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1. INTRODUCTION

The following is a picture of the first 10,000 suitably normalized zeros of the
fifth partial sum of the Riemann zeta-function. (Precise definitions are given in
later sections.) The picture is compelling — it suggests a phenomenon in need of an
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FIGURrE 1. 10,000 normalized zeros of (5(s)

explanation - and this is indeed part of both the genesis and the purpose of this
paper.

A second part of the genesis of the paper is a project to write a robust zero
finder, in Maple, for virtually any analytic function on virtually any region. This
is a hard problem that will be discussed elsewhere. Finding a few zeros is easy;
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reliably finding all zeros is much harder. Even special purpose pictures, like those
in this paper, require some effort to produce. Off the shelf software will probably
not suffice.

Of course any number theorist will first apply these methods to the Riemann
zeta-function in the hope of shedding a little more light on what number theorists
certainly believe to be the most important unsolved problem in mathematics.

Section 2 gives a brief introduction to the Riemann zeta function. For a more
comprehensive treatment the recent publication [Con03] is recommended.

Section 3 discusses previous results for partial sums. Figure 2, made possible
by our zero finder, indicates that, even though the partial sums of {y(s) do not
converge for R(s) < 1, there is some range in the complex plane where the zeros of
the partial sum do approximate the zeros of {(s). Figure 3 gives a clearer indication
that zeros of partial sums of the alternating series 7(s) converge to zeros of the
function itself. Theorem 3.1 improves previously published results on upper and
lower bounds for the real part of zeros of partial sums for {(s) and 7(s). Refining
this, in Theorem 4.7 we obtain a precise lower bound on the real parts of zeros of
(n(s) for N prime.

Since ¢(s) encodes so much information about prime numbers, it is natural to
expect that a study of zeros of a partial sum will involve some study of the prime
numbers involved in the sum. The first part of Section 4 studies the cases where
two primes are involved. The zeros of (3(s) are shown to be intersection points of
two periodic functions, with periods 274/ log(2) and 27i/log(3). A careful analysis
shows precisely which intersection points are zeros of (3 and their density as a
function of ¥(s). Theorem 4.5 gives a more general result for finite exponential
sums involving only two primes, stating that all zeros lie on a periodic curve, where
the number of choices for this period is infinite.

The second part of Section 4 in an extension to where more primes are involves.
The main result is Theorem 4.6, which shows how the discrete zeros of an finite
exponential sum can be related to the zeros of a multiply periodic function. In
particular, precise bounds for the distribution of these zeros may be determined
using methods of calculus.

2. BACKGROUND

Early studies of the function
1) ()=, seC

concerned its behavior for real s. Euler pointed that this has a representation as a
product

_ _ 1y
C(S)—p}:i[me(l ps) ;

valid for s € C with R(s) > 1, first giving a hint of its importance in the study
of prime numbers. It was Riemann, however, who, in his fundamental paper of
1859, outlined the analytic properties of what is now known as the Riemann zeta
function. Writing s in the standard form

s =0 +1it,
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where o and t are the real and imaginary parts of s, respectively, it is easily seen
that the above series converges absolutely for ¢ > 1. Riemann showed that ((s)
has an analytic extension to a meromorphic function on C having a single simple
pole at s = 1. Moreover, he proved the surprising functional equation

E(5) i= ys(s = Dn T (5/2) C(5) = £(1 — 9),

where I'(s) is the usual Gamma function. Using Euler’s product formula, we derive
that ((s) has no zeros for ¢ > 1. The functional equation then shows that the only
zeros of ((s) is the left half plane ¢ < 0 coincide with the poles of I'(s/2), the so
called trivial zeros at s = —2,—4,—6,.... All other zeros must lie in the critical
strip 0 < o < 1. Riemann asserted furthermore that the number of these roots
whose imaginary parts are between 0 and 7' > 0 is approximately

(2) T 1 T T
or 28\ o 2r’

with relative error term O(1/T). Riemann stated that the same estimate should
hold for all roots with real parts 1/2, leading to the stronger conjecture that all
roots of the zeta-function in the critical strip lie on the critical line o = 1/2, the
famous Riemann Hypothesis. In 1905 Von Mangoldt proved the estimate (2) is
correct, proving the weaker error estimate of O(log(T)), see [Tit86, CH IX].

The complex line {z € C : R(s) = 1/2} is known as the critical line. The
Riemann Hypothesis was one of the 23 problems given by Hilbert in 1900 for math-
ematicians to work on in the 20th century. It remains a problem for mathematicians
in the 21st century. It is know that there are at least KT log(T') such zeros for some
constant K > 0 as T tends to oo, see [Tit86, §10.9] or [Edw01]. Also Conrey proved
[Con89] that more than 40% of the zeros of the Riemann zeta-function are on the
critical line. Recent computations (see www.zetagrid.net/zeta/rh.html) have
confirmed that the first 100 billion zeros with ¢ > 0 are indeed on the critical line.

3. ZEROS OF PARTIAL SUMS

Since the series (1) does not converge for o < 1, it it is difficult to picture, on the
face of it, what relationship, if any, would exist between the zeros of the truncated
zeta-function

A
(N (s) == oy
n=1 n
and ((s) in this half plane. The following plot, made possible through the applica-
tion of the zero finder, illustrates a few points. What is first noticeable is a string of
zeros of (311 near the critical line o = 1/2. Spira remarks in [Spi66, §4] the equality

1-s
C(S) = CN71(8)+N75+8_1 +
e’} B 2n—2
2n . —s—2n
+Z(2n)' H(s-i—y) N'=s=2n L R
n=1 ' 7=0

implies that ((s) is roughly approximated by (x(s) near the critical line for ¢ <
27N, but t also large enough so that N'/2/t is ‘small’. The strip of zeros is in
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FIGURE 2. 2000 zeros of (211(5)

accordance with Spira’s observation. Above t = 27N, about 1326, in Figure 2, the
zeros scatter more wildly.

