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SOME COMPUTATIONS ON THE SPECTRA OF PISOT AND
SALEM NUMBERS.

PETER BORWEIN AND KEVIN G. HARE

ABSTRACT. Properties of Pisot numbers have long been of interest. One line
of questioning, initiated by Erdés, Jo6 and Komornik in 1990 [9] has been the
determination of I(g) for Pisot numbers ¢; where

Uq) = inf(jy 1 y = €0 + €1¢" +--- +eng”, € € {£1,0},y # 0).

Although, the quantity I(¢) is known for some Pisot numbers g, there has
been no general method for computing I(g). This paper gives such an algo-
rithm. With this algorithm, some properties of I(g), and its generalizations
are investigated.

A related question concerns the analogy of I(q), denoted a(q) where the
coefficients are restricted to £1; in particular, for which non-Pisot numbers
is a(q) non-zero? This paper finds an infinite class of Salem numbers where

a(q) # 0.

1. INTRODUCTION

We begin our discussion by recalling the definition of a Pisot number:

Definition 1. A Pisot number is a positive real algebraic integer, all of whose
conjugates are of modulus strictly less than 1. A Pisot polynomial is the minimal

polynomial of a Pisot number.

The main question we concern ourselves with here is what happens when par-
ticular classes of polynomials are evaluated at a real number. Here we characterize
different classes of polynomials by restricting their coefficients to a finite set. This

is defined formally as:
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Definition 2. Let S be a finite set of integers and ¢ a real number. Define the

spectrum of g with respect to S as
AS(q):={eo+€e1q" + -+ eng" : € € S}

For convenience denote A™(q) := Al—m—mtL-m—1m}(g) A(q) := Al(g), and
A(q) := AFE(g).

One question with respect to these spectra is the finding of the minimal non-zero

value within these spectra. Formally we define this as:
Definition 3. Define

15(q) ==inf(ly| : y € AS(q),y #0),

writing for convenience 1™ (q) := [{=m—mtLm=Lm} () [(q) :=I'(q) and a(q) :=
1= (g).

Here and throughout ¢ € (1,2), which is the only domain of interest for such

questions.

A spectrum A is discrete if for any finite interval [a, b] of the real line A N [a, b]
has only a finite number of elements. A spectrum is uniformly discrete if there
exists an e greater than zero such that for any two distinct values in the spectrum,
these values are at least € apart. Similarly, a spectrum is nonuniformly discrete if

it is discrete, but it is not uniformly discrete.

It is clear that A(q) C A(g), so a number of the results known for A(q) follow
for A(q). Results known for A(q) specifically are due to Peres and Solomyak [18].
Peres and Solomyak showed that A(q) is dense in R for a.e. ¢ € (v/2,2). Further
if ¢ € (1,4/2) and ¢ is not the root of a height 1 polynomial, then A(q) is dense.

Lastly if ¢ is a Pisot number, then A(g) is uniformly discrete.

This paper answers some questions concerning A(g). It will give necessary con-
ditions for A(q) to be discrete. As well this paper gives some examples of ¢ that are
not Pisot, but where the A(q) are discrete. The existence of such a ¢ is somewhat
surprising, because A(q) is thought to be discrete if and only if ¢ is Pisot. Further,

until now the only known examples for A(q) being discrete was for Pisot numbers.

If ¢ is a Pisot number, then there is a lot known about {"™(gq). In general "™ (q) is
known to be strictly positive for all Pisot numbers g and for all m [3, 8]. Specifically,
I(q) > (1 + q)tqlles(d—1)log(1+4)1og(1-Q))/108(Q) > () where d is the degree of the
minimal polynomial satisfied by ¢, and @ the modulus of ¢’s largest conjugate [10].

For general m, it is known that I™(q) > (Pl%w > 0, where ¢, - , g, are
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the conjugates of ¢ [3, 11]. The stronger result that I™(g) > 0 for all m if and
only if ¢ is Pisot is given in [3]. An even stronger result, shown in [6] on a more
restricted set, is that if ¢ < %g then [2(q) > 0 if and only if ¢ is Pisot. However
it is still unknown if there exists a ¢ € (1,2) that is not Pisot with I(g) > 0.

When ¢ is not a Pisot number, then the following results are known. If ¢ does not
satisfy a polynomial of height 1, then I(¢) = 0 by a Pigeon hole argument [3, 10].

