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Abstract. Let n ≥ 0 be any integer and

Fn :=

(

n
X

i=0

aiz
i : ai = 0,±1

)

be the set of all polynomials of height 1 and degree n. Let

βn(m) :=
1

3n+1

X

P∈Fn

‖P‖m
m.

Here ‖P‖m
m is the mth power of the Lm norm on the boundary of the unit

disc. So βn(m) is the average of the mth power of the Lm norm over Fn.

In this paper we give exact formulae for βn(m) for various values of m.

We also give a variety of related results for different classes of polynomials

including: polynomials of fixed height H, polynomials with coefficients ±1 and
reciprocal polynomials. The results are surprisingly precise. Typical of the
results we get is the following.

Theorem 0.1. For n ≥ 0, we have

βn(2) =
2

3
(n + 1),

βn(4) =
8

9
n2 +

14

9
n +

2

3
and

βn(6) =
16

9
n3 + 4n2 +

26

9
n +

2

3
.

1. Introduction

We explore a variety of questions concerning the average norm of certain classes
of polynomials on the unit disk. The Littlewood polynomials Ln are defined as
follows:

Ln :=

{

n
∑

i=0

aiz
i : ai = ±1

}

.

Now let

µn(m) :=
1

2n+1

∑

P∈Ln

‖P‖m
m
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be the average of the mth power of the Lm norms over Ln. Here and throughout

‖P‖m :=

{

1

2π

∫ 2π

0

|P (z)|mdθ

}

1
m

, (z = eiθ)

is the Lm norm of P over the unit circle.
There are many limiting results concerning expected norms. For example the

expected norms of random Littlewood polynomials P of degree n, satisfy

lim
n−→∞

1

nm/2

{

1

2n+1

∑

P∈Ln

‖P‖m
m

}

= Γ(1 + m/2)

and for their derivatives

lim
n−→∞

1

nm/(2r+1)2

{

1

2n+1

∑

P∈Ln

‖P (r)‖m
m

}

=
Γ(1 + m/2)

(2r + 1)m/2
.

See [4] for a more detailed and precise discussion of these results.
In this paper, we are interested in finding exact formulae for µn(m). This is the

content of the first section where results like the following are obtained.

Theorem 1.1. For n ≥ 0, we have

µn(2) = n + 1,

µn(4) = 2n2 + 3n + 1,

µn(6) = 6n3 + 9n2 + 4n + 1

and

µn(8) = 24n4 + 30n3 + 4n2 + 5n + 4 − 3(−1)n.

That µn(2) = n+1 is trivial since ‖P‖2 = n+1 for each P ∈ Ln. The above result
for µn(4) is due to Newman and Byrnes [9] though we offer a different proof. The
results for µn(6) and µn(8) are new and are the tip of an iceberg that we explore
further, but by no means exhaustively, in this paper by extending the results to:
height H polynomials; reciprocal polynomials; polynomials with various roots of
unity as coefficients. What is striking, and perhaps surprising, is that such exact
formulae exist at all.

One interesting generalization is the following. Let

Fn(H) :=

{

n
∑

i=0

aiz
i : |ai| ≤ H, ai ∈ Z

}

be the set of all the polynomials of height H of degree ≤ n. Let

βn(m,H) :=
1

(2H + 1)n+1

∑

P∈Fn(H)

‖P‖m
m

which is now the average over all polynomials of degree n and height at most H of
the mth power of the Lm norm. For this class we get results like

βn(4, H) =
2

9
H2(H + 1)2n2 +

1

45
H(H + 1)(19H2 + 19H − 3)n

+
1

15
H(H + 1)(3H2 + 3H − 1).
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There is a considerable literature on the maximum and minimum norms of poly-
nomials in Ln. In the L4 norm this problem is often called Golay’s “Merit Factor”
problem. See [5, 3, 10]. The specific old and difficult problem is to find the minimum
possible L4 norm of a polynomial in Ln. The cognate problem in the supremum
norm is due to Littlewood [7, 6]. Both of these problems are at least 50 years
old and neither is solved though there has been significant progress on both. For
further information on these and related problems see [2].

Exact formulae for µn(m) for larger values for m are obtained in [8].