In [Tur48], Turdn does point to a possible relationship between the behavior of
the roots of the partial sums of the zeta-function (1) and the Riemann Hypothesis.
He proves in his Theorem II that the Riemann hypothesis is valid if there are
positive numbers ng and K such that for N > ng the truncated zeta-function (n(s)
does not vanish in the half plane

>1+ K

o —.

- VN

In [Mon83], however, Montgomery shows that for given 0 < ¢ < % — 1 and for N
large enough the function (5 always has zeros in the half plane

loglog(N)
log(N) ~

making Turdn’s theorem vacuous. Still, it is interesting that connections can be
made between zeros of {(s) in the critical strip and zeros of the partial sums (x(s).

A result of Knopp ([Jenl8, p. 236]) asserts that every point of the line o = 1
is an accumulation point of the zeros of the functions (n. Striking in Figure 2
are the two strings of zeros trailing to the left, both above and below the string
of zeros near the critical line. The lower string originates in another region about

c>1+4+c
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the critical strip where the zeros scatter wildly. To fulfil Knopp’s observation, this
region must expand upward as N increases.

The comparison with partial sums in the critical strip is more direct for the
alternating zeta-function, defined by

oo 1
— _1\nt+1
(ORI
in its region of convergence o > 0 and then extended by analytic continuation. We

derive that )
o) = (1-3)

so all the zeros of ((s) are zeros of n(s). In particular, {(s) and 7(s) have the same
zeros within the critical strip. As well, n(s) has the zeros of 1 — 2!=% namely, the
points

2kmi

3 =14 ——, keLZ.
®) = gy F€
The truncated alternating zeta-functions
al 1
nN(s) = Zl (—1)n+lﬁ, N € Z>0
n=

converge in the plane ¢ > 0 to the alternating zeta-function as N tends to oco.
In particular they have roots ‘close’ to the wy’s if N is sufficiently large. More
specifically, the point
+ 1
“F T Tlog(2) - (i)
is the asymptotic expression of a root of 72y that converges to wy, for N — oo, see
[Tur48, §7].

Consider now Figure 3 below. Above t = 0, we see two strings of zeros, one close
to the critical line approximating the zeros of the zeta function, and the other close
to s = 1 approximating the zeros of 1 — 2179, as expected. Above these the zeros
scatter more wildly, as in Figure 2.

It has been proved in the papers [Lan31] and [Will7] that the number M of zeros
of {nx in the upper half plane that have imaginary part < T satisfies

-]

(N 4 1)—2+wk

< N.
27 -

This approximates the density of the zeros of 1+1/N® whic occur one every distance
of 2w/ log(NN) up the imaginary axis, or a frequency of log(N)/2r.
Using (2) and (3), the number of roots if (s) in the same region has the estimate

T 1 g(T) —£+ (log(2))T-

o7 o7 2w 2w

Differentiating with respect to T, we obtain a frequency of log(T'/m)/2n for these
roots as we move up the imaginary axis. These two frequencies match at T =
N7, which for Figure 3 evaluates as 342.4. .., approximately where this scattering
begins. Above this, the number of zeros of the partial sum is insufficient to match
those of 7(s), while below they are in excess, giving some explanation for the string
of zeros trailing to the left at the bottom.
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FIGURE 3. 1000 zeros of 119 (s)

The complete set of accumulation points of zeros of the truncated alternating
zeta-functions consists of the line ¢ = 0, the roots of {(s) and the zeros wyg, see
[Tur48, §7]. This line of zeros appears to follow a smooth curve trailing to the
left. Less noticeable is a slight scattering of these roots closer to the origin. This
scattering must increase with IV to account for s = 0 being a line of accumulation
points.

Turdn showed [Tur59] that the postions of zeros in the half-plane ¢ > 1 for the
partial sums of the alternating zeta function also has relevance for the Riemann
Hypothesis. Though his estimates in this case as well were proved redundant by
Montgomery’s work, it is interesting to obtain actual bounds for the real values of
these roots.

It is proved in [Spi66] that all zeros of (x have real parts

1-N <o <1.85.
The following simple argument improves this.

Theorem 3.1. Let s be a zero of {n or nn. Then s satisfies o < a, where a is
the positive root of ((o) = 2. In particular one has o < 1.73.
Also s satisfies o > (3, , where 8, is the negative root of (,_,(c) = N~7.
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Proof. Let s be a zero of (i such that ¢ > 1. Then

1 = |-2°%-3°—. .. —N°|
< 27943 74...4N°
< (o) -1

As the functions in these inequalities are positive and decreasing in o we need to
find the positive solution of {(s) = 2. This is s = 1.728647239.
Similarly,

IN7] |=N"° = |1+427°+3°+...+(N-1)"°
< 142743 74+...+4(N=-1)"°

Note that (,_,(c) = N7 has a single negative root, 0 = 3,. For ¢ < 3, the
above inequality no longer holds.
These proofs hold in the same way for the zeros of 7. d

For (n(s), Turdn shows in [Tur48, Theorem IV] that for N large enough (n(s) #
0 for

o > 1+ 2(loglog N)/log(N),

so an improved upper bound should be possible in this case. However, the lower
bound is closer to the truth. Indeed, for N prime, we show in Theorem 4.7 below
that this is the actual bound.