Some more technical results of Erds and Komornik [8] include:

1. If q is not Pisot, m > ¢ — ¢~! then A™(q) has a finite accumulation point.
2. If ¢ is not Pisot, then I™(q) = 0 for all m > [q — ¢~ '] + [¢ — 1].
3. If 1 < ¢ < 2% and if ¢? is not the first or second Pisot number, then 1" (q)

= ( for all m.

Specific values of I™(g) have been calculated for some Pisot numbers ¢. If ¢ is
the Pisot number that satisfies ¢> — ¢? — 1, then I(q) = ¢®> — 2 [14]. If ¢ is the Pisot
number satisfying ¢® — ¢"~! —--- — 1 then I(q) = % [7]. If q is the Golden ratio,
(the greater root of 22 — z — 1) then [?(q) = 2 — ¢ [3]. For general m, and g the
Golden ratio, all I™(q) are known: if F}, is the kth Fibonacci number (Fy =0, F} =
1L,E,=F, 1+F, ),and ¢¢ 2 <m < ¢* ! then I™(q) = |Frq — Fry1]| [14].

This paper will give an algorithm where {™(g) can be calculated for any Pisot

number ¢ and any integer m, limited only by the memory of the computer.

An algorithm to determine A(g) N [q‘Tll, ﬁ} is given by Ka-Sing Lau in [15]. In
Lau’s paper the values of the size of the spectra in this range are determined for
the Pisot roots of the polynomials 2° — 2?2 —z — 1, 2% =222 + 2 -1, 2> —x — 1,
3 — 2% -1, 2 — 2% — 1 and 2° — x — 1. This algorithm is generalized in Section 2

to answer some of the questions concerning I(g) and a(g) above.

Another question that can be examined with this algorithm asks which Pisot
numbers ¢ satisfy a polynomial with £1 coefficients. Surprisingly there exist Pisot
numbers which do not satisfy such a polynomial. For the Pisot numbers that do
satisfy a +1 polynomial, it is often possible to use LLL to find this polynomial. In
fact, LLL can sometimes be used for other algebraic numbers for this purpose, as

will be demonstrated in Section 6. For a good review of LLL see [4, 16, 17].

2. THE ALGORITHM.

This section gives an algorithm to find the spectrum of a number in a particular

range, (i.e. determines A°(g) N [a,b] for a number ¢ and a finite range [a,b]).
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This section shows that when this number is a Pisot number, then this algorithm
terminates, and further if this algorithm terminates then the spectrum is discrete
over the entire real line. In the case of A(g), this algorithm is very similar to that

given by Ka-Sing Lau, [15]. First the following obvious lemma is needed;

Lemma 1. Let S be a finite set of integers. Let p(x) be a degree n polynomial
with coefficients in S. Let s; < S < sy, be lower and upper bounds for the integers
—S81 —Su

in S, and let ¢ > 1. Denote o, = =t and ay == Z%f. If plq) & [ou, ] then
g*xplg)+s¢&[au,a,] forall s € S.

Consider a calculation of A%(q) N [ay, ). (From Lemma 1 it follows that, if
p(q) € [cu, ], the polynomial ¢ x p(q) + s need not be looked at; as it cannot
contribute to the spectrum in this range. Further if of < a; and o, > a4, then

the same result follows for the range [a;], &)

The next lemma will ensure that an exhaustive search for all elements in a finite

range for a given spectrum will terminate if ¢ is a Pisot number.

Lemma 2. If q is a Pisot number, and S is a finite set of integers, then |A5(q) N la, b]|

is finite.

Proof. Let r = max{|s|: s € S}. Let y1,y2 € AS(q),y1 # y2. Theny;—y2 € A" (q),
hence, |y1 — ya| > I*"(¢) > 0, where the last inequality comes from [3, 8, 9]. Thus
|A5(q)ﬂ[a,b]|§lg,——(‘;)<oo. O

Algorithm 1 (page 5) is one way to write an exhaustive search to determine
AS(q) N [o, a]-



SOME COMPUTATIONS ON THE SPECTRA OF PISOT AND SALEM NUMBERS. 5

Algorithm 1: Finding the Spectrum of a Pisot number gq.
Spec(S, q)

alphalu] := -min(s:s in S)/(q-1);
alpha[l] := -max(s:s in S)/(q-1);
L[0] := S;

d := 0;

repeat

L[d+1] := L[d];
for p in L[d], s in S do
if q * p + s in [alpha[l], alphal[u]] then
L[d+1] = L[d+1] union {q p + s}

end if
end do
d :=d + 1;

until L[d+1] = L[d];
RETURN(L[d]);

end;

As the spectrum of the Pisot numbers is uniformly discrete (this follows from
[8, 11]), then |AS(q) N [y, ]| < 0o for ¢ Pisot. The converse to this is:

Theorem 2.1. If [A%(g) N [ay, ]| < 0o then AS(q) is discrete.

