on the unit circle
is defined, for positive , by

(3)

and it is straightforward to show [12, p. 122] that

(4)

Therefore, the merit factor of the sequence is related to the
norm of the corresponding polynomial of degree by

(5)

and a large merit factor corresponds to a small norm. (Note
that [12] mostly deals with polynomials of degree rather than
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and so the relation (5) appears in a different form in that
reference.) Furthermore, since

we deduce from (2)–(4) that

(6)

In communications engineering terms, the left-hand side of (6)
measures, in terms of power, how much the amplitude spectrum
of the signal corresponding to the sequence deviates from
its mean value [22]. Therefore, a larger merit factor corre-
sponds to a more uniform distribution of the signal energy over
the frequency range.

In this paper, we will switch between a binary sequence
representation and a polynomial representation according to
whichever appears to allow a more straightforward treatment.

III. NOTATION

In order to describe our construction, we introduce the fol-
lowing notation. Given a sequence of
length and real numbers , where lies in the interval ,
we will write for the sequence obtained
by rotating the sequence by a multiple of its length

and will write for the sequence ob-
tained by truncating to a fraction of its length

for

Given sequences of length and
of length we will write for the se-

quence given by appending to

for
for .

We use the standard definition of the periodic autocorrelation
of a sequence at shift

for (7)

so that

for

In this paper, we are primarily interested in binary sequences,
but the definition of periodic/aperiodic autocorrelation and merit
factor, as well as the notation given above, can be applied to any
real-valued sequence.

Given a sequence of length , write
for the sum of the sequence elements. It follows

from (1) that

(8)

which equals when is a binary sequence.
We define the Legendre sequence

of prime length by

if
if

where is the Legendre symbol (which takes the value if
is a quadratic residue modulo and the value if not).

We represent the fractional part of a real number by
.

IV. APPENDING TO -ROTATED LEGENDRE SEQUENCES

Let be a Legendre sequence of prime length . Turyn
studied the merit factor of the rotated Legendre sequence
numerically, as reported in [3]. Based on Turyn’s work, Golay
[3] gave a heuristic argument that

for

for
(9)

in accordance with Turyn’s calculations. Høholdt and Jensen [4]
then gave a rigorous proof that (9) is correct. Although Borwein
and Choi [27] subsequently determined the exact, rather than the
asymptotic, value of , the formula (9) will be sufficient
for our present purposes.

Equation (9) implies that the asymptotic merit factor of
ranges from a minimum of to a maximum of and that
the maximum value of is attained by the -rotated Legendre
sequence . Kirilusha and Narayanaswamy [5] investigated,
for sequence lengths up to about , how many arbitrary
elements could be appended to the sequence without de-
creasing the merit factor significantly below its value of about

. They observed that when the elements appended to one end
of the sequence were identical to the initial elements at the other
end of the sequence there was actually a consistent increase in
the merit factor.

Following their approach, for any real lying in the interval
we consider appending the first elements of to

itself to form the sequence of length .
Table I shows the value of and, for various values of
, the value of , for the first ten prime values of

greater than . Table II shows similar values for
and , for in the region of . In all cases
for fixed and increasing (reading across a row of the tables)
the value of the merit factor increases to a maximum value
between and and then decreases. To our knowledge
this, together with the data in [5], is the first numerical evidence
that suggests a systematic construction of sequences whose
asymptotic merit factor is greater than .
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TABLE I
MERIT FACTOR OF -ROTATED LEGENDRE SEQUENCE WITH LENGTH n OF AROUND 1000,

AFTER APPENDING THE FIRST btnc SEQUENCE ELEMENTS TO ITSELF

TABLE II
MERIT FACTOR OF -ROTATED LEGENDRE SEQUENCE WITH LENGTH n OF AROUND 30000,

AFTER APPENDING THE FIRST btnc SEQUENCE ELEMENTS TO ITSELF

We also remark that the maximum value of the merit factor, as
varies, exhibits considerable variation for consecutive values

of in Table I but almost none in Table II. This effect is only
partially explained by the more pronounced variation in the base
value at smaller values of . We believe this is an ex-
ample of “smooth behavior” in the merit factor arising only for
large , well beyond the range considered in [5]. We believe that
the variations in maximum merit factor reported in [5], which
were attributed to the distinction between and

and to the distinction between prepending
rather than appending the first elements of to itself, can
likewise be explained as nonsmooth effects at smaller values of

. Indeed, these variations are not apparent for larger . We also
mention again that expressing the number of appended elements
as a multiple of , rather than a power of as in [5], is key to
obtaining behavior that appears to persist for large .