An easy argument shows that 8, = (N 4 o(N)) log(2). Writing 8, = b, N, we

have
—b —b
9 N N 1 N N
—by N _ S =
N +...+<(1 ) ) +<(1 ) ) 1.

E\N
We note that lim (1-— — =eF. A limit b, — by would imply
N—oo N

2

1=e b= 420 4 o730 4 |

giving b, = log(2) as a first approximation. Computationally, the estimate 3, ~
(N — 3/2)log(2) holds with surprising accuracy at N = 5 and with increasing
accuracy to at least N = 100, 000.

4. ZEROS OF SMALL SUMS

4.1. Single parameter curves. Figure 4 shows the positions of the first 2000

zeros of
1 1
G(s) =1+ o T 35
in the upper half plane.
Although the zeros are not recurring in a completely regular pattern, their po-
sitioning does appear to have a semiperiodic nature. The algorithm used to locate
these zeros used a homotopy. In its more general form, for (i, starting from the

known position of the zeros of the end terms

1

14+ —
+N5’
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FIGURE 4. First 2000 zeros of (3(s)

at the points {2wki/log(N) : k € N}, Newton’s method was used to find zeros
along the path
1 =1
14 o +1 > —
n=2

as t increased from 0 to 1. That this method worked so well in locating all of the
zeros of (n(s) up to heights tested, suggests that the error estimate in (4) above
could be improved to O(1). In any case, in such finite exponential sums, the largest
integer in the expansion, N, is an indicator or the number of zeros to be found up
to a height 7' in much the same way as the degree of a polynomial determines its
number of zeros in the complex plane.

It is then natural to plot the difference between the zeros found for (x; and the
starting values of each path. This was the inspiration for the plot on the left of
Figure 5, where the imaginary parts of the zeros are reduced modulo 27i/log(3),
the distance between zeros of 1+ 1/3°.

We now see a striking regularity.

An explanation is fairly simple. The equation (3(s) = 0 becomes two in the real
and imaginary parts:

(5) 1+ 277 cos(log(2)y) + 37 % cos(log(3)y) =
(6) 27%sin(log(2)y) + 37" sin(log(3)y) = O,

where s = z+iy. Using the trigonometric formula cos? (log(2)y) +sin? (log(2)y) = 1,
we derive

(7 14+2-3 “cos(log(3)y) +9 *=4"".
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FIGURE 5. Zeros of (3(s) reduced modulo 102&3) and %

This is a curve with period 2mi/log(3) in y which must contain all the zeros of
¢3(s). Reducing the imaginary parts of the zeros modulo 2mi/ log(3), they still lie
on the same curve, but all within a single period.

The same procedure may be applied to remove terms in log(3)y, giving

(8) 1+2-2 %cos(log(2)y) +4 =97,

Zeros reduced modulo 27i/log(2) lie on a period of this curve, as shown on the
right of Figure 5.

We can use the curves (7) and (8) to obtain a good description of the zeros
of (3(s). Figure 6 below allow us to compare intersection points. The graph on
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FI1GURE 6. Comparison of intersection points

the left shows intersection points of the curves R((3(s)) = 0 and I({3(s)) = 0 as
given in (5) above, these points being zeros of (3(s). The graph on the right shows
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intersection points of the curves (7) and (8). These points include the zeros of (3(s),
but, as we can see in the comparison, not all of the intersection points are zeros
of (3(s). This graph does show that the real parts of of these zeros are bounded,
something now evident from the graph on the left.

A more careful analysis is needed to show which intersection points of (7) and
(8) are zeros of (3(s) and to describe their distribution.

Lemma 4.1. The zeros of (3(s) are those points satisfying equations (7) and (8)
for which sin(log(3)y) and sin(log(2)y) are of opposite sign.

Proof. Any zero of (3(s) must satisfy (7) and (8), since they are derived from (5).
Conversely, we obtain the first equation of (5) by adding (7) and (8). From
equation (7), we obtain

jsin(log(3)y)| = (1= cos*(log(3)y))""*
1/2
(4 9F (4T 9" — 1)2)
- 2.3°¢
—z —z 2 —x 2 —x 1/2
(@ - =1))(E " +1)2—477))
n 2.37¢ '
Similarly, from (8), we obtain
- _ _ e 1/2
. O - -1 "+1)*-97)
sinflog@y)] = S )
37 .
= 2 jsinGog@)w)!.
Thus, the second equation of (6) is satisfied if sin(log(3)y) and sin(log(2)y) are of
opposite sign. O

This gives us an easy method for deciding which intersections of the curves (7)
and (8) are actual zeros of (3(s). We now need a better description of these curves.

Lemma 4.2. (1) The curve given by equation (7) consists of congruent convexz,
closed curve segments contained in and tangent at each edge of the disjoint boxes
[-1,7m1]% [(213:(?)” —ry, (215;(?)” +7r2] where k € Z, rq is the real root of 1—27%—37% =
0 and s is the point where the derivative of (3/4)" — 3% —1/3% is 0.

(2) The curve given by equation (8) is single-valued in x, with maximum z-values

obtained at the points (11, (21(':;(;))”) and minimum z-values at the points (—1, —102;(7;))

for k € Z. It has positive slope in the half-periods y € [102;—(’;), %] and negative

slope in the half-periods y € [(Zlfg_é))”, lfgk(’;)] fork e Z.