Note that in Theorem 2.1, ¢ is not assumed to be Pisot. It is worth noting
that only discreteness is shown, and not uniform discreteness. In fact, there exist
examples of spectra, described later in Section 5, which have provably non-uniformly

discrete spectra.

Proof. Let s; and s,, be lower and upper bounds for S, and o; and a,, be as defined
in Lemma 1. Define A; := A%(g) N [y, a,]. Define a1 := min{gB +s > a, : B €
AM,s € S}, and define oy similarly to be the first element in the spectrum less
than ;. jFrom this, define aypn = ¢ X @yn-1+ s and oqp == ¢ X Qg n—1 + 1.
Further define A, := [0, 1,@u.n_1] N A5(q).

Clearly, oy, = o0 and o4, =+ —00 as n — oo. By assumption A; has only a
finite number of elements. By noticing that A, = Ay 1 U{{gB8+s: 8 € A\n_1,5 €
S} N [eu,n—1,0un—1]} gives by induction that A, has only a finite number of ele-

ments.

Thus A®(q) is discrete, as required. O
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3. PROGRAMMING TRICKS.

The algorithm described in Section 2 was implemented in C++. This section

will summarize some of the techniques used to improve the efficiency of this code.

When calculating A%(q) a list of all polynomials examined must be kept. As the
degree of these polynomials can be quite large, this list of polynomials can take up a
large amount of memory. To reduce the space requirements, the actual code stored
the remainders of the polynomials when divided by the minimal polynomial of q.
This is advantageous as the degree is bounded above; and through experimentation
it is noted that the height of these polynomials being stored do not grow larger
than a “short int” in C++.

This has a second advantage; if p1(g) = p2(q) where p; and p, are polynomials,
then the remainders of p; and p, when divided by the minimal polynomial of ¢ are

equal. Thus duplication within the spectrum is easily recognized.

These polynomials are stored in a Red-Black tree with a lexigraphical order on
the coefficients, but any height regulating tree with any order would give similar
results for time comparisons of duplication recognition. For more information on
Red-Black trees see [5].

The next observation to be made is that if S is symmetric, (i.e. s € S implies
that —s € ), then A®(q) is symmetric. Utilizing this symmetry eliminates half of

the calculations needed.

Lastly, a technique that was considered, but decided not necessary for this pre-
liminary investigation, allowed the problem to be partitioned up into an arbitrarily
large number of subproblems. This would allow the constraining factor on the cal-
culations to be disk space instead of RAM. Further, with a careful implementation,

this technique could also be utilized to parallelize the calculation.

This technique to partition the problem up is described most easily by means of
an example. Let S = {1} and let P(z) = 2®> — z — 1 be the first Pisot polynomial
(with approximate root 1.324717957). Let m = 2 (here m could be chosen to
be any integer). Divide the set of polynomials in the spectrum into |P(m)| = 5
residues, depending upon their evaluation at m. Consider the set of polynomials
with coefficients in S known at some point in the calculation which evaluates at
m to 2 (mod 5). Then, these polynomials, when extended, will evaluate at m to
either 3, or 0 (mod 5) (as2x24+1=0 (mod 5) and 2x2—1= 3 (mod 5)). Thus,
when the polynomials which evaluates to 2 (mod 5) at m are being examined, the

set of polynomials of residue 1 or 4 need not be in memory. In general, at most
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[S|+1
p(m)
memory at any given time.

(a fraction tending to 0 as m tends to infinity) of the polynomials need be in

Naive methods failed to calculate A(q) for 16 examples, all of degree 10. Thus it

was decided that the overhead needed to implement this technique was not justified.

4. SOME QUESTIONS ABOUT A(q) AND A(q) FOR PISOT NUMBERS g.

Algorithm 1 (page 5) has been used to calculate I(g) for all Pisot numbers up to
and including degree 9, and a(q) for Pisot numbers up to and including degree 10.
(Recall, I(q) = 1#¥1:9}(¢) and a(q) = I{¥'}(¢).) To determine the Pisot numbers up
to and include degree 10, the methods of David Boyd were used [1]. There are 232
Pisot numbers of degree less than or equal to 10 (between 1 and 2 inclusive) and
thus we do not include all of the results here. However all these results, as well as

the code used to determine them, can be found at [12].

