THE AVERAGE NORM OF POLYNOMIALS OF FIXED HEIGHT
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ABSTRACT. Let n > 0 be any integer and

Sn = {Zaizi ra; = 0,:&1}
i=0

be the set of all polynomials of height 1 and degree n. Let
1
Bn(m) :== prEsy Z 1Pl

PEFn
Here ||P||™ is the mth power of the L, norm on the boundary of the unit
disc. So fBn(m) is the average of the mth power of the L, norm over §p.

In this paper we give exact formulae for 3,(m) for various values of m.
We also give a variety of related results for different classes of polynomials
including: polynomials of fixed height H, polynomials with coefficients +1 and
reciprocal polynomials. The results are surprisingly precise. Typical of the
results we get is the following.

Theorem 0.1. Forn > 0, we have

Bn(@) = S+ 1),

8 , 14 2
4)=-n? 4+ —n+4=
An() = gn"+ gn+3
and 16 2% 2
6) = —n®+4n’* + “n 4 2.
Bn (6) gn n gn 3

1. INTRODUCTION

We explore a variety of questions concerning the average norm of certain classes
of polynomials on the unit disk. The Littlewood polynomials £, are defined as
follows:

L, = Zn:aizi ta; = =+1
i=0

Now let

1
Mnﬁn)?ZE;If > el
Peg,
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be the average of the mth power of the L,, norms over £,. Here and throughout

1 " m T}L 60
1Pl = {5 [ 1P} =)

is the L,,, norm of P over the unit circle.
There are many limiting results concerning expected norms. For example the
expected norms of random Littlewood polynomials P of degree n, satisfy

. 1 1 .
T {—W > ||P||m} = T(1+m/2)

Peg,

and for their derivatives

_ 1 1 T(1+m/2)
@m\ =
nh_n,loo nm/(2r+1)2 {2n+1 Pg ||P Hm} - (27. + 1)m/2

See [4] for a more detailed and precise discussion of these results.
In this paper, we are interested in finding exact formulae for u,(m). This is the
content of the first section where results like the following are obtained.

Theorem 1.1. Forn > 0, we have
wn(2) =n+1,
pn(4) =202 +3n + 1,
[ (6) = 6n° + 9n? +4n + 1

and
fin(8) = 24n* + 3003 + 4n? + 5n 4+ 4 — 3(—1)™.

That p,, (2) = n+1 is trivial since | P||2 = n+1 for each P € £,,. The above result
for p1,(4) is due to Newman and Byrnes [9] though we offer a different proof. The
results for p,(6) and u,(8) are new and are the tip of an iceberg that we explore
further, but by no means exhaustively, in this paper by extending the results to:
height H polynomials; reciprocal polynomials; polynomials with various roots of
unity as coefficients. What is striking, and perhaps surprising, is that such exact
formulae exist at all.

One interesting generalization is the following. Let

n
Sn(H) == {Zaizi ail < Hya; € Z}
i=0

be the set of all the polynomials of height H of degree < n. Let

1 m
Bn(m, H) := QH+ 1) > Pl
Pegn(H)

which is now the average over all polynomials of degree n and height at most H of
the mth power of the L,, norm. For this class we get results like

2 1
Bn(4,H) = §H2(H +1)%n% + EH(H +1)(19H? + 19H — 3)n

1
+ BH(H +1)(3H* +3H —1).
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There is a considerable literature on the maximum and minimum norms of poly-
nomials in £,. In the Ly norm this problem is often called Golay’s “Merit Factor”
problem. See [5, 3, 10]. The specific old and difficult problem is to find the minimum
possible Ly norm of a polynomial in £,,. The cognate problem in the supremum
norm is due to Littlewood [7, 6]. Both of these problems are at least 50 years
old and neither is solved though there has been significant progress on both. For
further information on these and related problems see [2].

Exact formulae for p,(m) for larger values for m are obtained in [8].

2. AVERAGE OF Ly, Ly AND Lg

As in the previous section let n > 0 be any integer and

£, = {iaizi ta; = :I:l}
i=0

be the set of all Littlewood polynomials of degree n. Let

1 m
fin(m) = o1 Z 1Pl
Peg,

be the average of the mth power of the L,, norm over £,. We are interested in
finding exact formulae for u,,(m).
For any complex number 2z on the unit circle and any real number h, we have

|z 4+ h|? + |z — h|? = 2(]2|> + h?);
|2+ h|* + |z — Bl = 2(|2[* + 4R%[2]* + Bt + K2 (22 +22));
|z 4+ h|® + |z — h|® = 2(|2|° + 9]2|*R? + 9|2|2h* + RS)
+6(|2|2 + h2)Rh2(22 + Z2).