Proof. (1) We start by rewriting equation (7) as

cos(log(3)y) = 3 ((3/4)° — 5~ 1/3°)

and analyzing the function

£(&) = 5 (3147 = 3 = 1/3%) = £ (3/4)7 — cosh((g(3))2)
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on the right. For 2 > 0 the term —3% dominates, while for z < 0 the term —1/3*
dominates, so f(z) — —oo as £ — £oo. Its derivative
1
f'(z) = =5 log(4/3) (3/4)" — sinh((log(3))z)
is the sum of two decreasing functions and so is decreasing, having a single zero
at ro = —0.1230... with f(re) = —0.4911.... Thus, f(z) increases up to ry and
then decreases. The curve is defined only where cos(log(3)y) < f(rz), i.e., in regions
where ZEEDT—w1 <) < CREDTHY ity o) = r—arccos(f(r2)) = 1.0574... < m/2.

log(3) log(3)
For each y-value in the interval ((219;;)(7;)— v (2k14(—)£1§)(73r)+ v

x, so that the curve decomposes into disjoint closed paths. The curve achieves its

(215;(?)” where cos(log(3)y) = —1 giving

3° 11 11
0= 1=->(1+—-—)(1-=-=
f@)+ 2 ( t o 3w)( 9 3z>

A simple analysis shows this has only two real roots, —1 and r;.
For the curve, we have

(105(3))sin((108(3))y) 22 = —'(x).

At the extreme values for z, we have sin((log(3))y) = 0, making the tangents
vertical. At the points on the curve with z = r9, we have f'(z) = 0, making the
tangents horizontal.

The closed paths are symmetric about the lines y = (2k + 1)/ log(3). For y €
[((2k + 1)m — y1)/ log(3), (2k + 1)m/log(3)], we have sin((log(3))y) > 0, so that the
curve is strictly decreasing for z € (—1,72) and strictly increasing for z € (ra,r1).

To determine convexity, we evaluate the second derivative, obtaining

2 x —z 2 (3\%
(1(3)) sin(log(3))y) T4 = (10g(3))* T LT 104 (Z) ar

) there are two solutions in

extreme values in z at the points y =

- (log(3)” cos(log()) (2 ) -

For y € [((2k + 1)m — y1)/1og(3), (2k + 1)m/log(3)], we have sin((log(3))y) > 0,
3\=

cos((log(3))y) < 0. Also, for z > 0, (log(3))23* — log(%)Q% > 0 and for z <

0, (log(3))?3=* — log(%)z(%% > 0. Thus, 32732’ > 0 and the portions of the curve for

these y-values are convex up. Using symmetry, we obtain that the regions enclosed
by the closed paths are convex.

(2) Curve (7) is easier to analyze. In this case, let
3" — (27 4277)
fla) = 1) =€ .
Then the curve has the equivalent formulation

cos((log(2))y) = f(=).

For z < 0, the term (2)” dominates, so lim, , o = oco. For z > 0, the term
2% dominates, so lim, ,,, = —0o. We easily see that f(z) is a strictly decreasing
function, since for z < 0, both (2/9)® — 27% and —2% are strictly decreasing, while

for z > 0 both (2/9)” and —(2°4+277)/2 = — cosh((log(2))z) are strictly decreasing
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and f'(0) = log(2/9)/2 < 0. Thus, every y-value corresponds to a single z-value on
the curve. Differentiating, we obtain

~sin((log(2)y) ¥ = f'(z).

Since f'(x) < 0 for all z, the sign of g—g is the same as the sign of sin((log(2))y),
giving the result as stated. O
We now have a theorem justifying the pictures shown above.

Theorem 4.3. (1) The zeros of (3(s) modulo 2mwi/log(3) are dense in the curve
1+2-37%cos(log(3)y) +9% =47 over the period y € [0,2n/log(3)].

(2) The zeros of (3(s) modulo 2mi/log(2) are dense in the curve 14+2-27% cos(log(2)y)+
472 =977 gver the period y € [0, 2w/ log(2)].

(8) The real parts of the zeros of (3(s) are dense in the interval [—1,r1].

Proof. (1) This uses the facts that both curves (8) and (7) have the same range of
z-values and that the periods [0, 27/ log(3)] and [0, 27/ log(2)] are rationally inde-
pendent. For a point (z,y+2kn/log(3)) on (8) in its first period, consider the point
(z,y") on curve (7) in its first period such that sin((log(3))y) and sin((log(2))y")
are of opposite sign. Then we can find 0 < k,! € Z such that y + 2kn/log(3) and
y' + 2l /log(2) are arbitrarily close. Thus we can find intersection points (2, yn)
which are zeros of (3(s) such that z, — = and y,, (mod 27/log(3)) — y.

Assertion (2) follows from a like argument while (3) follows easily from either (1)
or (2). O

Note: A more general result is given in Corollary 4.8 below.

Theorem 4.4. All of the zeros of (3(s) are simple. The are distributed so that each
disjoint closed segment of the curve 1 + 2 - 377 cos(log(3)y) + 97% = 4=% contains
exactly one zero of (3(s).

Proof. If a zero of an analytic function
F(z) = f(z,y) +ig(z,y)
has multiple roots at z = a + b then

F'(a+ib) = g—i(a, b) + i%(a,b) =0.
For (3(z) this translates to the conditions
9) (log(2))2* sin((log(2))y) + (log(3))3* sin((log(3))y) = 0
(10) (log(2))27" cos((log(2))y) + (10g(3))3™7 cos((log(3))y) = 0.

From (9) and (6), we obtain sin((log(2))y) = sin((log(3))y) = 0, which is impossible
since log(2) and log(3) are rationally independent. Therefore, all zeros of (3(s) must
be simple.