In the calculations of a(q) and I(q), there were only a few cases were these values
coincided. Some of these are enumerated in Table 1. For a complete list, see [12]
The polynomials associated with [(g) in this table are the &1 polynomial modulo

the Pisot polynomial which gives +1(q).

The number of Pisot numbers of degree less than or equal to 10 where a(q) = I(q)
is fairly small, and it would be interesting to know if the set of Pisot numbers with

this property is finite.

The next question of interest is which Pisot numbers ¢ satisfy a £1 polynomial.
This is equivalent to asking if 0 € A(g). This was answered in the affirmative for
most Pisot numbers. The first failure is of degree 6. It is interesting to note that
all of the examples found where 0 ¢ A(q) are such that this root ¢ is greater than
1.95. It would be interesting to know if this must always be the case. These results

are summarized in Table 2.

Lastly given are two tables of the largest calculations done in the computation
of I(¢) and a(q). Any calculation which had an approximate spectrum size of over
20 million is listed. Due to the memory requirements of this program, any problem
with a spectrum of approximate size over 48 million could not be computed. This
accounts for 16 out of the 232 Pisot numbers of degree 10 or less. Table 3 is for
1(g), and Table 4 is for a(q).

The timings listed in these tables were done on a MIPS R10000 Processor Chip
Revision: 3.4 (Main memory size: 4096 Mbytes). The code to perform these calcu-

lations was written in C++, using the GNU compiler.
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Pisot polynomial q 1(q) Polynomial associated
with 1(q)
22—z -1 1.618034 | 0.618034 | x—1
2 —222 42 -1 1.754878 | 0.245122 | x — 2
-2 -z -1 1.839286 | 0.543689 |z? —z —1
ot -3 —1 1.380278 | 0.008993 | x3 —4x2 +5
zt— 223 43— 1 1.866760 | 0.13324 |z — 2
ot -2 — 222 +1 1.905166 | 0.068706 | z3 —3x2 + 2+ 2
zt—2® —22 —2—1 | 1.927562 | 0.518790 |2 — 22 —2—1
2® — ot — 2% + 22 — 1| 1.443269 | 0.002292 | 422 — 3z — 4
° —2® — 2 —r—1 | 1534158 | 0.002155 | 2z* — 32 +2® — 3z +2
2P -zt —2% -1 1.570147 | 0.006992 | z* — 222 — 2z + 2
2% — 22 + 23 — 22 1.673649 | 0.009705 | z* —2% — 22 -22+3
+z—1
2 -zt -2 -1 1.704903 | 0.030844 | 23 — 3z3 —2
25—t — 2% — 22 1.965948 | 0.508660 |z* —2% —22 —2—1
—z—1
28 — 2% — 2 + 22 — 1 | 1.501595 | 0.0003491 | 25 + 22* — 42% — 322
+3z — 2
28 —225 + 2 -1 1.967168 | 0.032831 |z —2
28 — 25 — 2t — 28 1.983583 | 0.504138 | 2° — 2* — 2% — 22
—2?—2z—-1 —x—1
7 —2° -zt — 2B 1.590005 | 0.0001137 | 42 — 52° — z* — 2°
S | +z—6
27 — 2% —2* — 22 — 1| 1.601347 | 0.0004642 | 225 — z* — 323 — 122
—z+ 2
x7 — 228 + 25 — 2t 1.640728 | 0.0003030 | 226 — 22° — 2z*
+2d -2 +x -1 222+ +3
27— 225 + 25 —22% | 1.790223 | 0.0006021 | 28 — 325 + 5z* — 423
4223 — 2242 -1 —4x+1
T’ —22% + 2 -1 1.983861 | 0.016138 |z — 2
27 — 28 — 2% — ztu 1.991964 | 0.502017 | 2% —2° — 2% — 23
-2 —z?—2-1 —2?—z-1
TABLE 1. Pisot numbers where I(q) = a(q).
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Pisot polynomial Pisot number
2 —ab -2t + 22—z -1 1.979476326
2% — 325+ 321 — 223 + 2 — 1 1.955451068
2 " — 2% — 2 - 221+ 1 1.995777793
2 — a8 — 2" — 228 4% -2 - —1 1.997784254
20 =228 425 — 2t -1 1.996283920
2 — a8 — T — b —a® — 2t — 2% — 2?1 1.994016415
22— 22" — 325 —22° + 22—z -1 1.992483962
2 -2 —2T —2b -2 -2t -2 -1 1.989944545
20 —af —2T — b — % -zt 41 1.963515789
210 — 2% — 2% — g7 — 2% — 225 41 1.998987762
20— 29— 228 428 — 25 — 22t 4 22—z -1 1.998772685
20 —22% + 27 — 228 + 2t — 223 + 2 — 1 1.998277927
20 —-209 4+ 25—t -z +1 1.969456013
20 —a® — 228 + 2 —ab — 2 423 +2? — 2z — 1| 1.966884957
70— g% —2® — 27T — 2% — 25 +1 1.964715641
210 —248 - 32" — 28 — 23+ +1 1.954062236