2. Average of L2, L4 and L6

As in the previous section let n ≥ 0 be any integer and

Ln :=

{

n
∑

i=0

aiz
i : ai = ±1

}

be the set of all Littlewood polynomials of degree n. Let

µn(m) :=
1

2n+1

∑

P∈Ln

‖P‖m
m

be the average of the mth power of the Lm norm over Ln. We are interested in
finding exact formulae for µn(m).

For any complex number z on the unit circle and any real number h, we have

(2.1)

|z + h|2 + |z − h|2 = 2(|z|2 + h2);
|z + h|4 + |z − h|4 = 2(|z|4 + 4h2|z|2 + h4 + h2(z2 + z2));
|z + h|6 + |z − h|6 = 2(|z|6 + 9|z|4h2 + 9|z|2h4 + h6)

+6(|z|2 + h2)h2(z2 + z2).















Hence for any polynomial P (z),

(2.2)

‖zP (z) + h‖2
2 + ‖zP (z) − h‖2

2 = 2(‖P (z)‖2
2 + h2);

‖zP (z) + h‖4
4 + ‖zP (z) − h‖4

4 = 2(‖P (z)‖4
4 + 4h2‖P (z)‖2

2 + h4);
‖zP (z) + h‖6

6 + ‖zP (z) − h‖6
6 = 2(‖P (z)‖6

6 + 9‖P (z)‖4
4h

2

+9‖P (z)‖2
2h

4 + h6) + 6h2

2π

∫ 2π

0
|P (z)|2(z2P (z)2 + z2P (z)2)dθ.















Here we have used that
∫ 2π

0
z2P (z)2dθ = 0. Since every polynomial in Ln can be

written in the form of zP (z) + h with h = ±1 and P ∈ Ln−1, we have

(2.3)
∑

P∈Ln

‖P‖m
m =

∑

P∈Ln−1

(‖zP (z) + 1‖m
m + ‖zP (z) − 1‖m

m) .

Theorem 2.1. For n ≥ 0, we have

(2.4) µn(2) = n + 1,

(2.5) µn(4) = 2n2 + 3n + 1

and

(2.6) µn(6) = 6n3 + 9n2 + 4n + 1.
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Proof. Formula (2.4) is trivial because every Littlewood polynomial of degree n has
constant L2 norm

√
n + 1. However we give a simple inductive proof because it is

indicative of the basic method behind all the proofs. Formula (2.5) was first proved
by Byrnes and Newman in [9] but we give a simpler proof here.

Using (2.3) with m = 2 and (2.2), we have

µn(2) =
1

2n+1

∑

P∈Ln−1

(

‖zP (z) + 1‖2
2 + ‖zP (z) − 1‖2

2

)

=
1

2n+1

∑

P∈Ln−1

2(‖P‖2
2 + 1)

= µn−1(2) + 1(2.7)

for any n ≥ 1. It is clear that µ0(m) = 1 for any m. Thus from (2.7) we have

µn(2) = µ0(2) + n = n + 1.

This proves (2.4).
Similarly, using (2.2) and (2.3) with m = 4, we have

µn(4) =
1

2n+1

∑

P∈Ln−1

2
(

‖P‖4
4 + 4‖P‖2

2 + 1
)

= µn−1(4) + 4µn−1(2) + 1

for any n ≥ 1. Using (2.4) and µ0(4) = 1, we get (2.5).
To prove (2.6), we need the following two lemmas.

Lemma 2.2. For m 6= 0, we have

∑

P∈Ln

∫ 2π

0

|P (z)|2zmdθ = 0.

Proof. We prove this result by induction on n. When n = 0, we have

∑

P∈L0

∫ 2π

0

|P (z)|2zmdθ = 2

∫ 2π

0

zmdθ = 0

because
∫ 2π

0
zmdθ = 0 when m 6= 0. Now, by writing every polynomial in Ln as

zP (z) ± 1 for some P ∈ Ln−1 and using (2.1) and the induction assumption, we
have

∑

P∈Ln

∫ 2π

0

|P (z)|2zmdθ =
∑

P∈Ln−1

∫ 2π

0

{

|zP (z) + 1|2 + |zP (z) − 1|2
}

zmdθ

=
∑

P∈Ln−1

∫ 2π

0

{

2|P (z)|2 + 2
}

zmdθ

= 2
∑

P∈Ln−1

∫ 2π

0

|P (z)|2zmdθ = 0.

