PAUL ERDOS AND POLYNOMIALS

PETER BORWEIN

ABSTRACT. The paper focusses on some of the lovely questions that Erdds raised and answered about
polynomials. Some of the problems are analytic and involve inequalities for polynomials or the location
of zeros. The rest have some number theoretic component. These problems are all distinguished by
having had significant work done on them but none of them are completely solved.

Some of the specific problems we will mention are: The Problem of Erd6és and Szekeres on the growth
of certain products; Erdés’ conjecture related to flat polynomials and Littlewood’s other conjecture;
Erdds’ work on polynomial inequalities and some of his results with Turdn on the distribution of zeros
of polynomials; a problem on the length of the lemniscates where polynomials have constant modulus; a
problem on the growth of coefficients of cyclotomic polynomials.

1. INTRODUCTION

The work of Paul Erdés that we unsystematically survey here lives at the interface of analysis and
number theory. The specific problems belong to which ever subdiscipline cares to claim them. The
unifying theme is that all of the problems concern polynomials is some way. The problems raised are
all decades old and despite considerable attention have all resisted complete solution. The particular
choice of problems is eclectic and for the most part represents my taste in Erdds’ problems.

The first two problems are elaborated on in [5].

PROBLEM OF ERDOS AND SZEKERES (1958) [17]

The following conjecture is an old plum called the “Prouhet-Tarry-Escott problem”. It holds for
n=1,2,3,4,5,6,7,8,9,10 and 12 and otherwise very little else is known [8]. With the exception of
the size 12 solution these were all discovered by 1940 without the aid of computers.

Conjecture (Wright et al). For any N there ezists p € Z[x] (the polynomials with integer coef-
ficients) so that
N
p(z) = (z = 1)Vq(z) = Spara”
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and
ll(p) = Ek|ak| =2N.

In general how small can the /3 norm be. This is a problem with many interesting variants. Note
that the degree of the solution is not the issue. The problem is in terms of the size of the zero at 1.

An entirely equivalent form of the above conjecture asks to find two distint sets of integers [y, ... ,an]
and [B1,...,0n] so that

a1 +...+an=01+...+ 0N
Z+...+a=0+...+ 5%

o o =N N

This equivalence is an easy exercise in Newton’s equations. The later form is the usual Diophantine
form in which the problem arises and is stated. The recent size 12 solution due to Chen Shuwen is
given by the two sets

[0,11,24,65,90,129, 173,212, 237, 278,291, 302]

and
[3,5,30,57,104,116,186, 198,245, 272, 297, 299].

Often the size of the problem is given as N-1 corresponding to the number of equations the sets
satisfy not the size of the solution sets. This necessitates some care in reading the literature.

A reasonable approach to the Prouhet-Tarry-Escott problem is to construct products of the form
N
p(z) :== (H(l - a:“’“)) .
k=1

Obviously such a product has a zero of order N at 1 and the trick is to minimize the [; norm.

Problem (Erd8s and Szekeres [17]). Minimize over {oa,... ,an}
N
I (H(l — w“k))
k=1

Call this minimum EY;.

The following table gives the smallest known /; norm examples for N up to 13.



||p||11 {aly"' 7aN}
2 {1}

4 {1,2}

6 {1,2,3}

8 {1,2,3,4}
10 {1,2,3,5,7}

QDOO\IO)OTHRW[\DHE

12 {1,1,2,3,4,5}

16 {1,2,3,4,5,7,11}

16 {1,2,3,5,7,8,11,13}

20  {1,2,3,4,5,7,9,11,13}
10 24 {1,2,3,4,5,7,9,11,13,17}
11 28  {1,2,3,5,7,8,9,11,13,17,19}
12 36 {1,...,9,11,13,17}
13 48 {1,...,9,11,13,17,19}

For N := 1,2,3,4,5,6,8 this provides a solution of the Prouhet-Tarry-Escott problem. For N =
7,9,10,11. that these kind of products cannot solve the Prouhet-Tarry-Escott problem. For N =
7,9, 10 the above examples are provably optimal. This is due to Roy Maltby [25].