TABLE 2. Pisot polynomials that do not divide a =1 polynomial.

Precise values of I(g) and a(g) in terms of their polynomial evaluation at ¢ can
be found on the web at [12].

5. SOME QUESTIONS ABOUT A(q) FOR NON-PISOT NUMBERS gq.

Peres and Solomyak asked in [18] for which ¢ in 1 < ¢ < 2 is A(q) dense. Tt was
unknown to the authors then if there were any ¢ for which ¢ is not a Pisot number,

yet A(q) is not dense. Here, this is answered in the affirmative.

The examples of non-Pisot numbers ¢ where A(q) is discrete required a search
of 1868 possible candidates. To explain how these candidates where determined,

consider the following theorem.

Theorem 5.1. If q does not satisfy a polynomial of the form e,z" + .. + €, x™ +
Bm-12™ Lt + -+ Bo where ¢; € {£1} and B; € {£2,0}, then A(q) is not discrete.

Proof. Assume that g does not satisfy such a polynomial. Take Py = 1. Then take
P,=1—gxP, 1ifgxP, 1<land P,=qx P, 1—1ifgx P, 1 > 1. Clearly
P; € A(q) for all 4 and 0 < P; < 1. If this sequence repeats, then ¢ satisfies the

difference of the two 1 polynomials in g, which is of the form described above,
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Pisot polynomial q 1(q) Approximate | CPU
size of secs
spectrum in
[, ]
210 — 29 — 28 — 27 1.742975573 | 1.18668e-07 | 26973910 39m50s
428 — 2341

210 — g9 — 27 — 25 1.746541923 | 7.04603e-08 | 41498130 58m4ls
-5 —zt — 23
-2 -1

20 — 2% — g% — 27 1.795572823 | 3.5123e-08 | 43357472 1h1m7s

+2° — 23 +1
210 — 2% — 28 — 27 1.852234868 | 8.17922¢-08 | 25981420 34m38s
-3 +1

210 — g9 — 28 — 27 1.860952864 | 3.80874e-07 | 24944436 35m22s
—z% + 2t +1

210 —22% + 28 — 227 | 1.870250440 | 4.44816e-08 | 46252634 1h4m56s
+28 + 23 — 22
+z—1

710 —22% + 27 — 2% | 1.881601063 | 2.57611e-07 | 27513576 35m35s
-3 +2? -1

210 — 228 — 327 — 26 | 1.890027098 | 2.67873e-07 | 20923016 29m43s
+2° + 22* + 23
—x? -2z -1

210 —22% + 28 — 27 | 1.903832902 | 2.22525¢-07 | 22738454 28m42s
b -2+ -1

g0 — 2% — 28 — 27 1.921407084 | 3.12296e-08 | 41511868 57mbs
—z% — gt — 22
—x—1

210 —22% + 28 — 227 | 1.957362809 | 2.22214e-07 | 22336604 29m7s

+28 — 25 — 22 —

10— 22° + 27 — 226 | 1.998277927 | 2.447e-08 46943484 1h3mb4s

4zt -2+ —1

TABLE 3. Successful calculations with a spectrum over 20 million

for I(q).
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Pisot polynomial q a(q) Approximate | CPU
size of secs
spectrum in
[, ]
210 — 2% — 28 4+ 2% — 1| 1.601755862 | 1.59445e-07 | 33921896 | 30m38s
210 — 2% — 28 — 22 41| 1.632690733 | 1.03354e-07 | 21835702 | 17m30s
20 — 229 + 28 — o7 1.735143707 | 8.28149e-08 | 32342934 | 29m18s
+2d -2 +x -1

TABLE 4. Successful calculations with a spectrum over 20 million

for a(q).

hence a contradiction. Hence, {P;} is an infinite non-repeating sequence in [0,1],
and thus A(q) is not discrete. O

Corollary 1. If q does not satisfy a height 2 polynomial, then A(q) is not discrete.
Lemma 3. If A(q) is discrete, then A(q™) is discrete for all n.