We similarly obtained values for and
for , for 19 different lengths in the
range – . For each we found the same effect as in
Tables I and II for increasing , with the value of the merit factor
increasing to a maximum value between and before
decreasing.

The optimal value maximizing for a given
can be determined as follows: find the (least) integer in the

range for which the merit factor of the sequence
of length takes its maximum value, and then

set . In determining this value , it is sufficient to per-
form a full calculation of aperiodic autocorrelations just once,
for the initial sequence , and thereafter simply to update the
aperiodic autocorrelations as successive sequence elements are

appended. We found the value of in this way for 44 values of
in the range – and concluded that, for large

(10)

Fig. 1 shows the variation with of the resulting maximal merit
factor —which appears to reach a value greater
than —and compares this with , which approaches
the value in accordance with the asymptotic formula (9). We
wish now to establish a theoretical framework for these experi-
mental observations.

V. APPENDING TO -ROTATED LEGENDRE SEQUENCES

Fig. 1 suggests that we can systematically obtain a merit
factor of around for large . In fact, we can do better
than this numerically by considering rotations of Legendre
sequences for values of other than . For lying in the in-
terval consider the sequence of length
obtained by appending the first elements of to itself.
Let maximize for a given .

Fig. 2 shows how the value of varies with , for
a large fixed length . We see that there are certain
ranges of in which it is not possible to improve the merit factor
of by appending any truncation of to itself. But, outside
these ranges, the largest improvement in the merit factor occurs
not at and (which, from (9), would give the largest
asymptotic merit factor for the unappended sequences) but at

and .
The rotation value is examined in more detail in

Fig. 3, using the same values for the length as in Fig. 1. It ap-
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Fig. 1. The merit factor of the -rotated Legendre sequence of length n before (�) and after ( ) appending of the optimal number of its own initial elements,
for varying n.

Fig. 2. The merit factor of the r-rotated Legendre sequence of length 259499 before (�) and after ( ) appending of the optimal number of its own initial elements,
for varying r.

Fig. 3. The merit factor of the (0:22)-rotated Legendre sequence of length n before (�) and after ( ) appending of the optimal number of its own initial elements,
for varying n.
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pears that, for large , we systematically obtain a merit factor
of around , with satisfying

(11)

Therefore, we broaden our objective to the following task: es-
tablish theoretically, for large , the optimal values and max-
imizing and determine explicitly.

VI. ANALYSIS

In this section, we consider how the asymptotic merit factor of
a set of sequences changes under modification of the sequences.
We begin by proving that, for any fixed , we can append up
to of the initial elements of a rotated Legendre sequence of
length to itself without changing the asymptotic merit factor.
This is contrary to the speculation of [5] and is implied by taking

in the following.

Proposition 6.1: Let be a Legendre sequence of prime
length and let be fixed. Suppose that
varies with so that it satisfies . Then

Proof: For any , we write for the
polynomial whose coefficients are the elements of the sequence

. Hence, is the polynomial whose
coefficients are the elements of the sequence . In view
of (1) and (4), we have

It is known (see, for example, [28]), as a consequence of Weil’s
theorem [29] on a generalized Riemann hypothesis for curves
over a finite field, that if then for any real numbers and

and integer

Since except when , it follows that

Now using the triangle inequality for norms, we get

and hence,

(12)

If then is . So
taking the fourth power in (12) and using (5) we obtain

Proposition 6.1 implies that up to of the initial elements
of a rotated Legendre sequence of length can be appended to
the sequence without changing the asymptotic merit factor, for
any fixed . In contrast Kirilusha and Narayanaswamy [5]
showed that up to arbitrary elements taking the value
1 or can be appended to any binary sequence of length
without changing the asymptotic merit factor. We now prove a
more general version of their result, which will be useful in our
analysis.

Lemma 6.2: Let and be sequences of
polynomials. Suppose that

where . Then

Proof: From the triangle inequality for norms

(13)

while from (3)

(14)

The result is given by combining (13) and (14).

Corollary 6.3: Let and be sets of real-valued se-
quences, where each of and has length . Suppose that,
for each , the number of nonzero elements of is and
that all the nonzero elements of are bounded in magnitude
by a constant independent of . Then, as , the elemen-
twise sequence sums satisfy

Proof: Let and be the polynomials whose
coefficients are the elements of the sequences and ,
respectively. From Lemma 6.2, we get

Take the fourth power and use (5) to obtain the result.