(2.1)

Hence for any polynomial P(z),

12P(2) + hl3 + |[2P(2) — 13 = 2(|[P(2)[3 + h?);
(2.2) 12P(2) + hll5 + [|2P(2) = k|3 = 2(IIP(Z)Ilﬁi +4n%|| P(2)[13 + h*);
' 12P(2) + hlI§ + [|2P(2) = hl|§ = 2([P(2)]§ +9||P( )3k
P(22P(2)* + 22 P(2)%)do.

+9||P(2)[13h% + hO) + SBZ [27 | p(2)|?

Here we have used that fo% 22P(z)%df = 0. Since every polynomial in £,, can be
written in the form of zP(z) + h with h = £1 and P € £,,_1, we have

(2.3) Yo IPI =" (2P(z) + L + [I2P(2) = 1) -

PeL, Pefn 1

Theorem 2.1. Forn > 0, we have

(2.4) wn(2) =n+1,
(2.5) tn(4) =20 +3n+1
and

(2.6) pn(6) = 60 +9n? 4+ 4n + 1.
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Proof. Formula (2.4) is trivial because every Littlewood polynomial of degree n has
constant Lo norm /n + 1. However we give a simple inductive proof because it is
indicative of the basic method behind all the proofs. Formula (2.5) was first proved
by Byrnes and Newman in [9] but we give a simpler proof here.

Using (2.3) with m = 2 and (2.2), we have

1
i) = oor Do (12P() + 13 + 2P (2) — 1]3)
Pel,_1
1
= s 3 2PE+Y
Pe»gn—l

for any n > 1. It is clear that ug(m) = 1 for any m. Thus from (2.7) we have
in(2) = po(2) +n=n+1.
This proves (2.4).
Similarly, using (2.2) and (2.3) with m = 4, we have
1
i) = oo Do 2(IPIE+ 4Pl + 1)
Pel,_1
= () A 1 (2) 41
for any n > 1. Using (2.4) and po(4) = 1, we get (2.5).
To prove (2.6), we need the following two lemmas.

Lemma 2.2. For m # 0, we have

Z/Qﬂ 2)Pz"do = 0.

Peg,

Proof. We prove this result by induction on n. When n = 0, we have
27 27

Z/ (2)%2 mde—z/ 2Mdf =0

PeLy 0

because f02 "2™dh = 0 when m # 0. Now, by writing every polynomial in £,, as
zP(z) £ 1 for some P € £,_; and using (2.1) and the induction assumption, we
have

27 27
Z/ ()220 = Y / {|2P(2) +1|* + |2P(2) — 1|} z™d0

pPeg, pPel, 1
2m
= Z / {2|P(2)* + 2} 2"db
pPeL,
= 2 ) / (2)]?2™d6 = 0.
Pecl, 1
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Lemma 2.3. For m > 1, we have

Z/% 2)[22™P(z)2%df = 0.

Peg,

Proof. We again prove the lemma by induction on n. Like Lemma 3.2, the case
n = 0 is easy. Now

S [ iR pe s

Peg,
= 5 [P 1P EPE) 41 4 PG 1P PR - )P b
Pcly,_1

We expand the integrand out and after some simple cancellation we get that the
above expression is

> /% {2|P(2)?2™ 2 P(2)* + 6| P(2) 2™ + 2™ (622 P(2)* + 2) } df

Peg, 1
= 2 Z / (2)]22" 2P (2)d6 + 6 Z / (2)|22"do
Peg, Peg,

because 2™ (622P(z)? + 2) is a polynomial with zero constant term in z. Now the
above integrals are equal to 0 by Lemma 2.2 and the induction assumption. O

We now prove (2.6). From (2.2), (2.4), (2.5) and Lemma 2.3

1
1) = g Y {Il2P@) + 1+ 1IzP(2) - 115}
Pel, 1
1
= s 2o 2{IPIE+9IPIE +9lP5 + 1}
Pel, 1

= fin—1(6) + 9pn—1(4) + 9pn-1(2) +1
= 6nd4+9m?+4n+1.

This completes the proof of the theorem. O

Let n > 0 be any integer and

Tn = {iaizi tap = 0,:&1}
i=0

be the set of all the polynomials of height 1 of degree n. Let
1 m
Bn(m) = n+l Z P[5
Peg,

As in Theorem 2.1, one can also obtain exact formulae for 8, (m). The additional
details involve observing that since

I2P(2) + Ol = 1P (=)l
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equations (2.2) can be extended easily to allow summing over all the height one
polynomials. For example, for any polynomial P(z), the middle identity of (2.2)
becomes

12P(2) + hll3 + [|2P(2) = hll3 + [|2P(2) + 0l = 3] P()ll3 + 8h*| P(2) |3 + 2h*.