For the second claim in the theorem, consider two cases, is illustrated in Figure
7.

Both graphs show the intersection of curve (8) with a single closed segment of
curve (7), where curve (8) enters from below with positive slope on the left and with
negative slope on the right. We will show in each case that curve (8) has exactly
two points of intersection with curve (7) and exits from above with the slope of the
same sign as on entry. Thus, sin((log(2)y) keeps the same sign at the entry and
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r24
r29

r23

FIGURE 7. Intersections of curves (7) and (8)

exit points while sin((log(3)y) changes, so that exactly one of these points is a zero
of (3(s).

Note first that points on each closed segment of curve (7) encompass the full
range of z-values of curve (8). Thus, each closed segment of curve (7) must intersect
curve (8). Both curves achieve their extreme z-values at y-values which are integer
multiples of their half periods, and therefore rationally independent. Thus, these
cannot be intersection points for the curves, meaning that curve (8 must intersect
at least once with the lower half and at least once with the upper half of each closed
segment.

Consider the first case, where the slope of curve (8) is positive, i.e., in one of its
first half-periods. We show that wherever this curve intersects with curve (7) in
one of its first half-periods, i.e., the lower half of one of the closed segments, the
slope of curve (8) is strictly greater that that of curve (7). A second intersection
before curve (7) achieves its maximum z-value is then impossible since (8) would
then have to cross (7) from left to right and have lower slope.

We rewrite equations (7) and (8) as

2cos(log(3)y) = (3/4)" —=3* —1/3"
2cos(log(2)y) = (2/9)" —2*—1/2°
Differentiating, we obtain
2(log(3)) Sin((log(3))y)3—z = (3/4)"log(3/4) — (log(3))(3" — 1/3")
2(log(2)) Sin((log(2))y)j—z = (2/9)"log(2/9) — (log(2))(2" — 1/27).

At intersection in the first half-periods of both curves we have

2" *sin((log(2))y) = 3" * sin((log(3))y),
so that the ratio of the slope of curve (7) to (8) simplifies to

R(z) = log(2) (log(3)36” — 9% log(3) + 21og(2)9* — 4 log(3))
(z) = log(3) (log(2)36% — 42 log(2) + 2 - 4% log(3) — log(2)92)"
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To show that R(z) is increasing over [—1,71], we look at its derivative, which
simplifies to

4(log(2))36” ((log(3))*4” — (log(2))*9” — (log(3/2))%)
(log(3)) ((log(2))36° — (log(2))4® + 2(log(3))4* — (log(2))97)"

The only factor which changes sign is f(z) := ((log(3))*4% — (log(2))39% — (log(3/2))?).
We see that f(z) approaches the horizontal asymptote y = —(log(3/2))% as = —
—oo and has a single critical point where (9/4)° = (log(3)/log(2))? or z. =
1.13588.... Thus, f(z) is increasing on [—oo,z.]. Since f(—1) = 0.2278... > 0,
R'(z) > 0 on [—1,r1], and hence, R(z) increases on [—1,71]. We find R(— ) =
—.4206... and R(r1) = 0.8684..., so |R(z)| < 1 on [—1,r;1]. Since the slope of
curve (8) is always positive in this consideration, we have the slope of curve (8) is
strictly greater than that of curve (7) at any point of intersection, as claimed.

In the second case shown in Figure 7, the slope of curve (7) is negative. Where
it intersects with curve (8) in one of its first half-periods we have

2" *sin((log(2))y) = 3" * sin((log(3))y),

For the ratio of slopes, R(z), is this case, we again have |R(z)| < 1, meaning that
the slope of curve (8) is strictly less than that of curve (7). Thus, there is only one
intersection in this first half-periods of curve (8).

By the symmetry of the cosine functions for y-values, curve (7) has a single in-
tersection in each case with the second half-periods of curve (8). These must be
in the same half-periods of curve (7). For the two intersections in each case, the
sign of sin((log(2))y) remains the same while that of sin((log(3))y) changes. The
theorem follows then, from Lemma 4.1. |

R'(z) =

The occurrance of periods is expressed more generally in the following theorem.

Theorem 4.5. Let (, , (s) be an exponential sum composed of terms c, /n®, where
¢n 18 constant and n is divisible only by the primes p and q. Then the zeros of
Cuv.p.q (8) reduced modulo

271
my log(p) + ma2 log(q)

lie on a period of a curve, where (my,m2) = (0,1) or (1,0) or mi,ms € Z with
ged(my,ma) = 1.

Proof. Let ¢, /n® be one of the terms of (  (s) with n = p°1¢°>. Then

1/n° = p q 2" (cos(log(p° ¢°?)) + isin(log(p® ¢°?)))
= p “%q" " (cos((e1log(p) + e2log(q))y) + isin ((e1log(p) + e21og(q))y)) -

Using trigonometric summation formulas, we can express the real and imaginary
parts of (, , (s) as polynomials in p~®,¢~* and the sine and cosine functions of

(log(p))y and (log(q))y.
Let ged(mq,m2) = 1. Then we can find l;,l € Z with lym2 —Ilam; = 1. Solving

the linear system
(log(g))y = ULA+mB
(log(p))y = —lA—-mB
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in A and B, we obtain.