In the remainder of this section, we use Corollary 6.3 to de-
rive an asymptotic expression relating the merit factor of the ap-
pended sequence to the merit factor of the truncated
sequences and .

Theorem 6.4: Let be a Legendre sequence of prime length
. Let lie in the interval and lie in the interval .

Then for large
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Proof: We give the proof in detail for the case
, and then indicate how to modify it for the case
.

Set . For any sequence of
length , by definition, is the sequence
comprising the first elements of . Write for the sequence

comprising the last elements of ,
so that . It follows from (1) and (7) that we can
express the aperiodic autocorrelations of the appended sequence

in terms of the periodic or aperiodic autocorrelations of
the sequences , , and

for
for
for
for
for .

(15)

It is well known (see, for example, [30, Theorem 6.16]) that,
for , the periodic autocorrelations of

satisfy

for all

and therefore,

for all (16)

since rotation of does not affect its periodic autocorrelations.
So from (2), we have

(17)

Now set in (15) and use (16) and (17) to deduce that

(18)

We next examine the three summations of (18) in turn. (Note
that for large , we can assume that , so that each
of the three summation ranges in (18) is nonempty.) From (2)
and (8) we have

and

and

Substitution for these three terms in (18) gives

(19)

Now consider the behavior of (19) for large (and fixed
and ). Since we get . Since

we have ,
and it is well known [30] that for any Legendre
sequence . Therefore,

which has magnitude at most and so can be
neglected in (19). Also, by comparing

with

we see that we can write the expression at the bottom of the
page. Therefore, from Corollary 6.3 we can replace
by in (19), for large . Hence, from (19) we
obtain the asymptotic relationship

as required.
We now outline the case . Consider the

sequence , which differs from the
Legendre sequence in just one element. It is well known [30]
that the periodic autocorrelations of satisfy

for all

if
if and
if and .
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TABLE III
VARIATION WITH LENGTH n OF THE RECIPROCAL MERIT FACTOR 1=F ((X ) ) OF THE UNROTATED

LEGENDRE SEQUENCE OVER A REPRESENTATIVE RANGE OF TRUNCATION FRACTIONS t

TABLE IV
VARIATION WITH LENGTH n OF THE RECIPROCAL MERIT FACTOR 1=F ((X ) ) OF THE -ROTATED

LEGENDRE SEQUENCE OVER A REPRESENTATIVE RANGE OF TRUNCATION FRACTIONS t

and that . The above proof then carries through (with
some modifications to lower order terms) to give

But and differ from and , re-
spectively, in at most one element, and differs from

in at most two elements. The result follows from
Corollary 6.3.

The value is excluded from Theorem 6.4 but a similar
argument to that used in its proof shows that, for large and for

lying in the interval

(20)

VII. ASYMPTOTIC MERIT FACTOR OF TRUNCATED ROTATED

LEGENDRE SEQUENCES

Our objective is still to determine, for large , the optimal
values and maximizing and to determine

explicitly. We define a region

and

In view of Theorem 6.4 and (20), it is sufficient to determine an
asymptotic form (for large ) for the function for

any , in other words, for the reciprocal merit factor of
any nontrivial truncation of any rotation of a Legendre sequence,
for large . We already know the asymptotic form for ,
from (9).

We first investigate how behaves for fixed and
as grows large, and specifically whether this value converges.
Tables III and IV show the value of for
and , respectively, over a representative range of values of
and a wide range of lengths . We also made corresponding
tables for and . In all cases, it appears that
approaches a fixed value as grows large (reading down any
column of the tables), although more slowly for smaller values
of . On the basis of this evidence, we shall assume temporarily
that the value of always converges:

Working Assumption 7.1: Let be a Legendre sequence
of prime length . Then the following is well defined for any

:

(21)

We next investigate the behavior of the function by
examining numerical data for a representative very large value
of . Accordingly Table V shows the variation of
with and for . We chose to take and each to
be multiples of a reciprocal power of because preliminary ex-
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TABLE V
VARIATION OF THE RECIPROCAL MERIT FACTOR 1=F OF (X ) WITH r AND t,

WHERE X IS A LEGENDRE SEQUENCE OF LENGTH 4 433701

periments suggested that the function exhibits important be-
havior at these points. Table V is a summary of a more detailed
data set in which the values of and each vary as multiples
of .