Theorem 2.4. For n > 0, we have
2
Bn(2) = Z(n+1),

14

8 2
L (4) = —n? + — =
On(4) 9n+9n+3

and

1 2 2
Bn(6) = §n3 + 4n? + §6n + 3

It is worth noting that the above technique can also be used to compute the
averages of the norms of polynomials of height H. For example, one can show the
following. Let n > 0 and H > 1 be integers and let

Sn(H) = {Zaizi i a;| < Hja; € Z}
i=0

be the set of all the polynomials of height H and degree < n. Let
1
n(m, H) = —————— Pl
PEF,(H)

Theorem 2.5. Forn >0 and H > 1, we have

(2, H) = %H(H F1)m+1),

Bn(4,H) = §H2(H +1)%n% + %H(H +1)(19H? + 19H — 3)n
+ %H(H +1)(3H* +3H — 1)
and
B (6, H) = gHS(H +1)%n + %H2(H +1)*(3H* + 3H — 1)n?
+ LH(H + 1)(164H* 4 328 H? + 56 H? — 108H + 15)n

315

1
+ o H(H + D(3H* +6H® —3H +1).
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3. FORMULA FOR THE AVERAGE OF Lg

The formula for u,,(8) is somewhat more complicated. We proceed as follows.

Lemma 3.1. For m > 0, we have
1 ifm<n;

1 1 2T B
ST D g/ 2" P(z)%d0 =
pes, 0 0 ifm>n.

Proof. This is clearly true for m = 0. Suppose m > 1. If m < n, then

1 1 27 m _
S Z %/0 2?™P(%)%df

PeL,

— Qn—1+1 > %/ Wzm”{(EP(E)+1)2+(EP(E)—1)2}d9
PELyn_ 0

1 1 27
> %/0 2M(2P(z)? + 1)d6

Pefl, 1
_ 1 Z 1/2ﬂz2(m1)p(g)2d9
2" PEL, 1 27 Jo
1 1 27
= = —— — P(z)%d6
on—m+1 Pegr;,m 27T/0 (%)
1
= S > o1=1L
Peln_m
If m > n, then
1 > i/% 2mP(z)%de = E > i/% 220m=1) p(z)2de
2’!'L+1 Pes 27T 0 2 Peg 27T 0
n 0
1 1 2m
= =Y _/ Z2m=) g = .
27T 0
Pefy

Lemma 3.2. For m > 1, we have

n—m-+1 ifm<n;

1 1 2m
1 - i 2m P 4 —
B g [ SIPEI
Pcg, 0 if m > n.
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Proof. Let By (m) be the left hand side of (3.1). By Lemma 2.2 and (2.1)

1 1 27 -
Ba(m) = oo S %/0 2M(2P() + 11 4 [2P(2) — 1P)do
PEEH,I
1 1 o 2m 4 2 2 2 | =2 p/=\2
= o D gf 2P+ Alp(2) + 1+ 22P(2)? + 22P(2)%)d6
Pefy_1
= Bn_l(m)+i > i/%zz(ml)P(E)Qd&
) 2n 27 Jo
PeLl, 1

= Bn_l(m) + Cn_l(m — 1)

where
) 1 o 1 ifm <mn;
2 Peo 2T 0 .
CLn 0 ifm>n;
by Lemma 3.1. Clearly,
1 2m )
o(m) 2w _/0 ‘
Forn > 1, we have B,,(m) = B,,_1(m)+Cp_1(m—1). If m > n, then C,,_1(m—1) =
0 and hence B, (m)=---= Bg(m) =0. If m < n, then
B,(m) = Bu_i(m)+Cp_1(m—1)
= n—m+1.
([l
Lemma 3.3. For m > 1, we have
S / P2 P ()0
2n+1 2 0
Peg,
0 ifm>n;
%(n—m)2+%(n—m)+%)m+n if m<n.
Proof. Let
1 1o 4.2 2
Aum) = ot Y %/0 |P(2)[* 22 P(2)2d6.
pPecg,
Then

1 1 4 2
An(m) = ng %/0 z {|zP(z) +1]%(2P(2) + 1)

+|zP(z) — 1|*(2P(z) — 1)*} d6.