Conjecture. With the exception of N =1,2,3,4,5,6 and 8

Ej > 2N +2.

The actual Erdds and Szekeres conjecture is that ER; grows fairly rapidly.

Conjecture (Erdés and Szekeres [17]). For any K

E} > NK.
for N sufficiently large.
Erdés and Szekeres showed that subexponential growth is possible. The best upper bound to date
for E} is that of Belov and Konyagin [2]

Ey < exp(O((logn)*)).
Previously Atkinson and Dobrowolski proved the upper bound of
exp(O(n? logn))
then Odlyzko [27] gave the upper bound of
exp(O(n* (logn)?))

and Kolountzakis proved the upper bound

exp(O(n'/? logn)).
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SOME PROBLEMS OF ERDOS AND LITTLEWOOD

These problems are about polynomials with coefficients in the set {+1, —1}. We call this set Little-
wood polynomials and denote then by £,,. Specifically

Ln:=<p:p(x)= Zaja:j , a; € {-1,1}

Jj=0
The following conjecture is due to Littlewood probably from some time in the fifties. It has been

much studied and has associated with it a considerable signal processing literature

Conjecture (Littlewood). For each n there exists py € Ly, so that

Civn+ 1< |pn(z)| < Covn+1

for all complex z of modulus 1. The positive constants C; and Cs are independent of n.

Polynomials like this are called “flat”. The L norm of a polynomial from £, is exactly v/n + 1 and
it follows that the constants must satisfy C; < 1 and Cy > 1. Littlewood [22] computed extensively
on this problem (on all such polynomials up to degree twenty). Subsequent large scale computations
by Odlyzko tend to confirm the conjecture. However it is still the case that no sequence is known
that satisfies the lower bound. A sequence of Littlewood polynomials that satisfies just the upper
bound is given by the Rudin-Shapiro polynomials.

There is a related conjecture of Erdés [14].
Conjecture (Erdds). The constant C in conjecture 1 is greater than 1+ 0 where 6 > 0..

This is also still open. Though a remarkable result of Kahane’s [21] shows that if the polynomials
are allowed to have complex coefficients of modulus 1 then “ flat” polynomials exist and indeed that
it is possible to make Cy and C> asymptotically arbitrarily close to 1. Another striking result due to
Beck [Bec-91] proves that “flat” polynomials exist from the class of polynomials of degree n whose
coefficients are 1200th roots of unity.

It is natural, because of the monotonicity of the L, norms, to reformulate Erdds’ conjecture in other
norms. Various people have conjectured that

lplli > (1 + 8)n?

for p € £,, and n sufficiently large. This would imply Erdds’ conjecture above. Here and throughout
lgl|p is the normalized p norm on the boundary of the unit disc.

It is possible to find a sequence of p, € L, so that

[1pnll2 < (7/6)n*.
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This sequence is constructed out of the Fekete polynomials

p—1 k
=3 (%)
k=0 \P
where (1—)) is the Legendre symbol. One now takes the Fekete polynomials and cyclically permutes

the coefficients by about p/4 to get an example due to Turyn [20] which he conjectures to be
asymptotically best possible. In [6] we derived closed formulae for the merit factors of polynomials
related to the Fekete polynomials. So, for example, for q an odd prime,

5¢2 4
I£lld := 23 = 3¢ + 5 — 12(h(~q))?
where h(—gq) is the class number of Q(1/—¢).

Problem. Show for some absolute constant § > 0 and for all p, € L,
Ipllsa > (1 +8)v/n

or even the much weaker

llplls > v/n + 6.

This problem of finding Littlewood polynomials of minimal L4 norm has a considerable literature.
The above problem is stated in [26]. See also [20]. The engineering literature calls this the “merit
factor” problem. Even computing the minimum for relatively small degrees (say up to 100) is an
open, difficult and interesting combinatorial optimization question.

A Barker polynomial p(z) := }";_, axz* with each a; € {—1,+1} is a polynomial where

p(2)p(z) == ) e

k=—n
satisfies
lej| <1, j #0.
Note that if p(z) is a Barker polynomial of degree n then
lIplla < ((n+ 1) + 20))* < (n+ 1)/ + (n +1)71/2/2,
The nonexistence of Barker polynomials of degree n is now shown by showing
lIplla > (n + 1'% + (n+1)"1/2/2.