¤
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Lemma 2.3. For m ≥ 1, we have

∑

P∈Ln

∫ 2π

0

|P (z)|2zmP (z)2dθ = 0.

Proof. We again prove the lemma by induction on n. Like Lemma 3.2, the case
n = 0 is easy. Now

∑

P∈Ln

∫ 2π

0

|P (z)|2zmP (z)2dθ

=
∑

P∈Ln−1

∫ 2π

0

{

|zP (z) + 1|2zm(zP (z) + 1)2 + |zP (z) − 1|2zm(zP (z) − 1)2
}

dθ.

We expand the integrand out and after some simple cancellation we get that the
above expression is

∑

P∈Ln−1

∫ 2π

0

{

2|P (z)|2zm+2P (z)2 + 6|P (z)|2zm + zm(6z2P (z)2 + 2)
}

dθ

= 2
∑

P∈Ln−1

∫ 2π

0

|P (z)|2zm+2P (z)2dθ + 6
∑

P∈Ln−1

∫ 2π

0

|P (z)|2zmdθ

because zm(6z2P (z)2 + 2) is a polynomial with zero constant term in z. Now the
above integrals are equal to 0 by Lemma 2.2 and the induction assumption. ¤

We now prove (2.6). From (2.2), (2.4), (2.5) and Lemma 2.3

µn(6) =
1

2n+1

∑

P∈Ln−1

{

‖zP (z) + 1‖6
6 + ‖zP (z) − 1‖6

6

}

=
1

2n+1

∑

P∈Ln−1

2
{

‖P‖6
6 + 9‖P‖4

4 + 9‖P‖2
2 + 1

}

= µn−1(6) + 9µn−1(4) + 9µn−1(2) + 1

= 6n3 + 9n2 + 4n + 1.

This completes the proof of the theorem. ¤

Let n ≥ 0 be any integer and

Fn :=

{

n
∑

i=0

aiz
i : ai = 0,±1

}

be the set of all the polynomials of height 1 of degree n. Let

βn(m) :=
1

3n+1

∑

P∈Fn

‖P‖m
m.

As in Theorem 2.1, one can also obtain exact formulae for βn(m). The additional
details involve observing that since

‖zP (z) + 0‖m
m = ‖P (z)‖m

m
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equations (2.2) can be extended easily to allow summing over all the height one
polynomials. For example, for any polynomial P (z), the middle identity of (2.2)
becomes

‖zP (z) + h‖4
4 + ‖zP (z) − h‖4

4 + ‖zP (z) + 0‖4
4 = 3‖P (z)‖4

4 + 8h2‖P (z)‖2
2 + 2h4.

Theorem 2.4. For n ≥ 0, we have

βn(2) =
2

3
(n + 1),

βn(4) =
8

9
n2 +

14

9
n +

2

3

and

βn(6) =
16

9
n3 + 4n2 +

26

9
n +

2

3
.

It is worth noting that the above technique can also be used to compute the
averages of the norms of polynomials of height H. For example, one can show the
following. Let n ≥ 0 and H ≥ 1 be integers and let

Fn(H) :=

{

n
∑

i=0

aiz
i : |ai| ≤ H, ai ∈ Z

}

be the set of all the polynomials of height H and degree ≤ n. Let

βn(m,H) :=
1

(2H + 1)n+1

∑

P∈Fn(H)

‖P‖m
m.

Theorem 2.5. For n ≥ 0 and H ≥ 1, we have

βn(2, H) =
1

3
H(H + 1)(n + 1),

βn(4, H) =
2

9
H2(H + 1)2n2 +

1

45
H(H + 1)(19H2 + 19H − 3)n

+
1

15
H(H + 1)(3H2 + 3H − 1)

and

βn(6, H) =
2

9
H3(H + 1)3n3 +

1

5
H2(H + 1)2(3H2 + 3H − 1)n2

+
1

315
H(H + 1)(164H4 + 328H3 + 56H2 − 108H + 15)n

+
1

21
H(H + 1)(3H4 + 6H3 − 3H + 1).
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3. Formula for the Average of L8

The formula for µn(8) is somewhat more complicated. We proceed as follows.