We expand the integrand out and use Lemmas 3.1 and 3.2. We derive that for
n,m > 1,
Ap(m)=A,_1(m+1)+6B,_1(m)+ Cr_1(m —1).



It is clear that Ag(m) = 0. Thus if m > n > 1, then B,,_1(m)
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Cn_1(m — 1) =0

and hence A,(m) = -+ = Ag(m +n) = 0. Suppose 1 < m < n.Ifn+m=0
(mod 2), then

Ap(m)
Ap—2(m+2) 4+ 6(Bp_1(m) + By—2(m + 1)) + (Cr—1(m — 1) + Cr—2(m))

Avzen (n;m> +6Bp-1(m) + 6By —a(m + 1) + -+ + 6Bz (n;m - 1)

+Ch_1(m —1) + Cp_a(m) +---+CmT+n (m;n —2> .

Since A,,,(m) = 6B,,—1(m)+ Cp—1(m—1) = 1 by Lemmas 3.1 and 3.2, we see that

n—m
An(m) = 1462 +4+- -+ (n—m))+ —5
3 7
= §(n—m)2—|—§(n—m)+1.
The case n +m =1 (mod 2) can be proved in the same way. O

In particular, Ag(1) =0 and for n > 1

(3.2)

3 1 -H" -1
An(l) = §TL2 + §Tl+ %

We now come to the proof for the formula of 1(8). Since

|2P(2) + 18 + |2P(2) — 1|® = 2(|P(2)|® 4 16| P(2)|® + 36| P(2)|* + 16|P(2)|* + 1)
+ 2(6|P(2)|*22P2(2) 4 6| P(2)|*22 P%(Z) + 16|P(2)|?2%P?(2) + 16| P(2)|*z2 P%(%))

+2(6P%(2)2% + 6P?(2)2* + P(2)*2* + P(2)*z%).

It follows from Lemmas 2.3 and 3.3 that

110 (8) = fin—1(8) + 16711 (6) + 361n—1(4) + 161n_1(2) + 1 + 124, _1(1).

In view of Theorem 2.1 and (3.2), we have

tn(8) = pn_1(8) + 16(6n> — 9n? + 4n) + 36(2n* — n) + 16n + 1
+18n2 — 30n + 6 — 6(—1)"
= 24n* +30n% +4n® +5n +4 — 3(-1)".

Thus we have proved

Theorem 3.4. For n > 0, we have

1
SuESY > IIPIE = 24n* + 30n® + 4n® + 5n + 4 — 3(—1)".
peg,

4. DERIVATIVE AND RECIPROCAL POLYNOMIALS

If we replace z by z/w in (2.1) then we have a homogeneous form of (2.1)

(4.1)

|z + hw|? + |2 — hw|? = 2(]2]? + R?|w|?);
|z + hw|* + |z — hw|* = 2(]z|* + 4h2|2|*|w|? + h*|w|*

+h2[w|*((2)* + (£)°)).

Let P("™)(z) be the mth order derivative of P(z).
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Theorem 4.1. Forn > 0, we have

X 0 ifm>n;
(m))12 _ n 2
4.2 e 2 PR e (1) msn
n m
l=m
and
1 m
s O 1P
Peg,
0 if m>mn;
2
(43) _ A n l 2 . n I 4
! —m! ) <n.
2m ZZZ . m l_;n m ifm<mn

Proof. We write every polynomial in £, as P(z) & 2™ for some P € £,_;. In view
of (4.1), we have

1 m
o 2 1P

Peg,

1

= s 2 (1P + M+ 1P () - (M) ))

Pel, 1

2
1 n
- 5 X (e (r))
2nP€£n1< m
1 n\ >
- P(m)2 !2
o > P me(

Pef,_1

g ()

This proves (4.2). For (4.3), we have

1
st 2 1P

Peg,
1 n n
_ (m) n—m||4 (m) _ n—m |4
= g X (1@ em ()it P —m (7))
e n—1
1 n\ > n\*
- P(m) 4 4 !2 P(m) 2 !4
on P; (II s +4mt=( )l 2 +mt™(
n—1

because P(m)(z) is a polynomial of degree less than n — m — 1 for any P € £,,_
and hence fOQW(P(m)(z)/z”’deH = 0. Using (4.2), we have

1 m
ot 2 1P
PecL,

- Z [P 1 + 4mt? " (! 2+m'4 '
on S 4 " \m ; m “\m/
o1 =m
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As before, this proves (4.3). O

A polynomial P(z) of degree n is reciprocal if P(z) = P*(z) and negative
reciprocal if P(z) = —P*(z) where P*(z) = 2"P (). In view of (4.1), we have