A = (ma(log(p)) +ma(log(q))) y
B — (i (log(p)) + 12(log(9))) v-

Using trigonometric summation formulas again , we can express the real and imagi-
nary parts of {  _(s) as polynomials in p~*,¢~* and the sine and cosine functions of
A and B. Now we can use Groebner basis reduction to eliminate cos(B) and sin(B)
from the equations ® (., .(s)) =0, S (¢y,,(5)) =0, and cos?(B) + sin®(B) =0,
obtaining a single equation F'(z,cos(4),sin(A)) = 0. The zeros of ¢, (s) lie on
this curve, which has period |27i/(mq (log(p)) + m2(log(q)))| in y. O

Some examples of the application of this theorem are given below:

(1) On the left in Figure 8 we see zeros of (3(s) reduced modulo 3 (logf2+137)) We

L1e fi6
X

ri2

r0.8
r0.6
ro.4

ro.2

-1 -08 -06 -04 -02 0.2 0.4 0.6 0.8 -1 -08 -06 -04 -02 0702 0.4 0.6 0.8

FIGURE 8. Zeros of (3(s) reduced modulo % and derived curve

apply Theorem 4.5 with p = 2,q = 3,m1 = 6, my = 7, deriving [y = ly = 1. Then,
we have

(log(2))y = —-A-7B
(log(3))y = A+6B

where A = 6log(2) + Tlog(3), B = —log(2) — log(3). Carrying out the algebraic
reduction to remove the trigonometric terms in B, we obtain 2 cos(4)- 139968~ +
40967"—6- 4304672177 —153- 688747536~ *+78- 502096953744~ *+1287- 3869835264 7 —
405 - 2754990144~% — 825 - 110199605767 + 21 - 65536~ — 21 - 4194304~7" —
1287- 44079842304~ 74252- 241864704~ —253- 55788550416 "—1254- 967458816~ —
78- 33973862477 —825- 1911029767 +210- 1224440064~ +605- 247949112967 +
715- 991796451847 4+462- 4897760256 "+462- 2176782336 “+94- 1549681956 *—
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1716- 8707129344~ 74+1320- 429981696 ~*—715- 1719926784~ *4-59- 125524238436~ *+
126 - 268738567 + 7 - 19131876% + 125 - 5898247 — 41 - 17218688477 —
71- 3774873677 —286- 223154201664 "—20- 3486784401~ *4+1716- 19591041024~ "—
750- 1074954247 —43- 147456~ "+160- 94371847 +855- 4777574477 —7- 16384~ " —
67108864~*—35- 26214477 4+13- 150994944774+ 319- 849346567+ 35- 1048576~ "+

6- 36864 7+25418658283297—6- 282429536481 *+7- 16777216~ *—372- 11943936~ —
13- 1129718145924~* + 84 - 306110016~% — 190 - 2359296~ + 396 - 5308416~% —
148 - 13271047% — 106 - 13947137604—% — 510 - 212336647 + 21 - 33177677 +
478296977 4-28- 76527504~ *+15- 3874204897 *+300- 6198727824~ *4-286- 764411904 "+
15- 31381059609~ % + 56 - 2985984~ " = 0, giving the plot on the right. This ex-
pression has 64 non-zero terms, with degrees 1 in cos(log(2%37)y) and 26 in each
277 and 3~% for comparison with data for other curves given below.

(2) Figure 9 shows zeros of 14 reduced modulo 102&;) and modulo 10@%. For the

/ f )
i 5 / S
. AN
— 5 \
a P )
[ (// -
-
/ v
o . (
- N \ \.
\ 3 \ g
\\; 0
/ —
A / o —
2 e ,///
/ el
N
= @ -
1 — — N
A )
— y
e / -
: (
215 1 0.5 G o’s EY 15 S1 6s 0’5 1 T D L

FIGURE 9. 500 zeros of 74 (s) reduced modulo %, modulo %
and derived curves

first diagram, the zeros lie on the curve given by

477t cos(log(2)y)® + 2 (277 — 87%) cos(log(2)y) =3+ 47* +977 —16% -1 =0.

This splits into linear factors in cos(log(2)), one giving the loops to the left of y = 0
and the other giving toe loops to the right. For the second diagram, the curves are
given by
4cos(log(3)y)® - 97 + (4-277" +4-37" —6-487% —2-1277%) cos(log(3)y)
+256 7 —64 ¢ —2.144 % —36 T 4+81 " -4 +2.9%—4.16 “+1=0.

This again splits, giving curves to the left and right of y = 0. The third plot shows
several periods of these curves plotted together.
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(3) We consider the function

1 1 1 1 1 1
71'24(8) = 1+§+§+E+§+§+&
1 1 1 1
T Tie "1 T
Here the terms involve only the primes 2 and 3, so by Theorem 4.5 the zeros
reduced modulo % will lie on a curve in the plane. Using the algebraic reduction
techniques outlined we may derive an explicit formula for this curve, the data on

this is contained in the following table. Figure 10 depicts the curve. Notice that

| no. of terms | deg (cos(log(24)t)) | deg(277) | deg(377)
x| 1765 | g 80 | 40

TABLE 1. Data of the curve of the reduced zeros of may

the picture is turned —90 degrees, to obtain a more dramatic effect.

o P | =
o o . o N (=] 0‘1 [ u"\ »
T 1 N I
| |
P =
0 o
[
= =
| |
<} o
0 o
%
2 . F s .
o N ® =L
’ [ ,
[ B .
] e
. K .
. . s
s P °
o [ S

27i

FIGURE 10. 506 zeros of ma4 reduced modulo Tog(24) and derived
curve. (Alexa’s penguin)

4.2. Multiple parameter curves: We now examine the patterns which appear
when the imaginary parts of the zeros of an exponential sum involving three or
more primes are reduced via various periods. We start by reconsidering Figure 1
from the introduction where zeros of (5(s) are reduced modulo 2mi/log(5). There
no longer appears to be a simple curve. Since the number of zeros is countable,
they cannot fill a region. However, there are areas where they appear to become
dense. There are also shadings and outlines for curves which ask for explanation.
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The zeros of ((s) are the intersection points of the curves

(11) 1+ cos(log(2)y) L cos(log(3)y) + cos(2log(2)y) 4 cos(log(5)y) _ 0
27 3z 92z 5T
sin(log(2)y) | sin(log(3)y)  sin(2log(2)y)  sin(log(5)y) _
(12) e T30 T 55 +— = 0.