This is even weaker than the weak form of tha above problem.

It has been conjectured for decades that no Barker polynomials exist for n > 12. See [29] for more
on Barker polynomials and a proof of the nonexistence of self inversive Barker polynomials. Turyn
showed that no even degree Barker polynomials exist for n > 12 (and indeed none exist for any
degree between 12 and 1600).

The expected L, norms of Littlewood polynomials and their derivatives are computed in [9]. So for
random ¢, € L,
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Problem. Do there exist polynomials with coefficients {0,—1,+1} with roots of arbitrarily high
multiplicity inside the unit disk?

A negative answer to the above would solve Lehmer’s conjecture concerning the minimum Mahler
measure (M(p)) of non-cyclotomic polynomials. It seems likely, however, that the answer to the
above question is positive. Mahler [23] raised the problem of finding the maximum Mahler measure
over the polynomials of degree n with coefficients {0,+1,—1}.

Problem (Mahler). Is there a sequence of Littlewood polynomials p,, € Ly, so that lim, % =17

This is a weak form of the one Erdés conjecture. The non-existence of a sequence, as in the above
problem, implies Erddés’ conjecture.

AN ArRc LENGTH PROBLEM

In 1958 Erdés, Herzog and Piranian [16] raised a number of problems concerning the the lemniscate
B i= Ba(p) = {2 € C: [p(2)| = 1}
where p is a monic polynomial of degree n, so
p(z) =1, (2 — ay) a; € C.
Problem 12 of [16], conjectures that the maximum length of E,, is achieved for
p(z):=2"—1.
This is of length 2n + 0(1).

This problem has been re-posed by Erdds several times, including at the Budapest meeting honouring
his 80th birthday. It now carries with it a cash prize from Erdés of $250.

Up to 1995 the best partial to date was due to Pommerenke who showed that the maximum length

is at most 74n2. We improved this in 1995 [6] to derives an upper bound of 8men, which at least
gives the correct rate of growth.

Theorem. Let aj,qs,...,a, € C. Then the length of
E,={z€C:|II,(z— ;)| =1}

is at most 8men (< 69n).

The proof relies on two classical theorems.
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Cartan’s Lemma. If p(z) := [[;_, (z — «;) then the inequality

Ip(z)] > 1

holds outside at most n circular discs, the sum of whose radii is at most 2e.

Poincaré’s Formula. Let T be a rectifiable curve contained in S (the Riemann sphere). Let v(T', x)
denote the number of times that a great circle consisting of points equidistant from the antipodes tx
intersects I'. Then the length of T, Ls(T'), is given by

Ls(T) = % /S o(T, 2)dz

where dx is area measure on S.

Eremenko and Hayman (this proceedings) have made some interesting recent progress on this prob-
lem including showing that the extremal lemniscate in this problem is connected.

Pommerenke shows that if the roots in the Theorem are all real then the length is at most 4.
Pommerenke also shows that if the set E,, is connected then the length is at least 27, with equality
only for 2™.

Pommerenke also shows that when FE,, is connected one can find a disc of radius 2 that contains it.
So in this case the length of E,, is at most 47n and with the results of Eremenko and Hayman one
gets 47n in the general case. Though in fact Eremenko and Hayman get the better bound of 9.173n.
One of the results of Erdds, Herzog, and Piranian [16] is: The infimum of m(E(f)) is 0, where the
infimum is taken over all monic polynomials f with all their zeros in the closed unit disk (n varies
and m denotes the two-dimensional Lebesgue measure).

They also have the related result: Let F' be a closed set of transfinite diameter less than 1. Then

there exists a positive number p(F’) such that, for every monic polynomial whose zeros lie in F', the
set E(f) contains a disk of radius p(F).

SOME INEQUALITIES
Let P, denote the algebraic polynomials of degree at most n with real coefficients.

Markov’s Inequality. The inequality

1P |z i=1,1) € 2 [IpllLoe(—1,1]

holds for every p € P,.