IP(2) + 2" 1P ()5 + [[P(2) = 2" P* (2) 1 = 12| P

Since every reciprocal and negative reciprocal polynomial of degree n = 2m + 1
can be written as P(z) + 2™+ P*(z) and P(z) — 2™T1P*(2) for some P € £,
respectively, so the average of |P||] over the reciprocal and negative reciprocal
Littlewood polynomials in £,, is

1 7 * m *
= oz O PG+ P )G +P(:) — 2P (2) 13}
pPeg.,

6
= 5o 2 IPIE
Pel,,

= 6(2m*>+3m+1)=3n+3n

by Theorem 1.1. Now since

PERIPIT = D IPG) + 2" P (o)
Pely,
= > PG =P )i =) S5 PlG
pPel.,

we have proved that if n is odd

1 peg
9(n+1)/2 Z p=p*

By a similar argument, we can show that the average ||P||} over the reciprocal
Littlewood polynomials in £, is 3n% + 3n + 1 if n is even.

P||4 = 3n? + 3n.

1
4 Pel,
Plls = 5o >l

5. POLYNOMIALS WITH COEFFICIENTS OF MODULUS 1

The critical lemma in this analysis is Lemma 5.2 below.

Lemma 5.1. For m > 1> 0, we have

S EE ) ()
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Proof. Without loss of generality, we may assume [ < m/2. Thus the left hand side

of (5.1) becomes

Lemma 5.2. Let 1 <m <k and (, =e~ .

have

k—1
(5.2) dolz+ P
=

Proof. We first have

k-1 _
D =g
j=0

I
MN

> ()G

m/!

)2 =)l m =1 =3)!

()J ("7)0)
()

<.
=~ 1

I
<.
I
o

~ 3

~ 3
N~
[N~}

]

27i

Then for any compler number z, we

kST (7)1, if k< m;

EXT (M2 +mGzm + 2, ifk=m.

el
|
—

G+ mE+GH™

> <.
[
- O

(2 + 1+ (2¢7 +20)™

(7 ) s + 0 i(l) (GY (2

r=0

l r
O<Tln)<r)(|z2+1m l P l TZC](I 2)

(]

I
- o

(]
Ms

x> <.

M 1

N
I
o
5
Il

Since Z 7 % equals 0 if a Z 0 (mod k) and equals to k otherwise, if m < k, then

we have

k—1 _
D =GP
§=0

G r= Lfm l m—I _r=l—r
kZZlEQT(m?)d k) (l><r>(z|2+1) ‘27!
1=0

C% itaten " (1) (1)) 028 + 7t
e () () e e

0<i<m/2
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We then expand the term (|z|2 + 1) 2! to get

|Z+< |2m - k Z m 2 nfl m— 2l ‘Z|2(l+’l")
k 21 l r

=0

p=g m—20(m\ (21\ (m — 2l FE
: POEDIET 21) \ 1 r
j=0 | 0<i<m/2

Z m\ 20\ (m — 2l |22
. o \2)\1 )\ -1
3=0 | 0<i<min(j,m—j)

N
—

S,

Il
o
(=}
A
IN
~~
(V)

Il I I
e e e
NSERNNSERNINGE
N
<. 3
N——
_l\D
x
&

by Lemma 5.1. If m = k, then

k—1
j 21
2l GPm=k 3 (ZD<l)(|z|2+1)m_21|Z|21+m(zm+Em).

j=0 0<i<m/2

This proves our lemma. 0

Lok —{Zal : al —1}

be the set of all polynomials of degree < n whose coefficients are kth root of unity.
This is a generalization of Littlewood polynomials and clearly £,, = £,, 2. Then we
have

Let n > 0 and

Theorem 5.3. Forn >0 and m < k, we have

(5.3) ﬁ > Pl = iZ nz(ll) <2)2"'<l7n1>2'

PEL k 11=015=0

Proof. In view of Lemma 5.2, the left hand side of (5.3) is
1

k-1
= i Z ZHZP(Z)‘FC;Z;H%

Pely_1,k7=0

m 2
=3 (7) (@ X e
=0

PeLy 1k

ST () () ()

because

This completes the proof. O
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For example, for k > 5, the averages || P} over the polynomials in £, ; are
n+1,2n% +3n+1,6n3 4+ 9n? +4n+1,24n* + 24n3 +10n2 + 11n+ 1, 120n° + 50n3 +
125n% — 44n + 1 when m = 2,4, 6, 8, 10 respectively.
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