Lemma 3.1. For m ≥ 0, we have

1

2n+1

∑

P∈Ln

1

2π

∫ 2π

0

z2mP (z)2dθ =











1 if m ≤ n;

0 if m > n.

Proof. This is clearly true for m = 0. Suppose m ≥ 1. If m ≤ n, then

1

2n+1

∑

P∈Ln

1

2π

∫ 2π

0

z2mP (z)2dθ

=
1

2n+1

∑

P∈Ln−1

1

2π

∫ 2π

0

z2m
{

(zP (z) + 1)2 + (zP (z) − 1)2
}

dθ

=
1

2n

∑

P∈Ln−1

1

2π

∫ 2π

0

z2m(z2P (z)2 + 1)dθ

=
1

2n

∑

P∈Ln−1

1

2π

∫ 2π

0

z2(m−1)P (z)2dθ

= · · · =
1

2n−m+1

∑

P∈Ln−m

1

2π

∫ 2π

0

P (z)2dθ

=
1

2n−m+1

∑

P∈Ln−m

1 = 1.

If m > n, then

1

2n+1

∑

P∈Ln

1

2π

∫ 2π

0

z2mP (z)2dθ =
1

2

∑

P∈L0

1

2π

∫ 2π

0

z2(m−n)P (z)2dθ

=
1

2

∑

P∈L0

1

2π

∫ 2π

0

z2(m−n)dθ = 0.

¤

Lemma 3.2. For m ≥ 1, we have

(3.1)
1

2n+1

∑

P∈Ln

1

2π

∫ 2π

0

z2m|P (z)|4dθ =











n − m + 1 if m ≤ n;

0 if m > n.
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Proof. Let Bn(m) be the left hand side of (3.1). By Lemma 2.2 and (2.1)

Bn(m) =
1

2n+1

∑

P∈Ln−1

1

2π

∫ 2π

0

z2m(|zP (z) + 1|4 + |zP (z) − 1|2)dθ

=
1

2n

∑

P∈Ln−1

1

2π

∫ 2π

0

z2m(|P (z)|4 + 4|p(z)|2 + 1 + z2P (z)2 + z2P (z)2)dθ

= Bn−1(m) +
1

2n

∑

P∈Ln−1

1

2π

∫ 2π

0

z2(m−1)P (z)2dθ

= Bn−1(m) + Cn−1(m − 1)

where

Cn(m) :=
1

2n+1

∑

P∈Ln

1

2π

∫ 2π

0

z2mP (z)2dθ =











1 if m ≤ n;

0 if m > n;

by Lemma 3.1. Clearly,

B0(m) =
1

2π

∫ 2π

0

z2mdθ = 0.

For n ≥ 1, we have Bn(m) = Bn−1(m)+Cn−1(m−1). If m > n, then Cn−1(m−1) =
0 and hence Bn(m) = · · · = B0(m) = 0. If m ≤ n, then

Bn(m) = Bn−1(m) + Cn−1(m − 1)

= · · · = Cm−1(m − 1) + Cm(m − 1) + · · · + Cn−1(m − 1)

= n − m + 1.

¤

Lemma 3.3. For m ≥ 1, we have

1

2n+1

∑

P∈Ln

1

2π

∫ 2π

0

|P (z)|4z2mP (z)2dθ

=











0 if m > n;

3
2 (n − m)2 + 7

2 (n − m) + 3−(−1)m+n

2 if m ≤ n.

Proof. Let

An(m) :=
1

2n+1

∑

P∈Ln

1

2π

∫ 2π

0

|P (z)|4z2mP (z)2dθ.

Then

An(m) =
1

2n+1

∑

P∈Ln

1

2π

∫ 2π

0

z2m
{

|zP (z) + 1|4(zP (z) + 1)2

+|zP (z) − 1|4(zP (z) − 1)2
}

dθ.