A property of immediately suggested by the data of
Table V is the following “reflection” result, which we prove
using Corollary 6.3:

Proposition 7.2: Suppose that is well defined in (21)
for a given . Then

Proof: We suppose that . The case
can be treated similarly. Since

we have , where

if
if
if .

It follows that

for

Hence, if we write for the sequence reversed then

and so

(22)

since reversal of a sequence does not change its merit factor.
Writing , we see that

and
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where the sequences and share the common
subsequence

Since , the result follows using (22) and Corollary 6.3.

Borwein and Choi [27] determined that

is well defined and equals (23)

but as far as we are aware no values of have previously
been determined for other apart from the value of

, which is given by (9). We can use (23) and Proposition
7.2 to obtain the following result that does not depend on any
assumption of convergence.

Corollary 7.3: Let be a Legendre sequence of prime
length . Then

Proof: From (23) and Proposition 7.2 we have

Apply Theorem 6.4 with and .

Having established Proposition 7.2 we carefully studied the
data set underlying Table V in order to postulate an explicit for-
mula for the value of for any . We noted ini-
tially that for all , from
which we concluded that . We then ob-
served that certain rational values for were strongly sug-
gested by the data, for example

and

Having fixed several of these key values, we found that, for each
constant , the complete data for could be fitted very
well by three quadratic functions in . By comparing several
such fitted functions for different values of , in particular the
values , , and , we reached the following working
assumption.

Working Assumption 7.4: Working Assumption 7.1 holds
and is given for any by

for and (24)

and, for

for

for

for
(25)

and, for

for

for

for .

The proposed function specified in Working Assump-
tion 7.4 is illustrated in Fig. 4. We see from the graphs and
from (24) and (25) that, for , the function contains two
“spikes” of width and height , at and . We
wish however to avoid any possible problems of discontinuity in

as . To do so, observe that the function
given by (25) does not contain any such spikes. Furthermore,
note from Theorem 6.4 that it is sufficient for our purposes to
know the asymptotic behavior of rather than that
of . We therefore discard Working Assumptions 7.1
and 7.4 and replace them with the following conjecture.

Conjecture 7.5: Let be a Legendre sequence of prime
length . Then

for

for
(26)

is well defined for any and is given by

where

for and

and, for

for

for

for

(27)

and, for

for

for

for .
(28)

The proposed function specified in Conjecture 7.5 is
illustrated in Fig. 5. Fig. 6 shows how well this proposed func-
tion fits the data values at increasing lengths by plotting
the discrepancy

for

It is visually striking that the fit improves with increasing , and
indeed the data underlying Fig. 6 show that

for
for
for .

(29)



3244 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 12, DECEMBER 2004

Fig. 4. Variation of f(r; t) with r and t from two viewpoints, according to Working Assumption 7.4.

Although we were unable to find a theoretical proof of Conjec-
ture 7.5, we regard Fig. 6 and (29) as compelling evidence in its
favor.

We can prove a similar reflection result to that of Proposi-
tion 7.2 (using the same proof but simply multiplying (22) by
before applying Corollary 6.3):

Proposition 7.6: Suppose that is well defined in (26)
for given . Then

and
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Fig. 5. Variation of g(r; t) with r and t from two viewpoints, according to Conjecture 7.5.

Proposition 7.6 shows that, for any fixed and for restricted
to the range , the function is symmetrical about

. Therefore, the following definitions for are
superfluous in Conjecture 7.5: for the range in
(27) and for the range in (28).

VIII. CONSEQUENCES OF CONJECTURE 7.5

In the preceding section, we presented evidence in favor of the
asymptotic form for specified in Conjecture
7.5. Assuming this form to be correct, we can combine the
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Fig. 6. Discrepancy d(r; t) between data value t =F ((X ) ) and g(r; t) given by Conjecture 7.5, r and t varying in increments of and X a Legendre
sequence of length n.
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Fig. 7. Variation with r of optimal value t̂ maximizing lim F (X ; (X ) ), according to Conjecture 7.5.

Fig. 8. Comparison of lim F (X ; (X ) ) according to Conjecture 7.5 (solid line) with max F (X ; (X ) ) at length n = 259499 (data points),
as r varies.

results of Theorem 6.4 with (9) and (20) to express the asymp-
totic merit factor of the appended sequence explicitly.