Proof. Let o= Y_7", €;¢™ be a point in A(¢g"). Then (¢" ' +¢" 2 +---+¢g+1)a
is in A(q). Thus =L A(¢q™) C A(q). Thus A(g") is discrete. O

q
q—1

n

Lemma 3, although of theoretical interest, is not of much practical use, as no

q < /2, other than the two Pisot numbers, have been found where A(q) is discrete.

With the limits imposed by Theorem 5.1, the search was restricted to:

1. All polynomials dividing a height 1 polynomials of degree < 7.
2. All polynomials dividing any £1 polynomial up to degree 10.

m

3. All polynomials dividing a polynomials of the form e, z"+€, 12" 1+ -- €T

+ Bm—12™ "t 4+ -+ + Bo where ¢; € {£1} and B; € {£2,0} up to degree 7.
Some observations than can be made on the basis of this search are;

1. All examples of ¢ where A(q) is discrete found are Perron numbers (all con-
jugates are of modulus less than g).

2. There were 120 examples found of non-Pisot numbers with discrete spectra
Ag)-

3. There were 7 Salem numbers found (all but one conjugate is of modulus 1),
with discrete spectra. They are given in Table 6.

4. The only non-Pisot numbers ¢ whose minimal polynomial has Mahler measure

less than 2 while A(q) is discrete seems to be these Salem numbers.
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5. The smallest (non-Pisot) number found with discrete spectrum is the Salem
number 1.72208 of degree four (the root of 2% — z3 — 2% — z + 1).

6. The largest root of ™ — z"~! — ... — z + 1 is a Salem number with discrete
spectrum (Theorem 5.3 and Theorem 5.4) and the only Salem numbers found
of degree 9 or less with discrete spectrum satisfy a polynomial of this type.

7. All ¢ found in the search of non-Pisot numbers satisfying a polynomial of the
form €,2" + €,-12" 1 + -+ €™ + B_12™ L + - -+ + By where ¢; € {£1},
Bi € {£2,0} and m > 1 do not have zero in the spectrum.

8. The smallest degree polynomial defining a ¢ such that A(q) is discrete is

3 — 2z — 2.

It is worth noting here the distinction between discrete spectra and uniformly
discrete spectra. As will be shown, these examples found of non-Pisot numbers
with discrete spectra A(q) are “most probably” not uniformly discrete, and some

provably not uniformly discrete.

Theorem 5.2. If I(q) = 0 then A(q) is not uniformly discrete, and if A(q) is not
uniformly discrete, then 12(q) = 0.

Proof. The first part follows by noticing that
2A(q) = A**%(q) C A(q) — A(a),
and the second part follows by noticing that
Alq) — Alg) € A*(q).
O

So if the conjecture is true that I(g) > 0 if and only if ¢ is Pisot, then we have

that all of the non-Pisot numbers ¢ must have A(g) non-uniformly discrete.

The polynomials listed in Table 5 are known to have non-uniformly discrete
spectra. These polynomials have discrete spectra, as a result of the search described
earlier in this section. It is seen that I(g) = 0 in all of the polynomials as they do
not satisfy a height 1 polynomial [3, 10]. Thus by Theorem 5.2 these spectra are

non-uniformly discrete spectra.