We expand the integrand out and use Lemmas 3.1 and 3.2. We derive that for
n,m ≥ 1,

An(m) = An−1(m + 1) + 6Bn−1(m) + Cn−1(m − 1).
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It is clear that A0(m) = 0. Thus if m > n ≥ 1, then Bn−1(m) = Cn−1(m − 1) = 0
and hence An(m) = · · · = A0(m + n) = 0. Suppose 1 ≤ m ≤ n. If n + m ≡ 0
(mod 2), then

An(m)

= An−2(m + 2) + 6(Bn−1(m) + Bn−2(m + 1)) + (Cn−1(m − 1) + Cn−2(m))

= An+m
2

(

n + m

2

)

+ 6Bn−1(m) + 6Bn−2(m + 1) + · · · + 6B m+n
2

(

n + m

2
− 1

)

+Cn−1(m − 1) + Cn−2(m) + · · · + Cm+n
2

(

m + n

2
− 2

)

.

Since Am(m) = 6Bm−1(m)+Cm−1(m−1) = 1 by Lemmas 3.1 and 3.2, we see that

An(m) = 1 + 6(2 + 4 + · · · + (n − m)) +
n − m

2

=
3

2
(n − m)2 +

7

2
(n − m) + 1.

The case n + m ≡ 1 (mod 2) can be proved in the same way. ¤

In particular, A0(1) = 0 and for n ≥ 1

(3.2) An(1) =
3

2
n2 +

1

2
n +

(−1)n − 1

2
.

We now come to the proof for the formula of µ(8). Since

|zP (z) + 1|8 + |zP (z) − 1|8 = 2(|P (z)|8 + 16|P (z)|6 + 36|P (z)|4 + 16|P (z)|2 + 1)

+ 2(6|P (z)|4z2P 2(z) + 6|P (z)|4z2P 2(z) + 16|P (z)|2z2P 2(z) + 16|P (z)|2z2P 2(z))

+ 2(6P 2(z)z2 + 6P 2(z)z2 + P (z)4z4 + P (z)4z4).

It follows from Lemmas 2.3 and 3.3 that

µn(8) = µn−1(8) + 16µn−1(6) + 36µn−1(4) + 16µn−1(2) + 1 + 12An−1(1).

In view of Theorem 2.1 and (3.2), we have

µn(8) = µn−1(8) + 16(6n3 − 9n2 + 4n) + 36(2n2 − n) + 16n + 1

+18n2 − 30n + 6 − 6(−1)n

= 24n4 + 30n3 + 4n2 + 5n + 4 − 3(−1)n.

Thus we have proved

Theorem 3.4. For n ≥ 0, we have

1

2n+1

∑

P∈Ln

‖P‖8
8 = 24n4 + 30n3 + 4n2 + 5n + 4 − 3(−1)n.

4. Derivative and reciprocal polynomials

If we replace z by z/w in (2.1) then we have a homogeneous form of (2.1)

(4.1)

|z + hw|2 + |z − hw|2 = 2(|z|2 + h2|w|2);
|z + hw|4 + |z − hw|4 = 2(|z|4 + 4h2|z|2|w|2 + h4|w|4

+h2|w|4(
(

z
w

)2
+
(

z
w

)2
)).







Let P (m)(z) be the mth order derivative of P (z).
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Theorem 4.1. For n ≥ 0, we have

(4.2)
1

2n+1

∑

P∈Ln

‖P (m)‖2
2 =











0 if m > n;

m!2
n
∑

l=m

(

l

m

)2

if m ≤ n;

and

1

2n+1

∑

P∈Ln

‖P (m)‖4
4

=















0 if m > n;

2m!4

(

n
∑

l=m

(

l

m

)2
)2

− m!4
n
∑

l=m

(

l

m

)4

if m ≤ n.
(4.3)

Proof. We write every polynomial in Ln as P (z) ± zn for some P ∈ Ln−1. In view
of (4.1), we have

1

2n+1

∑

P∈Ln

‖P (m)‖2
2

=
1

2n+1

∑

P∈Ln−1

(

‖P (m)(z) + (zn)(m)‖2
2 + ‖P (m)(z) − (zn)(m)‖2

2

)

=
1

2n

∑

P∈Ln−1

(

‖P (m)‖2
2 + m!2

(

n

m

)2
)

=
1

2n

∑

P∈Ln−1

‖P (m)‖2
2 + m!2

(

n

m

)2

= m!2
n
∑

l=m

(

l

m

)2

.