Corollary 8.1: Subject to Conjecture 7.5

for (30)

Let be the value of that maximizes the right-
hand side of (30) for a given . Fig. 7 shows how ,
determined numerically in this way, varies with . Fig. 8 shows
the corresponding variation of with ,
subject to Conjecture 7.5, and compares it with the value of

for

previously displayed in Fig. 2. There is excellent agreement, for
all , between the predicted asymptotic value and the data value
at length . This provides further evidence in favor
of Conjecture 7.5.

We now examine two cases of particular interest in detail:
the globally optimal value , and the value that was the
starting point for our investigation.

Corollary 8.2: Let be a Legendre sequence of prime
length and assume Conjecture 7.5 to be correct. Then the
maximum of over is given
by

or

Furthermore, the maximum of over
is given by
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Proof: We shall find optimal values and in the region
; other regions for can be handled

similarly. In this region, by Conjecture 7.5 we have

Substitution in (30) gives

(31)

This function is clearly maximized at

(32)

and, by differentiation, the maximum value of (31) occurs when
satisfies

Solving this cubic equation numerically for we find
, and substitution in (31) then gives

From (32) we get .
If instead we fix then the maximum value of (31)

occurs when satisfies

which has the solution . From (31), we deduce that

The numerical values of Corollary 8.2 agree well with the
data of (11) and Fig. 3 for , and of (10) and Fig. 1 for

.

IX. MODIFIED JACOBI SEQUENCES

A modified Jacobi sequence of
length , for and distinct primes, is defined in [20] by

if
if and
otherwise.

The case is equivalent to a Twin Prime sequence.
Jensen, Jensen, and Høholdt showed in [20] that, provided and

both grow roughly as fast as each other

as given in (9). In particular, the asymptotic merit factor of a
-rotated modified Jacobi sequence is . It was noted in [20] that

convergence of the merit factor to its asymptotic value appears
to be faster for than for .

It is natural to ask how the merit factor of a modified Jacobi
sequence changes when the initial elements are appended to it-
self. We formed the graph corresponding to Fig. 2 for a modified
Jacobi sequence of length and

. Both graphs are very similar to Fig. 2, al-
though in the second graph the peak for the appended sequence
occurs at rather than . We also formed the plot cor-
responding to the case of Fig. 6 for a modified
Jacobi sequence of length and

, using the same function
but a coarser grid

The maximum discrepancy over for these values of has
magnitude and , respectively. These experi-
ments suggest that, provided and grow roughly as fast as
each other, appending the initial elements of a modified Jacobi
sequence to itself produces the same asymptotic behavior as
for Legendre sequences, with faster convergence when

.

X. CONCLUSION

We have found a systematic synthesis for binary sequences
yielding a merit factor greater than , for sequence lengths well
in excess of one million. We believe this meets the spirit of
Golay’s 1983 challenge [3] as quoted in Section I.

We believe that the evidence presented here provides good
reason to reject the 1988 conjecture of Høholdt and Jensen [4]
as quoted in Section I. Although our theoretical results depend
on the unproven Conjecture 7.5, we believe that this conjec-
ture is strongly supported by the evidence of Figs. 6 and 8. In
fact, we regard the true maximal asymptotic merit factor of bi-
nary sequences to be a completely open problem now. We cer-
tainly do not see any reason to believe that the value of approx-
imately , derived in Corollary 8.2, is the true value of

.
We conclude with the following open questions.

1) Can we prove Conjecture 7.5 and so establish rigorously
that ?

2) Can we construct a family of binary sequences whose
asymptotic merit factor appears to be greater than that of
the appended rotated Legendre sequences described here?

3) Can we construct a family of binary sequences whose
asymptotic merit factor is an integer value greater than ?

4) Can we prove that is bounded above?

Notes Added in Proof

After submission of the original manuscript in May 2003, we
were made aware of independent work by Kristiansen [31], also
inspired by Kirilusha and Narayanaswamy [5], which presented
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sequence of length up to having merit factor greater than
. Each of the sequences in [31] was obtained by searching

over a set of sequences derived from a Legendre sequence. Ref-
erence [31] gives an approximate value for the total number of
sequence elements resulting from the search but does not con-
tain a theoretical explanation of the merit factor properties of
the sequences. In response to a preprint of the current paper,
Kristiansen and Parker [32] recognized that the sequences in
[31] could more easily be viewed as an appending of a rotated
Legendre sequence.

R. Turyn confirmed, in personal communication during 2003,
our reading of the historical record as set out in the first para-
graph of Section II.
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