We can eliminate the terms in log(3)y, say, but we are still left with trigonometric
terms in both log(2)y and log(5)y, so the function we obtain no longer has a simple
period in y as before. We do note, however, that for values y; (mod 27/log(2)), y2
(mod 27/ 10g(3)),ys (mod 27/ log(5)), we can find y so that the values y — y1
(mod 27/ 10g(2)),y — y2 (mod 27/1og(3)),y — ys (mod 27/ log(5)) are arbitrarily
small. This leads us to consider log(2)y,log(3)y and log(5)y as independent vari-
ables log(2)y1,log(3)y2 and log(5)ys. The function

(13) F(m,y1,y2,y3) = 1+ 27T 4 357wz 4 92(z+iv) 4 paivs

maps R?* into C. The zeros of F are not discrete, but lie on smooth surfaces. F is pe-
riodic the the variables y1, y2, ys with periods m = 27/ log(2), 7 = 27/ log(3), 73 =
27/ log(5) respectively. Thus, the zeros of F'in Rx H3:1 [0, 7;] may be taken as rep-
resentatives of all the zeros of F. The partial diagonal map I :  +iy — (2,y,y,9)
takes C into R*. We would like to investigate the relationship between the zeros of
(5(s) via the map I and the zeros of F. We approach this more generally in the
following theorem.

Theorem 4.6. Let F(x,y1,y2,...,yx) : R¥Y — C be continuously differentiable

and periodic in the variables y1,ys2, . .., yr with periods w1, 7a, ..., 7 which are ra-
tionally independent. Suppose that the function F(x,y,...,y) obtained by restric-
tion to the partial diagonal y1 = yo = ... = yr = y defines a complex analytic

function f(z +iy) and that {(z,y1,y2,...,yk) : & # 0} is dense in R¥+1. Let I :
C — REL be the injection x+iy — (z,y,y,...,y) and R : R - Rx ]_[f:1 [0, 7]
be the reduction map taking y; to its equivalent modulus in the period [0, 7;]. The the
zeros of f under the composition Rol are dense in the zeros of F' in Rx Hle [0, m;].

Proof. Let X, = (2,vy1,Y2,.-.,yx) € R X H?Zl [0,7;] be a zero of F. We wish
to show that for ¢ > 0 we can find a zero z of f and X, € R !(X,) such that
|I(z) — X.| < e. By the hypothesis, we may restrict ourselves to X, for which
a= 2L 0. Certainly, we may find z and X € R™!(X,) such that I(z) and X are
as close as we may like. The problem is to find such a z with f(z) = 0. We start
by finding 2, and X, close enough and then show that the iterates obtained using
Newton’s method

Rn4l = Zn — fI(Z )
n

converge to the desired z.
First, by the continuity of the derivatives, we can find §; < £ such that

OF min{|al, 1}
X-X 1) —(X) - — =
X=Xel<o = 15X 8k + 1)
Further, by continuity, we can find d2 < §; such that
51|a|

X-X F(X .
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We now find 29 € C such that |I(z) — X,| < 82/2 for some X, € R~1(X). We
note the following

(1) f'(x +iy) = §L(z +iy) = SEI(x + iy)).

(2) It |I(z') — X.| < & and |I( " — X,| < &, then ‘ﬂi’,?:f“’)

2!

< min{lal,1}
8(k+1)

Otherwise, for some point 2" on the line between 2’ and 2", we would have

(") > % However, since |I(2") — X,| < &1, this contradicts our choice

for 4.

() If'(2) —al <lal/8(k +1) = |f'(2)| > (8k + 7)|al/8(k + 1)

(4)InC, |2 —2"| < 8/(k+1) = |I(z')—I(z")] <& in RF+L,

"t

We now examine the Newton’s method iterates. By the choice of §, we have

zo)) _ ‘f(j") + /(=) (f/(le) - é)‘

|21 — 20| = ‘—

F o I(z) Fol(z)||FolI(z0)—a
5‘ a *‘ a ‘F°I(zo)
4 51 la|  8(k+1)
= BE+1) 8+ 1) 8k+1)]al@k+7)

01
TR

This implies |I(2;) — I(z0)| < d1/4 and ensures that |I(z1) — X,| < 35;/4, so we
still have control over the size of the derivative.