Bernstein Inequality. The inequality

n
P )| £ —— lIpllze(-1,1
Vi-y

holds for every p € P, andy € (—1,1).

It had been observed by Bernstein that Markov’s inequality for monotone polynomials is not essen-
tially better than for arbitrary polynomials. Bernstein proved that if n is odd, then

1P| zoor—1,1 _ (n + 1>2

sup 5

P ||P||L°°[—1,1]

where the supremum is taken over all 0 # p € P,, that are monotone on [—1,1].

This is surprising, since one would expect that if a polynomial is this far away from the “equioscil-
lating” property of the Chebyshev polynomial, then there should be a more significant improvement
in the Markov inequality.

In the short paper in the Annals in 1940. Erdds gave a class of restricted polynomials for which the
Markov factor n? improves to cn. He proved that there is an absolute constant ¢ such that

/ < min an en ot
Ip'(y)| < {(1—y2)2 2 lIpll [—1,1]

for every polynomial of degree at most n that has all its zeros in R\ (—1,1).

Generalizations of the above Markov- and Bernstein-type inequality of Erd6s have been extended
in many directions by many people including Lorentz, Scheick, Szabados, Varma, M4té, Rahman,
Govil, Erdélyi, and others (see [7]).

Many of these results are contained in the followingresult which may be found in [7].

There is an absolute constant ¢ such that

n(k+1)

Iﬂ@NScmm{ - aMk+D}“ﬂhﬂqﬂ

for every polynomial p of degree at most n with real coefficients that has at most k zeros in the open
unit disk.

However in most cases the exact results, with constants, are still open.

Another attractive result, rediscovered by Erdés, concerns the growth of polynomials in the complex
plane. Specifically

< .
[P(2)] < [Tn(z)] - max [p(z)]

for every polynomial p € P, and for every z € C with |z| > 1. Here T}, denotes the usual Chebyshev
polynomial of degree n.



DISTRIBUTION OF ZEROS

Erdds and Turan established a number of results on the spacing of zeros of orthogonal polynomials
with respect to a weight w.

Let
A>)z1p > Tap > > Tpp (>—1)

be the zeros of the associated orthonormal polynomials p,, in decreasing order and let

Zyp = €080y, 0<0,, <,
Then there is a constant K such that
Klogn
0u+1,n - eu,n ng .

This result has been extended by various people in many directions.

The following result of Erdés and Turédn [18] is especially attractive.

Theorem. If p(z) = Z?:o ajzd has m positive real zeros, then

V lagan|

m? < 2nlog <|ao| Flaf+-ot |an|) .

This result was originally due to Schur. Erdés and Turdn rediscovered it with a short proof. In [7]
the following refinement of the above theorem is given.

Theorem. Every polynomial p, of the form p,(z) = E;:o a;jz?,lag| = 1,|a;| < 1, has at most
| 28y/n] + 4 zeros at 1.

In this same paper Erdés and Turdn discuss the angular distribution of the zeros of polynomials in
terms of the size of the coefficients.

The result says that “if the middle coefficients of a polynomial are not too large compared with the
extreme ones” then the angular distribution of the zeros is uniform.

This has been further explored by Andrievskii, Blatt, Krod, Peherstorfer and others (see, for example,

[1]).
CycLOoTOMIC POLYNOMIALS

The cyclotomic polynomial C), is defined as the monic polynomial whose zeros are the primitive nth
roots of unity. So
Cr(z) = H (z™/? — 1))

d|n
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Here p is the Mobius function. For n < 105, all coefficients of C), are &1 or 0. For n = 105, the
coefficient 2 occurs for the first time. Denote by A,, the maximum over the absolute values of the

coefficients of C,,.

Schur proved that
limsup 4,, =

and Emma Lehmer proved that, for infinitely many n,

A, > en'/3.

Erdds [13] proved that for every k,
A, >n

for infinitely many n.

This is implied by his even sharper theorem to the effect that
A, > exp[c (logn)*/?]

form=2-3-5----p, with k sufficiently large.

Many recent improvements and generalizations of this are due to Maier [24].
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