This proves (4.2). For (4.3), we have

1

2n+1

∑

P∈Ln

‖P (m)‖4
4

=
1

2n+1

∑

P∈Ln−1

(

‖P (m)(z) + m!

(

n

m

)

zn−m‖4
4 + ‖P (m)(z) − m!

(

n

m

)

zn−m‖4
4

)

=
1

2n

∑

P∈Ln−1

(

‖P (m)‖4
4 + 4m!2

(

n

m

)2

‖P (m)‖2
2 + m!4

(

n

m

)4
)

because P (m)(z) is a polynomial of degree less than n − m − 1 for any P ∈ Ln−1

and hence
∫ 2π

0
(P (m)(z)/zn−m)2dθ = 0. Using (4.2), we have

1

2n+1

∑

P∈Ln

‖P (m)‖4
4

=
1

2n

∑

P∈Ln−1

‖P (m)‖4
4 + 4m!4

(

n

m

)2 n−1
∑

l=m

(

l

m

)2

+ m!4
(

n

m

)4

.
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As before, this proves (4.3). ¤

A polynomial P (z) of degree n is reciprocal if P (z) = P ∗(z) and negative

reciprocal if P (z) = −P ∗(z) where P ∗(z) = znP
(

1
z

)

. In view of (4.1), we have

‖P (z) + zn+1P ∗(z)‖4
4 + ‖P (z) − zn+1P ∗(z)‖4

4 = 12‖P‖4
4.

Since every reciprocal and negative reciprocal polynomial of degree n = 2m + 1
can be written as P (z) + zm+1P ∗(z) and P (z) − zm+1P ∗(z) for some P ∈ Lm

respectively, so the average of ‖P‖4
4 over the reciprocal and negative reciprocal

Littlewood polynomials in Ln is

=
1

2m+2

∑

P∈Lm

{

‖P (z) + zm+1P ∗(z)‖4
4 + ‖P (z) − zm+1P ∗(z)‖4

4

}

=
6

2m+1

∑

P∈Lm

‖P‖4
4

= 6(2m2 + 3m + 1) = 3n2 + 3n

by Theorem 1.1. Now since

∑

P∈Ln

P=P∗‖P‖4
4 =

∑

P∈Lm

‖P (z) + zm+1P ∗(z)‖4
4

=
∑

P∈Lm

‖P (z) − zm+1P ∗(z)‖4
4 =

∑

P∈Ln

P=−P∗‖P‖4
4

we have proved that if n is odd

1

2(n+1)/2

∑

P∈Ln

P=P∗‖P‖4
4 =

1

2(n+1)/2

∑

P∈Ln

P=−P∗‖P‖4
4 = 3n2 + 3n.

By a similar argument, we can show that the average ‖P‖4
4 over the reciprocal

Littlewood polynomials in Ln is 3n2 + 3n + 1 if n is even.

5. polynomials with coefficients of modulus 1

The critical lemma in this analysis is Lemma 5.2 below.

Lemma 5.1. For m ≥ l ≥ 0, we have

(5.1)

min(l,m−l)
∑

j=0

(

m

2j

)(

2j

j

)(

m − 2j

l − j

)

=

(

m

l

)2

.
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Proof. Without loss of generality, we may assume l ≤ m/2. Thus the left hand side
of (5.1) becomes

=

l
∑

j=0

(

m

2j

)(

2j

j

)(

m − 2j

l − j

)

=

l
∑

j=0

m!

(j!)2(l − j)!(m − l − j)!

=

(

m

l

) l
∑

j=0

(

m − l

j

)(

l

j

)

=

(

m

l

)2

.

¤

Lemma 5.2. Let 1 ≤ m ≤ k and ζk = e
2πi
k . Then for any complex number z, we

have

(5.2)

k−1
∑

j=0

|z + ζj
k|2m =











k
∑m

l=0

(

m
l

)2|z|2l, if k < m;

k
∑m

l=0

(

m
l

)2|z|2l + m(zm + zm), if k = m.