We assume inductively that |I(2n41) — X;| < &1 and |I(z,) — X| < 81, which is
true for n = 0. Then, we have

f(zn41)

Zn+l — %n

f(zng1 — f(zn) — '(z)
Zn+1 — Zn
‘f(zn+1 — f(zn) _
Zn+1 — 2n
min{|al, 1}
4(k+1) -

IA

a +la— f'(zn)|

Then we have

Zn+1
f (Zn+41)
minfll 1}y 84D

(k+1) la|(8k +7)
|zn+1 — znl
2k + 1)

This gives |I(2n42) — I(2n+1)| < 3|I(2nt2) — I(2n41)| so we always have |I(z,) —
X,| < 61 as our Newton’s method proceeds. Ele sequence 2z, converges to some
z € Cwith f(2) = F(I(2)) =0. Also, |I(z) — X,| < §; < g, as required. O

|Zn+2 - Zn+1|

We apply this theorem along with Theorem 3.1 to establish a lower bound for
the real parts of zeros of {n(s) for N prime.
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Theorem 4.7. For N prime we have

inf{o : (ny(s) =0} = 8,
where B3, is the negative root of (_,(By) = NP~

Proof. Suppose that p; is the jth prime with py = N. Substituting log(p;)t = y;
in the equations R (({n(s)) =0 and Im (({w(s)) = 0, we obtain

14+ 2 %cos(y1) +3 % cos(y2) + ...+ N % cos(yx) =0
1+ 2 %sin(y1) +3 “sin(yz) + ...+ N “sin(yg) =0,

we see that the substutions y; =0 for 1 < j < N —1 and y; = 7 cause the second
equation to vanish and transform the first to

142743 %"+...+4(N-1)""=-N""=0,

for which the negative root is 3,. Applying Theorem 4.6, we can find roots of
¢n (o +it) for which o is arbitrarily close to 8. Applying Theorem 3.1, the result
follows. |

To relate Theorem 4.6 back to our diagrams, we use the projection P : RFt1 — C
defined by P(x,y1,---,Yx) = & + iyg- The next corollary follows directly.

Corollary 4.8. Let F,f be as in the theorem and let V be the zeros of F in
R x Hle[O,ﬂj]. Then the zeros of f reduced modulo iy, into the period 0 <y < g,
are dense in P(V).

We return now to Figure 1. The zeros of (5(s) reduced modulo 2mi/log(5)
are dense in the P-image of the zeros of F(z,y1,y2,y3), as defined in (13), in
R x H?Zl [0,7;]. We can obtain equations for bounding curves by examining the
extreme z-values of zeros of F. Where F, and F; are the real and imaginary parts
of F', these zeros satisfy

(14) Fo=1+ cos(log(2)y1) N cos(log(3)y2) n cos(2log(2)ys) n cos(log(5)ys)
XS 3z 22z 5z
sin(log(2 sin(log(3 sin(2log(2 sin(log(5
(15) Fy= S100E@01) | sinllog@ys) | sin(2log@n) , sinlog()s)
22 3= 22z 5

We regard (15) as defining y» as a function of z,y1,ys, with F,. then giving x as

a function of the independent variables y; and y3. Taking partial derivatives with
respect to y;, we obtain

OF, Oz OF,  OF, 0y,

Ox Oy1  Oy1 Oy2 Oyr

OF, 0 | OF;  OFi 0y

Ox Oy1  Oyr  Oy2 Ownr

=0

=0.

To obtain the extreme x values we set g—;l = 0. Eliminating g% we obtain the
condition

OF, OF; OF, 0F; _

Oy dy2  Oyz Oy
Note that regarding y; as the dependent variable and y, independent leads to the
same condition.
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For (13), we obtain the equation

sin(log(3)y2) [cos(log(2)y1)  2cos(2log(2)y1)
(16) 3z g ( oz + 922z ) -
sin(log(2)y1)  2sin(2log(2)y1)\ cos(log(3)y=)
(17) ( 5o T 5 ) o =0.

We now have the three equations (14), (15) and (16) to describe the bounding
curve. Using algebraic reduction we can eliminate terms in log(2)y; and log(3)y:
to obtain a single equation involving z and log(5)ys having period 27i/log(5). In
Figure 11 we see the comparison between reduced zeros of (5(s) and a plot of the
image the curve given by this equation under the projection P.

5 s A s 2 45 1 o5 05

FIGURE 11. Zeros of (5(s) reduced modulo % with bounding curve

Applying the same technique, we can derive the equation for bounding curve for
the zeros of 75 (s) reduced modulo 274/ log(5). These are illustrated in Figure 12.
Of interest here is the crescent moon shaped area which appears to exclude zeros.
Data on the equations derived for these bounding curves is given in Table 2.

no. of terms | deg (cos(log(5))) | deg(27) | deg(377) | deg(57°)
(s 183 5 16 8 10
5 185 5 16 8 10

TABLE 2. Data of the bounding curves of (5 and 75

The algebraic reduction entailed is already fairly involved. For (s(s) and 7g(s)
the data on the equations for the bounding curves is given in Table 3. These
evaluations were done using Maple 8, and seem to approach the limit of what
current, algebraic packages are able to practically handle.
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FIGURE 12. 10,000 zeros of 75(s) reduced modulo iz

bounding curve.
no. of terms | deg (cos(log(6))) | deg(27) | deg(377) | deg(57°)
Cs 1197 7 30 18 12
N6 1202 7 30 18 12
TABLE 3. Data of the bounding curves of (5 and g

For these examples, what are probably the more obvious periods, i.e., 2mi/ log(N)

were chosen for reducing zeros. As in the case with two prime exponential sums, we
can choose a period 2mi/L, where L is a rational linear combination of log(p;)’s for

primes p; appearing in the sum. The finer structures of these diagrams are more
apparent in the sums involving three primes, see Figures 15 and 16 below. With
more primes, the diagrams for some periods often seem fairly amorphous. However,
as we see in Figure 17, the choice of an appropriate period may still give a diagram

with interesting separations of points.
We thank Nils Bruin of the University of Sydney for conducting the extended cal-
culation to derive the equation of the curve shown in Figure 10 using the computer

algebra system Magma [BCP97].
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