Next consider the Salem numbers in Table 6. By noticing that 1 — 222 — 323 —
2z* + 28 divides 1 — 22 + 22 — 223 + 2* — 22° + 2% — 227 + 28, and then 1 — 22 +
2 — - — 222771 4 227 divides 1 — z — 22 — - - — 22" + 2271 it can be noticed
that all of the Salem numbers found with the property that A(q) is discrete satisfy

a polynomial of the form 1 —z — 2% —--- — 2"~ ! 4+ 2" for n > 4.
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Non-Pisot polynomial Root

3 — 2z —2 1.769292354
zt— 2 — 22 -2 1.873708564
xt —22% — 22— 2 1.899321089
x® —at — 222 -2 1.803707279
z® — gzt — 2% — 222 +2 1.917514202
z° —zt — 227 — 22— 2 1.942887561
2% —22% — 222 — 22— 2 1.953501637
28 — 221 — 223 -2 1.813277575
2% — 2% — 2t —22% + 22 42 1.859080768
2% —22% — 223 — 222 42 1.865843123
28 — 2% — 2t —22% + 2 1.961038629
20 —22% — 223 — 222 — 22 — 2 1.977807115
28 — 2% — 2t —2® — 222 + 2 1.963984556
27— a8 — 2% — a2t + 2% — 222 + 2 1.815396315
o7 — 28 — 2% — 221 + 227 + 2 1.888840344
27— a8 —2® —2t — 2%+ 2 1.903972308
2T — b — 2% — 22 + 2242 1.937730036
2T — 28 — 25—zt — 23 — 222 + 22 + 2 | 1.945197233
o7 — b — 2% — 22 +2 1.981204104
27— a8 —2d — 2t —22% 42 1.982546502
2T — b — 2% — 2t — 2 —222 42 1.983151826

TABLE 5. Polynomials with non-uniformly discrete spectrum, A(q)

This led to the investigation of whether all of these numbers are Salem numbers,
and if A(q) is discrete in every case. (Both of these are answered in the affirmative
below.) It is still unknown if this is all of the Salem numbers ¢ where A(q) is

discrete, nor if these are the only such ¢ with Mahler measure less than 2.

Theorem 5.3. The root of the polynomial 2" — z"~ ' — --- — x + 1 between 1 and

2 is a Salem number.
Proof. By [19] if P(x) is a Pisot polynomial and P*(z) its reciprocal, then

(z"P(z) — P*(z))/(x - 1)

defines a Salem number provided it has a root greater than 1. Here we take P(z) =
x — 2. To see that there is a root between 0 and 1, we use the intermediate value

theorem. 0
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Salem polynomial q a(q) Approximate
size of
spectrum in
[oz, ]

-2 -2t -z +1 1.722083806 | 0.243489 | 11

2t —223 + 22 - 22 +1 1.883203506 | 0.249038 | 13

28 — 2% — gt - 2? 1.946856268 | 0.249814 | 15

22—z +1

28 — 22 + 2t — 223 1.974818708 | 0.249959 | 17

+22 —22+1

28 — 224 — 323 — 222 +1 | 1.987793167 | 0.249991 | 19

28 — 227 + 2% — 22° 1.994004199 | 0.249998 | 21

+at — 223 4 22
—2z+1
210 — 2% — 28 — 27 1.997032367 | 0.249999 | 23
28 — 2% — gt
2 -z -2 +1
TABLE 6. All Salem numbers found of degree < 10, ¢ where the

spectrum A(q) is discrete.

Theorem 5.4. If 1 < q satisfies the polynomial 1 —x — 22 —--- — 2" 1 + 27, then
A(q) is discrete.

Proof. To see that A(q) is discrete, simply consider the algorithm. The following

observations are needed.

1 qm_qul_..._q+1>q%1form<n.
1 -1

Thus at each step of the algorithm there is only one choice, and it must terminate
after n steps. (The case of polynomials with negative lead coefficients has been

removed by symmetry.)
Thus it remains to prove these two observations.
1. First, notice that the roots g, of ¢" — ¢! —--- — g+ 1 form an increasing

sequence bounded below by 1 and above by 2. (This follows as ¢! — g7 —
coe—gn+1 =g —2¢" = ¢"(g,—2) <Oand 2"+ —2"—...—24+1=3>0.)
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Thus for m <n — 2.

ot =gt = —gatl 2 0
gt =gy > g1
-1

q;n_qznfl_____l Z qn2

an

G —qn == 1 > 0

G —gn =+l > 2

1

-1

' ~dn ol > oy

The last inequality follows as the smallest Salem number of this form is
approximately 1.72.
For m =n—1and ¢ > %ﬁ ~ 1.780 it follows that

0 > —2¢°+3¢+1
q

q
2qg—1 —_—
q > -1
n—1 q
. — 1 _*
alq g+1) > -1
n—1 1
g ——q+1 > ——
q—1

For the cases of ¢ < 1.780, we simply note that this is already covered as
a special case in Table 6.