Proof. We first have

k−1
∑

j=0

|z + ζj
k|2m =

k−1
∑

j=0

(z + ζj
k)m(z + ζ−j

k )m

=

k−1
∑

j=0

(|z|2 + 1 + (zζ−j
k + zζj

k))m

=

k−1
∑

j=0

m
∑

l=0

(

m

l

)

(|z|2 + 1)m−l
l
∑

r=0

(

l

r

)

(zζ−j
k )r(zζj

k)l−r

=
m
∑

l=0

l
∑

r=0

(

m

l

)(

l

r

)

(|z|2 + 1)m−lzrzl−r
k−1
∑

j=0

ζ
j(l−2r)
k .

Since
∑k−1

j=0 ζja
k equals 0 if a 6≡ 0 (mod k) and equals to k otherwise, if m < k, then

we have

k−1
∑

j=0

|z + ζj
k|2m = k

m
∑

l=0

∑

r=0
l≡2r (mod k)

l
(

m

l

)(

l

r

)

(|z|2 + 1)m−lzrzl−r

= k
∑

l=0
l is even

m
(

m

l

)(

l

l/2

)

(|z|2 + 1)m−l|z|l

= k
∑

0≤l≤m/2

(

m

2l

)(

2l

l

)

(|z|2 + 1)m−2l|z|2l.
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We then expand the term (|z|2 + 1)m−2l to get

k−1
∑

j=0

|z + ζj
k|2m = k

∑

0≤l≤m/2

(

m

2l

)(

2l

l

)m−2l
∑

r=0

(

m − 2l

r

)

|z|2(l+r)

= k
m
∑

j=0







∑

0≤l≤m/2

∑

r=0
r+l=j

m−2l
(

m

2l

)(

2l

l

)(

m − 2l

r

)







|z|2l

= k
m
∑

j=0







∑

0≤l≤min(j,m−j)

(

m

2l

)(

2l

l

)(

m − 2l

j − l

)







|z|2l

= k

m
∑

j=0

(

m

j

)2

|z|2j

by Lemma 5.1. If m = k, then

k−1
∑

j=0

|z + ζj
k|2m = k

∑

0≤l≤m/2

(

m

2l

)(

2l

l

)

(|z|2 + 1)m−2l|z|2l + m(zm + zm).

This proves our lemma. ¤

Let n ≥ 0 and

Ln,k :=

{

n
∑

i=0

aiz
i : ak

i = 1

}

be the set of all polynomials of degree ≤ n whose coefficients are kth root of unity.
This is a generalization of Littlewood polynomials and clearly Ln = Ln,2. Then we
have

Theorem 5.3. For n ≥ 0 and m ≤ k, we have

(5.3)
1

kn+1

∑

P∈Ln,k

‖P‖2m
2m =

m
∑

l1=0

l1
∑

l2=0

· · ·
ln−1
∑

ln=0

(

m

l1

)2(
l1
l2

)2

· · ·
(

ln−1

ln

)2

.

Proof. In view of Lemma 5.2, the left hand side of (5.3) is

=
1

kn+1

∑

P∈Ln−1,k

k−1
∑

j=0

‖zP (z) + ζj
k‖2m

2m

=

m
∑

l=0

(

m

l

)2






1

kn

∑

P∈Ln−1,k

‖P‖2l
2l







=

m
∑

l1=0

l1
∑

l2=0

· · ·
ln−1
∑

ln=0

(

m

l1

)2(
l1
l2

)2

· · ·
(

ln−1

ln

)2

because
1

k

∑

P∈L0,k

‖P‖2m
2m = 1.

This completes the proof. ¤
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For example, for k ≥ 5, the averages ‖P‖m
m over the polynomials in Ln,k are

n+1, 2n2 +3n+1, 6n3 +9n2 +4n+1, 24n4 +24n3 +10n2 +11n+1, 120n5 +50n3 +
125n2 − 44n + 1 when m = 2, 4, 6, 8, 10 respectively.
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