. —1 _ -1 _ 1
2. Notice " —¢" ' =+ —g—-1=¢"—¢" '~ —g+1-2=-2< =%

;From this, we deduce:

Corollary 2. For q as above, a(q) = qq;21 =

N

6. FINDING +1 POLYNOMIALS WITH LLL.

If ¢ is not a Pisot number, yet is still an algebraic number, Algorithm 1 (page
5) can be used to determine if 0 € A(g). Unfortunately, for some g, this algorithm
cannot return a negative answer and has the potential of returning no information
at all. This is because it is not known if A(q) is discrete; if A(q) is not discrete, the

algorithm is not guaranteed to terminate.
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It is of interest to see which ¢ satisfy a +1 polynomial, or equivalently when

0 € A(q). For this, we introduce a few new algorithms, and a few observations.

Lemma 4. If the lead coefficient and tail coefficient of p(x) are both odd, then
p(z)]1 +z+---2" (mod 2) for some n.

Proof. This follows from the observation that if p(z) is irreducible modulo 2, and of
degree n, then p(z)|z?" ~'+1 (mod 2) [13]. Noticing that (z"+1)(z™+1)/(z+1) =
z"™=! 4+ 1 (mod 2) and (z + 1)(z" ' +2" 24+ ---+2+1) = 2" + 1 (mod 2)
completes the proof. O

Algorithm 2 will for input p(z) find a polynomial ¢(x), such that p(z)q(z) is of
the form 1+ +--- 4+ 2™ (mod 2). Although it is possible to determine the value
for n in the lemma above by looking at the factorization of p(z) mod 2, it is easier

to simply test each n in order.

Algorithm 2: Finding a polynomial divisible by p(z) (mod 2).
FindQMod2(poly)

for n from 1 to infinity do

if poly divides 1 + x + ... + x"n (mod 2) then
RETURN(quotient of 1 + x + ... + x"n divided by poly)
end if;
end do;

end:

{From here LLL can be often be used to find a polynomial ¢'(x) where ¢'(x)p(x)
is a polynomial with +1 coefficients. Recall if L = {>"1" | b;v; : b; € Z} is a lattice
with a basis of vectors {vy,- - ,v,} then LLL will find a new basis for L where each
element of the basis will have a “small” norm. (We can choose any inner product
for the lattice L.) For a good review of LLL see [4, 16, 17].

So, for a basis choose p(z)q(x) as one basis element, and 2p(x)z™ for 0 < n <
deg q as the rest. It can be seen that if there is one basis element in the original basis
with all odd coefficient, and all the rest have only even coefficients, then the resulting
basis from LLL will have at least one basis element with only odd coefficients.
Secondly, as LLL will try to minimize the sum of the squares of the coefficients,
(the norm we picked for this problem) this polynomial with odd coefficients will,

with some luck, be a polynomial with +1 coefficients.

This is written up into Algorithm 3 (page 17).
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Algorithm 3: LLL to find a polynomial with small odd coefficients.

FindPMPoly (poly)

end

q := FindQMod2(poly)

n := degree(q)

Basis := [poly*q, 2*poly, 2*poly*x, \cdots, 2*poly*x~(n-1)];
NewBasis := LLL(Basis);

Select the smallest basis element from NewBasis

with all odd coefficients and return it

Algorithm 3 (page 17) experimentally works quite well for small problems. Un-

fortunately, for almost every polynomial of degree n, the resulting g(z) is of degree

2" — . This means that LLL must be performed on a basis of size 2" — n, which

leads to an exponential time algorithm.

Some results are tabulated in Table 6, for Pisot numbers, Salem numbers, and

non-Pisot non-Salem numbers.

7. CONCLUSIONS

There are still many questions which this paper leaves open:

1. Is the set of ¢ such that a(q) = I(q) finite?

2. Does there exists and a & 1.95 such that if ¢ < «, and ¢ Pisot, then 0 € A(q)?
3.
4

. Are the only g where A(q) is discrete and the Mahler measure of ¢ is less than

Are all ¢ where A(q) is discrete necessarily Perron?

2 necessarily Salem numbers or Pisot numbers.

Do the only Salem numbers g with A(q) discrete satisfy ¢q" —¢" "' —---—q+1
for some n?

Is there a o & 1.72 such that if ¢ < « and ¢ is not Pisot then A(g) is not
discrete?

Is it true that I(q) > 0 if and only if ¢ is Pisot?
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